Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 30;74(Pt 12):1891–1894. doi: 10.1107/S2056989018016808

Crystal structures of two stilbazole derivatives: bis­{(E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium} tetra­iodido­cadmium(II) and (E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium 4-meth­oxy­benzene­sulfonate monohydrate

Priya Antony a, S Antony Inglebert a, Jerald V Ramaclus b, S John Sundaram c, P Sagayaraj a,*
PMCID: PMC6281098  PMID: 30574395

The title mol­ecular salts are stilbazole, or 4-styryl­pyridine, derivatives in which the cation has a methyl group attached to the pyridine ring N atom and a diethyl amine group attached to the benzene ring. In salt (I), the cadmium atom of the [CdI4]2− dianion is located on a twofold rotation axis and the compound crystallizes with one cation in the asymmetric unit. In salt(II), the anion consists of a 4-meth­oxy­benzene­sulfonate ion, and it crystallizes as a monohydrate.

Keywords: crystal structure, stilbazole, 4-styryl­pyridine derivatives, tetra­iodo­cadmate, hydrogen bonding, ring motif, π-π inter­actions

Abstract

The title mol­ecular salts, (C18H23N2)2[CdI4], (I), and C18H23N2 +·C7H7O4S·H2O, (II), are stilbazole, or 4-styryl­pyridine, derivatives. The cation, (E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium, has a methyl group attached to pyridine ring and a diethyl amine group attached to the benzene ring. The asymmetric unit of salt (I), comprises one cationic mol­ecule and half a CdI4 dianion. The Cd atom is situated on a twofold rotation axis and has a slightly distorted tetra­hedral coordination sphere. In (II), the anion consists of a 4-meth­oxy­benzene­sulfonate and it crystallizes as a monohydrate. In both salts, the cations adopt an E configuration with respect to the C=C bond and the pyridine and benzene rings are inclined to each other by 10.7 (4)° in (I) and 4.6 (2)° in (II). In the crystals of both salts, the packing is consolidated by offset π–π stacking inter­actions involving the pyridinium and benzene rings, with centroid–centroid distances of 3.627 (4) Å in (I) and 3.614 (3) Å in (II). In the crystal of (II), a pair of 4-meth­oxy­benzene­sulfonate anions are bridged by Owater—H⋯Osulfonate hydrogen bonds, forming loops with an R 2 4(8) motif. These four-membered units are then linked to the cations by a number of C—H⋯O hydrogen bonds, forming slabs lying parallel to the ab plane.

Chemical context  

Stilbene-based compounds have been reported to possess a wide range of biological applications including anti­bacterial (Chanawanno et al., 2010) and anti­oxidant (Frombaum et al., 2012) activities. The anti­bacterial activities of a series of pyridine stilbene benzene­sulfonates have been studied against both gram-positive and gram-negative bacteria (Chanawanno et al., 2010). Pyridine and its derivatives play an important role in drugs including anti­viral, anti­fungal, anti­bacterial, anti-inflammatory, anti­microbial, anti­cancer, anti­oxidant and anti­diabetic agents (Ghattas et al., 2017). They have a variety of biological activities and a number of such compounds are in clinical use (Altaf et al., 2015). The anti­bacterial activity of pyridinium derivatives have also been studied (Chanawanno et al., 2010). The title salts, bis­[(E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium] tetra­iodido­cadmate (I) and (E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium 4-meth­oxy­benzene­sulfonate monohydrate (II) were tested for the level of cytotoxicity and anti­cancer analysis on normal VERO and MCF-7 cells. From an MTT assay it was found that the reported compounds have IC50 values of 31.2 µg mL−1 and 125 µg mL−1, respectively, against MCF-7 cell lines, whereas the IC50 value of crystals against normal VERO cells was found to be 1000 µg mL−1. This shows that both compounds exhibit very good anti­cancer activity, which implies that they may be suitable for biomedical applications.graphic file with name e-74-01891-scheme1.jpg

Structural commentary  

The title mol­ecular salts consist of the same cationic stilbazole derivative, (E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium. Their mol­ecular structures are illustrated in Fig. 1 for (I) and Fig. 2 for (II). Salt (I) crystallizes with one 4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium cation and half a [CdI4]2− anion in the asymmetric unit, the cadmium atom being located on a twofold rotation axis. The cadmium atom is surrounded by four iodine atoms with a slightly distorted tetra­hedral coordination sphere. In salt (II), the anion is 4-meth­oxy­benzene­sulfonate and it crystallizes as a monohydrate. In the cations of both salts, the configuration about the C7=C8 bond is E, with the C4—C7=C8—C9 torsion angle being 179.6 (6) ° in (I) and 178.7 (4)° in (II).

Figure 1.

Figure 1

A view of the mol­ecular structure of salt (I), with the atom labelling. Displacement ellipsoids drawn at the 30% probability level. [symmetry code: (i) −x, y, −z + Inline graphic.]

Figure 2.

Figure 2

The mol­ecular structure of salt (II), with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The dihedral angles between the mean planes of the pyridinium (N1/C2–C6) and benzene (C9–C14) rings are 10.7 (4) and 4.6 (2)° in (I) and (II), respectively. The C1—N1—C6—C5 torsion angles are −179.9 (7) and 179.1 (4)°, in (I) and (II), respectively, indicating that the methyl substituent (atom C1) at N1 is coplanar with the pyridine ring. The nitro­gen atom (N2) deviates from the benzene ring (C9–C14) plane by 0.023 (7) and 0.079 (3) Å in (I) and (II), respectively. The two ethyl units are orthogonal to the benzene ring, as indicated by torsion angle C17—C18—N2—C12, which is 89.1 (8)° in (I) and −81.7 (5)° in (II). The title salts exhibit structural similarities with related structures, as described in the Database survey below.

Supra­molecular features  

In the crystal of (I), pairs of cations are arranged head-to-tail and the only significant inter­molecular inter­actions present are offset π–π inter­actions (Fig. 3). These involve the benzene (C9–C14; centroid Cg2) and pyridine (N1/C2–C6; centroid Cg1) rings [Cg2⋯Cg1i = 3.627 (4) Å, α = 10.7 (4)°, β = 25.0°, inter­planar distances are 3.287 (3) and 3.503 (3) Å, offset = 0.941 Å, symmetry code: (i) −x + Inline graphic, −y + Inline graphic, −z + 1].

Figure 3.

Figure 3

The crystal packing of salt (I), viewed along the b axis, showing the π–π inter­actions as double-headed blue arrows. For clarity, all of the H atoms have omitted.

In the crystal of (II), a pair of 4-meth­oxy­benzene­sulfonate anions are bridged by Owater—H⋯Osulfonate hydrogen bonds, forming loops with an Inline graphic(8) graph-set motif (Table 1 and Fig. 4). These four-membered units are then linked to the cations by a number of C—H⋯O hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1 and Fig. 4). Within the slabs there are offset π–π inter­actions present involving adjacent cations [Cg2⋯Cg1ii = 3.614 (3) Å, α = 4.6 (2)°, β = 15.5°, inter­planar distances are 3.425 (2) and 3.484 (2) Å, offset = 0.963 Å, symmetry code: (ii) x − 1, y, z].

Table 1. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3 0.85 2.06 2.891 (6) 165
O5—H5B⋯O3i 0.85 2.06 2.882 (6) 162
C3—H14⋯O5ii 0.93 2.49 3.394 (6) 163
C6—H17⋯O4iii 0.93 2.33 3.247 (6) 169
C7—H12⋯O2iv 0.93 2.58 3.476 (6) 162
C19—H19A⋯O2ii 0.96 2.53 3.423 (6) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 4.

Figure 4

The crystal packing of salt (II), viewed along the b-axis, showing the hydrogen bonds (Table 1) as dashed lines. Only the H atoms (grey balls) involved in these inter­actions have been included.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.39, latest update August 2018; Groom et al., 2016) for salts containing the title cation, 4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium, gave 12 hits; atomic coordinates are available for only 10 compounds. In the triiodide salt (CSD refcode EWUDUV; Tan et al., 2004), the pyridinium and benzene rings are inclined to each other by ca 4.08°, while in the tetra­phenyl­borate salt (QECXON; Li et al., 2012), the same dihedral angle is ca 14.33°, and in the iodide dihydrate salt (WOWGOE; Wang et al., 2000) it is ca 8.77°. The corresponding dihedral angle in salt (I) is 10.7 (4)°. In the crystals of these compounds, π–π stacking inter­actions dominate, as in the crystal of (I).

There is only one salt reported with the title cation and a sulfonate anion, namely the p-toluene­sulfonate monohydrate salt (IBOWIG; Zhou et al., 2004). Here the dihedral angle between the pyridinium and benzene rings in the cation is ca 6.88°, compared to 4.6 (2)° in salt (II). The crystal packing is very similar to that of salt (II): a pair of water mol­ecules bridge a pair of p-toluene­sulfonate anions via O—H⋯O hydrogen bonds, forming an Inline graphic(8) ring motif; these four-membered units are linked to the cations by C—H⋯O hydrogen bonds, forming a network structure.

Synthesis and crystallization  

Compound (I)

(E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl-pyridinium-iodide (0.788 g, 2 mmol) and cadmium iodide (0.732 g, 2 mmol) were dissolved in a composite solvent, 2:1 ratio of aceto­nitrile and double-distilled water. The mixture was stirred well at 343 K and then allowed to cool naturally to room temperature. The solution was filtered and the filtrate left for the solvent to slowly evaporate at room temperature. After 3–4 weeks, dark-brown block-like crystals of compound (I) were obtained.

Compound (II)

(E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridinium iodide (0.7885 g, 2 mmol) was mixed with sodium 4-meth­oxy­benzene­sulfonate (0.418 g, 2 mmol) in distilled water and heated at 373 K for 30 min. The mixture immediately yielded a grey precipitate of sodium iodide. After stirring the mixture for 30 min, the sodium iodide precipitate was removed. The filtrate was left to slowly evaporate and gave a deep-red solid. Red block-like crystals of compound (II), suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution in methanol after 2-3 weeks.

Refinement  

Crystal data, data collection and structure refinement details for salts (I), and (II) are summarized in Table 2. The hydrogen atoms were located in difference electron-density maps. During refinement they were placed in idealized positions and allowed to ride on the parent atoms: C—H = 0.93–0.97Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C,N) for other H atoms. The rotation angles for the methyl groups were optimized by least-squares. In compound (II), the hydrogen atoms of the water mol­ecule were treated as riding with d(O—H) = 0.85 Å and U iso(H) = 1.5U eq(O).

Table 2. Experimental details.

  (I) (II)
Crystal data
Chemical formula (C18H23N2)2[CdI4] C18H23N2 +·C7H7O4S·H2O
M r 1154.77 472.59
Crystal system, space group Monoclinic, C2/c Triclinic, P Inline graphic
Temperature (K) 296 296
a, b, c (Å) 21.6649 (18), 14.9748 (12), 14.9744 (11) 8.2481 (6), 9.7963 (9), 15.5409 (14)
α, β, γ (°) 90, 123.621 (2), 90 94.283 (5), 101.647 (5), 99.112 (5)
V3) 4045.4 (6) 1206.93 (18)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.62 0.17
Crystal size (mm) 0.15 × 0.15 × 0.10 0.38 × 0.30 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.613, 0.713 0.940, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 37329, 5003, 2802 25709, 4253, 2396
R int 0.070 0.167
(sin θ/λ)max−1) 0.666 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.091, 1.02 0.080, 0.161, 1.07
No. of reflections 5003 4253
No. of parameters 207 306
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.23, −0.87 0.30, −0.22

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989018016808/su5462sup1.cif

e-74-01891-sup1.cif (52.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016808/su5462Isup2.hkl

e-74-01891-Isup2.hkl (245.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018016808/su5462IIsup3.hkl

e-74-01891-IIsup3.hkl (208.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018016808/su5462IIsup4.cml

CCDC references: 1589674, 1589675

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Dr P. K. Sudadevi Antharjanam, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

supplementary crystallographic information

Bis{(E)-4-[4-(diethylamino)styryl]-1-methylpyridin-1-ium} tetraiodidocadmium(II) (I) . Crystal data

(C18H23N2)2[CdI4] F(000) = 2200
Mr = 1154.77 Dx = 1.896 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 y c Cell parameters from 5003 reflections
a = 21.6649 (18) Å θ = 1.9–28.3°
b = 14.9748 (12) Å µ = 3.62 mm1
c = 14.9744 (11) Å T = 296 K
β = 123.621 (2)° Block, brown
V = 4045.4 (6) Å3 0.15 × 0.15 × 0.10 mm
Z = 4

Bis{(E)-4-[4-(diethylamino)styryl]-1-methylpyridin-1-ium} tetraiodidocadmium(II) (I) . Data collection

Bruker Kappa APEXII CCD diffractometer 5003 independent reflections
Radiation source: fine-focus sealed tube 2802 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.070
ω and φ scan θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −28→28
Tmin = 0.613, Tmax = 0.713 k = −19→19
37329 measured reflections l = −19→19

Bis{(E)-4-[4-(diethylamino)styryl]-1-methylpyridin-1-ium} tetraiodidocadmium(II) (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0128P)2 + 39.5734P] where P = (Fo2 + 2Fc2)/3
5003 reflections (Δ/σ)max = 0.001
207 parameters Δρmax = 1.23 e Å3
0 restraints Δρmin = −0.87 e Å3

Bis{(E)-4-[4-(diethylamino)styryl]-1-methylpyridin-1-ium} tetraiodidocadmium(II) (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Bis{(E)-4-[4-(diethylamino)styryl]-1-methylpyridin-1-ium} tetraiodidocadmium(II) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1450 (5) 0.3509 (5) 0.0481 (6) 0.075 (2)
H1A 0.1669 0.3954 0.0279 0.112*
H1B 0.0941 0.3660 0.0187 0.112*
H1C 0.1474 0.2938 0.0210 0.112*
C2 0.2429 (4) 0.2922 (5) 0.2212 (6) 0.0576 (19)
H2 0.2568 0.2556 0.1849 0.069*
C3 0.2816 (4) 0.2883 (4) 0.3292 (6) 0.0539 (18)
H3 0.3221 0.2501 0.3657 0.065*
C4 0.2626 (4) 0.3397 (4) 0.3867 (5) 0.0456 (16)
C5 0.2005 (4) 0.3962 (5) 0.3255 (6) 0.0563 (18)
H5 0.1847 0.4320 0.3598 0.068*
C6 0.1639 (4) 0.3987 (5) 0.2171 (6) 0.0568 (18)
H6 0.1234 0.4365 0.1779 0.068*
C7 0.3041 (4) 0.3361 (4) 0.5024 (6) 0.0536 (18)
H7 0.3467 0.3011 0.5376 0.064*
C8 0.2859 (4) 0.3792 (4) 0.5622 (6) 0.0533 (18)
H8 0.2433 0.4139 0.5247 0.064*
C9 0.3236 (4) 0.3796 (4) 0.6780 (6) 0.0509 (17)
C10 0.3910 (4) 0.3350 (5) 0.7473 (6) 0.0554 (18)
H10 0.4143 0.3050 0.7193 0.067*
C11 0.4228 (4) 0.3355 (5) 0.8562 (6) 0.0575 (19)
H11 0.4678 0.3063 0.9005 0.069*
C12 0.3896 (4) 0.3791 (4) 0.9033 (5) 0.0476 (16)
C13 0.3215 (4) 0.4221 (4) 0.8322 (6) 0.0534 (18)
H13 0.2971 0.4509 0.8592 0.064*
C14 0.2905 (4) 0.4221 (5) 0.7236 (6) 0.0549 (18)
H14 0.2458 0.4517 0.6790 0.066*
C15 0.4916 (4) 0.3359 (5) 1.0878 (6) 0.065 (2)
H15A 0.4971 0.2833 1.0550 0.078*
H15B 0.4927 0.3168 1.1506 0.078*
C16 0.5558 (5) 0.3987 (6) 1.1222 (7) 0.094 (3)
H16A 0.5564 0.4153 1.0608 0.142*
H16B 0.6014 0.3694 1.1738 0.142*
H16C 0.5501 0.4512 1.1537 0.142*
C17 0.3302 (4) 0.3824 (6) 1.0656 (7) 0.080 (2)
H17A 0.2889 0.3694 0.9943 0.120*
H17B 0.3141 0.4196 1.1011 0.120*
H17C 0.3501 0.3278 1.1049 0.120*
C18 0.3893 (4) 0.4305 (5) 1.0603 (6) 0.066 (2)
H18A 0.3684 0.4851 1.0194 0.079*
H18B 0.4292 0.4470 1.1324 0.079*
N1 0.1855 (3) 0.3468 (4) 0.1655 (5) 0.0519 (14)
N2 0.4199 (3) 0.3780 (4) 1.0116 (5) 0.0603 (16)
Cd1 0.0000 0.51199 (4) 0.2500 0.04358 (18)
I1 0.10734 (3) 0.62756 (3) 0.26682 (4) 0.05415 (14)
I2 −0.05786 (3) 0.40088 (4) 0.07160 (4) 0.06612 (17)

Bis{(E)-4-[4-(diethylamino)styryl]-1-methylpyridin-1-ium} tetraiodidocadmium(II) (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.095 (6) 0.063 (5) 0.070 (5) −0.007 (5) 0.047 (5) −0.014 (4)
C2 0.063 (5) 0.042 (4) 0.085 (6) 0.008 (4) 0.052 (5) −0.003 (4)
C3 0.056 (4) 0.042 (4) 0.073 (5) 0.006 (3) 0.041 (4) 0.004 (4)
C4 0.049 (4) 0.029 (3) 0.061 (4) −0.005 (3) 0.031 (4) 0.003 (3)
C5 0.063 (5) 0.056 (5) 0.061 (5) 0.004 (4) 0.041 (4) −0.008 (4)
C6 0.053 (4) 0.049 (4) 0.078 (5) 0.004 (3) 0.042 (4) −0.002 (4)
C7 0.057 (5) 0.033 (4) 0.076 (5) 0.003 (3) 0.041 (4) 0.006 (3)
C8 0.048 (4) 0.044 (4) 0.071 (5) −0.004 (3) 0.035 (4) 0.006 (4)
C9 0.043 (4) 0.043 (4) 0.067 (5) 0.000 (3) 0.031 (4) 0.009 (3)
C10 0.055 (5) 0.055 (5) 0.070 (5) −0.001 (4) 0.043 (4) −0.003 (4)
C11 0.048 (4) 0.050 (4) 0.077 (5) 0.008 (3) 0.036 (4) 0.004 (4)
C12 0.046 (4) 0.041 (4) 0.054 (4) 0.000 (3) 0.027 (4) 0.002 (3)
C13 0.050 (4) 0.046 (4) 0.063 (5) 0.012 (3) 0.031 (4) 0.009 (3)
C14 0.048 (4) 0.049 (4) 0.064 (5) 0.007 (3) 0.028 (4) 0.009 (4)
C15 0.058 (5) 0.062 (5) 0.064 (5) 0.017 (4) 0.027 (4) 0.013 (4)
C16 0.060 (6) 0.096 (7) 0.104 (7) 0.001 (5) 0.031 (5) 0.004 (6)
C17 0.070 (6) 0.091 (7) 0.091 (6) 0.004 (5) 0.052 (5) 0.004 (5)
C18 0.061 (5) 0.067 (5) 0.057 (5) 0.012 (4) 0.025 (4) −0.004 (4)
N1 0.056 (4) 0.045 (4) 0.061 (4) −0.008 (3) 0.037 (3) −0.006 (3)
N2 0.049 (4) 0.067 (4) 0.062 (4) 0.011 (3) 0.030 (3) −0.001 (3)
Cd1 0.0366 (4) 0.0423 (4) 0.0472 (4) 0.000 0.0202 (3) 0.000
I1 0.0507 (3) 0.0489 (3) 0.0651 (3) −0.0079 (2) 0.0335 (2) −0.0002 (2)
I2 0.0539 (3) 0.0672 (4) 0.0688 (3) −0.0091 (3) 0.0287 (3) −0.0258 (3)

Bis{(E)-4-[4-(diethylamino)styryl]-1-methylpyridin-1-ium} tetraiodidocadmium(II) (I) . Geometric parameters (Å, º)

C1—N1 1.468 (9) C11—H11 0.9300
C1—H1A 0.9600 C12—N2 1.371 (8)
C1—H1B 0.9600 C12—C13 1.409 (9)
C1—H1C 0.9600 C13—C14 1.373 (9)
C2—N1 1.328 (8) C13—H13 0.9300
C2—C3 1.349 (9) C14—H14 0.9300
C2—H2 0.9300 C15—N2 1.467 (8)
C3—C4 1.377 (9) C15—C16 1.513 (10)
C3—H3 0.9300 C15—H15A 0.9700
C4—C5 1.414 (9) C15—H15B 0.9700
C4—C7 1.445 (9) C16—H16A 0.9600
C5—C6 1.356 (9) C16—H16B 0.9600
C5—H5 0.9300 C16—H16C 0.9600
C6—N1 1.349 (8) C17—C18 1.508 (10)
C6—H6 0.9300 C17—H17A 0.9600
C7—C8 1.328 (9) C17—H17B 0.9600
C7—H7 0.9300 C17—H17C 0.9600
C8—C9 1.452 (9) C18—N2 1.458 (9)
C8—H8 0.9300 C18—H18A 0.9700
C9—C14 1.388 (9) C18—H18B 0.9700
C9—C10 1.407 (9) Cd1—I2i 2.7871 (6)
C10—C11 1.374 (9) Cd1—I2 2.7871 (6)
C10—H10 0.9300 Cd1—I1i 2.7960 (6)
C11—C12 1.416 (9) Cd1—I1 2.7961 (6)
N1—C1—H1A 109.5 C12—C13—H13 119.5
N1—C1—H1B 109.5 C13—C14—C9 122.4 (7)
H1A—C1—H1B 109.5 C13—C14—H14 118.8
N1—C1—H1C 109.5 C9—C14—H14 118.8
H1A—C1—H1C 109.5 N2—C15—C16 112.0 (6)
H1B—C1—H1C 109.5 N2—C15—H15A 109.2
N1—C2—C3 121.6 (7) C16—C15—H15A 109.2
N1—C2—H2 119.2 N2—C15—H15B 109.2
C3—C2—H2 119.2 C16—C15—H15B 109.2
C2—C3—C4 121.5 (7) H15A—C15—H15B 107.9
C2—C3—H3 119.2 C15—C16—H16A 109.5
C4—C3—H3 119.2 C15—C16—H16B 109.5
C3—C4—C5 115.8 (6) H16A—C16—H16B 109.5
C3—C4—C7 121.7 (6) C15—C16—H16C 109.5
C5—C4—C7 122.5 (6) H16A—C16—H16C 109.5
C6—C5—C4 120.6 (6) H16B—C16—H16C 109.5
C6—C5—H5 119.7 C18—C17—H17A 109.5
C4—C5—H5 119.7 C18—C17—H17B 109.5
N1—C6—C5 120.8 (7) H17A—C17—H17B 109.5
N1—C6—H6 119.6 C18—C17—H17C 109.5
C5—C6—H6 119.6 H17A—C17—H17C 109.5
C8—C7—C4 124.7 (7) H17B—C17—H17C 109.5
C8—C7—H7 117.6 N2—C18—C17 113.8 (6)
C4—C7—H7 117.6 N2—C18—H18A 108.8
C7—C8—C9 128.8 (7) C17—C18—H18A 108.8
C7—C8—H8 115.6 N2—C18—H18B 108.8
C9—C8—H8 115.6 C17—C18—H18B 108.8
C14—C9—C10 117.5 (7) H18A—C18—H18B 107.7
C14—C9—C8 119.3 (6) C2—N1—C6 119.8 (6)
C10—C9—C8 123.2 (7) C2—N1—C1 120.6 (6)
C11—C10—C9 120.4 (7) C6—N1—C1 119.6 (6)
C11—C10—H10 119.8 C12—N2—C18 122.2 (6)
C9—C10—H10 119.8 C12—N2—C15 122.2 (6)
C10—C11—C12 122.3 (7) C18—N2—C15 114.9 (6)
C10—C11—H11 118.8 I2i—Cd1—I2 106.69 (3)
C12—C11—H11 118.8 I2i—Cd1—I1i 111.478 (16)
N2—C12—C13 121.0 (6) I2—Cd1—I1i 111.895 (15)
N2—C12—C11 122.7 (6) I2i—Cd1—I1 111.894 (15)
C13—C12—C11 116.3 (6) I2—Cd1—I1 111.476 (16)
C14—C13—C12 121.0 (7) I1i—Cd1—I1 103.52 (3)
C14—C13—H13 119.5
N1—C2—C3—C4 1.3 (11) C11—C12—C13—C14 −0.9 (10)
C2—C3—C4—C5 −0.2 (10) C12—C13—C14—C9 0.7 (11)
C2—C3—C4—C7 −179.6 (6) C10—C9—C14—C13 0.3 (10)
C3—C4—C5—C6 −0.7 (10) C8—C9—C14—C13 177.4 (6)
C7—C4—C5—C6 178.8 (6) C3—C2—N1—C6 −1.5 (10)
C4—C5—C6—N1 0.5 (11) C3—C2—N1—C1 179.0 (7)
C3—C4—C7—C8 −175.3 (6) C5—C6—N1—C2 0.6 (10)
C5—C4—C7—C8 5.3 (10) C5—C6—N1—C1 −179.9 (7)
C4—C7—C8—C9 179.6 (6) C13—C12—N2—C18 −8.3 (10)
C7—C8—C9—C14 −173.2 (7) C11—C12—N2—C18 173.6 (7)
C7—C8—C9—C10 3.7 (11) C13—C12—N2—C15 −178.4 (6)
C14—C9—C10—C11 −1.1 (10) C11—C12—N2—C15 3.6 (10)
C8—C9—C10—C11 −178.0 (6) C17—C18—N2—C12 89.1 (8)
C9—C10—C11—C12 0.9 (11) C17—C18—N2—C15 −100.2 (8)
C10—C11—C12—N2 178.3 (7) C16—C15—N2—C12 85.9 (9)
C10—C11—C12—C13 0.1 (10) C16—C15—N2—C18 −84.8 (8)
N2—C12—C13—C14 −179.1 (7)

Symmetry code: (i) −x, y, −z+1/2.

4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II). Crystal data

C18H23N2+·C7H7O4S·H2O Z = 2
Mr = 472.59 F(000) = 504
Triclinic, P1 Dx = 1.300 Mg m3
Hall symbol: -P1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2481 (6) Å Cell parameters from 4253 reflections
b = 9.7963 (9) Å θ = 3.0–25.0°
c = 15.5409 (14) Å µ = 0.17 mm1
α = 94.283 (5)° T = 296 K
β = 101.647 (5)° Block, red
γ = 99.112 (5)° 0.38 × 0.30 × 0.18 mm
V = 1206.93 (18) Å3

4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II). Data collection

Bruker Kappa APEXII CCD diffractometer 4253 independent reflections
Radiation source: fine-focus sealed tube 2396 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.167
ω and φ scan θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→9
Tmin = 0.940, Tmax = 0.969 k = −11→11
25709 measured reflections l = −18→18

4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0418P)2 + 1.3526P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
4253 reflections Δρmax = 0.30 e Å3
306 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0075 (14)

4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.8223 (5) 0.6523 (6) 0.4728 (3) 0.0666 (16)
H16A 1.8691 0.5725 0.4575 0.100*
H16B 1.8368 0.6672 0.5359 0.100*
H16C 1.8788 0.7327 0.4522 0.100*
C2 1.5563 (5) 0.7352 (5) 0.4278 (3) 0.0565 (14)
H15 1.6137 0.8236 0.4519 0.068*
C3 1.3901 (5) 0.7177 (5) 0.3904 (3) 0.0505 (13)
H14 1.3355 0.7938 0.3893 0.061*
C4 1.3003 (5) 0.5865 (5) 0.3536 (3) 0.0360 (11)
C5 1.3915 (5) 0.4783 (5) 0.3598 (3) 0.0444 (12)
H18 1.3367 0.3883 0.3379 0.053*
C6 1.5597 (5) 0.5008 (5) 0.3973 (3) 0.0466 (12)
H17 1.6180 0.4268 0.3994 0.056*
C7 1.1240 (5) 0.5583 (5) 0.3109 (3) 0.0409 (11)
H12 1.0741 0.4656 0.2943 0.049*
C8 1.0267 (5) 0.6531 (5) 0.2931 (3) 0.0400 (11)
H11 1.0770 0.7455 0.3109 0.048*
C9 0.8504 (5) 0.6276 (5) 0.2488 (3) 0.0346 (10)
C10 0.7625 (5) 0.7379 (4) 0.2380 (3) 0.0392 (11)
H9 0.8197 0.8277 0.2585 0.047*
C11 0.5938 (5) 0.7186 (4) 0.1981 (3) 0.0377 (11)
H6 0.5404 0.7951 0.1914 0.045*
C12 0.5027 (5) 0.5848 (4) 0.1678 (3) 0.0342 (10)
C13 0.5919 (5) 0.4738 (4) 0.1788 (3) 0.0375 (11)
H7 0.5354 0.3835 0.1592 0.045*
C14 0.7586 (5) 0.4953 (4) 0.2173 (3) 0.0368 (11)
H8 0.8130 0.4192 0.2228 0.044*
C15 0.2459 (5) 0.6762 (5) 0.1087 (3) 0.0469 (12)
H2A 0.2845 0.7525 0.1557 0.056*
H2B 0.1265 0.6458 0.1044 0.056*
C16 0.2708 (7) 0.7292 (5) 0.0234 (3) 0.0673 (15)
H1A 0.3878 0.7656 0.0282 0.101*
H1B 0.2063 0.8016 0.0109 0.101*
H1C 0.2343 0.6545 −0.0236 0.101*
C17 0.2467 (6) 0.3604 (5) 0.0164 (3) 0.0712 (16)
H3A 0.1996 0.4155 −0.0275 0.107*
H3B 0.1848 0.2669 0.0045 0.107*
H3C 0.3622 0.3598 0.0146 0.107*
C18 0.2363 (5) 0.4213 (5) 0.1064 (3) 0.0510 (13)
H4A 0.1193 0.4231 0.1070 0.061*
H4B 0.2765 0.3610 0.1496 0.061*
C19 0.9837 (5) 0.9933 (6) 0.8722 (3) 0.0708 (17)
H19A 0.9936 0.9136 0.8351 0.106*
H19B 1.0760 1.0114 0.9227 0.106*
H19C 0.9854 1.0726 0.8395 0.106*
C20 0.6835 (5) 0.9375 (4) 0.8384 (3) 0.0351 (10)
C21 0.5389 (5) 0.9182 (4) 0.8707 (3) 0.0396 (11)
H21 0.5454 0.9266 0.9313 0.048*
C22 0.3847 (5) 0.8864 (4) 0.8129 (3) 0.0393 (11)
H22 0.2873 0.8715 0.8349 0.047*
C23 0.3731 (5) 0.8764 (4) 0.7233 (3) 0.0348 (10)
C24 0.5190 (6) 0.8983 (5) 0.6920 (3) 0.0495 (12)
H24 0.5121 0.8918 0.6313 0.059*
C25 0.6738 (5) 0.9292 (5) 0.7482 (3) 0.0467 (12)
H25 0.7710 0.9444 0.7261 0.056*
N1 1.6404 (4) 0.6282 (4) 0.4310 (2) 0.0452 (10)
N2 0.3330 (4) 0.5618 (4) 0.1330 (2) 0.0407 (9)
O1 0.8308 (3) 0.9673 (3) 0.90069 (18) 0.0489 (8)
O2 0.0530 (4) 0.7905 (4) 0.6988 (2) 0.0754 (11)
O3 0.1484 (4) 0.9579 (4) 0.6101 (3) 0.0907 (14)
O4 0.1904 (4) 0.7254 (4) 0.5852 (2) 0.0862 (13)
O5 0.1888 (5) 0.9840 (5) 0.4312 (3) 0.0791 (12)
H5A 0.1915 0.9678 0.4844 0.119*
H5B 0.0903 0.9951 0.4070 0.119*
S1 0.17473 (14) 0.83367 (13) 0.64771 (8) 0.0441 (4)

4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.031 (2) 0.110 (5) 0.057 (3) 0.013 (3) 0.004 (2) 0.013 (3)
C2 0.040 (3) 0.057 (4) 0.064 (3) 0.000 (2) 0.003 (2) −0.004 (3)
C3 0.038 (3) 0.047 (3) 0.066 (3) 0.012 (2) 0.007 (2) 0.005 (3)
C4 0.031 (2) 0.049 (3) 0.031 (2) 0.008 (2) 0.0116 (19) 0.006 (2)
C5 0.041 (3) 0.050 (3) 0.040 (3) 0.010 (2) 0.008 (2) −0.003 (2)
C6 0.043 (3) 0.068 (4) 0.032 (3) 0.023 (3) 0.009 (2) −0.002 (2)
C7 0.031 (2) 0.053 (3) 0.038 (3) 0.008 (2) 0.0069 (19) 0.001 (2)
C8 0.037 (2) 0.046 (3) 0.038 (3) 0.002 (2) 0.011 (2) 0.007 (2)
C9 0.032 (2) 0.043 (3) 0.029 (2) 0.007 (2) 0.0075 (18) 0.004 (2)
C10 0.039 (2) 0.029 (3) 0.046 (3) 0.002 (2) 0.007 (2) −0.002 (2)
C11 0.036 (2) 0.032 (3) 0.047 (3) 0.013 (2) 0.009 (2) 0.004 (2)
C12 0.033 (2) 0.038 (3) 0.032 (2) 0.007 (2) 0.0063 (18) 0.007 (2)
C13 0.037 (2) 0.028 (3) 0.045 (3) 0.0047 (19) 0.006 (2) 0.006 (2)
C14 0.039 (2) 0.037 (3) 0.037 (3) 0.014 (2) 0.007 (2) 0.006 (2)
C15 0.037 (2) 0.049 (3) 0.056 (3) 0.016 (2) 0.007 (2) 0.003 (3)
C16 0.091 (4) 0.057 (4) 0.060 (4) 0.033 (3) 0.013 (3) 0.015 (3)
C17 0.080 (4) 0.060 (4) 0.060 (4) 0.005 (3) −0.007 (3) 0.000 (3)
C18 0.040 (3) 0.048 (3) 0.062 (3) 0.011 (2) 0.003 (2) 0.007 (3)
C19 0.035 (3) 0.104 (5) 0.066 (4) 0.000 (3) 0.007 (2) −0.003 (3)
C20 0.037 (2) 0.030 (3) 0.037 (3) 0.0075 (19) 0.004 (2) 0.006 (2)
C21 0.044 (3) 0.041 (3) 0.034 (3) 0.010 (2) 0.008 (2) 0.002 (2)
C22 0.035 (2) 0.039 (3) 0.043 (3) 0.007 (2) 0.007 (2) 0.005 (2)
C23 0.041 (2) 0.029 (3) 0.035 (3) 0.0110 (19) 0.0020 (19) 0.006 (2)
C24 0.060 (3) 0.058 (3) 0.032 (3) 0.012 (2) 0.009 (2) 0.008 (2)
C25 0.041 (3) 0.053 (3) 0.046 (3) 0.004 (2) 0.010 (2) 0.010 (2)
N1 0.0282 (19) 0.066 (3) 0.041 (2) 0.011 (2) 0.0063 (17) 0.003 (2)
N2 0.0310 (18) 0.033 (2) 0.055 (2) 0.0067 (16) 0.0003 (16) 0.0042 (18)
O1 0.0372 (17) 0.060 (2) 0.0427 (19) 0.0038 (15) −0.0012 (14) 0.0009 (16)
O2 0.0422 (19) 0.102 (3) 0.073 (3) 0.0049 (19) −0.0002 (18) 0.002 (2)
O3 0.084 (3) 0.063 (3) 0.108 (3) 0.019 (2) −0.032 (2) 0.032 (2)
O4 0.057 (2) 0.106 (3) 0.078 (3) 0.031 (2) −0.0189 (18) −0.047 (2)
O5 0.071 (2) 0.094 (3) 0.088 (3) 0.035 (2) 0.032 (2) 0.025 (3)
S1 0.0407 (7) 0.0404 (8) 0.0454 (7) 0.0147 (5) −0.0075 (5) −0.0015 (6)

4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II). Geometric parameters (Å, º)

C1—N1 1.484 (5) C15—H2B 0.9700
C1—H16A 0.9600 C16—H1A 0.9600
C1—H16B 0.9600 C16—H1B 0.9600
C1—H16C 0.9600 C16—H1C 0.9600
C2—N1 1.344 (6) C17—C18 1.503 (6)
C2—C3 1.354 (6) C17—H3A 0.9600
C2—H15 0.9300 C17—H3B 0.9600
C3—C4 1.395 (6) C17—H3C 0.9600
C3—H14 0.9300 C18—N2 1.461 (5)
C4—C5 1.393 (5) C18—H4A 0.9700
C4—C7 1.445 (5) C18—H4B 0.9700
C5—C6 1.367 (5) C19—O1 1.411 (5)
C5—H18 0.9300 C19—H19A 0.9600
C6—N1 1.332 (5) C19—H19B 0.9600
C6—H17 0.9300 C19—H19C 0.9600
C7—C8 1.329 (5) C20—O1 1.367 (4)
C7—H12 0.9300 C20—C21 1.377 (5)
C8—C9 1.452 (5) C20—C25 1.383 (6)
C8—H11 0.9300 C21—C22 1.375 (5)
C9—C14 1.392 (5) C21—H21 0.9300
C9—C10 1.395 (5) C22—C23 1.372 (5)
C10—C11 1.381 (5) C22—H22 0.9300
C10—H9 0.9300 C23—C24 1.379 (6)
C11—C12 1.399 (5) C23—S1 1.779 (4)
C11—H6 0.9300 C24—C25 1.368 (6)
C12—N2 1.371 (5) C24—H24 0.9300
C12—C13 1.409 (5) C25—H25 0.9300
C13—C14 1.360 (5) O2—S1 1.434 (4)
C13—H7 0.9300 O3—S1 1.418 (3)
C14—H8 0.9300 O4—S1 1.423 (3)
C15—N2 1.457 (5) O5—H5A 0.8498
C15—C16 1.500 (6) O5—H5B 0.8501
C15—H2A 0.9700
N1—C1—H16A 109.5 C15—C16—H1C 109.5
N1—C1—H16B 109.5 H1A—C16—H1C 109.5
H16A—C1—H16B 109.5 H1B—C16—H1C 109.5
N1—C1—H16C 109.5 C18—C17—H3A 109.5
H16A—C1—H16C 109.5 C18—C17—H3B 109.5
H16B—C1—H16C 109.5 H3A—C17—H3B 109.5
N1—C2—C3 121.8 (4) C18—C17—H3C 109.5
N1—C2—H15 119.1 H3A—C17—H3C 109.5
C3—C2—H15 119.1 H3B—C17—H3C 109.5
C2—C3—C4 120.6 (4) N2—C18—C17 114.1 (4)
C2—C3—H14 119.7 N2—C18—H4A 108.7
C4—C3—H14 119.7 C17—C18—H4A 108.7
C5—C4—C3 115.8 (4) N2—C18—H4B 108.7
C5—C4—C7 119.7 (4) C17—C18—H4B 108.7
C3—C4—C7 124.5 (4) H4A—C18—H4B 107.6
C6—C5—C4 121.7 (4) O1—C19—H19A 109.5
C6—C5—H18 119.1 O1—C19—H19B 109.5
C4—C5—H18 119.1 H19A—C19—H19B 109.5
N1—C6—C5 120.3 (4) O1—C19—H19C 109.5
N1—C6—H17 119.9 H19A—C19—H19C 109.5
C5—C6—H17 119.9 H19B—C19—H19C 109.5
C8—C7—C4 125.8 (4) O1—C20—C21 115.6 (4)
C8—C7—H12 117.1 O1—C20—C25 124.2 (4)
C4—C7—H12 117.1 C21—C20—C25 120.1 (4)
C7—C8—C9 126.9 (4) C22—C21—C20 119.8 (4)
C7—C8—H11 116.6 C22—C21—H21 120.1
C9—C8—H11 116.6 C20—C21—H21 120.1
C14—C9—C10 116.4 (4) C23—C22—C21 120.8 (4)
C14—C9—C8 123.3 (4) C23—C22—H22 119.6
C10—C9—C8 120.3 (4) C21—C22—H22 119.6
C11—C10—C9 122.5 (4) C22—C23—C24 118.8 (4)
C11—C10—H9 118.8 C22—C23—S1 121.3 (3)
C9—C10—H9 118.8 C24—C23—S1 119.9 (3)
C10—C11—C12 120.5 (4) C25—C24—C23 121.5 (4)
C10—C11—H6 119.8 C25—C24—H24 119.3
C12—C11—H6 119.8 C23—C24—H24 119.3
N2—C12—C11 121.7 (4) C24—C25—C20 119.1 (4)
N2—C12—C13 121.3 (4) C24—C25—H25 120.5
C11—C12—C13 116.9 (4) C20—C25—H25 120.5
C14—C13—C12 121.7 (4) C6—N1—C2 119.9 (4)
C14—C13—H7 119.2 C6—N1—C1 120.3 (4)
C12—C13—H7 119.2 C2—N1—C1 119.9 (4)
C13—C14—C9 122.1 (4) C12—N2—C15 121.1 (3)
C13—C14—H8 118.9 C12—N2—C18 121.6 (3)
C9—C14—H8 118.9 C15—N2—C18 116.6 (3)
N2—C15—C16 114.5 (4) C20—O1—C19 118.6 (3)
N2—C15—H2A 108.6 H5A—O5—H5B 109.4
C16—C15—H2A 108.6 O3—S1—O4 113.3 (3)
N2—C15—H2B 108.6 O3—S1—O2 111.9 (2)
C16—C15—H2B 108.6 O4—S1—O2 113.0 (2)
H2A—C15—H2B 107.6 O3—S1—C23 105.6 (2)
C15—C16—H1A 109.5 O4—S1—C23 105.90 (19)
C15—C16—H1B 109.5 O2—S1—C23 106.5 (2)
H1A—C16—H1B 109.5
N1—C2—C3—C4 −0.1 (7) C22—C23—C24—C25 0.1 (7)
C2—C3—C4—C5 1.2 (7) S1—C23—C24—C25 −179.0 (4)
C2—C3—C4—C7 −178.7 (4) C23—C24—C25—C20 0.5 (7)
C3—C4—C5—C6 −1.9 (6) O1—C20—C25—C24 179.9 (4)
C7—C4—C5—C6 178.0 (4) C21—C20—C25—C24 −1.5 (7)
C4—C5—C6—N1 1.5 (7) C5—C6—N1—C2 −0.2 (6)
C5—C4—C7—C8 −173.2 (4) C5—C6—N1—C1 179.1 (4)
C3—C4—C7—C8 6.7 (7) C3—C2—N1—C6 −0.5 (7)
C4—C7—C8—C9 178.7 (4) C3—C2—N1—C1 −179.8 (4)
C7—C8—C9—C14 −0.9 (7) C11—C12—N2—C15 13.1 (6)
C7—C8—C9—C10 177.3 (4) C13—C12—N2—C15 −170.1 (4)
C14—C9—C10—C11 −0.2 (6) C11—C12—N2—C18 −176.2 (4)
C8—C9—C10—C11 −178.5 (4) C13—C12—N2—C18 0.6 (6)
C9—C10—C11—C12 1.1 (6) C16—C15—N2—C12 77.0 (5)
C10—C11—C12—N2 175.9 (4) C16—C15—N2—C18 −94.1 (5)
C10—C11—C12—C13 −1.1 (6) C17—C18—N2—C12 −81.7 (5)
N2—C12—C13—C14 −176.7 (4) C17—C18—N2—C15 89.4 (5)
C11—C12—C13—C14 0.3 (6) C21—C20—O1—C19 −177.8 (4)
C12—C13—C14—C9 0.6 (6) C25—C20—O1—C19 0.9 (6)
C10—C9—C14—C13 −0.6 (6) C22—C23—S1—O3 108.6 (4)
C8—C9—C14—C13 177.6 (4) C24—C23—S1—O3 −72.3 (4)
O1—C20—C21—C22 −179.3 (4) C22—C23—S1—O4 −131.0 (4)
C25—C20—C21—C22 2.0 (6) C24—C23—S1—O4 48.1 (4)
C20—C21—C22—C23 −1.3 (6) C22—C23—S1—O2 −10.4 (4)
C21—C22—C23—C24 0.3 (6) C24—C23—S1—O2 168.6 (4)
C21—C22—C23—S1 179.4 (3)

4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O3 0.85 2.06 2.891 (6) 165
O5—H5B···O3i 0.85 2.06 2.882 (6) 162
C3—H14···O5ii 0.93 2.49 3.394 (6) 163
C6—H17···O4iii 0.93 2.33 3.247 (6) 169
C7—H12···O2iv 0.93 2.58 3.476 (6) 162
C19—H19A···O2ii 0.96 2.53 3.423 (6) 155

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by University Grants Commission grant F1–17.1/2017–18/MANF-2017–18-KER-83185 to Priya Antony. Science and Engineering Research Board grant SR/S2/LOP-29/2013.

References

  1. Altaf, A. A., Shahzad, A., Gul, Z., Rasool, N., Badshah, A., Lal, B. & Khan, E. (2015). J. Drug Design Med. Chem. 1, 1–11.
  2. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Frombaum, M., Le Clanche, S., Bonnefont-Rousselot, D. & Borderie, D. (2012). Biochimie, 94, 269–276. [DOI] [PubMed]
  6. Ghattas, A.-E.-B. A. G., Khodairy, A., Moustafa, H. M., Hussein, B. R. M., Farghaly, M. M. & Aboelez, M. O. (2017). Pharma. Chem. J. , 30, 652–660.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Li, D.-D., Li, R. & Li, S.-L. (2012). Acta Cryst. E68, o2694.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Tan, X.-J., Sun, S.-X., Yu, W.-T., Xing, D.-X., Wang, Y.-G. & Qi, C.-G. (2004). Acta Cryst. E60, o1054–o1056.
  13. Wang, X.-M., Zhou, Y.-F., Yu, W.-T., Wang, C., Fang, Q., Jiang, M.-H., Lei, H. & Wang, H.-W. (2000). J. Mater. Chem. 10, 2698–2703.
  14. Zhou, H.-P., Hao, F.-Y., Zhang, J.-Z., Zhao, Z.-Z., Dong, M.-L., Wu, J.-Y., Tian, Y.-P. & Fun, K.-F. (2004). Wuji Huaxue Xuebao, 20, 1165.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989018016808/su5462sup1.cif

e-74-01891-sup1.cif (52.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016808/su5462Isup2.hkl

e-74-01891-Isup2.hkl (245.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018016808/su5462IIsup3.hkl

e-74-01891-IIsup3.hkl (208.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018016808/su5462IIsup4.cml

CCDC references: 1589674, 1589675

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES