Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 13;74(Pt 12):1790–1794. doi: 10.1107/S2056989018015876

Crystal structure of bis­(μ2-meth­anolato-κOO)hexa­methyl­bis­(μ2-tri­phenyl­acetato-κOO′)bis­(μ2-tri­phenyl­acetato-κ2 O,O′:κO)dialuminiumdi­lanthanum toluene tetra­solvate

Alexander A Vinogradov a, Dmitrii M Roitershtein a,b, Mikhail E Minyaev a,*, Konstantin A Lyssenko c, Ilya E Nifant’ev a,d
PMCID: PMC6281095  PMID: 30574375

The complex [{La(Ph3CCOO)2(Me3AlOMe)}2] has an La2(μ-OCO)4 core, contains the carboxyl­ate ligands in μ21 O1 O′ bridging and μ22 O,O′:κ1 O semi-bridging coordination modes, and displays La—C inter­actions with the π-system of a phenyl ring.

Keywords: lanthanum, aluminium, tri­phenyl­acetate, π-complex, coordination compound, crystal structure

Abstract

The title compound, [Al2La2(C20H15O2)4(CH3)6(CH3O)2]·4CH3C6H5 or [{La(Ph3CCOO)2(Me3AlOMe)}2]·4CH3C6H5, was formed in a reaction between lanthanum tris­(tetra­methyl­aluminate) and tri­phenyl­acetic acid (1:1) with unintended partial oxidation. The tri­phenyl­acetate ligand exhibits μ21 O1 O′ bridging and μ22 O,O′:κ1 O semi-bridging coordination modes, forming a dimeric La2(μ-OCO)4 core. The semi-bridging tri­phenyl­acetate group provides additional bonding with an La3+ cation via the π-system of one of its phenyl rings. The tri­methyl­meth­oxy­aluminate anion, which is coordinated to the La3+ cation by its O atom, displays a rather long La—CMe bond. Two toluene mol­ecules are each disordered over two orientations about centres of symmetry with site occupancy factors of 0.5. The title compound represents the first example of an LnIII complex containing both alkyl alkoxide aluminate and π-bounded arene fragments.

Chemical context  

Heteroleptic tetra­alkyl­aluminate complexes of rare-earth metals attract significant attention because of their intriguing role in the stereospecific polymerization of conjugated dienes (Anwander, 2002). Stereoregular elastomers obtained in the polymerization process of isoprene and butadiene are fundamentally important for the production of modern wear-resistant rubbers (Friebe et al., 2006). It is assumed that this type of complex plays the key role in the formation of catalytically active species. Meanwhile, little is known about the structure of such complexes (Fischbach et al., 2006a , and reference therein). The exceptionally high oxidative instability of aluminate complexes is one of the reasons for the lack of information on the structures of catalytically active heteroleptic bimetallic Ln–Al complexes.

This report describes the product of unintentional oxidation of a carboxyl­ate–aluminate La complex while reacting lanthanum tris­(tetra­methyl­aluminiumate) with the corres­ponding acid (Fig. 1). This reaction should have led initially to the heteroleptic tri­phenyl­acetate–tetra­methyl­aluminate complex that is supposed to be a model of the active species in the catalyst system. The accidental partial oxidation resulted in the formation of the tri­phenyl­acetate-tri­methyl­meth­oxy­aluminate lanthanum complex [{La(Ph3CCOO)2Me3AlOMe}2].graphic file with name e-74-01790-scheme1.jpg

Figure 1.

Figure 1

Synthesis of [{La(Ph3CCOO)2Me3AlOMe}2]·4(CH3C6H5).

Structural commentary  

The asymmetric unit of the title compound consists of half of the dimeric complex [{La(Ph3CCOO)2(Me3AlOMe)}2] (Fig. 2) located on an inversion centre, and three non-coordinating toluene mol­ecules (not shown). Two of the toluene mol­ecules are disordered over inversion centres, having 50% atomic site occupancies. The coordination polyhedron for the La3+ cation and its coordination number are rather difficult to determine. Two tri­phenyl­acetate ligands exhibit the μ21 O1 O′ bridging coordination mode, but two other ligands display the μ22 O,O′:κ1 O′ semi-bridging type (Figs. 2 and 3; Table 1). The complex has an La2(μ-OCO)4 core with an La1⋯La1i distance of 4.0432 (4) Å [symmetry code: (i) −x, −y + 1, −z + 1). Unlike the bridging ligands, the semi-bridging tri­phenyl­acetates demonstrate additional La⋯C contacts with the carb­oxy­lic system (La1⋯C5, La1i⋯C5i; Fig. 3; Table 1). The La3+ cation is also coordinated by the π-system of a phenyl ring of the semi-bridging carboxyl­ate ligand (Fig. 3, atoms C7i–C12i; Table 1). The inter­action with the phenyl (Ph) group is close to symmetrical: the La⋯Phcentroid distance is 2.938 (2) Å, the normal to the Ph-ring plane is 2.9353 (16) Å, and the La⋯CPh bond lengths lie in the range 3.201 (4) to 3.318 (4) Å. Ten crystal structures exhibiting the inter­action of La3+ with the π-system of an uncharged C6 aromatic ring have been found in the Cambridge Structural Database (CSD, Version 5.39, February 2018 update; Groom et al., 2016). The corresponding distances in these compounds vary from 2.93 to 3.27 Å for La⋯CAr­yl and from 2.61 to 2.87 Å for La⋯Ar­ylcentroid. The La⋯Phcentroid and La⋯CPh distances in the title compound are therefore the longest, which is likely caused by steric hindrance induced by the presence of many phenyl groups within the inner coordination sphere.

Figure 2.

Figure 2

The mol­ecular structure of the {La(Ph3CCOO)2(Me3AlOMe)}2 unit in the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms and toluene solvent mol­ecules are omitted for clarity. The La—O bonds are shown with thinner solid lines. The La—C inter­actions are not shown. Symmetry code: (i) −x, −y + 1, −z + 1.

Figure 3.

Figure 3

Metal–ligand inter­actions within the {La(Ph3CCOO)2(Me3AlOMe)}2 unit. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted, only Cipso atoms (labeled as Ph) are shown for non-coordinating phenyl groups for clarity. The Ln—C contacts are shown with thin dashed lines. Symmetry code: (i) −x, −y + 1, −z + 1.

Table 1. Selected bond lengths (Å).

La1—O1 2.336 (3) La1—C8i 3.287 (4)
La1—O2 2.501 (3) La1—C9i 3.246 (4)
La1—O3 2.494 (3) La1—C10i 3.212 (4)
La1—O3i 2.403 (2) La1—C11i 3.201 (4)
La1—O4 2.396 (3) La1—C12i 3.239 (4)
La1—O5i 2.367 (3) Al1—O1 1.819 (3)
La1—C2 3.042 (4) Al1—C2 2.014 (4)
La1—C5 2.892 (4) Al1—C3 1.990 (5)
La1—C7i 3.318 (4) Al1—C4 1.961 (4)

Symmetry code: (i) Inline graphic.

The tri­methyl­metoxyaluminate anions are coordinated to the La3+ cations via oxygen atoms (La1—O1, La1i—O1i), and exhibit a slightly distorted tetra­hedral environment about the Al atoms, with an O1—Al1—C2 angle of 100.03 (17)° and with other O—Al—C and C—Al—C bond angles ranging from 108.32 (18) to 113.2 (2)°. The small value for the O1—Al1—C2 angle is due to the additional coordination of the [Al(CH3)3(OCH3)] anion with La3+ by the C2 atom (Fig. 3). However, the La1—C2 bond length [3.042 (4) Å] is rather long compared to those of previously characterized compounds possessing the La–[(μ-Me)2AlMe2] fragment, which have La—CMe distances lying in the range 2.66 to 2.98 Å with the average value of 2.76 Å (32 compounds with 128 crystallographically independent La—CMe-Al distances retrieved from the CSD). The La1⋯Al1 distance [3.4481 (12) Å] is near to the upper boundary of the La—Al distance range in the aforementioned compounds (from 2.99 to 3.45 Å, with an average of 3.25 Å).

There is only one related compound having the La-[(Alk­yl/Ar­yl)3Al(OAlk­yl/OAr­yl)] motif (CSD refcode MIMPED; Giesbrecht et al., 2002) – {La(O-2,6-iPr2C6H3)[AlMe2(μ-Me)(μ-O-2,6-iPr2C6H3)]2}. The Al—O [1.864 (3), 1.848 (3) Å], La—O [2.387 (3), 2.367 (3) Å] and Al—C [2.040 (5), 2.053 (6) Å] bond lengths within the LaAl2(μ-Me)2(μ-OAr­yl)2 fragment are similar to those found in the LaAl(μ-Me)(μ-OMe) fragment of the complex reported herein. However, the La1—C2 distance in the title compound (Table 1) is considerably longer (by 0.24-0.28 Å) than the corresponding La—C distances in MIMPED [2.800 (5), 2.759 (5) Å], presumably due to steric reasons.

In the studied compound, the La—OMe (La1—O1) bond is the shortest, compared to the other La—O bonds, which may be due to delocalization of negative charge on the carb­oxy oxygen atoms and/or steric repulsion of the bulky carboxyl­ate anion.

Supra­molecular features  

Weak intra- and inter­molecular inter­actions among complex mol­ecules and non-coordinating toluene mol­ecules are mainly represented by the CPh—H··π type (Table 2). An inter­esting feature of the crystal packing is that the centres of all non-coordinating toluene mol­ecules are located nearly in one plane parallel to the ab plane, separating 2D mol­ecular layers of the complex (Fig. 4).

Table 2. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33–C38, C39–C44, C52–C57 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯⋯Cg1i 0.98 2.69 3.425 (6) 132
C17—H17⋯⋯Cg2 0.95 2.71 3.485 (4) 139
C21—H21⋯⋯Cg3ii 0.95 2.93 3.677 (8) 136
C29—H29⋯⋯Cg4 0.95 2.62 3.415 (4) 142
C32—H32⋯⋯Cg2 0.95 2.95 3.654 (5) 132
C44—H44⋯⋯Cg1 0.95 2.88 3.592 (5) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

A view along the b axis of the crystal packing of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted.

Database survey  

The number of crystal structures for rare-earth compounds containing the Ln–C–Al fragment (CSD, Version 5.39, February 2018 update; Groom et al., 2016) is nearly 250 (upon exclusion of duplicated structures). They are mainly represented by 147 tetra­methyl­aluminates with Ln-[(μ2-Me)2AlMe2] (127 structures), Ln-[(μ2-Me)AlMe22-Me)]-Ln (11 structures) and Ln-[(μ2-Me)AlMe3] (9 structures) fragments and by 16 tetra­ethyl­aluminate complexes. This number also includes 18 structures of Ln-[(Alk­yl/Ar­yl)3Al(OAlk­yl/OAr­yl) compounds possessing the following structural motifs: [(μ2-Me)(μ2-OCH2 tBu)AlMe2] (AVOYOA, AVOYUG, Occhipinti et al., 2011; GEQMOF, GEQMUL, Fischbach et al., 2006b ), [(μ2-Me)(μ2-OtBu)AlMe2] (POJNAD, Biagini et al., 1994; WAPYIV, WAPYOB, Evans et al., 1993a ; WEHHAS, Evans et al., 1993b ), [(μ2-Me)(μ2-OiPr)AlMe2] (VOLMUF, Liu et al., 2005), [(μ2-Me)(μ2-O-2,6-Ph2C6H3)AlMe2] (TULCAF, Korobkov & Gambarotta, 2009), [(μ2-Me)(μ2-O-2,6-iPr2C6H3)AlMe2] (LUQZOM, Fischbach et al., 2003; MIMPED, Giesbrecht et al., 2002; MOQYOG, Gordon et al., 2002; PETMUX, Fischbach et al., 2006c ), [(μ2-Et)(μ2-O-2,6-iPr2C6H3)AlEt2] (MIMPIH, Giesbrecht et al., 2002; ROCHOH, Sommerfeldt et al., 2008), [(μ2-Me)(μ2-O-2,6-tBu2-4-MeC6H2)AlMe2] (ROCGOG, Sommerfeldt et al., 2008), [(κ2 O,O′-MeOCH2CH2O)AlMe3] (GIZWAN, Evans et al., 1998). MIMPED is the only La structure among them. A related structure with the {(μ2-Me)[μ2O2 O,O′-(OtBu)3SiO]AlMe2} motif (BEQXUR, Fischbach et al., 2004) might be also mentioned.

Crystal structures of lanthanide(III) compounds having an η6-coordinated uncharged arene system have become numerous over the last two decades, resulting in the description of over 150 crystal structures (see the CSD). Ten structures of such La(III) π-complexes are known: EZIPIM (Giesbrecht et al., 2004), MALXOM (Deacon et al., 2000), POKCAU (Gerber et al., 2008), RILBIZ, RILBUL (Hamidi et al., 2013), ROMQUG (Filatov et al., 2009), SOJHAB, SOJHEF, SOJHIJ (Filatov et al., 2008), ZIDSOV (Butcher et al., 1995). Crystallographic data for these complexes were used to compare structural parameters of the title compound in the Structural Commentary section. Known crystal structures of rare-earth tri­phenyl­acetate complexes are also not numerous, and their number is limited to 16 recent crystal structures: peroxide bis­(tri­phenyl­acetate) complexes QEHBOX, QEHBUD, QEHCEO (Roitershtein et al., 2017), mono- and binuclear tris­(tri­phenyl­acetate) complexes EPUNIO (Minyaev et al., 2016), RIKRIO, RIKRUA, RIKSAH, RIKSEL (Roitershtein et al., 2013), tetra­kis­(tri­phenyl­acetate) complexes and their adducts RIKQUZ, RIKRAG, RIKREK, RIKRIO (Roitershtein et al., 2013), tri­phenyl­acetate-tetra­ethyl­aluminate compounds RIJVIR, RIJVOX (Roitershtein et al., 2013) and hepta­nuclear polyligand complexes UVETAR, UVETEV (Sharples et al., 2011). The tri­phenyl­acetate ligand exhibits terminal κO and κ2 O,O′, bridging μ-κOO′, and semi-bridging μ-κO2 O,O′ (the latter is only for the four ate complexes) coordination modes.

Up to date, no complex has been reported that has both an η6-coordinated arene ligand and the mixed-ligand alkyl-alkoxide aluminate anion.

Synthesis and crystallization  

Synthetic operations were carried out under a purified argon atmosphere. Toluene was distilled from sodium/benzo­phenone ketyl, hexane was distilled from Na/K alloy. Tri­phenyl­acetic acid was purified by azeotrope removal of water from its toluene solution with a Dean–Stark trap, followed by crystallization from a cold saturated solution and then by vacuum drying. The complex La(AlMe4)3 was prepared according to the literature procedure (Zimmermann et al., 2007).

A solution of Ph3CCOOH (0.144 g, 0.50 mmol) in toluene (20 ml) was added to a stirred solution of La(AlMe4)3 (0.196 g, 0.49 mmol) in toluene (10 ml), producing a suspension, which was stirred overnight at room temperature. The precipitate was removed by deca­ntation and the solution was concentrated to a volume of 10 ml. Slow and careful layering of hexane (40 ml) on the top of the residual solution resulted in the formation of an inseparable compound mixture and a few colourless crystals suitable for X-ray single crystal diffraction analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atom were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl H atoms) and refined as riding atoms with U iso(H) = 1.5U eq(C) for methyl or 1.2U eq(C) for aromatic H atoms. A rotating group model was applied for methyl groups. Three reflections (100, 010, 001) were affected by the beam stop, and were therefore omitted from the refinement. Two non-coordinating toluene mol­ecules disordered over inversion centres with occupancy factors of 0.5 were modelled by fitting the phenyl rings to regular hexa­gons, by constraining the Cipso—CMe bond distances to 1.52 (1) Å, and by using equal anisotropic displacement parameters for atoms C52, C53, C54, C55, C60, C62 and C65.

Table 3. Experimental details.

Crystal data
Chemical formula [Al2La2(CH3)6(C20H15O2)4(CH3O)2]·4C7H8
M r 2001.86
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 13.8404 (6), 14.2089 (6), 14.6084 (7)
α, β, γ (°) 73.198 (1), 81.968 (1), 63.523 (1)
V3) 2461.54 (19)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.43 × 0.17 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.713, 0.848
No. of measured, independent and observed [I > 2σ(I)] reflections 30779, 13082, 10174
R int 0.065
(sin θ/λ)max−1) 0.682
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.111, 1.01
No. of reflections 13082
No. of parameters 596
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −1.36

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2015) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018015876/rz5247sup1.cif

e-74-01790-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015876/rz5247Isup2.hkl

Supporting information file. DOI: 10.1107/S2056989018015876/rz5247Isup3.cdx

CCDC reference: 1877930

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Al2La2(CH3)6(C20H15O2)4(CH3O)2]·4C7H8 Z = 1
Mr = 2001.86 F(000) = 1032
Triclinic, P1 Dx = 1.350 Mg m3
a = 13.8404 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.2089 (6) Å Cell parameters from 4587 reflections
c = 14.6084 (7) Å θ = 2.5–27.3°
α = 73.198 (1)° µ = 0.93 mm1
β = 81.968 (1)° T = 100 K
γ = 63.523 (1)° Block, colorless
V = 2461.54 (19) Å3 0.43 × 0.17 × 0.14 mm

Data collection

Bruker APEXII CCD diffractometer 13082 independent reflections
Radiation source: fine-focus sealed tube 10174 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.065
ω scans θmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −18→18
Tmin = 0.713, Tmax = 0.848 k = −19→19
30779 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0491P)2] where P = (Fo2 + 2Fc2)/3
13082 reflections (Δ/σ)max = 0.001
596 parameters Δρmax = 1.25 e Å3
2 restraints Δρmin = −1.36 e Å3

Special details

Experimental. moisture and air sensitive
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
La1 −0.03227 (2) 0.49487 (2) 0.37122 (2) 0.01306 (6)
Al1 −0.12529 (11) 0.40803 (10) 0.21948 (9) 0.0286 (3)
O1 −0.0005 (2) 0.3834 (3) 0.2697 (2) 0.0386 (7)
C1 0.0953 (4) 0.3005 (4) 0.2479 (4) 0.0524 (14)
H1A 0.088611 0.290505 0.185791 0.079*
H1B 0.109110 0.232657 0.297403 0.079*
H1C 0.155252 0.320192 0.245107 0.079*
C2 −0.2300 (4) 0.5359 (3) 0.2694 (3) 0.0336 (10)
H2A −0.300473 0.565883 0.239855 0.050*
H2B −0.203033 0.591960 0.253632 0.050*
H2C −0.237368 0.512220 0.338947 0.050*
C3 −0.1116 (4) 0.4476 (4) 0.0776 (3) 0.0460 (12)
H3A −0.097311 0.384953 0.053500 0.069*
H3B −0.051864 0.468840 0.059015 0.069*
H3C −0.178880 0.508554 0.050371 0.069*
C4 −0.1619 (4) 0.2840 (4) 0.2695 (3) 0.0406 (11)
H4A −0.110910 0.223099 0.243557 0.061*
H4B −0.235322 0.304856 0.250611 0.061*
H4C −0.157613 0.261936 0.339463 0.061*
O2 −0.1140 (2) 0.3706 (2) 0.46652 (19) 0.0320 (7)
O3 −0.0402 (2) 0.4255 (2) 0.54830 (18) 0.0232 (6)
C5 −0.0957 (3) 0.3754 (3) 0.5459 (3) 0.0214 (8)
C6 −0.1398 (3) 0.3264 (3) 0.6418 (3) 0.0220 (8)
C7 −0.0810 (3) 0.3348 (3) 0.7189 (3) 0.0234 (8)
C8 0.0289 (3) 0.2683 (3) 0.7329 (3) 0.0271 (8)
H8 0.064082 0.213330 0.699308 0.033*
C9 0.0885 (4) 0.2798 (3) 0.7944 (3) 0.0307 (9)
H9 0.163386 0.233326 0.802589 0.037*
C10 0.0381 (4) 0.3596 (4) 0.8438 (3) 0.0340 (10)
H10 0.077959 0.367317 0.886831 0.041*
C11 −0.0703 (4) 0.4277 (4) 0.8303 (3) 0.0325 (10)
H11 −0.104716 0.482567 0.864064 0.039*
C12 −0.1300 (3) 0.4167 (3) 0.7672 (3) 0.0279 (9)
H12 −0.204174 0.465268 0.757361 0.033*
C13 −0.2633 (3) 0.3918 (3) 0.6482 (3) 0.0233 (8)
C14 −0.3158 (3) 0.3660 (4) 0.7337 (3) 0.0342 (10)
H14 −0.275619 0.309338 0.785860 0.041*
C15 −0.4279 (4) 0.4235 (4) 0.7427 (3) 0.0391 (11)
H15 −0.463027 0.406832 0.801646 0.047*
C16 −0.4875 (4) 0.5041 (4) 0.6668 (4) 0.0387 (11)
H16 −0.563524 0.542101 0.673235 0.046*
C17 −0.4364 (3) 0.5292 (3) 0.5818 (3) 0.0340 (10)
H17 −0.477381 0.584819 0.529442 0.041*
C18 −0.3253 (3) 0.4737 (3) 0.5721 (3) 0.0284 (9)
H18 −0.291035 0.491608 0.513002 0.034*
C19 −0.1186 (3) 0.2076 (3) 0.6507 (3) 0.0249 (8)
C20 −0.0899 (4) 0.1297 (3) 0.7379 (3) 0.0328 (10)
H20 −0.078929 0.148647 0.791600 0.039*
C21 −0.0772 (4) 0.0247 (4) 0.7475 (4) 0.0424 (11)
H21 −0.059311 −0.026807 0.807948 0.051*
C22 −0.0904 (4) −0.0056 (4) 0.6695 (4) 0.0415 (12)
H22 −0.078727 −0.078289 0.675550 0.050*
C23 −0.1208 (3) 0.0713 (3) 0.5833 (3) 0.0340 (10)
H23 −0.131851 0.051784 0.530019 0.041*
C24 −0.1355 (3) 0.1779 (3) 0.5732 (3) 0.0276 (9)
H24 −0.157055 0.230159 0.513513 0.033*
O4 −0.1812 (2) 0.6313 (2) 0.43281 (18) 0.0240 (6)
O5 −0.1427 (2) 0.6352 (2) 0.57488 (19) 0.0263 (6)
C25 −0.2039 (3) 0.6717 (3) 0.5035 (3) 0.0227 (8)
C26 −0.3096 (3) 0.7777 (3) 0.5032 (3) 0.0227 (8)
C27 −0.2810 (3) 0.8697 (3) 0.4371 (3) 0.0231 (8)
C28 −0.1853 (3) 0.8743 (3) 0.4508 (3) 0.0301 (9)
H28 −0.137299 0.820458 0.499793 0.036*
C29 −0.1600 (3) 0.9568 (3) 0.3933 (3) 0.0337 (10)
H29 −0.093985 0.957802 0.402696 0.040*
C30 −0.2283 (4) 1.0370 (4) 0.3232 (3) 0.0368 (10)
H30 −0.210354 1.093329 0.284112 0.044*
C31 −0.3234 (4) 1.0339 (4) 0.3106 (3) 0.0382 (11)
H31 −0.371889 1.089322 0.262629 0.046*
C32 −0.3499 (3) 0.9516 (3) 0.3667 (3) 0.0304 (9)
H32 −0.416150 0.951342 0.356674 0.037*
C33 −0.3352 (3) 0.7907 (3) 0.6049 (3) 0.0257 (8)
C34 −0.3485 (3) 0.8825 (3) 0.6307 (3) 0.0314 (9)
H34 −0.339816 0.940681 0.584050 0.038*
C35 −0.3746 (4) 0.8894 (4) 0.7256 (4) 0.0437 (12)
H35 −0.383374 0.952358 0.742752 0.052*
C36 −0.3876 (4) 0.8057 (4) 0.7943 (3) 0.0447 (12)
H36 −0.404321 0.810532 0.858570 0.054*
C37 −0.3762 (3) 0.7144 (4) 0.7688 (3) 0.0382 (11)
H37 −0.386189 0.656965 0.815430 0.046*
C38 −0.3502 (3) 0.7074 (4) 0.6750 (3) 0.0311 (9)
H38 −0.342435 0.644566 0.658109 0.037*
C39 −0.4077 (3) 0.7783 (3) 0.4627 (3) 0.0229 (8)
C40 −0.4009 (3) 0.7506 (3) 0.3772 (3) 0.0257 (8)
H40 −0.334014 0.729044 0.343230 0.031*
C41 −0.4902 (3) 0.7541 (3) 0.3408 (3) 0.0300 (9)
H41 −0.482883 0.732093 0.283689 0.036*
C42 −0.5896 (3) 0.7893 (3) 0.3865 (3) 0.0316 (9)
H42 −0.650696 0.792166 0.361079 0.038*
C43 −0.5981 (3) 0.8199 (4) 0.4696 (3) 0.0334 (10)
H43 −0.666067 0.844944 0.501464 0.040*
C44 −0.5089 (3) 0.8148 (3) 0.5072 (3) 0.0287 (9)
H44 −0.516858 0.836590 0.564489 0.034*
C45 0.3342 (4) −0.0048 (5) 1.0374 (4) 0.0480 (13)
C46 0.3902 (4) −0.0087 (5) 0.9511 (4) 0.0585 (15)
H46 0.427274 −0.076125 0.934371 0.070*
C47 0.3928 (5) 0.0844 (6) 0.8891 (5) 0.074 (2)
H47 0.430937 0.080655 0.829926 0.088*
C48 0.3409 (6) 0.1817 (6) 0.9125 (5) 0.075 (2)
H48 0.344572 0.245235 0.870865 0.090*
C49 0.2825 (5) 0.1870 (5) 0.9978 (5) 0.0677 (19)
H49 0.244438 0.254804 1.013625 0.081*
C50 0.2794 (4) 0.0939 (5) 1.0599 (4) 0.0563 (15)
H50 0.239503 0.098150 1.118164 0.068*
C51 0.3334 (5) −0.1067 (5) 1.1063 (4) 0.0719 (19)
H51A 0.398951 −0.169935 1.096588 0.108*
H51B 0.269827 −0.115018 1.094882 0.108*
H51C 0.330958 −0.101436 1.172030 0.108*
C52 1.0278 (10) −0.0489 (11) −0.0048 (11) 0.153 (5) 0.5
C53 1.0634 (11) 0.0326 (16) −0.0286 (11) 0.153 (5) 0.5
H53 1.131932 0.020149 −0.058622 0.184* 0.5
C54 0.9986 (15) 0.1324 (13) −0.0086 (9) 0.153 (5) 0.5
H54 1.022959 0.188084 −0.024851 0.184* 0.5
C55 0.8983 (14) 0.1506 (8) 0.0354 (9) 0.153 (5) 0.5
H55 0.854108 0.218810 0.049064 0.184* 0.5
C56 0.8628 (8) 0.0691 (11) 0.0592 (7) 0.088 (5) 0.5
H56 0.794229 0.081601 0.089209 0.106* 0.5
C57 0.9275 (10) −0.0306 (9) 0.0391 (8) 0.066 (4) 0.5
H57 0.903200 −0.086335 0.055439 0.079* 0.5
C58 1.1043 (16) −0.1507 (13) −0.0328 (18) 0.167 (13) 0.5
H58A 1.147324 −0.132880 −0.088484 0.251* 0.5
H58B 1.063330 −0.184832 −0.048928 0.251* 0.5
H58C 1.152284 −0.201064 0.020591 0.251* 0.5
C59 0.4395 (9) 0.4875 (10) −0.0082 (9) 0.088 (6) 0.5
C60 0.3781 (7) 0.5983 (10) −0.0446 (7) 0.153 (5) 0.5
H60 0.308346 0.623626 −0.069200 0.184* 0.5
C61 0.4186 (10) 0.6720 (8) −0.0449 (8) 0.079 (4) 0.5
H61 0.376605 0.747699 −0.069740 0.095* 0.5
C62 0.5206 (11) 0.6349 (10) −0.0089 (8) 0.153 (5) 0.5
H62 0.548327 0.685295 −0.009072 0.184* 0.5
C63 0.5821 (8) 0.5242 (11) 0.0275 (8) 0.134 (11) 0.5
H63 0.651790 0.498818 0.052136 0.161* 0.5
C64 0.5415 (9) 0.4504 (8) 0.0278 (8) 0.104 (7) 0.5
H64 0.583532 0.374743 0.052676 0.125* 0.5
C65 0.421 (2) 0.4005 (15) −0.0297 (12) 0.153 (5) 0.5
H65A 0.409788 0.418014 −0.098456 0.230* 0.5
H65B 0.357617 0.395283 0.005788 0.230* 0.5
H65C 0.484644 0.330811 −0.010675 0.230* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
La1 0.01304 (9) 0.01478 (10) 0.01329 (9) −0.00636 (7) −0.00039 (6) −0.00557 (7)
Al1 0.0374 (7) 0.0314 (7) 0.0258 (6) −0.0203 (6) 0.0014 (5) −0.0117 (5)
O1 0.0376 (18) 0.049 (2) 0.0400 (18) −0.0229 (16) 0.0015 (14) −0.0198 (15)
C1 0.052 (3) 0.047 (3) 0.067 (4) −0.018 (3) −0.012 (3) −0.025 (3)
C2 0.047 (3) 0.027 (2) 0.029 (2) −0.018 (2) 0.0001 (19) −0.0075 (18)
C3 0.060 (3) 0.065 (3) 0.030 (2) −0.038 (3) −0.004 (2) −0.016 (2)
C4 0.047 (3) 0.041 (3) 0.047 (3) −0.028 (2) −0.005 (2) −0.014 (2)
O2 0.0475 (18) 0.0466 (18) 0.0183 (14) −0.0334 (16) −0.0007 (13) −0.0097 (13)
O3 0.0256 (14) 0.0203 (13) 0.0257 (14) −0.0117 (11) −0.0054 (11) −0.0034 (11)
C5 0.0194 (18) 0.0199 (18) 0.025 (2) −0.0081 (15) 0.0007 (15) −0.0069 (15)
C6 0.0241 (19) 0.0241 (19) 0.0222 (19) −0.0139 (16) 0.0003 (15) −0.0067 (15)
C7 0.029 (2) 0.027 (2) 0.0189 (18) −0.0185 (17) −0.0003 (15) −0.0031 (15)
C8 0.032 (2) 0.030 (2) 0.024 (2) −0.0181 (18) −0.0006 (16) −0.0053 (16)
C9 0.037 (2) 0.034 (2) 0.027 (2) −0.023 (2) −0.0081 (18) 0.0000 (17)
C10 0.050 (3) 0.042 (3) 0.022 (2) −0.032 (2) −0.0093 (19) −0.0013 (18)
C11 0.049 (3) 0.040 (3) 0.019 (2) −0.027 (2) 0.0043 (18) −0.0113 (18)
C12 0.036 (2) 0.031 (2) 0.023 (2) −0.0203 (19) 0.0058 (17) −0.0101 (17)
C13 0.026 (2) 0.027 (2) 0.025 (2) −0.0165 (17) 0.0047 (16) −0.0115 (16)
C14 0.031 (2) 0.033 (2) 0.035 (2) −0.0144 (19) 0.0036 (19) −0.0057 (19)
C15 0.036 (2) 0.043 (3) 0.041 (3) −0.022 (2) 0.014 (2) −0.012 (2)
C16 0.027 (2) 0.036 (3) 0.056 (3) −0.014 (2) 0.003 (2) −0.016 (2)
C17 0.031 (2) 0.029 (2) 0.044 (3) −0.0140 (19) −0.004 (2) −0.0091 (19)
C18 0.029 (2) 0.032 (2) 0.027 (2) −0.0155 (18) 0.0020 (17) −0.0097 (17)
C19 0.0196 (19) 0.027 (2) 0.031 (2) −0.0126 (16) 0.0006 (16) −0.0089 (16)
C20 0.039 (2) 0.030 (2) 0.034 (2) −0.021 (2) −0.0053 (19) −0.0018 (18)
C21 0.048 (3) 0.032 (3) 0.050 (3) −0.024 (2) −0.008 (2) 0.001 (2)
C22 0.035 (3) 0.024 (2) 0.067 (3) −0.014 (2) −0.005 (2) −0.008 (2)
C23 0.025 (2) 0.030 (2) 0.055 (3) −0.0130 (18) 0.000 (2) −0.021 (2)
C24 0.022 (2) 0.026 (2) 0.038 (2) −0.0117 (17) −0.0013 (17) −0.0103 (17)
O4 0.0219 (13) 0.0260 (14) 0.0255 (14) −0.0085 (11) −0.0015 (11) −0.0110 (11)
O5 0.0196 (13) 0.0295 (15) 0.0269 (15) −0.0044 (11) −0.0029 (11) −0.0120 (12)
C25 0.0205 (19) 0.0220 (19) 0.028 (2) −0.0091 (15) 0.0005 (15) −0.0101 (16)
C26 0.0171 (18) 0.0212 (19) 0.031 (2) −0.0064 (15) −0.0023 (15) −0.0105 (16)
C27 0.0201 (18) 0.0227 (19) 0.030 (2) −0.0083 (15) −0.0005 (15) −0.0125 (16)
C28 0.022 (2) 0.028 (2) 0.043 (3) −0.0088 (17) −0.0016 (18) −0.0158 (19)
C29 0.024 (2) 0.034 (2) 0.053 (3) −0.0145 (19) 0.0061 (19) −0.024 (2)
C30 0.040 (3) 0.031 (2) 0.047 (3) −0.022 (2) 0.010 (2) −0.015 (2)
C31 0.040 (3) 0.030 (2) 0.046 (3) −0.017 (2) −0.007 (2) −0.004 (2)
C32 0.028 (2) 0.027 (2) 0.039 (2) −0.0135 (18) −0.0037 (18) −0.0078 (18)
C33 0.0177 (18) 0.033 (2) 0.026 (2) −0.0042 (16) −0.0031 (15) −0.0161 (17)
C34 0.022 (2) 0.033 (2) 0.038 (2) −0.0033 (17) −0.0048 (17) −0.0196 (19)
C35 0.035 (3) 0.046 (3) 0.046 (3) −0.003 (2) −0.007 (2) −0.028 (2)
C36 0.035 (3) 0.065 (3) 0.031 (3) −0.010 (2) 0.002 (2) −0.027 (2)
C37 0.032 (2) 0.050 (3) 0.026 (2) −0.011 (2) −0.0008 (18) −0.011 (2)
C38 0.027 (2) 0.038 (2) 0.027 (2) −0.0113 (19) 0.0001 (17) −0.0112 (18)
C39 0.0200 (18) 0.0205 (19) 0.027 (2) −0.0074 (15) −0.0043 (15) −0.0049 (15)
C40 0.0205 (19) 0.029 (2) 0.027 (2) −0.0090 (16) −0.0006 (16) −0.0084 (17)
C41 0.028 (2) 0.033 (2) 0.030 (2) −0.0114 (18) −0.0058 (17) −0.0111 (18)
C42 0.024 (2) 0.038 (2) 0.038 (2) −0.0156 (19) −0.0055 (18) −0.0116 (19)
C43 0.019 (2) 0.038 (2) 0.044 (3) −0.0092 (18) 0.0008 (18) −0.017 (2)
C44 0.023 (2) 0.030 (2) 0.032 (2) −0.0074 (17) −0.0003 (17) −0.0139 (18)
C45 0.035 (3) 0.063 (4) 0.046 (3) −0.023 (3) −0.008 (2) −0.006 (3)
C46 0.043 (3) 0.071 (4) 0.052 (3) −0.019 (3) 0.004 (3) −0.012 (3)
C47 0.058 (4) 0.099 (6) 0.054 (4) −0.043 (4) −0.009 (3) 0.014 (4)
C48 0.081 (5) 0.069 (5) 0.081 (5) −0.047 (4) −0.048 (4) 0.019 (4)
C49 0.069 (4) 0.054 (4) 0.081 (5) −0.015 (3) −0.043 (4) −0.018 (3)
C50 0.048 (3) 0.074 (4) 0.050 (3) −0.021 (3) −0.014 (3) −0.022 (3)
C51 0.071 (4) 0.081 (5) 0.064 (4) −0.046 (4) −0.012 (3) 0.010 (3)
C52 0.237 (14) 0.187 (12) 0.044 (5) −0.111 (12) −0.030 (6) 0.006 (6)
C53 0.237 (14) 0.187 (12) 0.044 (5) −0.111 (12) −0.030 (6) 0.006 (6)
C54 0.237 (14) 0.187 (12) 0.044 (5) −0.111 (12) −0.030 (6) 0.006 (6)
C55 0.237 (14) 0.187 (12) 0.044 (5) −0.111 (12) −0.030 (6) 0.006 (6)
C56 0.077 (10) 0.133 (15) 0.049 (8) −0.037 (11) −0.010 (7) −0.023 (10)
C57 0.085 (9) 0.077 (9) 0.061 (8) −0.075 (8) −0.048 (7) 0.034 (6)
C58 0.19 (2) 0.063 (12) 0.20 (2) 0.052 (12) −0.125 (19) −0.094 (15)
C59 0.090 (12) 0.167 (18) 0.083 (12) −0.115 (14) 0.040 (9) −0.058 (12)
C60 0.237 (14) 0.187 (12) 0.044 (5) −0.111 (12) −0.030 (6) 0.006 (6)
C61 0.072 (9) 0.066 (9) 0.099 (11) −0.038 (8) 0.035 (8) −0.023 (8)
C62 0.237 (14) 0.187 (12) 0.044 (5) −0.111 (12) −0.030 (6) 0.006 (6)
C63 0.112 (15) 0.29 (3) 0.127 (16) −0.16 (2) 0.072 (12) −0.15 (2)
C64 0.095 (13) 0.22 (3) 0.046 (9) −0.107 (16) 0.015 (7) −0.042 (12)
C65 0.237 (14) 0.187 (12) 0.044 (5) −0.111 (12) −0.030 (6) 0.006 (6)

Geometric parameters (Å, º)

La1—O1 2.336 (3) C27—C32 1.383 (5)
La1—O2 2.501 (3) C27—C28 1.400 (5)
La1—O3 2.494 (3) C28—C29 1.383 (6)
La1—O3i 2.403 (2) C28—H28 0.9500
La1—O4 2.396 (3) C29—C30 1.370 (6)
La1—O5i 2.367 (3) C29—H29 0.9500
La1—C2 3.042 (4) C30—C31 1.376 (6)
La1—C5 2.892 (4) C30—H30 0.9500
La1—C7i 3.318 (4) C31—C32 1.385 (6)
La1—C8i 3.287 (4) C31—H31 0.9500
La1—C9i 3.246 (4) C32—H32 0.9500
La1—C10i 3.212 (4) C33—C34 1.388 (5)
La1—C11i 3.201 (4) C33—C38 1.398 (6)
La1—C12i 3.239 (4) C34—C35 1.403 (6)
Al1—O1 1.819 (3) C34—H34 0.9500
Al1—C2 2.014 (4) C35—C36 1.380 (7)
Al1—C3 1.990 (5) C35—H35 0.9500
Al1—C4 1.961 (4) C36—C37 1.387 (7)
La1—Al1 3.4481 (12) C36—H36 0.9500
La1—La1i 4.0432 (4) C37—C38 1.388 (6)
O1—C1 1.398 (6) C37—H37 0.9500
C1—H1A 0.9800 C38—H38 0.9500
C1—H1B 0.9800 C39—C40 1.394 (5)
C1—H1C 0.9800 C39—C44 1.396 (5)
C2—H2A 0.9800 C40—C41 1.388 (5)
C2—H2B 0.9800 C40—H40 0.9500
C2—H2C 0.9800 C41—C42 1.382 (6)
C3—H3A 0.9800 C41—H41 0.9500
C3—H3B 0.9800 C42—C43 1.378 (6)
C3—H3C 0.9800 C42—H42 0.9500
C4—H4A 0.9800 C43—C44 1.385 (6)
C4—H4B 0.9800 C43—H43 0.9500
C4—H4C 0.9800 C44—H44 0.9500
O2—C5 1.247 (4) C45—C50 1.378 (8)
O3—C5 1.269 (4) C45—C46 1.387 (7)
C5—C6 1.548 (5) C45—C51 1.509 (7)
C6—C7 1.538 (5) C46—C47 1.383 (8)
C6—C13 1.544 (5) C46—H46 0.9500
C6—C19 1.548 (5) C47—C48 1.365 (9)
C7—C8 1.394 (5) C47—H47 0.9500
C7—C12 1.397 (5) C48—C49 1.389 (9)
C8—C9 1.389 (5) C48—H48 0.9500
C8—H8 0.9500 C49—C50 1.385 (9)
C9—C10 1.385 (6) C49—H49 0.9500
C9—H9 0.9500 C50—H50 0.9500
C10—C11 1.379 (6) C51—H51A 0.9800
C10—H10 0.9500 C51—H51B 0.9800
C11—C12 1.403 (5) C51—H51C 0.9800
C11—H11 0.9500 C52—C53 1.3900
C12—H12 0.9500 C52—C57 1.3900
C13—C14 1.394 (5) C52—C58 1.496 (8)
C13—C18 1.397 (5) C53—C54 1.3900
C14—C15 1.402 (6) C53—H53 0.9500
C14—H14 0.9500 C54—C55 1.3900
C15—C16 1.378 (6) C54—H54 0.9500
C15—H15 0.9500 C55—C56 1.3900
C16—C17 1.376 (6) C55—H55 0.9500
C16—H16 0.9500 C56—C57 1.3900
C17—C18 1.389 (6) C56—H56 0.9500
C17—H17 0.9500 C57—H57 0.9500
C18—H18 0.9500 C58—H58A 0.9800
C19—C20 1.393 (6) C58—H58B 0.9800
C19—C24 1.397 (5) C58—H58C 0.9800
C20—C21 1.388 (6) C59—C60 1.3900
C20—H20 0.9500 C59—C64 1.3900
C21—C22 1.389 (7) C59—C65 1.489 (9)
C21—H21 0.9500 C60—C61 1.3900
C22—C23 1.379 (6) C60—H60 0.9500
C22—H22 0.9500 C61—C62 1.3900
C23—C24 1.400 (5) C61—H61 0.9500
C23—H23 0.9500 C62—C63 1.3900
C24—H24 0.9500 C62—H62 0.9500
O4—C25 1.260 (4) C63—C64 1.3900
O5—C25 1.271 (4) C63—H63 0.9500
C25—C26 1.563 (5) C64—H64 0.9500
C26—C33 1.522 (5) C65—H65A 0.9800
C26—C39 1.550 (5) C65—H65B 0.9800
C26—C27 1.557 (5) C65—H65C 0.9800
O1—La1—O5i 82.41 (10) C10—C9—H9 120.2
O1—La1—O4 139.15 (10) C8—C9—H9 120.2
O5i—La1—O4 135.39 (9) C11—C10—C9 119.8 (4)
O1—La1—O3i 147.59 (10) C11—C10—H10 120.1
O5i—La1—O3i 71.61 (9) C9—C10—H10 120.1
O4—La1—O3i 72.32 (9) C10—C11—C12 120.6 (4)
O1—La1—O3 121.24 (10) C10—C11—H11 119.7
O5i—La1—O3 71.46 (9) C12—C11—H11 119.7
O4—La1—O3 71.58 (9) C7—C12—C11 120.3 (4)
O3i—La1—O3 68.70 (10) C7—C12—H12 119.8
O1—La1—O2 78.88 (10) C11—C12—H12 119.8
O5i—La1—O2 91.47 (10) C14—C13—C18 118.4 (4)
O4—La1—O2 84.39 (9) C14—C13—C6 118.1 (4)
O3i—La1—O2 119.83 (8) C18—C13—C6 123.5 (3)
O3—La1—O2 51.29 (8) C13—C14—C15 120.0 (4)
O1—La1—C5 101.05 (11) C13—C14—H14 120.0
O5i—La1—C5 82.20 (10) C15—C14—H14 120.0
O4—La1—C5 75.29 (10) C16—C15—C14 120.6 (4)
O3i—La1—C5 94.40 (9) C16—C15—H15 119.7
O3—La1—C5 25.94 (9) C14—C15—H15 119.7
O2—La1—C5 25.44 (9) C17—C16—C15 119.7 (4)
O1—La1—C2 64.73 (11) C17—C16—H16 120.1
O5i—La1—C2 144.59 (10) C15—C16—H16 120.1
O4—La1—C2 74.60 (10) C16—C17—C18 120.3 (4)
O3i—La1—C2 143.78 (10) C16—C17—H17 119.9
O3—La1—C2 113.77 (10) C18—C17—H17 119.9
O2—La1—C2 70.40 (10) C17—C18—C13 120.9 (4)
C5—La1—C2 91.12 (11) C17—C18—H18 119.5
O1—La1—C11i 67.47 (11) C13—C18—H18 119.5
O5i—La1—C11i 89.35 (11) C20—C19—C24 118.4 (4)
O4—La1—C11i 117.69 (10) C20—C19—C6 120.8 (3)
O3i—La1—C11i 92.66 (9) C24—C19—C6 120.7 (4)
O3—La1—C11i 156.40 (10) C21—C20—C19 120.9 (4)
O2—La1—C11i 145.92 (9) C21—C20—H20 119.5
C5—La1—C11i 166.69 (10) C19—C20—H20 119.5
C2—La1—C11i 89.83 (11) C20—C21—C22 120.6 (4)
O1—La1—C10i 73.06 (11) C20—C21—H21 119.7
O5i—La1—C10i 114.19 (11) C22—C21—H21 119.7
O4—La1—C10i 97.09 (11) C23—C22—C21 119.0 (4)
O3i—La1—C10i 99.91 (9) C23—C22—H22 120.5
O3—La1—C10i 165.67 (10) C21—C22—H22 120.5
O2—La1—C10i 138.28 (9) C22—C23—C24 120.9 (4)
C5—La1—C10i 160.95 (11) C22—C23—H23 119.6
C2—La1—C10i 69.92 (11) C24—C23—H23 119.6
C11i—La1—C10i 24.84 (11) C19—C24—C23 120.2 (4)
O1—La1—C12i 86.54 (10) C19—C24—H24 119.9
O5i—La1—C12i 75.20 (10) C23—C24—H24 119.9
O4—La1—C12i 114.12 (10) C25—O4—La1 139.1 (2)
O3i—La1—C12i 68.61 (9) C25—O5—La1i 141.2 (2)
O3—La1—C12i 132.01 (9) O4—C25—O5 124.1 (3)
O2—La1—C12i 161.48 (10) O4—C25—C26 119.6 (3)
C5—La1—C12i 155.02 (11) O5—C25—C26 116.2 (3)
C2—La1—C12i 113.49 (11) C33—C26—C39 109.6 (3)
C11i—La1—C12i 25.16 (10) C33—C26—C27 111.5 (3)
C10i—La1—C12i 44.00 (11) C39—C26—C27 109.9 (3)
O1—La1—C9i 96.80 (11) C33—C26—C25 109.0 (3)
O5i—La1—C9i 125.80 (10) C39—C26—C25 113.0 (3)
O4—La1—C9i 74.39 (10) C27—C26—C25 103.8 (3)
O3i—La1—C9i 83.65 (9) C32—C27—C28 117.8 (4)
O3—La1—C9i 141.16 (9) C32—C27—C26 122.1 (3)
O2—La1—C9i 141.89 (10) C28—C27—C26 120.0 (3)
C5—La1—C9i 148.71 (11) C29—C28—C27 120.4 (4)
C2—La1—C9i 73.57 (10) C29—C28—H28 119.8
C11i—La1—C9i 43.54 (11) C27—C28—H28 119.8
C10i—La1—C9i 24.77 (11) C30—C29—C28 121.3 (4)
C12i—La1—C9i 50.79 (11) C30—C29—H29 119.3
O1—La1—C8i 115.26 (11) C28—C29—H29 119.3
O5i—La1—C8i 109.86 (10) C29—C30—C31 118.4 (4)
O4—La1—C8i 71.71 (10) C29—C30—H30 120.8
O3i—La1—C8i 59.29 (9) C31—C30—H30 120.8
O3—La1—C8i 122.88 (9) C30—C31—C32 121.2 (4)
O2—La1—C8i 155.27 (10) C30—C31—H31 119.4
C5—La1—C8i 142.66 (10) C32—C31—H31 119.4
C2—La1—C8i 96.47 (10) C27—C32—C31 120.8 (4)
C11i—La1—C8i 50.24 (11) C27—C32—H32 119.6
C10i—La1—C8i 43.27 (10) C31—C32—H32 119.6
C12i—La1—C8i 42.94 (10) C34—C33—C38 118.4 (4)
C9i—La1—C8i 24.55 (9) C34—C33—C26 123.6 (4)
O1—La1—C7i 110.09 (10) C38—C33—C26 118.0 (3)
O5i—La1—C7i 85.71 (10) C33—C34—C35 120.1 (4)
O4—La1—C7i 90.93 (9) C33—C34—H34 119.9
O3i—La1—C7i 50.27 (9) C35—C34—H34 119.9
O3—La1—C7i 118.89 (8) C36—C35—C34 120.7 (4)
O2—La1—C7i 170.08 (9) C36—C35—H35 119.6
C5—La1—C7i 144.67 (10) C34—C35—H35 119.6
C2—La1—C7i 116.78 (10) C35—C36—C37 119.5 (4)
C11i—La1—C7i 43.70 (10) C35—C36—H36 120.2
C10i—La1—C7i 50.94 (10) C37—C36—H36 120.2
C12i—La1—C7i 24.56 (9) C36—C37—C38 119.8 (5)
C9i—La1—C7i 43.50 (10) C36—C37—H37 120.1
C8i—La1—C7i 24.35 (9) C38—C37—H37 120.1
O1—La1—Al1 29.38 (8) C37—C38—C33 121.3 (4)
O5i—La1—Al1 110.37 (7) C37—C38—H38 119.3
O4—La1—Al1 109.78 (6) C33—C38—H38 119.3
O3i—La1—Al1 169.94 (6) C40—C39—C44 117.2 (3)
O3—La1—Al1 121.36 (6) C40—C39—C26 121.8 (3)
O2—La1—Al1 70.20 (6) C44—C39—C26 120.8 (3)
C5—La1—Al1 95.64 (8) C41—C40—C39 121.1 (4)
C2—La1—Al1 35.46 (8) C41—C40—H40 119.5
C11i—La1—Al1 77.62 (7) C39—C40—H40 119.5
C10i—La1—Al1 70.17 (7) C42—C41—C40 120.9 (4)
C12i—La1—Al1 102.03 (7) C42—C41—H41 119.6
C9i—La1—Al1 87.46 (7) C40—C41—H41 119.6
C8i—La1—Al1 111.50 (7) C43—C42—C41 118.6 (4)
C7i—La1—Al1 119.68 (7) C43—C42—H42 120.7
O1—La1—La1i 145.25 (8) C41—C42—H42 120.7
O5i—La1—La1i 67.44 (6) C42—C43—C44 120.8 (4)
O4—La1—La1i 67.95 (6) C42—C43—H43 119.6
O3i—La1—La1i 35.07 (6) C44—C43—H43 119.6
O3—La1—La1i 33.63 (6) C43—C44—C39 121.4 (4)
O2—La1—La1i 84.84 (6) C43—C44—H44 119.3
C5—La1—La1i 59.40 (7) C39—C44—H44 119.3
C2—La1—La1i 136.72 (8) C50—C45—C46 118.9 (6)
C11i—La1—La1i 126.35 (7) C50—C45—C51 120.2 (6)
C10i—La1—La1i 134.41 (7) C46—C45—C51 120.9 (6)
C12i—La1—La1i 101.30 (7) C47—C46—C45 120.8 (6)
C9i—La1—La1i 114.49 (7) C47—C46—H46 119.6
C8i—La1—La1i 91.79 (7) C45—C46—H46 119.6
C7i—La1—La1i 85.30 (6) C48—C47—C46 120.3 (7)
Al1—La1—La1i 154.99 (2) C48—C47—H47 119.8
O1—Al1—C4 111.77 (18) C46—C47—H47 119.8
O1—Al1—C3 108.32 (18) C47—C48—C49 119.4 (6)
C4—Al1—C3 113.2 (2) C47—C48—H48 120.3
O1—Al1—C2 100.03 (17) C49—C48—H48 120.3
C4—Al1—C2 110.7 (2) C50—C49—C48 120.4 (6)
C3—Al1—C2 112.0 (2) C50—C49—H49 119.8
O1—Al1—La1 39.05 (10) C48—C49—H49 119.8
C4—Al1—La1 120.09 (15) C45—C50—C49 120.2 (6)
C3—Al1—La1 124.87 (14) C45—C50—H50 119.9
C2—Al1—La1 61.19 (13) C49—C50—H50 119.9
C1—O1—Al1 118.0 (3) C45—C51—H51A 109.5
C1—O1—La1 130.3 (3) C45—C51—H51B 109.5
Al1—O1—La1 111.57 (15) H51A—C51—H51B 109.5
O1—C1—H1A 109.5 C45—C51—H51C 109.5
O1—C1—H1B 109.5 H51A—C51—H51C 109.5
H1A—C1—H1B 109.5 H51B—C51—H51C 109.5
O1—C1—H1C 109.5 C53—C52—C57 120.0
H1A—C1—H1C 109.5 C53—C52—C58 114.2 (15)
H1B—C1—H1C 109.5 C57—C52—C58 125.7 (15)
Al1—C2—La1 83.34 (15) C54—C53—C52 120.0
Al1—C2—H2A 109.5 C54—C53—H53 120.0
La1—C2—H2A 166.5 C52—C53—H53 120.0
Al1—C2—H2B 109.5 C55—C54—C53 120.0
La1—C2—H2B 60.7 C55—C54—H54 120.0
H2A—C2—H2B 109.5 C53—C54—H54 120.0
Al1—C2—H2C 109.5 C54—C55—C56 120.0
La1—C2—H2C 68.5 C54—C55—H55 120.0
H2A—C2—H2C 109.5 C56—C55—H55 120.0
H2B—C2—H2C 109.5 C55—C56—C57 120.0
Al1—C3—H3A 109.5 C55—C56—H56 120.0
Al1—C3—H3B 109.5 C57—C56—H56 120.0
H3A—C3—H3B 109.5 C56—C57—C52 120.0
Al1—C3—H3C 109.5 C56—C57—H57 120.0
H3A—C3—H3C 109.5 C52—C57—H57 120.0
H3B—C3—H3C 109.5 C52—C58—H58A 109.5
Al1—C4—H4A 109.5 C52—C58—H58B 109.5
Al1—C4—H4B 109.5 H58A—C58—H58B 109.5
H4A—C4—H4B 109.5 C52—C58—H58C 109.5
Al1—C4—H4C 109.5 H58A—C58—H58C 109.5
H4A—C4—H4C 109.5 H58B—C58—H58C 109.5
H4B—C4—H4C 109.5 C60—C59—C64 120.0
C5—O2—La1 95.0 (2) C60—C59—C65 124.4 (10)
C5—O3—La1i 152.7 (2) C64—C59—C65 113.0 (12)
C5—O3—La1 94.8 (2) C61—C60—C59 120.0
La1i—O3—La1 111.30 (9) C61—C60—H60 120.0
O2—C5—O3 118.4 (3) C59—C60—H60 120.0
O2—C5—C6 123.7 (3) C60—C61—C62 120.0
O3—C5—C6 117.8 (3) C60—C61—H61 120.0
O2—C5—La1 59.51 (19) C62—C61—H61 120.0
O3—C5—La1 59.24 (19) C63—C62—C61 120.0
C6—C5—La1 172.3 (2) C63—C62—H62 120.0
C7—C6—C13 111.8 (3) C61—C62—H62 120.0
C7—C6—C5 104.6 (3) C62—C63—C64 120.0
C13—C6—C5 110.0 (3) C62—C63—H63 120.0
C7—C6—C19 112.2 (3) C64—C63—H63 120.0
C13—C6—C19 106.7 (3) C63—C64—C59 120.0
C5—C6—C19 111.6 (3) C63—C64—H64 120.0
C8—C7—C12 117.8 (4) C59—C64—H64 120.0
C8—C7—C6 119.4 (3) C59—C65—H65A 109.5
C12—C7—C6 122.2 (4) C59—C65—H65B 109.5
C9—C8—C7 122.0 (4) H65A—C65—H65B 109.5
C9—C8—H8 119.0 C59—C65—H65C 109.5
C7—C8—H8 119.0 H65A—C65—H65C 109.5
C10—C9—C8 119.5 (4) H65B—C65—H65C 109.5
C4—Al1—O1—C1 65.1 (4) O5—C25—C26—C39 −142.5 (3)
C3—Al1—O1—C1 −60.3 (4) O4—C25—C26—C27 −77.6 (4)
C2—Al1—O1—C1 −177.7 (4) O5—C25—C26—C27 98.5 (4)
La1—Al1—O1—C1 176.5 (4) C33—C26—C27—C32 −108.6 (4)
C4—Al1—O1—La1 −111.4 (2) C39—C26—C27—C32 13.0 (5)
C3—Al1—O1—La1 123.2 (2) C25—C26—C27—C32 134.2 (4)
C2—Al1—O1—La1 5.8 (2) C33—C26—C27—C28 68.4 (4)
La1—O2—C5—O3 −6.3 (4) C39—C26—C27—C28 −170.0 (3)
La1—O2—C5—C6 171.8 (3) C25—C26—C27—C28 −48.8 (4)
La1i—O3—C5—O2 169.6 (3) C32—C27—C28—C29 −1.8 (6)
La1—O3—C5—O2 6.4 (4) C26—C27—C28—C29 −179.0 (4)
La1i—O3—C5—C6 −8.6 (7) C27—C28—C29—C30 1.3 (6)
La1—O3—C5—C6 −171.9 (3) C28—C29—C30—C31 −0.1 (7)
La1i—O3—C5—La1 163.3 (5) C29—C30—C31—C32 −0.5 (7)
O2—C5—C6—C7 170.6 (4) C28—C27—C32—C31 1.2 (6)
O3—C5—C6—C7 −11.2 (4) C26—C27—C32—C31 178.3 (4)
O2—C5—C6—C13 −69.2 (5) C30—C31—C32—C27 −0.1 (7)
O3—C5—C6—C13 109.0 (4) C39—C26—C33—C34 −112.0 (4)
O2—C5—C6—C19 49.1 (5) C27—C26—C33—C34 9.8 (5)
O3—C5—C6—C19 −132.8 (3) C25—C26—C33—C34 123.8 (4)
C13—C6—C7—C8 170.5 (3) C39—C26—C33—C38 65.4 (4)
C5—C6—C7—C8 −70.4 (4) C27—C26—C33—C38 −172.8 (3)
C19—C6—C7—C8 50.7 (5) C25—C26—C33—C38 −58.7 (4)
C13—C6—C7—C12 −18.2 (5) C38—C33—C34—C35 1.0 (6)
C5—C6—C7—C12 100.9 (4) C26—C33—C34—C35 178.4 (4)
C19—C6—C7—C12 −138.0 (4) C33—C34—C35—C36 −0.1 (7)
C12—C7—C8—C9 1.7 (6) C34—C35—C36—C37 −0.9 (7)
C6—C7—C8—C9 173.3 (3) C35—C36—C37—C38 1.0 (7)
C7—C8—C9—C10 0.0 (6) C36—C37—C38—C33 −0.1 (6)
C8—C9—C10—C11 −1.0 (6) C34—C33—C38—C37 −0.9 (6)
C9—C10—C11—C12 0.2 (6) C26—C33—C38—C37 −178.5 (4)
C8—C7—C12—C11 −2.4 (6) C33—C26—C39—C40 −169.7 (4)
C6—C7—C12—C11 −173.8 (3) C27—C26—C39—C40 67.6 (4)
C10—C11—C12—C7 1.5 (6) C25—C26—C39—C40 −47.9 (5)
C7—C6—C13—C14 −58.2 (4) C33—C26—C39—C44 15.3 (5)
C5—C6—C13—C14 −173.9 (3) C27—C26—C39—C44 −107.4 (4)
C19—C6—C13—C14 64.8 (4) C25—C26—C39—C44 137.1 (4)
C7—C6—C13—C18 123.4 (4) C44—C39—C40—C41 −3.2 (6)
C5—C6—C13—C18 7.6 (5) C26—C39—C40—C41 −178.4 (4)
C19—C6—C13—C18 −113.7 (4) C39—C40—C41—C42 2.6 (6)
C18—C13—C14—C15 −1.6 (6) C40—C41—C42—C43 −0.6 (6)
C6—C13—C14—C15 179.8 (4) C41—C42—C43—C44 −0.6 (7)
C13—C14—C15—C16 1.6 (7) C42—C43—C44—C39 −0.2 (7)
C14—C15—C16—C17 −0.8 (7) C40—C39—C44—C43 2.1 (6)
C15—C16—C17—C18 0.1 (7) C26—C39—C44—C43 177.3 (4)
C16—C17—C18—C13 −0.2 (6) C50—C45—C46—C47 1.0 (8)
C14—C13—C18—C17 1.0 (6) C51—C45—C46—C47 −178.5 (5)
C6—C13—C18—C17 179.4 (3) C45—C46—C47—C48 0.6 (9)
C7—C6—C19—C20 24.5 (5) C46—C47—C48—C49 −2.0 (9)
C13—C6—C19—C20 −98.2 (4) C47—C48—C49—C50 1.8 (9)
C5—C6—C19—C20 141.6 (4) C46—C45—C50—C49 −1.2 (8)
C7—C6—C19—C24 −160.1 (3) C51—C45—C50—C49 178.3 (5)
C13—C6—C19—C24 77.2 (4) C48—C49—C50—C45 −0.2 (8)
C5—C6—C19—C24 −43.1 (5) C57—C52—C53—C54 0.0
C24—C19—C20—C21 0.7 (6) C58—C52—C53—C54 178.4 (16)
C6—C19—C20—C21 176.1 (4) C52—C53—C54—C55 0.0
C19—C20—C21—C22 1.5 (7) C53—C54—C55—C56 0.0
C20—C21—C22—C23 −2.7 (7) C54—C55—C56—C57 0.0
C21—C22—C23—C24 1.6 (7) C55—C56—C57—C52 0.0
C20—C19—C24—C23 −1.7 (6) C53—C52—C57—C56 0.0
C6—C19—C24—C23 −177.2 (3) C58—C52—C57—C56 −178.3 (18)
C22—C23—C24—C19 0.5 (6) C64—C59—C60—C61 0.0
La1—O4—C25—O5 −7.1 (6) C65—C59—C60—C61 −160.7 (16)
La1—O4—C25—C26 168.7 (2) C59—C60—C61—C62 0.0
La1i—O5—C25—O4 6.7 (7) C60—C61—C62—C63 0.0
La1i—O5—C25—C26 −169.3 (3) C61—C62—C63—C64 0.0
O4—C25—C26—C33 163.5 (3) C62—C63—C64—C59 0.0
O5—C25—C26—C33 −20.4 (5) C60—C59—C64—C63 0.0
O4—C25—C26—C39 41.4 (5) C65—C59—C64—C63 162.8 (13)

Symmetry code: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33–C38, C39–C44, C52–C57 and C19–C24 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C1—H1C······Cg1i 0.98 2.69 3.425 (6) 132
C17—H17······Cg2 0.95 2.71 3.485 (4) 139
C21—H21······Cg3ii 0.95 2.93 3.677 (8) 136
C29—H29······Cg4 0.95 2.62 3.415 (4) 142
C32—H32······Cg2 0.95 2.95 3.654 (5) 132
C44—H44······Cg1 0.95 2.88 3.592 (5) 132

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Funding Statement

This work was funded by the TIPS RAS State Plan and the Russian Science Foundation grant 17-13-01357.

References

  1. Anwander, R. (2002). In Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974–1013. Weinheim: Wiley-VCH.
  2. Biagini, P., Lugli, G., Abis, L. & Millini, R. (1994). J. Organomet. Chem. 474, C16–C18.
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.
  4. Butcher, R. J., Clark, D. L., Grumbine, S. K., Vincent-Hollis, R. L., Scott, B. L. & Watkin, J. G. (1995). Inorg. Chem. 34, 5468–5476.
  5. Deacon, G. B., Feng, T., Forsyth, C. M., Gitlits, A., Hockless, D. C. R., Shen, Q., Skelton, B. W. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 961–966.
  6. Evans, W. J., Boyle, T. J. & Ziller, J. W. (1993a). J. Am. Chem. Soc. 115, 5084–5092.
  7. Evans, W. J., Boyle, T. J. & Ziller, J. W. (1993b). J. Organomet. Chem. 462, 141–148.
  8. Evans, W. J., Greci, M. A. & Ziller, J. W. (1998). Inorg. Chem. 37, 5221–5226.
  9. Filatov, A. S., Gifford, S. N., Kumar, D. K. & Petrukhina, M. A. (2009). Acta Cryst. E65, m286–m287. [DOI] [PMC free article] [PubMed]
  10. Filatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct. 890, 116–122.
  11. Fischbach, A., Herdtweck, E. & Anwander, R. (2006b). Inorg. Chim. Acta, 359, 4855–4864.
  12. Fischbach, A., Herdtweck, E., Anwander, R., Eickerling, G. & Scherer, W. (2003). Organometallics, 22, 499–509.
  13. Fischbach, A., Klimpel, M. G., Widenmeyer, M., Herdtweck, E., Scherer, W. & Anwander, R. (2004). Angew. Chem. Int. Ed. 43, 2234–2239. [DOI] [PubMed]
  14. Fischbach, A., Meermann, C., Eickerling, G., Scherer, W. & Anwander, R. (2006c). Macromolecules, 39, 6811–6816.
  15. Fischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006a). Organometallics, 25, 1626–1642.
  16. Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1–154.
  17. Gerber, L. C. H., Le Roux, E., Törnroos, K. W. & Anwander, R. (2008). Chem. Eur. J. 14, 9555–9564. [DOI] [PubMed]
  18. Giesbrecht, G. R., Gordon, J. C., Brady, J. T., Clark, D. L., Keogh, D. W., Michalczyk, R., Scott, B. L. & Watkin, J. G. (2002). Eur. J. Inorg. Chem. pp. 723–731.
  19. Giesbrecht, G. R., Gordon, J. C., Clark, D. L., Hay, P. J., Scott, B. L. & Tait, C. D. (2004). J. Am. Chem. Soc. 126, 6387–6401. [DOI] [PubMed]
  20. Gordon, J. C., Giesbrecht, G. R., Brady, J. T., Clark, D. L., Keogh, D. W., Scott, B. L. & Watkin, J. G. (2002). Organometallics, 21, 127–131.
  21. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  22. Hamidi, S., Jende, L. N., Dietrich, H. M., Maichle-Mössmer, C., Törnroos, K. W., Deacon, G. B., Junk, P. C. & Anwander, R. (2013). Organometallics, 32, 1209–1223.
  23. Korobkov, I. & Gambarotta, S. (2009). Organometallics, 28, 4009–4019.
  24. Liu, S., Wei, P., Wang, Y., Santillan-Jimenez, E., Bakus, R. C. II & Atwood, D. A. (2005). Main Group Chem. 4, 3–10.
  25. Minyaev, M. E., Vinogradov, A. A., Roitershtein, D. M., Lyssenko, K. A., Ananyev, I. V. & Nifant’ev, I. E. (2016). Acta Cryst. C72, 578–584. [DOI] [PubMed]
  26. Occhipinti, G., Meermann, C., Dietrich, H. M., Litlabø, R., Auras, F., Törnroos, K. W., Maichle-Mössmer, C., Jensen, V. R. & Anwander, R. (2011). J. Am. Chem. Soc. 133, 6323–6337. [DOI] [PubMed]
  27. Roitershtein, D. M., Vinogradov, A. A., Lyssenko, K. A. & Nifant’ev, I. E. (2017). Inorg. Chem. Commun. 84, 225–228.
  28. Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan’ev, I. V., Nifant’ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272–-1286.
  29. Sharples, J. W., Zheng, Y.-Z., Tuna, F., McInnes, E. J. L. & Collison, D. (2011). Chem. Commun. 47, 7650–7652. [DOI] [PubMed]
  30. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  31. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  32. Sommerfeldt, H.-M., Meermann, C., Törnroos, K. W. & Anwander, R. (2008). Inorg. Chem. 47, 4696–4705. [DOI] [PubMed]
  33. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  34. Zimmermann, M., Frøystein, N. Å., Fischbach, A., Sirsch, P., Dietrich, H. M., Törnroos, K. W., Herdtweck, E. & Anwander, R. (2007). Chem. Eur. J. 13, 8784–8800. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018015876/rz5247sup1.cif

e-74-01790-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015876/rz5247Isup2.hkl

Supporting information file. DOI: 10.1107/S2056989018015876/rz5247Isup3.cdx

CCDC reference: 1877930

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES