Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 22;74(Pt 12):1826–1832. doi: 10.1107/S2056989018016237

Crystal structure and Hirshfeld surface analysis of (E)-N′-[4-(piperidin-1-yl)benzyl­idene]aryl­sulfono­hydrazides

Nikhila Pai a, Sabine Foro b, B Thimme Gowda a,c,*
PMCID: PMC6281096  PMID: 30574382

New Schiff bases containing piperidine and aryl­sulfono­hydrazide moieties have been synthesized, characterized and their crystal structures determined to study the effect of substituents on the structural parameters. Their crystal structures are stabilized by N—H⋯O, C—H⋯O and O—H⋯O inter­actions. Two-dimensional fingerprint plots show that the largest contributions come from H⋯H inter­actions.

Keywords: crystal structure, Hirshfeld surface analysis, fingerprint plots, Schiff bases, (E)-N′-[4-(piperidin-1-yl)benzyl­idene]aryl­sulfono­hydrazides

Abstract

The crystal structures and Hirshfeld surface analyses of three Schiff bases, namely (E)-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C18H21N3O2S, (I), (E)-4-methyl-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C19H23N3O2S, (II), and (E)-4-chloro-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C18H20ClN3O2S, (III), derived from aryl­sulfono­hydrazides and 4-(piperidin-4-yl)benzaldehyde have been analysed to investigate the effect of substituents on the structural parameters. All three structures crystallize in monoclinic crystal systems, in the space groups P21/c for (I) and (II), and C2/c for (III). Compound (III) contains two independent mol­ecules in the asymmetric unit and sixteen mol­ecules per unit cell, while (I) and (II) both have one and four mol­ecules, respectively, in their asymmetric units and unit cells. In all cases, the central part of the mol­ecule is twisted at the S atom. In the crystals, the mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains. Two-dimensional fingerprint plots of various inter­atomic contacts show that the major contributions are from H⋯H inter­actions.

Chemical context  

Piperidine is very common in many natural and synthetic N-containing medicaments and is present in the basic skeleton of many pharmacologically active compounds (Sampath, 2017). Compounds with a piperidine functional group are inter­mediates in the synthesis of various alkaloids (Wang & Wuorola, 1992; Grishina et al., 1995). They are reported to be cholesterol-lowering (Comins et al., 2001) and to display anti­viral (Kang et al., 2015), anti-inflammatory, anti­oxidant (Tharini & Sangeetha, 2015), anti-epileptic (Kiasalari et al., 2014), anti­microbial, anti­tumor and anti­fungal (Sahu et al., 1979; Shah et al., 1992) activities. Furthermore, Schiff bases find applications in the pharmacological field and are important in designing medicines (Parekh et al., 2005). Thus the crystal structures of Schiff bases and piperidine derivatives have always been inter­esting, especially with regard to the stereochemistry across C=N and the conformation of the six-membered heterocyclic ring. We were inter­ested in exploring the effect of the substituents on the structural parameters of compounds containing these moieties. Thus we report herein the synthesis, characterization and crystal structures of (E)-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C18H21N3O2S, (I), and its 4-methyl- and 4-chloro-derivatives, namely, (E)-4-methyl-N′-[4-(piperidin-1-yl)benzyl­idene]benz­ene­sulfono­hydrazide, C19H23N3O2S, (II), and (E)-4-chloro-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C18H20ClN3O2S, (III).graphic file with name e-74-01826-scheme1.jpg

Structural commentary  

All three of the title compounds (Figs. 1–3 ) crystallize in the monoclinic crystal system but in space group P21/c for (I) and (II), and space group C2/c for (III). The asymmetric units of compounds (I) and (II) each contain one mol­ecule whereas there are two independent mol­ecules in the asymmetric unit of (III). All the three compounds display an E-configuration about the C=N bond (Purandara et al., 2017; Gu et al., 2012), and a chair conformation of the piperidine ring.

Figure 1.

Figure 1

Mol­ecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

Mol­ecular structure of (II), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 3.

Figure 3

Mol­ecular structure of (III), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In compounds (I) and (II) (Figs. 1 and 2), the sulfonamide bonds are found to be synclinal and the torsion angles of the sulfonamide moieties are −66.0 (2) and 63.5 (2)°, respectively (Moss, 1996). The dihedral angles between the phenyl ring (C1–C6/S1) and the mean plane of the N1/N2/C7–C9 hydrazone fragment are 85.3 (1) and 80.5 (1)° in (I) and (II), respectively, indicating that the hydrazone portion of the mol­ecules (C=N—N—S—C group) is not coplanar with the sulfonyl phenyl ring. The C7=N2 bond lengths of 1.271 (3) Å in (I) and 1.269 (3) Å in (II) are in agreement with double-bond character. In both compounds, the piperidine group is not sterically hindered. Thus the six-membered heterocyclic ring adopts the most stable chair conformation. The total puckering amplitude is 0.531 (3) Å in (I) and 0.465 (4) Å in (II), the puckering parameters are 173.7 (3), and 8.0 (5)° in (I) and (II), respectively, and the phase angles are 13.0 (3) in (I) and 184.0 (4)° in (II), respectively (Cremer & Pople, 1975; Nardelli, 1983). The C15—C14—N3—C11 torsion angles of −172.2 (2)° and 175.2 (3)° in (I) and (II), respectively, signify that the phenyl ring at the N atom of the piperidine ring is in an equatorial position (Nallini et al., 2003).

The asymmetric unit of (III) contains two independent mol­ecules and the unit cell contains 16 mol­ecules. The torsion angles for the sulfonamide moieties in the two mol­ecules [C1—S1–N1–N2 = 59.7 (4)° and C19—S2—N4—N5 = 67.9 (4)°] signify a synclinal conformation (Moss, 1996). The hydrazone moiety (C=N—N—S—C group) and aryl­sulfonyl ring are not coplanar, with dihedral angles between the two planes of 87.3 (1) and 79.4 (1)°, respectively, in the first and second mol­ecules. The C7=N2 and C25=N5 bond lengths of 1.272 (5) and 1.269 (5) Å, respectively, are consistent with double-bond character. As in compounds (I) and (II), the piperidine group in (III) adopts a chair conformation, with the total puckering amplitude of QT = 0.283 (7) and 0.475 (1) Å in the first and second mol­ecules, respectively, θ = 2.7 (14), 175.5 (8)° and phase angles φ = 220 (22)° and 353 (10)° in the two mol­ecules, respectively. The phenyl ring at the piperidine N atom is equatorial, as is evident from C15—C14—N3—C11 and C33—C32—N6—C29 torsion angles of 174.4 (7) and −168.9 (5)°, respectively.

Supra­molecular features  

In all the three crystal structures, the amino H atom of the sulfono­hydrazide segment acts as a donor and the sulfonyl O atom acts as an acceptor in N—H⋯O hydrogen-bonding inter­actions that generate C4 chains propagating parallel to the b axis (Tables 1–3 , Figs. 4–9 ). Substitution at the para position by a methyl or chloro group to produce compounds (II) and (III) has no remarkable effect on the hydrogen-bonding pattern.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.32 (2) 3.133 (3) 165 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.79 (3) 2.29 (3) 3.068 (3) 170 (3)

Symmetry code: (i) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (4) 2.26 (5) 3.025 (5) 153 (5)
N4—H4N⋯O4ii 0.84 (5) 2.29 (5) 3.115 (6) 169 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

Hydrogen-bonding pattern in (I) with hydrogen bonds shown as dashed lines. Symmetry code as in Table 1.

Figure 5.

Figure 5

Hydrogen-bonding pattern in (II) with hydrogen bonds shown as dashed lines. Symmetry code as in Table 2.

Figure 6.

Figure 6

Hydrogen-bonding pattern in (III) with hydrogen bonds shown as dashed lines.

Figure 7.

Figure 7

Mol­ecular packing of (I).

Figure 8.

Figure 8

Mol­ecular packing of (II).

Figure 9.

Figure 9

Mol­ecular packing of (III).

Database survey  

Although there are several reports on the crystal structures of piperidine or sulfonyl­hydrazides derivatives, reports on the crystal structures of 4-(piperidin-1-yl)benzaldehyde functionalized with sulfonyl­hydrazides are very few. Comparison of the present data with those of thio­phene/phenyl-piperidine hybrid chalcones (Parvez et al., 2014) reveals that the compounds also adopt E configuration around the C=N bond and the piperidine rings exhibit a chair conformation. A chair conformation of the piperidine ring is also found in 5-nitro-2-(piperidin-1-yl)benzaldehyde (N’Gouan et al., 2009) and (5-nitro-2-piperidino)­benzyl­idene p-toluene­sulfonyl­hydra­zone (Yapo et al., 2008).

Hirshfeld surface analysis  

Hirshfeld surfaces (HS) and 2D fingerprint plots were generated using CrystalExplorer17 (Turner et al., 2017; McKinnon et al., 2007; Spackman & Jayatilaka, 2009). The terms such as d norm, d i and d e are defined in the usual way (Shit et al., 2016). The function d norm is a ratio enclosing the distances of any surface point to the nearest inter­ior (d i) and exterior (d e) atom and the van der Waals radii of the atoms (Hirshfeld, 1977; Soman et al., 2014). The function d norm will be equal to zero when inter­molecular distances are close to van der Waals contacts. They are indicated by a white colour on the HS, while contacts longer than the sum of van der Waals radii with positive d norm values are coloured in blue. The surface images and plots for d norm (Fig. 10) were generated using a high standard surface resolution over a colour scale of −0.3495 to 1.3559, −0.4124 to 1.6768 and −0.3876 to 1.5649 a.u. for (I), (II) and (III), respectively.

Figure 10.

Figure 10

Top: Hirshfeld surface mapped over d norm for (I), (II) and (III). Bottom: two-dimensional fingerprint plots for (I), (II) and (III).

Hirshfeld fingerprint plots for various inter­actions show differences in the percentage contributions to the Hirshfeld surfaces. H⋯H contacts make the maximum contribution to the Hirshfeld surfaces in all three compounds. The contributions of significant contacts in the three compounds are in the following order: H⋯H, C⋯H/H⋯C and O⋯H/H⋯O. In compound (I), these inter­actions cover a region of 52.0% (d i = d e = 1.5 Å), 22.5% (d i + d e = 3.2 Å), and 15.3% (d i + d e = 2.4 Å) (Fig. 11), respectively. The other inter­atomic contacts and percentages of contributions to the Hirshfeld surface are N⋯H/H⋯N (6.7%), C⋯O/O⋯C (3.1%). In compound (II), the contributions of the various contacts are: H⋯H 52.3% (d i = d e =1.5 Å), C⋯H/H⋯C 23.6% (d i + d e = 3.2 Å), and O⋯H/H⋯O 18.0% (d i + d e = 2.4 Å) (Fig. 11). Among the minor contributions observed, N⋯H/H⋯N inter­action cover a region of 6.1%. In the case of compound (III), the major contributions are H⋯H 41.0% (d i = d e = 1.0 Å), C⋯H/H⋯C 22.3% (3.2 Å) and O⋯H/H⋯O, 19.3% (d i + d e = 2.4 Å) along with minor contributions from Cl⋯H/H⋯Cl (9.5%) and N⋯H/H⋯N (5.1%) inter­actions (Fig. 11).

Figure 11.

Figure 11

Two-dimensional fingerprint plots for (I), (II) and (III), showing the contributions of the different types of inter­actions.

Synthesis and crystallization  

Synthesis of benzene­sulfono­hydrazide and 4-methyl and 4-chloro-benzene­sulfono­hydrazides

To solutions of hydrazine hydrate (99%) (0.03mol) in THF at 273 K under stirring, a solution of benzene­sulfonyl chloride, 4-methyl­benzene­sulfonyl chloride or 4-chloro­benzene­sulfonyl chloride (0.02 mol) in THF was added dropwise. Three separ­ate reaction mixtures were kept under stirring at 273 K for 1 h and stirring continued for 24 h at room temperature. The formation of the products was monitored by TLC. After completion of the reactions, the reaction mixtures were poured separately onto ice-cold water. The separated solids, benzene­sulfono­hydrazide, 4-methyl­benzene­sulfono­hydrazide or 4-chloro­benzene­sulfono­hydrazide, were filtered off and dried. The products were recrystallized from ethanol solution to get the pure products.

The purity of the compounds was checked by TLC and they were characterized by their IR spectra. They were further characterized by 1H and 13C NMR spectra. The characteristic IR absorptions and 1H and 13C NMR signals are as follows:

Benzene­sulfono­hydrazide: m.p. 374–376 K; FT–IR (ATR, νmax, cm−1): 3254.4 (s, NH2 str), 3198.3 (s, N—H str), 1325.1 (s, S=O asym str) and 1140.8 (vs, S=O sym str).

1H and 13C NMR spectra: 1H (400 MHz, DMSO-d 6, δ, ppm): 7.93–7.42 (m, 5H, Ar—H), 5.85 (t, 1H), 3.43 (d, 2H). 13C NMR (100 MHz, DMSO-d 6, δ, ppm); 134.57, 130.15, 129.12, 125.63.

4-Methyl­benzene­sulfono­hydrazide: m.p. 382–385 K; FT–IR (ATR, νmax, cm−1): 3245.1 (s, NH2 str), 3193.8 (s, N—H str), 1330.5 (s, S=O asym str) and 1126.5 (vs, S=O sym str).

1H and 13C NMR spectra: 1H (400 MHz, DMSO-d 6, δ, ppm); 7.71–7.31 (m, 4H, Ar—H), 5.91 (t, 1H), 3.48 (d, 2H), 2.19 (s, 3H, CH3). 13C NMR (100 MHz, DMSO-d 6, δ, ppm); 142.36, 136.90, 128.13, 126.71, 22.11.

4-Chloro­benzene­sulfono­hydrazide: m.p. 388–90 K; FT–IR (ATR, νmax, cm−1): 3259.4 (s, NH2 str), 3195.1 (s, N—H str), 1341.7 (s, S=O asym str) and 1138.5 (vs, S=O sym str).

1H and 13C NMR spectra: 1H (400 MHz, DMSO-d 6, δ, ppm); 7.58–7.67 (m, 5H, Ar—H), 5.87 (t, 1H), 3.41 (d, 2H). 13C NMR (100 MHz, DMSO-d6, δ, ppm); 137.90, 137.29, 130.30, 128.42.

Synthesis of the title compounds (I), (II) and (III):

Mixtures of 4-(piperidin-1-yl)benzaldehyde (0.001 mol) and benzene­sulfono­hydrazide, 4-methyl­benzene­sulfono­hydrazide or 4-chloro­benzene­sulfono­hydrazide (0.001 mol) in ethanol (10 ml) and two drops of glacial acetic acid were stirred at room temperature for 2 h. The formation of the products was monitored by TLC. The reaction mixtures were separately poured on crushed ice and the solids that formed were washed and dried. The products were recrystallized to constant melting points from an aceto­nitrile:DMF (5:1 v:v) mixture. The purity of the compounds was checked by TLC and they were characterized by their IR spectra. They were further characterized by 1H and 13C NMR spectra. The characteristic IR absorptions and 1H and 13C NMR signals are as follows

Compound (I): m.p. 417–419 K; FT–IR (ATR, νmax, cm−1): 3219.2 (s, N—H str), 1609.3 (s, C=N str), 1363.7 (s, S=O asym str) and 1165.0 (vs, S=O sym str).

1H and 13C NMR spectra: 1H (400 MHz, DMSO-d 6, δ, ppm); 9.41 (s, 1H, N—H), 8.39 (s, 1H, =C—H), 7.76–7.59 (m, 5H, Ar—H), 7.54–6.54 (m, 4H, Ar—H), 3.46–1.82 (m, 4H), 1.47–1.39 (m, 6H). 13C NMR (100 MHz, DMSO-d 6, δ, ppm); 151.34, 147.31, 138.89, 133.62, 130.94, 129.91, 128.27, 124.97, 112.76, 48.54, 24.82, 23.93.

Compound (II): m.p. 439 − 441 K; FT–IR (ATR, νmax, cm−1): 3214.3 (s, N—H, str), 1606.7 (s, C=N str), 1359.82 (s, S=O asym) and 1163.08cm−1 (vs, S=O sym).

1H and 13C spectra: 1H (400 MHz, DMSO-d 6, δ, ppm); 10.98 (s, 1H, N—H), 7.77–7.75 (m, 3H, Ar—H, =C—H), 7.37–7.34 (m, 4H, Ar—H), 3.29–2.36 (m, 4H), 2.37 (s, 3H, CH3), 1.56–1.47 (m, 6H); 13C NMR (100 MHz, DMSO-d 6 δ, ppm); 152.28, 147.48, 142.92, 136.34, 129.28, 127.89, 127.17, 114.45, 48.51, 24.92, 23.87, 21.0.

Compound (III): m.p. 429–431 K; FT–IR (ATR, νmax, cm−1): 3213.4 (s, N—H, str), 1608.9 (s, C=N, str), 1365.6 (s, S=O asym str) and 1166.9 (vs, S=O sym str).

1H and 13C spectra: 1H (400 MHz, DMSO-d 6, δ, ppm); 8.18 (s, 1H, N-H), 7.91–7.88 (m, 2H, Ar—H), 7.70 (s, 1H, =C—H), 7.45–7.40 (m, 4H), 6.82 (d, 2H, Ar—H), 3.26–3.23 (m, 4H), 1.69–1.60 (m, 6H). 13C NMR (100 MHz, DMSO-d 6, δ, ppm); 153.13, 150.03, 139.68, 136.87, 129.41, 129.27, 128.88, 122.65, 114.85, 49.29, 25.41, 24.28.

Prismatic single crystals of the compounds used in X-ray diffraction studies were grown from their solutions in a aceto­nitrile–DMF (5:1 v:v) mixture by slow evaporation of the solvent.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms bonded to C were positioned with idealized geometry and refined using a riding model with the aromatic C—H = 0.93, 0.96 (meth­yl), or 0.97 Å (methyl­ene). H atoms of the NH groups were located in a difference map and their positions refined. All H atoms were refined with U iso(H) = 1.2U eq(C-aromatic, C-methyl­ene, N) or 1.5U eq(C-meth­yl). In compound (III), the U ij components of atoms C14, C15, C17, and C18 were restrained to approximate isotropic behaviour.

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C18H21N3O2S C19H23N3O2S C18H20ClN3O2S
M r 343.44 357.46 377.88
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 293 293 293
a, b, c (Å) 19.221 (2), 5.4270 (7), 17.143 (2) 18.442 (2), 5.3250 (4), 19.412 (2) 33.052 (6), 5.258 (1), 43.026 (8)
β (°) 105.45 (2) 101.74 (1) 94.05 (2)
V3) 1723.6 (4) 1866.5 (3) 7459 (2)
Z 4 4 16
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.20 0.19 0.33
Crystal size (mm) 0.44 × 0.32 × 0.28 0.48 × 0.24 × 0.10 0.50 × 0.26 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.916, 0.945 0.914, 0.981 0.851, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 6052, 3164, 2475 6735, 3422, 2166 14002, 6833, 2999
R int 0.019 0.026 0.042
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.108, 1.06 0.051, 0.137, 1.02 0.075, 0.172, 1.01
No. of reflections 3164 3422 6833
No. of parameters 220 230 457
No. of restraints 0 0 31
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.31 0.21, −0.22 0.27, −0.30

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2013/1 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989018016237/tx2009sup1.cif

e-74-01826-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016237/tx2009Isup2.hkl

e-74-01826-Isup2.hkl (252.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018016237/tx2009IIsup3.hkl

e-74-01826-IIsup3.hkl (273.2KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018016237/tx2009IIIsup4.hkl

e-74-01826-IIIsup4.hkl (543.3KB, hkl)

CCDC references: 1879247, 1879246, 1879245

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank SAIF Panjab University for extending the services of the NMR facility.

supplementary crystallographic information

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) . Crystal data

C18H21N3O2S F(000) = 728
Mr = 343.44 Dx = 1.323 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 19.221 (2) Å Cell parameters from 2039 reflections
b = 5.4270 (7) Å θ = 2.8–27.8°
c = 17.143 (2) Å µ = 0.20 mm1
β = 105.45 (2)° T = 293 K
V = 1723.6 (4) Å3 Prism, colourless
Z = 4 0.44 × 0.32 × 0.28 mm

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) . Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 2475 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.019
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −23→20
Tmin = 0.916, Tmax = 0.945 k = −4→6
6052 measured reflections l = −19→20
3164 independent reflections

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.7956P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3164 reflections Δρmax = 0.24 e Å3
220 parameters Δρmin = −0.31 e Å3

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.60577 (10) 0.1520 (4) 0.46537 (12) 0.0384 (5)
C2 0.63592 (13) −0.0066 (5) 0.42141 (15) 0.0553 (6)
H2 0.6625 −0.1422 0.4460 0.066*
C3 0.62614 (16) 0.0387 (6) 0.33995 (17) 0.0720 (8)
H3 0.6459 −0.0684 0.3093 0.086*
C4 0.58782 (15) 0.2386 (6) 0.30389 (15) 0.0699 (8)
H4 0.5821 0.2681 0.2491 0.084*
C5 0.55771 (13) 0.3960 (6) 0.34822 (16) 0.0692 (8)
H5 0.5311 0.5309 0.3232 0.083*
C6 0.56663 (12) 0.3554 (5) 0.42987 (14) 0.0551 (6)
H6 0.5467 0.4627 0.4603 0.066*
C7 0.79265 (11) 0.4355 (4) 0.63390 (11) 0.0403 (5)
H7 0.7761 0.5782 0.6531 0.048*
C8 0.86830 (11) 0.4209 (4) 0.63351 (11) 0.0378 (5)
C9 0.89690 (11) 0.2255 (4) 0.59921 (12) 0.0434 (5)
H9 0.8667 0.0973 0.5749 0.052*
C10 0.96855 (11) 0.2183 (4) 0.60049 (12) 0.0431 (5)
H10 0.9857 0.0851 0.5770 0.052*
C11 1.01676 (10) 0.4064 (4) 0.63636 (11) 0.0353 (4)
C12 0.98802 (11) 0.5993 (4) 0.67192 (12) 0.0428 (5)
H12 1.0181 0.7265 0.6972 0.051*
C13 0.91592 (12) 0.6049 (4) 0.67031 (12) 0.0435 (5)
H13 0.8987 0.7361 0.6947 0.052*
C14 1.10674 (12) 0.2969 (5) 0.56571 (14) 0.0529 (6)
H14A 1.0889 0.4113 0.5214 0.063*
H14B 1.0816 0.1418 0.5511 0.063*
C15 1.18625 (13) 0.2563 (5) 0.57619 (18) 0.0657 (7)
H15A 1.2026 0.1212 0.6137 0.079*
H15B 1.1941 0.2101 0.5245 0.079*
C16 1.22997 (12) 0.4823 (5) 0.60752 (15) 0.0558 (6)
H16A 1.2810 0.4462 0.6174 0.067*
H16B 1.2178 0.6135 0.5678 0.067*
C17 1.21388 (12) 0.5618 (5) 0.68471 (14) 0.0595 (7)
H17A 1.2402 0.7120 0.7040 0.071*
H17B 1.2302 0.4356 0.7256 0.071*
C18 1.13426 (12) 0.6062 (5) 0.67295 (15) 0.0573 (6)
H18A 1.1257 0.6457 0.7248 0.069*
H18B 1.1195 0.7471 0.6376 0.069*
N1 0.67909 (9) 0.2983 (4) 0.61782 (11) 0.0422 (4)
H1N 0.6650 (12) 0.444 (4) 0.6160 (14) 0.051*
N2 0.74846 (9) 0.2602 (3) 0.60892 (10) 0.0412 (4)
N3 1.09002 (9) 0.3935 (3) 0.63815 (9) 0.0387 (4)
O1 0.64512 (9) −0.1391 (3) 0.58934 (10) 0.0571 (4)
O2 0.55362 (8) 0.1803 (3) 0.59001 (9) 0.0547 (4)
S1 0.61709 (3) 0.10285 (10) 0.56935 (3) 0.04091 (17)

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0281 (10) 0.0418 (12) 0.0442 (11) −0.0031 (9) 0.0075 (8) −0.0030 (9)
C2 0.0554 (14) 0.0543 (14) 0.0594 (15) 0.0026 (12) 0.0210 (11) −0.0046 (12)
C3 0.0813 (19) 0.083 (2) 0.0578 (16) −0.0118 (17) 0.0297 (14) −0.0194 (16)
C4 0.0640 (16) 0.102 (2) 0.0386 (13) −0.0277 (17) 0.0046 (12) −0.0034 (15)
C5 0.0536 (15) 0.089 (2) 0.0564 (16) 0.0059 (15) −0.0001 (12) 0.0206 (15)
C6 0.0480 (13) 0.0631 (16) 0.0524 (14) 0.0131 (12) 0.0103 (10) 0.0074 (12)
C7 0.0473 (12) 0.0377 (12) 0.0347 (11) 0.0034 (10) 0.0089 (9) 0.0014 (9)
C8 0.0426 (11) 0.0356 (11) 0.0324 (10) −0.0006 (9) 0.0050 (8) 0.0045 (9)
C9 0.0443 (12) 0.0349 (11) 0.0459 (12) −0.0086 (10) 0.0033 (9) −0.0063 (10)
C10 0.0465 (12) 0.0318 (11) 0.0483 (12) −0.0028 (10) 0.0079 (10) −0.0092 (10)
C11 0.0432 (11) 0.0312 (10) 0.0278 (9) −0.0037 (9) 0.0027 (8) 0.0018 (8)
C12 0.0503 (12) 0.0339 (11) 0.0415 (11) −0.0107 (10) 0.0073 (9) −0.0086 (9)
C13 0.0523 (12) 0.0352 (11) 0.0430 (11) −0.0014 (10) 0.0126 (9) −0.0063 (10)
C14 0.0505 (13) 0.0579 (15) 0.0492 (13) −0.0097 (11) 0.0116 (10) −0.0172 (12)
C15 0.0519 (14) 0.0626 (17) 0.0857 (19) −0.0081 (13) 0.0235 (13) −0.0283 (15)
C16 0.0453 (13) 0.0577 (15) 0.0657 (15) −0.0070 (12) 0.0171 (11) −0.0130 (12)
C17 0.0481 (13) 0.0739 (18) 0.0535 (14) −0.0195 (13) 0.0082 (11) −0.0148 (13)
C18 0.0536 (14) 0.0606 (16) 0.0598 (15) −0.0205 (12) 0.0191 (11) −0.0261 (12)
N1 0.0397 (10) 0.0413 (10) 0.0444 (10) 0.0028 (8) 0.0089 (8) −0.0016 (9)
N2 0.0382 (9) 0.0433 (10) 0.0393 (9) 0.0021 (8) 0.0055 (7) 0.0022 (8)
N3 0.0422 (9) 0.0387 (10) 0.0330 (9) −0.0091 (8) 0.0062 (7) −0.0053 (7)
O1 0.0619 (10) 0.0391 (9) 0.0689 (11) 0.0043 (8) 0.0147 (8) 0.0115 (8)
O2 0.0444 (9) 0.0671 (11) 0.0572 (9) 0.0011 (8) 0.0216 (7) 0.0009 (8)
S1 0.0378 (3) 0.0397 (3) 0.0456 (3) 0.0016 (2) 0.0118 (2) 0.0042 (2)

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) . Geometric parameters (Å, º)

C1—C2 1.370 (3) C12—H12 0.9300
C1—C6 1.383 (3) C13—H13 0.9300
C1—S1 1.758 (2) C14—N3 1.460 (3)
C2—C3 1.381 (4) C14—C15 1.507 (3)
C2—H2 0.9300 C14—H14A 0.9700
C3—C4 1.363 (4) C14—H14B 0.9700
C3—H3 0.9300 C15—C16 1.503 (3)
C4—C5 1.370 (4) C15—H15A 0.9700
C4—H4 0.9300 C15—H15B 0.9700
C5—C6 1.382 (3) C16—C17 1.500 (3)
C5—H5 0.9300 C16—H16A 0.9700
C6—H6 0.9300 C16—H16B 0.9700
C7—N2 1.271 (3) C17—C18 1.509 (3)
C7—C8 1.458 (3) C17—H17A 0.9700
C7—H7 0.9300 C17—H17B 0.9700
C8—C13 1.387 (3) C18—N3 1.463 (3)
C8—C9 1.395 (3) C18—H18A 0.9700
C9—C10 1.372 (3) C18—H18B 0.9700
C9—H9 0.9300 N1—N2 1.397 (2)
C10—C11 1.406 (3) N1—S1 1.6458 (19)
C10—H10 0.9300 N1—H1N 0.84 (2)
C11—C12 1.397 (3) O1—S1 1.4258 (16)
C11—N3 1.402 (2) O2—S1 1.4216 (15)
C12—C13 1.379 (3)
C2—C1—C6 121.3 (2) C15—C14—H14A 108.9
C2—C1—S1 120.43 (17) N3—C14—H14B 108.9
C6—C1—S1 118.24 (17) C15—C14—H14B 108.9
C1—C2—C3 118.8 (2) H14A—C14—H14B 107.7
C1—C2—H2 120.6 C16—C15—C14 112.1 (2)
C3—C2—H2 120.6 C16—C15—H15A 109.2
C4—C3—C2 120.8 (3) C14—C15—H15A 109.2
C4—C3—H3 119.6 C16—C15—H15B 109.2
C2—C3—H3 119.6 C14—C15—H15B 109.2
C3—C4—C5 120.1 (2) H15A—C15—H15B 107.9
C3—C4—H4 119.9 C17—C16—C15 108.8 (2)
C5—C4—H4 119.9 C17—C16—H16A 109.9
C4—C5—C6 120.4 (3) C15—C16—H16A 109.9
C4—C5—H5 119.8 C17—C16—H16B 109.9
C6—C5—H5 119.8 C15—C16—H16B 109.9
C5—C6—C1 118.6 (2) H16A—C16—H16B 108.3
C5—C6—H6 120.7 C16—C17—C18 111.60 (19)
C1—C6—H6 120.7 C16—C17—H17A 109.3
N2—C7—C8 122.39 (19) C18—C17—H17A 109.3
N2—C7—H7 118.8 C16—C17—H17B 109.3
C8—C7—H7 118.8 C18—C17—H17B 109.3
C13—C8—C9 116.90 (19) H17A—C17—H17B 108.0
C13—C8—C7 119.79 (19) N3—C18—C17 112.8 (2)
C9—C8—C7 123.29 (19) N3—C18—H18A 109.0
C10—C9—C8 121.45 (19) C17—C18—H18A 109.0
C10—C9—H9 119.3 N3—C18—H18B 109.0
C8—C9—H9 119.3 C17—C18—H18B 109.0
C9—C10—C11 121.9 (2) H18A—C18—H18B 107.8
C9—C10—H10 119.1 N2—N1—S1 115.68 (14)
C11—C10—H10 119.1 N2—N1—H1N 116.4 (17)
C12—C11—N3 122.65 (18) S1—N1—H1N 114.2 (16)
C12—C11—C10 116.36 (19) C7—N2—N1 115.09 (18)
N3—C11—C10 120.96 (18) C11—N3—C14 116.53 (15)
C13—C12—C11 121.31 (19) C11—N3—C18 116.14 (17)
C13—C12—H12 119.3 C14—N3—C18 113.21 (17)
C11—C12—H12 119.3 O2—S1—O1 120.46 (10)
C12—C13—C8 122.1 (2) O2—S1—N1 103.75 (10)
C12—C13—H13 119.0 O1—S1—N1 107.20 (10)
C8—C13—H13 119.0 O2—S1—C1 108.99 (9)
N3—C14—C15 113.40 (18) O1—S1—C1 108.67 (10)
N3—C14—H14A 108.9 N1—S1—C1 106.95 (9)
C6—C1—C2—C3 −0.5 (3) C15—C16—C17—C18 −56.4 (3)
S1—C1—C2—C3 −179.69 (19) C16—C17—C18—N3 54.7 (3)
C1—C2—C3—C4 0.6 (4) C8—C7—N2—N1 176.43 (17)
C2—C3—C4—C5 −0.8 (4) S1—N1—N2—C7 167.78 (14)
C3—C4—C5—C6 0.8 (4) C12—C11—N3—C14 −142.9 (2)
C4—C5—C6—C1 −0.7 (4) C10—C11—N3—C14 39.3 (3)
C2—C1—C6—C5 0.5 (3) C12—C11—N3—C18 −5.6 (3)
S1—C1—C6—C5 179.75 (18) C10—C11—N3—C18 176.68 (19)
N2—C7—C8—C13 −172.29 (19) C15—C14—N3—C11 −172.2 (2)
N2—C7—C8—C9 6.1 (3) C15—C14—N3—C18 49.3 (3)
C13—C8—C9—C10 −1.2 (3) C17—C18—N3—C11 170.97 (18)
C7—C8—C9—C10 −179.67 (19) C17—C18—N3—C14 −50.3 (3)
C8—C9—C10—C11 0.1 (3) N2—N1—S1—O2 178.88 (14)
C9—C10—C11—C12 1.1 (3) N2—N1—S1—O1 50.42 (17)
C9—C10—C11—N3 178.96 (18) N2—N1—S1—C1 −65.99 (16)
N3—C11—C12—C13 −178.92 (18) C2—C1—S1—O2 −145.87 (18)
C10—C11—C12—C13 −1.1 (3) C6—C1—S1—O2 34.91 (19)
C11—C12—C13—C8 −0.1 (3) C2—C1—S1—O1 −12.9 (2)
C9—C8—C13—C12 1.2 (3) C6—C1—S1—O1 167.93 (16)
C7—C8—C13—C12 179.73 (19) C2—C1—S1—N1 102.56 (19)
N3—C14—C15—C16 −52.5 (3) C6—C1—S1—N1 −76.65 (18)
C14—C15—C16—C17 55.3 (3)

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (2) 2.32 (2) 3.133 (3) 165 (2)

Symmetry code: (i) x, y+1, z.

(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) . Crystal data

C19H23N3O2S F(000) = 760
Mr = 357.46 Dx = 1.272 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.442 (2) Å Cell parameters from 1748 reflections
b = 5.3250 (4) Å θ = 2.6–28.0°
c = 19.412 (2) Å µ = 0.19 mm1
β = 101.74 (1)° T = 293 K
V = 1866.5 (3) Å3 Prism, light pink
Z = 4 0.48 × 0.24 × 0.10 mm

(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) . Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 2166 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.026
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −22→13
Tmin = 0.914, Tmax = 0.981 k = −6→2
6735 measured reflections l = −21→23
3422 independent reflections

(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.7083P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3422 reflections Δρmax = 0.21 e Å3
230 parameters Δρmin = −0.22 e Å3

(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.87009 (13) 0.2262 (5) 0.74497 (13) 0.0464 (6)
C2 0.85130 (16) 0.0568 (6) 0.69097 (15) 0.0610 (8)
H2 0.8189 −0.0742 0.6944 0.073*
C3 0.88094 (18) 0.0827 (6) 0.63160 (16) 0.0716 (9)
H3 0.8682 −0.0331 0.5953 0.086*
C4 0.92855 (15) 0.2738 (6) 0.62451 (15) 0.0640 (8)
C5 0.94574 (15) 0.4437 (6) 0.67864 (16) 0.0635 (8)
H5 0.9775 0.5760 0.6746 0.076*
C6 0.91734 (15) 0.4236 (5) 0.73839 (15) 0.0579 (7)
H6 0.9296 0.5414 0.7742 0.070*
C7 0.65696 (15) 0.5049 (5) 0.75489 (14) 0.0549 (7)
H7 0.6648 0.6537 0.7804 0.066*
C8 0.58859 (14) 0.4736 (5) 0.70327 (14) 0.0497 (7)
C9 0.57536 (16) 0.2675 (5) 0.65812 (16) 0.0606 (8)
H9 0.6120 0.1463 0.6600 0.073*
C10 0.50985 (16) 0.2394 (5) 0.61123 (16) 0.0603 (8)
H10 0.5032 0.0999 0.5818 0.072*
C11 0.45234 (15) 0.4149 (5) 0.60617 (14) 0.0508 (7)
C12 0.46593 (15) 0.6186 (5) 0.65168 (15) 0.0570 (7)
H12 0.4293 0.7396 0.6503 0.068*
C13 0.53232 (15) 0.6458 (5) 0.69881 (15) 0.0567 (7)
H13 0.5392 0.7848 0.7284 0.068*
C14 0.38983 (18) 0.2897 (8) 0.48900 (18) 0.0869 (11)
H14A 0.4194 0.1377 0.4942 0.104*
H14B 0.4156 0.4144 0.4665 0.104*
C15 0.3168 (2) 0.2351 (7) 0.44174 (19) 0.0947 (12)
H15A 0.3246 0.2074 0.3944 0.114*
H15B 0.2970 0.0811 0.4573 0.114*
C16 0.2620 (2) 0.4358 (7) 0.43997 (19) 0.0892 (11)
H16A 0.2143 0.3791 0.4139 0.107*
H16B 0.2767 0.5809 0.4159 0.107*
C17 0.25546 (19) 0.5082 (9) 0.5121 (2) 0.1010 (13)
H17A 0.2317 0.3727 0.5326 0.121*
H17B 0.2239 0.6550 0.5095 0.121*
C18 0.32853 (18) 0.5650 (8) 0.55932 (19) 0.0931 (12)
H18A 0.3460 0.7256 0.5456 0.112*
H18B 0.3210 0.5817 0.6071 0.112*
C19 0.9621 (2) 0.2953 (9) 0.56057 (18) 0.1048 (13)
H19A 1.0151 0.2897 0.5744 0.157*
H19B 0.9474 0.4515 0.5372 0.157*
H19C 0.9453 0.1585 0.5292 0.157*
N1 0.76763 (13) 0.3858 (4) 0.81973 (13) 0.0564 (6)
H1N 0.7786 (17) 0.529 (6) 0.8265 (15) 0.068*
N2 0.70639 (12) 0.3358 (4) 0.76625 (12) 0.0541 (6)
N3 0.38501 (12) 0.3803 (4) 0.55849 (12) 0.0592 (6)
O1 0.89223 (11) 0.2837 (4) 0.87969 (10) 0.0729 (6)
O2 0.80891 (11) −0.0554 (4) 0.82456 (11) 0.0711 (6)
S1 0.83734 (4) 0.19279 (14) 0.82295 (4) 0.0548 (2)

(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0376 (13) 0.0478 (15) 0.0508 (15) 0.0021 (12) 0.0023 (11) 0.0067 (13)
C2 0.0635 (18) 0.0558 (18) 0.0625 (19) −0.0139 (15) 0.0102 (15) −0.0011 (16)
C3 0.078 (2) 0.075 (2) 0.0595 (19) −0.0078 (19) 0.0097 (16) −0.0107 (17)
C4 0.0498 (17) 0.081 (2) 0.0595 (19) 0.0021 (17) 0.0074 (14) 0.0110 (17)
C5 0.0476 (16) 0.073 (2) 0.069 (2) −0.0149 (15) 0.0094 (15) 0.0132 (17)
C6 0.0514 (16) 0.0578 (17) 0.0609 (18) −0.0082 (14) 0.0027 (14) −0.0007 (15)
C7 0.0570 (17) 0.0475 (16) 0.0638 (18) −0.0020 (15) 0.0205 (14) 0.0029 (14)
C8 0.0489 (16) 0.0415 (15) 0.0630 (17) 0.0007 (13) 0.0212 (13) 0.0071 (13)
C9 0.0555 (18) 0.0483 (18) 0.081 (2) 0.0126 (14) 0.0214 (15) −0.0012 (15)
C10 0.0601 (18) 0.0470 (17) 0.075 (2) 0.0066 (14) 0.0166 (15) −0.0100 (14)
C11 0.0536 (16) 0.0468 (16) 0.0575 (17) 0.0041 (13) 0.0244 (14) 0.0025 (14)
C12 0.0540 (17) 0.0523 (17) 0.0678 (18) 0.0154 (14) 0.0196 (15) −0.0018 (14)
C13 0.0601 (18) 0.0447 (16) 0.0673 (19) 0.0057 (14) 0.0178 (15) −0.0046 (14)
C14 0.075 (2) 0.106 (3) 0.080 (2) 0.018 (2) 0.0142 (18) −0.019 (2)
C15 0.094 (3) 0.100 (3) 0.082 (3) 0.014 (2) −0.003 (2) −0.026 (2)
C16 0.080 (2) 0.087 (3) 0.092 (3) 0.008 (2) −0.004 (2) −0.012 (2)
C17 0.062 (2) 0.146 (4) 0.092 (3) 0.024 (2) 0.0066 (19) −0.027 (3)
C18 0.062 (2) 0.120 (3) 0.091 (3) 0.027 (2) 0.0031 (18) −0.037 (2)
C19 0.096 (3) 0.157 (4) 0.068 (2) −0.011 (3) 0.034 (2) 0.010 (2)
N1 0.0554 (15) 0.0502 (14) 0.0646 (15) −0.0005 (12) 0.0141 (12) 0.0008 (13)
N2 0.0468 (13) 0.0513 (14) 0.0650 (15) −0.0022 (12) 0.0133 (11) 0.0058 (12)
N3 0.0522 (14) 0.0670 (16) 0.0603 (15) 0.0086 (12) 0.0161 (11) −0.0056 (12)
O1 0.0673 (13) 0.0926 (16) 0.0530 (12) 0.0007 (12) −0.0013 (10) 0.0053 (11)
O2 0.0852 (15) 0.0493 (12) 0.0840 (15) −0.0002 (11) 0.0293 (12) 0.0194 (10)
S1 0.0529 (4) 0.0546 (4) 0.0558 (4) 0.0012 (4) 0.0083 (3) 0.0101 (4)

(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) . Geometric parameters (Å, º)

C1—C2 1.373 (4) C13—H13 0.9300
C1—C6 1.388 (4) C14—N3 1.452 (4)
C1—S1 1.749 (3) C14—C15 1.496 (4)
C2—C3 1.379 (4) C14—H14A 0.9700
C2—H2 0.9300 C14—H14B 0.9700
C3—C4 1.369 (4) C15—C16 1.466 (5)
C3—H3 0.9300 C15—H15A 0.9700
C4—C5 1.374 (4) C15—H15B 0.9700
C4—C19 1.499 (4) C16—C17 1.481 (5)
C5—C6 1.370 (4) C16—H16A 0.9700
C5—H5 0.9300 C16—H16B 0.9700
C6—H6 0.9300 C17—C18 1.498 (4)
C7—N2 1.269 (3) C17—H17A 0.9700
C7—C8 1.452 (4) C17—H17B 0.9700
C7—H7 0.9300 C18—N3 1.435 (4)
C8—C13 1.374 (4) C18—H18A 0.9700
C8—C9 1.395 (4) C18—H18B 0.9700
C9—C10 1.365 (4) C19—H19A 0.9600
C9—H9 0.9300 C19—H19B 0.9600
C10—C11 1.402 (4) C19—H19C 0.9600
C10—H10 0.9300 N1—N2 1.395 (3)
C11—C12 1.389 (4) N1—S1 1.637 (3)
C11—N3 1.402 (3) N1—H1N 0.79 (3)
C12—C13 1.379 (4) O1—S1 1.421 (2)
C12—H12 0.9300 O2—S1 1.424 (2)
C2—C1—C6 119.5 (3) H14A—C14—H14B 107.6
C2—C1—S1 121.1 (2) C16—C15—C14 113.7 (3)
C6—C1—S1 119.4 (2) C16—C15—H15A 108.8
C1—C2—C3 119.4 (3) C14—C15—H15A 108.8
C1—C2—H2 120.3 C16—C15—H15B 108.8
C3—C2—H2 120.3 C14—C15—H15B 108.8
C4—C3—C2 122.0 (3) H15A—C15—H15B 107.7
C4—C3—H3 119.0 C15—C16—C17 110.9 (3)
C2—C3—H3 119.0 C15—C16—H16A 109.5
C3—C4—C5 117.7 (3) C17—C16—H16A 109.5
C3—C4—C19 121.4 (3) C15—C16—H16B 109.5
C5—C4—C19 120.9 (3) C17—C16—H16B 109.5
C6—C5—C4 121.9 (3) H16A—C16—H16B 108.1
C6—C5—H5 119.1 C16—C17—C18 113.2 (3)
C4—C5—H5 119.1 C16—C17—H17A 108.9
C5—C6—C1 119.5 (3) C18—C17—H17A 108.9
C5—C6—H6 120.3 C16—C17—H17B 108.9
C1—C6—H6 120.3 C18—C17—H17B 108.9
N2—C7—C8 122.1 (3) H17A—C17—H17B 107.7
N2—C7—H7 119.0 N3—C18—C17 114.8 (3)
C8—C7—H7 119.0 N3—C18—H18A 108.6
C13—C8—C9 116.9 (3) C17—C18—H18A 108.6
C13—C8—C7 120.4 (3) N3—C18—H18B 108.6
C9—C8—C7 122.7 (2) C17—C18—H18B 108.6
C10—C9—C8 121.5 (3) H18A—C18—H18B 107.5
C10—C9—H9 119.2 C4—C19—H19A 109.5
C8—C9—H9 119.2 C4—C19—H19B 109.5
C9—C10—C11 121.9 (3) H19A—C19—H19B 109.5
C9—C10—H10 119.1 C4—C19—H19C 109.5
C11—C10—H10 119.1 H19A—C19—H19C 109.5
C12—C11—N3 122.9 (2) H19B—C19—H19C 109.5
C12—C11—C10 116.1 (3) N2—N1—S1 114.78 (19)
N3—C11—C10 121.0 (3) N2—N1—H1N 117 (2)
C13—C12—C11 121.7 (2) S1—N1—H1N 115 (2)
C13—C12—H12 119.2 C7—N2—N1 116.0 (2)
C11—C12—H12 119.2 C11—N3—C18 116.7 (2)
C8—C13—C12 121.9 (3) C11—N3—C14 116.3 (2)
C8—C13—H13 119.0 C18—N3—C14 114.8 (2)
C12—C13—H13 119.0 O1—S1—O2 120.42 (13)
N3—C14—C15 114.6 (3) O1—S1—N1 104.23 (13)
N3—C14—H14A 108.6 O2—S1—N1 107.07 (13)
C15—C14—H14A 108.6 O1—S1—C1 108.61 (12)
N3—C14—H14B 108.6 O2—S1—C1 107.88 (13)
C15—C14—H14B 108.6 N1—S1—C1 108.05 (12)
C6—C1—C2—C3 1.3 (4) C14—C15—C16—C17 −51.1 (5)
S1—C1—C2—C3 −177.0 (2) C15—C16—C17—C18 51.3 (5)
C1—C2—C3—C4 −0.3 (5) C16—C17—C18—N3 −48.4 (5)
C2—C3—C4—C5 −0.7 (4) C8—C7—N2—N1 −176.9 (2)
C2—C3—C4—C19 178.2 (3) S1—N1—N2—C7 −168.48 (19)
C3—C4—C5—C6 0.7 (4) C12—C11—N3—C18 −1.2 (4)
C19—C4—C5—C6 −178.2 (3) C10—C11—N3—C18 177.5 (3)
C4—C5—C6—C1 0.3 (4) C12—C11—N3—C14 139.5 (3)
C2—C1—C6—C5 −1.3 (4) C10—C11—N3—C14 −41.8 (4)
S1—C1—C6—C5 177.1 (2) C17—C18—N3—C11 −174.8 (3)
N2—C7—C8—C13 171.5 (3) C17—C18—N3—C14 43.9 (4)
N2—C7—C8—C9 −6.2 (4) C15—C14—N3—C11 175.2 (3)
C13—C8—C9—C10 0.6 (4) C15—C14—N3—C18 −43.4 (4)
C7—C8—C9—C10 178.4 (3) N2—N1—S1—O1 178.95 (18)
C8—C9—C10—C11 −0.4 (4) N2—N1—S1—O2 −52.4 (2)
C9—C10—C11—C12 −0.1 (4) N2—N1—S1—C1 63.5 (2)
C9—C10—C11—N3 −178.9 (3) C2—C1—S1—O1 146.9 (2)
N3—C11—C12—C13 179.0 (3) C6—C1—S1—O1 −31.4 (2)
C10—C11—C12—C13 0.2 (4) C2—C1—S1—O2 14.9 (2)
C9—C8—C13—C12 −0.5 (4) C6—C1—S1—O2 −163.5 (2)
C7—C8—C13—C12 −178.3 (3) C2—C1—S1—N1 −100.6 (2)
C11—C12—C13—C8 0.1 (4) C6—C1—S1—N1 81.1 (2)
N3—C14—C15—C16 47.7 (5)

(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.79 (3) 2.29 (3) 3.068 (3) 170 (3)

Symmetry code: (i) x, y+1, z.

(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) . Crystal data

C18H20ClN3O2S F(000) = 3168
Mr = 377.88 Dx = 1.346 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 33.052 (6) Å Cell parameters from 1174 reflections
b = 5.258 (1) Å θ = 2.5–27.8°
c = 43.026 (8) Å µ = 0.33 mm1
β = 94.05 (2)° T = 293 K
V = 7459 (2) Å3 Prism, red
Z = 16 0.50 × 0.26 × 0.14 mm

(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) . Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 2999 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.042
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −39→39
Tmin = 0.851, Tmax = 0.955 k = −6→6
14002 measured reflections l = −42→51
6833 independent reflections

(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) . Refinement

Refinement on F2 31 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.075 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0483P)2 + 15.4136P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
6833 reflections Δρmax = 0.27 e Å3
457 parameters Δρmin = −0.30 e Å3

(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.47550 (5) 0.3259 (4) 0.18187 (4) 0.1273 (7)
S1 0.31044 (4) 0.0442 (3) 0.11230 (3) 0.0657 (4)
O1 0.27796 (10) 0.1162 (6) 0.13046 (7) 0.0779 (10)
O2 0.31308 (11) −0.2078 (6) 0.10041 (8) 0.0797 (10)
N1 0.30660 (14) 0.2366 (8) 0.08245 (9) 0.0636 (12)
H1N 0.2999 (15) 0.387 (9) 0.0854 (11) 0.076*
N2 0.33782 (12) 0.2115 (8) 0.06209 (9) 0.0625 (11)
N3 0.45666 (13) 0.3870 (8) −0.04820 (10) 0.0770 (12)
C1 0.35682 (15) 0.1126 (9) 0.13273 (10) 0.0563 (13)
C2 0.39197 (19) −0.0048 (11) 0.12540 (13) 0.0843 (17)
H2 0.3912 −0.1276 0.1098 0.101*
C3 0.42848 (19) 0.0587 (12) 0.14107 (15) 0.0940 (19)
H3 0.4523 −0.0232 0.1365 0.113*
C4 0.42913 (17) 0.2419 (12) 0.16323 (12) 0.0763 (16)
C5 0.3948 (2) 0.3541 (12) 0.17136 (13) 0.0895 (18)
H5 0.3958 0.4727 0.1874 0.107*
C6 0.35822 (17) 0.2929 (11) 0.15586 (12) 0.0813 (16)
H6 0.3346 0.3735 0.1610 0.098*
C7 0.34159 (15) 0.3963 (10) 0.04343 (11) 0.0619 (13)
H7 0.3245 0.5362 0.0445 0.074*
C8 0.37184 (15) 0.3948 (9) 0.02046 (10) 0.0565 (13)
C9 0.40063 (17) 0.2080 (10) 0.01923 (12) 0.0733 (15)
H9 0.4013 0.0785 0.0340 0.088*
C10 0.42840 (16) 0.2054 (10) −0.00296 (12) 0.0726 (15)
H10 0.4473 0.0747 −0.0031 0.087*
C11 0.42853 (15) 0.3964 (10) −0.02534 (11) 0.0589 (13)
C12 0.39956 (16) 0.5837 (10) −0.02398 (11) 0.0686 (14)
H12 0.3986 0.7135 −0.0387 0.082*
C13 0.37211 (16) 0.5843 (9) −0.00157 (11) 0.0689 (14)
H13 0.3533 0.7155 −0.0012 0.083*
C14 0.49585 (19) 0.3073 (16) −0.04105 (16) 0.143 (3)
H14A 0.4943 0.1452 −0.0304 0.172*
H14B 0.5081 0.4269 −0.0260 0.172*
C15 0.5239 (2) 0.2760 (15) −0.06531 (18) 0.139 (3)
H15A 0.5512 0.3004 −0.0560 0.166*
H15B 0.5220 0.1017 −0.0727 0.166*
C16 0.5182 (2) 0.4427 (14) −0.09203 (15) 0.118 (2)
H16A 0.5346 0.5939 −0.0881 0.142*
H16B 0.5282 0.3573 −0.1100 0.142*
C17 0.4780 (2) 0.5174 (17) −0.09945 (16) 0.150 (3)
H17A 0.4658 0.3929 −0.1139 0.180*
H17B 0.4787 0.6774 −0.1106 0.180*
C18 0.45054 (18) 0.5500 (13) −0.07439 (13) 0.115 (2)
H18A 0.4528 0.7243 −0.0671 0.138*
H18B 0.4230 0.5263 −0.0832 0.138*
Cl2 0.22664 (5) 0.4803 (4) 0.02015 (4) 0.1245 (7)
S2 0.13541 (5) 0.7140 (3) 0.13800 (3) 0.0696 (4)
O3 0.09541 (11) 0.6126 (7) 0.13364 (8) 0.0883 (11)
O4 0.14190 (11) 0.9734 (6) 0.14659 (7) 0.0845 (11)
N4 0.15747 (15) 0.5383 (8) 0.16570 (10) 0.0702 (13)
H4N 0.1518 (16) 0.384 (9) 0.1629 (12) 0.084*
N5 0.19715 (14) 0.6102 (8) 0.17526 (9) 0.0654 (11)
N6 0.37521 (14) 0.6426 (8) 0.24681 (10) 0.0726 (12)
C19 0.16088 (15) 0.6564 (9) 0.10444 (10) 0.0576 (13)
C20 0.19395 (16) 0.7992 (11) 0.09801 (12) 0.0746 (15)
H20 0.2028 0.9306 0.1113 0.090*
C21 0.21407 (16) 0.7463 (12) 0.07161 (13) 0.0823 (17)
H21 0.2361 0.8446 0.0666 0.099*
C22 0.20116 (18) 0.5481 (12) 0.05306 (11) 0.0748 (16)
C23 0.16849 (19) 0.4049 (11) 0.05942 (13) 0.0823 (17)
H23 0.1600 0.2722 0.0462 0.099*
C24 0.14812 (17) 0.4565 (10) 0.08532 (12) 0.0771 (16)
H24 0.1259 0.3583 0.0900 0.093*
C25 0.21791 (15) 0.4430 (10) 0.19052 (10) 0.0606 (13)
H25 0.2068 0.2826 0.1932 0.073*
C26 0.25843 (15) 0.4968 (9) 0.20382 (10) 0.0551 (12)
C27 0.28111 (17) 0.7029 (10) 0.19542 (10) 0.0654 (14)
H27 0.2704 0.8106 0.1798 0.078*
C28 0.31893 (17) 0.7547 (10) 0.20933 (11) 0.0692 (14)
H28 0.3333 0.8946 0.2028 0.083*
C29 0.33619 (16) 0.5996 (10) 0.23328 (11) 0.0609 (13)
C30 0.31319 (16) 0.3937 (10) 0.24176 (11) 0.0675 (14)
H30 0.3235 0.2879 0.2577 0.081*
C31 0.27607 (16) 0.3414 (10) 0.22745 (11) 0.0665 (14)
H31 0.2621 0.1985 0.2335 0.080*
C32 0.39719 (19) 0.8645 (12) 0.23767 (15) 0.104 (2)
H32A 0.3844 1.0147 0.2457 0.125*
H32B 0.3951 0.8759 0.2151 0.125*
C33 0.4411 (2) 0.8653 (14) 0.24890 (18) 0.123 (2)
H33A 0.4553 0.7399 0.2372 0.148*
H33B 0.4525 1.0307 0.2447 0.148*
C34 0.44807 (19) 0.8091 (14) 0.28267 (17) 0.110 (2)
H34A 0.4769 0.7871 0.2879 0.132*
H34B 0.4388 0.9514 0.2946 0.132*
C35 0.42629 (19) 0.5767 (14) 0.29094 (15) 0.117 (2)
H35A 0.4279 0.5591 0.3134 0.140*
H35B 0.4395 0.4302 0.2824 0.140*
C36 0.38288 (17) 0.5786 (13) 0.27912 (12) 0.099 (2)
H36A 0.3716 0.4115 0.2825 0.119*
H36B 0.3685 0.6990 0.2914 0.119*

(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0949 (12) 0.1716 (18) 0.1116 (13) −0.0191 (13) −0.0185 (10) −0.0055 (13)
S1 0.0844 (10) 0.0535 (9) 0.0593 (8) −0.0097 (8) 0.0064 (7) 0.0000 (7)
O1 0.077 (2) 0.083 (3) 0.076 (2) −0.012 (2) 0.022 (2) 0.000 (2)
O2 0.108 (3) 0.045 (2) 0.086 (2) −0.013 (2) 0.002 (2) −0.0052 (18)
N1 0.083 (3) 0.054 (3) 0.054 (2) 0.005 (3) 0.003 (2) 0.007 (2)
N2 0.080 (3) 0.058 (3) 0.050 (2) −0.004 (2) 0.004 (2) −0.002 (2)
N3 0.077 (2) 0.077 (3) 0.077 (3) 0.010 (2) 0.003 (2) 0.017 (2)
C1 0.076 (4) 0.048 (3) 0.046 (3) −0.007 (3) 0.014 (2) −0.001 (2)
C2 0.093 (4) 0.080 (4) 0.081 (4) 0.011 (4) 0.010 (4) −0.025 (3)
C3 0.080 (4) 0.105 (5) 0.098 (5) 0.019 (4) 0.010 (4) −0.016 (4)
C4 0.077 (4) 0.089 (5) 0.062 (3) −0.009 (4) 0.004 (3) 0.000 (3)
C5 0.092 (5) 0.101 (5) 0.075 (4) −0.002 (4) 0.001 (4) −0.031 (3)
C6 0.083 (4) 0.090 (4) 0.071 (4) 0.006 (4) 0.009 (3) −0.023 (3)
C7 0.073 (4) 0.058 (3) 0.053 (3) −0.001 (3) −0.004 (3) 0.001 (3)
C8 0.070 (3) 0.050 (3) 0.048 (3) −0.005 (3) −0.006 (3) 0.001 (3)
C9 0.093 (4) 0.062 (4) 0.064 (3) 0.011 (4) 0.001 (3) 0.021 (3)
C10 0.081 (4) 0.063 (4) 0.074 (4) 0.021 (3) 0.008 (3) 0.015 (3)
C11 0.062 (3) 0.059 (3) 0.056 (3) 0.000 (3) 0.000 (3) 0.002 (3)
C12 0.079 (4) 0.065 (4) 0.062 (3) 0.014 (3) 0.005 (3) 0.019 (3)
C13 0.080 (4) 0.059 (3) 0.068 (3) 0.017 (3) 0.011 (3) 0.013 (3)
C14 0.100 (3) 0.204 (7) 0.128 (5) 0.073 (5) 0.031 (4) 0.061 (5)
C15 0.114 (5) 0.156 (6) 0.152 (6) 0.052 (5) 0.049 (5) 0.043 (5)
C16 0.119 (4) 0.127 (6) 0.113 (5) 0.031 (5) 0.047 (4) 0.026 (5)
C17 0.122 (4) 0.220 (7) 0.115 (4) 0.048 (5) 0.054 (3) 0.062 (5)
C18 0.108 (4) 0.149 (5) 0.091 (4) 0.041 (4) 0.032 (3) 0.054 (3)
Cl2 0.1149 (13) 0.1825 (19) 0.0782 (10) 0.0329 (13) 0.0209 (9) −0.0211 (12)
S2 0.0840 (11) 0.0686 (10) 0.0560 (8) 0.0118 (9) 0.0033 (7) 0.0047 (7)
O3 0.069 (2) 0.107 (3) 0.088 (3) 0.003 (2) 0.003 (2) 0.009 (2)
O4 0.122 (3) 0.062 (2) 0.070 (2) 0.019 (2) 0.012 (2) −0.0044 (19)
N4 0.083 (3) 0.068 (3) 0.058 (3) −0.002 (3) −0.001 (2) 0.008 (2)
N5 0.080 (3) 0.064 (3) 0.051 (2) 0.005 (3) −0.002 (2) 0.002 (2)
N6 0.078 (3) 0.074 (3) 0.067 (3) −0.002 (3) 0.015 (2) 0.013 (2)
C19 0.068 (3) 0.054 (3) 0.049 (3) 0.001 (3) −0.006 (2) 0.001 (3)
C20 0.081 (4) 0.080 (4) 0.062 (4) −0.008 (4) −0.004 (3) −0.014 (3)
C21 0.076 (4) 0.097 (5) 0.074 (4) −0.011 (4) 0.004 (3) 0.006 (4)
C22 0.080 (4) 0.090 (4) 0.053 (3) 0.020 (4) −0.002 (3) −0.006 (3)
C23 0.105 (5) 0.070 (4) 0.070 (4) 0.000 (4) −0.005 (4) −0.012 (3)
C24 0.104 (4) 0.065 (4) 0.063 (3) −0.019 (3) 0.005 (3) 0.001 (3)
C25 0.072 (4) 0.056 (3) 0.056 (3) 0.002 (3) 0.016 (3) 0.000 (3)
C26 0.072 (4) 0.047 (3) 0.048 (3) 0.005 (3) 0.017 (3) 0.000 (2)
C27 0.085 (4) 0.064 (4) 0.047 (3) 0.006 (3) 0.007 (3) 0.005 (3)
C28 0.090 (4) 0.058 (3) 0.062 (3) −0.007 (3) 0.021 (3) 0.013 (3)
C29 0.070 (4) 0.064 (4) 0.049 (3) 0.008 (3) 0.015 (3) −0.005 (3)
C30 0.071 (4) 0.069 (4) 0.064 (3) 0.007 (3) 0.009 (3) 0.021 (3)
C31 0.069 (4) 0.060 (3) 0.073 (3) 0.006 (3) 0.017 (3) 0.015 (3)
C32 0.097 (5) 0.100 (5) 0.114 (5) −0.016 (4) −0.001 (4) 0.014 (4)
C33 0.090 (5) 0.136 (6) 0.143 (7) −0.024 (5) 0.007 (5) 0.022 (5)
C34 0.092 (5) 0.110 (6) 0.127 (6) −0.009 (5) −0.009 (4) −0.012 (5)
C35 0.103 (5) 0.138 (6) 0.107 (5) −0.017 (5) −0.015 (4) 0.029 (5)
C36 0.086 (4) 0.143 (6) 0.068 (4) −0.025 (4) 0.000 (3) 0.006 (4)

(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) . Geometric parameters (Å, º)

Cl1—C4 1.736 (5) Cl2—C22 1.735 (5)
S1—O1 1.423 (3) S2—O4 1.425 (3)
S1—O2 1.425 (3) S2—O3 1.426 (4)
S1—N1 1.633 (4) S2—N4 1.638 (4)
S1—C1 1.750 (5) S2—C19 1.748 (5)
N1—N2 1.406 (5) N4—N5 1.399 (5)
N1—H1N 0.83 (4) N4—H4N 0.84 (5)
N2—C7 1.272 (5) N5—C25 1.269 (5)
N3—C14 1.375 (6) N6—C29 1.395 (6)
N3—C11 1.401 (6) N6—C36 1.435 (6)
N3—C18 1.419 (6) N6—C32 1.444 (6)
C1—C2 1.371 (6) C19—C20 1.371 (6)
C1—C6 1.373 (6) C19—C24 1.382 (6)
C2—C3 1.381 (7) C20—C21 1.384 (7)
C2—H2 0.9300 C20—H20 0.9300
C3—C4 1.355 (7) C21—C22 1.363 (7)
C3—H3 0.9300 C21—H21 0.9300
C4—C5 1.347 (7) C22—C23 1.360 (7)
C5—C6 1.377 (7) C23—C24 1.369 (7)
C5—H5 0.9300 C23—H23 0.9300
C6—H6 0.9300 C24—H24 0.9300
C7—C8 1.455 (6) C25—C26 1.447 (6)
C7—H7 0.9300 C25—H25 0.9300
C8—C9 1.371 (6) C26—C27 1.380 (6)
C8—C13 1.376 (6) C26—C31 1.399 (6)
C9—C10 1.370 (6) C27—C28 1.374 (6)
C9—H9 0.9300 C27—H27 0.9300
C10—C11 1.392 (6) C28—C29 1.403 (6)
C10—H10 0.9300 C28—H28 0.9300
C11—C12 1.378 (6) C29—C30 1.386 (6)
C12—C13 1.370 (6) C30—C31 1.361 (6)
C12—H12 0.9300 C30—H30 0.9300
C13—H13 0.9300 C31—H31 0.9300
C14—C15 1.453 (7) C32—C33 1.497 (7)
C14—H14A 0.9700 C32—H32A 0.9700
C14—H14B 0.9700 C32—H32B 0.9700
C15—C16 1.447 (8) C33—C34 1.484 (8)
C15—H15A 0.9700 C33—H33A 0.9700
C15—H15B 0.9700 C33—H33B 0.9700
C16—C17 1.403 (8) C34—C35 1.475 (8)
C16—H16A 0.9700 C34—H34A 0.9700
C16—H16B 0.9700 C34—H34B 0.9700
C17—C18 1.467 (7) C35—C36 1.488 (7)
C17—H17A 0.9700 C35—H35A 0.9700
C17—H17B 0.9700 C35—H35B 0.9700
C18—H18A 0.9700 C36—H36A 0.9700
C18—H18B 0.9700 C36—H36B 0.9700
O1—S1—O2 120.8 (2) O4—S2—O3 120.9 (2)
O1—S1—N1 104.3 (2) O4—S2—N4 107.5 (2)
O2—S1—N1 107.3 (2) O3—S2—N4 104.2 (2)
O1—S1—C1 109.7 (2) O4—S2—C19 107.9 (2)
O2—S1—C1 107.3 (2) O3—S2—C19 108.8 (2)
N1—S1—C1 106.5 (2) N4—S2—C19 106.7 (2)
N2—N1—S1 114.3 (3) N5—N4—S2 114.9 (3)
N2—N1—H1N 114 (4) N5—N4—H4N 120 (4)
S1—N1—H1N 118 (3) S2—N4—H4N 111 (4)
C7—N2—N1 115.5 (4) C25—N5—N4 115.2 (4)
C14—N3—C11 121.0 (5) C29—N6—C36 117.4 (4)
C14—N3—C18 116.2 (5) C29—N6—C32 119.0 (5)
C11—N3—C18 118.1 (4) C36—N6—C32 113.3 (5)
C2—C1—C6 119.4 (5) C20—C19—C24 120.7 (5)
C2—C1—S1 121.2 (4) C20—C19—S2 120.6 (4)
C6—C1—S1 119.3 (4) C24—C19—S2 118.6 (4)
C1—C2—C3 120.3 (5) C19—C20—C21 119.5 (5)
C1—C2—H2 119.9 C19—C20—H20 120.3
C3—C2—H2 119.9 C21—C20—H20 120.3
C4—C3—C2 119.0 (5) C22—C21—C20 119.1 (5)
C4—C3—H3 120.5 C22—C21—H21 120.5
C2—C3—H3 120.5 C20—C21—H21 120.5
C5—C4—C3 121.5 (5) C23—C22—C21 121.7 (5)
C5—C4—Cl1 120.1 (5) C23—C22—Cl2 119.2 (5)
C3—C4—Cl1 118.4 (5) C21—C22—Cl2 119.0 (5)
C4—C5—C6 119.9 (5) C22—C23—C24 119.8 (5)
C4—C5—H5 120.0 C22—C23—H23 120.1
C6—C5—H5 120.0 C24—C23—H23 120.1
C1—C6—C5 119.7 (5) C23—C24—C19 119.2 (5)
C1—C6—H6 120.1 C23—C24—H24 120.4
C5—C6—H6 120.1 C19—C24—H24 120.4
N2—C7—C8 121.8 (5) N5—C25—C26 121.4 (5)
N2—C7—H7 119.1 N5—C25—H25 119.3
C8—C7—H7 119.1 C26—C25—H25 119.3
C9—C8—C13 117.0 (5) C27—C26—C31 116.3 (5)
C9—C8—C7 122.8 (5) C27—C26—C25 123.7 (5)
C13—C8—C7 120.2 (5) C31—C26—C25 120.0 (5)
C10—C9—C8 122.3 (5) C28—C27—C26 122.4 (5)
C10—C9—H9 118.8 C28—C27—H27 118.8
C8—C9—H9 118.8 C26—C27—H27 118.8
C9—C10—C11 120.6 (5) C27—C28—C29 121.0 (5)
C9—C10—H10 119.7 C27—C28—H28 119.5
C11—C10—H10 119.7 C29—C28—H28 119.5
C12—C11—C10 116.8 (5) C30—C29—N6 121.7 (5)
C12—C11—N3 123.6 (5) C30—C29—C28 116.4 (5)
C10—C11—N3 119.6 (5) N6—C29—C28 121.9 (5)
C13—C12—C11 121.9 (5) C31—C30—C29 122.2 (5)
C13—C12—H12 119.1 C31—C30—H30 118.9
C11—C12—H12 119.1 C29—C30—H30 118.9
C12—C13—C8 121.3 (5) C30—C31—C26 121.8 (5)
C12—C13—H13 119.3 C30—C31—H31 119.1
C8—C13—H13 119.3 C26—C31—H31 119.1
N3—C14—C15 120.8 (6) N6—C32—C33 114.2 (5)
N3—C14—H14A 107.1 N6—C32—H32A 108.7
C15—C14—H14A 107.1 C33—C32—H32A 108.7
N3—C14—H14B 107.1 N6—C32—H32B 108.7
C15—C14—H14B 107.1 C33—C32—H32B 108.7
H14A—C14—H14B 106.8 H32A—C32—H32B 107.6
C16—C15—C14 116.7 (6) C34—C33—C32 113.3 (6)
C16—C15—H15A 108.1 C34—C33—H33A 108.9
C14—C15—H15A 108.1 C32—C33—H33A 108.9
C16—C15—H15B 108.1 C34—C33—H33B 108.9
C14—C15—H15B 108.1 C32—C33—H33B 108.9
H15A—C15—H15B 107.3 H33A—C33—H33B 107.7
C17—C16—C15 114.7 (6) C35—C34—C33 110.9 (6)
C17—C16—H16A 108.6 C35—C34—H34A 109.5
C15—C16—H16A 108.6 C33—C34—H34A 109.5
C17—C16—H16B 108.6 C35—C34—H34B 109.5
C15—C16—H16B 108.6 C33—C34—H34B 109.5
H16A—C16—H16B 107.6 H34A—C34—H34B 108.1
C16—C17—C18 119.4 (6) C34—C35—C36 112.8 (6)
C16—C17—H17A 107.5 C34—C35—H35A 109.0
C18—C17—H17A 107.5 C36—C35—H35A 109.0
C16—C17—H17B 107.5 C34—C35—H35B 109.0
C18—C17—H17B 107.5 C36—C35—H35B 109.0
H17A—C17—H17B 107.0 H35A—C35—H35B 107.8
N3—C18—C17 116.9 (5) N6—C36—C35 115.6 (5)
N3—C18—H18A 108.1 N6—C36—H36A 108.4
C17—C18—H18A 108.1 C35—C36—H36A 108.4
N3—C18—H18B 108.1 N6—C36—H36B 108.4
C17—C18—H18B 108.1 C35—C36—H36B 108.4
H18A—C18—H18B 107.3 H36A—C36—H36B 107.4
O1—S1—N1—N2 175.8 (3) O4—S2—N4—N5 −47.7 (4)
O2—S1—N1—N2 −55.0 (4) O3—S2—N4—N5 −177.1 (3)
C1—S1—N1—N2 59.7 (4) C19—S2—N4—N5 67.8 (4)
S1—N1—N2—C7 −163.0 (3) S2—N4—N5—C25 −162.9 (3)
O1—S1—C1—C2 159.7 (4) O4—S2—C19—C20 26.0 (5)
O2—S1—C1—C2 26.7 (5) O3—S2—C19—C20 158.8 (4)
N1—S1—C1—C2 −87.9 (4) N4—S2—C19—C20 −89.3 (4)
O1—S1—C1—C6 −22.4 (5) O4—S2—C19—C24 −156.9 (4)
O2—S1—C1—C6 −155.4 (4) O3—S2—C19—C24 −24.1 (4)
N1—S1—C1—C6 90.0 (4) N4—S2—C19—C24 87.8 (4)
C6—C1—C2—C3 −0.3 (8) C24—C19—C20—C21 1.7 (7)
S1—C1—C2—C3 177.6 (4) S2—C19—C20—C21 178.7 (4)
C1—C2—C3—C4 −1.4 (9) C19—C20—C21—C22 −1.9 (8)
C2—C3—C4—C5 3.3 (9) C20—C21—C22—C23 1.5 (8)
C2—C3—C4—Cl1 −178.1 (5) C20—C21—C22—Cl2 −179.5 (4)
C3—C4—C5—C6 −3.5 (9) C21—C22—C23—C24 −1.0 (8)
Cl1—C4—C5—C6 177.9 (4) Cl2—C22—C23—C24 −180.0 (4)
C2—C1—C6—C5 0.1 (8) C22—C23—C24—C19 0.8 (8)
S1—C1—C6—C5 −177.9 (4) C20—C19—C24—C23 −1.1 (7)
C4—C5—C6—C1 1.8 (9) S2—C19—C24—C23 −178.2 (4)
N1—N2—C7—C8 −178.4 (4) N4—N5—C25—C26 −175.5 (4)
N2—C7—C8—C9 −6.3 (7) N5—C25—C26—C27 −15.6 (7)
N2—C7—C8—C13 172.8 (4) N5—C25—C26—C31 161.8 (4)
C13—C8—C9—C10 −0.7 (7) C31—C26—C27—C28 −0.1 (7)
C7—C8—C9—C10 178.5 (5) C25—C26—C27—C28 177.4 (4)
C8—C9—C10—C11 0.4 (8) C26—C27—C28—C29 −0.7 (7)
C9—C10—C11—C12 −0.3 (7) C36—N6—C29—C30 −35.3 (7)
C9—C10—C11—N3 −178.7 (5) C32—N6—C29—C30 −178.2 (5)
C14—N3—C11—C12 142.9 (6) C36—N6—C29—C28 148.0 (5)
C18—N3—C11—C12 −11.8 (7) C32—N6—C29—C28 5.1 (7)
C14—N3—C11—C10 −38.8 (8) C27—C28—C29—C30 0.3 (7)
C18—N3—C11—C10 166.4 (5) C27—C28—C29—N6 177.3 (4)
C10—C11—C12—C13 0.6 (7) N6—C29—C30—C31 −176.1 (4)
N3—C11—C12—C13 178.9 (5) C28—C29—C30—C31 0.9 (7)
C11—C12—C13—C8 −1.0 (8) C29—C30—C31—C26 −1.7 (8)
C9—C8—C13—C12 1.0 (7) C27—C26—C31—C30 1.3 (7)
C7—C8—C13—C12 −178.2 (5) C25—C26—C31—C30 −176.3 (4)
C11—N3—C14—C15 174.4 (7) C29—N6—C32—C33 −168.9 (5)
C18—N3—C14—C15 −30.4 (10) C36—N6—C32—C33 46.7 (7)
N3—C14—C15—C16 30.9 (12) N6—C32—C33—C34 −49.6 (8)
C14—C15—C16—C17 −30.7 (11) C32—C33—C34—C35 50.7 (8)
C15—C16—C17—C18 32.7 (12) C33—C34—C35—C36 −50.0 (8)
C14—N3—C18—C17 30.2 (9) C29—N6—C36—C35 168.0 (5)
C11—N3—C18—C17 −173.8 (6) C32—N6—C36—C35 −47.1 (8)
C16—C17—C18—N3 −32.9 (11) C34—C35—C36—N6 49.5 (8)

(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.83 (4) 2.26 (5) 3.025 (5) 153 (5)
N4—H4N···O4ii 0.84 (5) 2.29 (5) 3.115 (6) 169 (5)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Funding Statement

This work was funded by Department of Science and Technology, Government of India grant PURSE Program research fellowship to Nikhila Pai. University Grants Commission grant UGC-BSR one-time grant to faculty to B. Thimme Gowda.

References

  1. Comins, D. L., Brooks, C. A. & Ingalls, C. L. (2001). J. Org. Chem. 66, 2181–2182. [DOI] [PubMed]
  2. Cremer, D. & Pople, A. J. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Grishina, G. V., Gaidatova, F. L. & Zefirov, N. S. (1995). Chem. Heterocycl. Com. 30, 1401–1426.
  4. Gu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634–4650. [DOI] [PMC free article] [PubMed]
  5. Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
  6. Kang, D., Fang, Z., Huang, B., Zhang, L., Liu, U., Pannecouque, C., Naesens, L., De Clercq, E., Zhan, P. & Liu, X. (2015). Chem. Biol. Drug Des. 86, 568–577. [DOI] [PubMed]
  7. Kiasalari, Z., Khalili, M., Roghani, M., Ahmadi, A. & Mireie, M. (2014). Iran J. Pathol. 9, 138–148.
  8. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  9. Moss, G. P. (1996). Pure Appl. Chem. 68, 2193–2222.
  10. Nallini, A., Saraboji, K., Ponnuswamy, M. N., Venkatraj, M. & Jeyaraman, R. (2003). Mol. Cryst. Liq. Cryst. 403, 57–65.
  11. Nardelli, M. (1983). Comput. Chem. 7, 95–98.
  12. N’Gouan, A. J., Mansilla-Koblavi, F., Timotou, A., Adjou, A. & Ebby, N. (2009). Acta Cryst. E65, o2880. [DOI] [PMC free article] [PubMed]
  13. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.
  14. Parekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc. 70, 1155–1162.
  15. Parvez, M., Bakhtiar, M., Baqir, M. & Zia-ur-Rehman, M. (2014). J. Chem. Crystallogr. 44, 580–585.
  16. Purandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1946–1951. [DOI] [PMC free article] [PubMed]
  17. Sahu, K., Behera, K., Pathaik, R. C., Nayak, A. & Behera, G. B. (1979). Indian J. Chem. Sect. B, 18, 557–561.
  18. Sampath, N. (2017). J. Struct. Chem. 58, 804–808.
  19. Shah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590–596.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Shit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slov. 63, 129–137. [DOI] [PubMed]
  23. Soman, R., Sujatha, S. & Arunkumar, C. (2014). J. Fluor. Chem. 163, 16–22.
  24. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  25. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  26. Tharini, K. & Sangeetha, P. (2015). Int. J. Chem. Sci. 13, 1794–1804.
  27. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  28. Wang, C. L. & Wuorola, M. A. (1992). Org. Prep. Proceed. Int. 24, 585–621.
  29. Yapo, Y. M., Kakou Yao, R., Timotou, A., N’Gouan, A. J. & Tenon, A. J. (2008). Phys. Chem. News 40, 77–80.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989018016237/tx2009sup1.cif

e-74-01826-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016237/tx2009Isup2.hkl

e-74-01826-Isup2.hkl (252.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018016237/tx2009IIsup3.hkl

e-74-01826-IIsup3.hkl (273.2KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018016237/tx2009IIIsup4.hkl

e-74-01826-IIIsup4.hkl (543.3KB, hkl)

CCDC references: 1879247, 1879246, 1879245

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES