Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 20;74(Pt 12):1815–1820. doi: 10.1107/S205698901801589X

Crystal structure and Hirshfeld surface analysis of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-methyl­quinoxalin-2(1H)-one

Nadeem Abad a,*, Youssef Ramli b, Tuncer Hökelek c, Nada Kheira Sebbar d, Joel T Mague e, El Mokhtar Essassi a
PMCID: PMC6281099  PMID: 30574380

The title compound is built up from a planar quinoxalinone ring system linked through a methyl­ene bridge to a 1,2,3-triazole ring, which is inclined by 67.09 (4)° to the quinoxalinone ring plane.

Keywords: crystal structure, di­hydro­quinoxaline, triazole, π-stacking, Hirshfeld surface

Abstract

The title compound, C16H19N5O, is built up from a planar quinoxalinone ring system linked through a methyl­ene bridge to a 1,2,3-triazole ring, which in turn carries an n-butyl substituent. The triazole ring is inclined by 67.09 (4)° to the quinoxalinone ring plane. In the crystal, the mol­ecules form oblique stacks along the a-axis direction through inter­molecular C—HTrz⋯NTrz (Trz = triazole) hydrogen bonds, and offset π-stacking inter­actions between quinoxalinone rings [centroid–centroid distance = 3.9107 (9) Å] and π–π inter­actions, which are associated pairwise by inversion-related C—HDhydqn⋯π(ring) (Dhydqn = di­hydro­quinoxaline) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (52.7%), H⋯N/N⋯H (18.9%) and H⋯C/C⋯H (17.0%) inter­actions.

Chemical context  

Quinoxaline groups are well known, important nitrogen-containing heterocyclic compounds comprising a benzene and a pyrazine ring fused together. Diversely substituted quinoxalines and their derivatives embedded with variety of functional groups are important biological agents and a significant amount of research activity has been directed towards this class of compounds. These mol­ecules exhibit a wide range of biological applications and are potentially useful in medicinal chemistry research and have therapeutic applications such as anti­microbial (Attia et al., 2013; Vieira et al., 2014; Teja et al., 2016), anti-inflammatory (Guirado et al., 2012), anti­cancer (Abbas et al., 2015), anti­diabetic (Kulkarni et al., 2012) and anti­histaminic activities (Sridevi et al., 2010). As a continuation of our research works on the synthesis, spectroscopic and biological properties of quinoxaline derivatives (Ramli et al., 2013, 2017; Ramli & Essassi, 2015; Abad et al., 2018a ,b ,c ; Ellouz et al., 2015; Sebbar et al., 2014), we report herein the mol­ecular and crystal structures along with the Hirshfeld surface analysis of the title compound, 1-[(1-butyl-1H-1,2,3-triazol-5-yl)meth­yl]-3-methyl-1,2-di­hydro­quinoxalin-2-one.

Structural commentary  

The title compound, (I), is built up from the two fused six-membered rings of a quinoxalinone moiety linked through a methyl­ene bridge to a 1,2,3-triazole ring, which in turn carries an n-butyl substituent on N3 (Fig. 1). The di­hydro­quinoxaline unit is planar within 0.029 (1) Å (r.m.s. deviation of the fitted atoms = 0.0123 Å) and the triazole ring is inclined by 67.09 (4)° to the above-mentioned plane. The mol­ecule adopts a Z-shaped conformation with the (1H-1,2,3-triazol-5-yl)methyl substituent projecting well out of the mean plane of the di­hydro­quinxalone unit, as indicated by the C1—N2—C10—C11 torsion angle of 90.85 (16)°. The n-butyl group is oriented in the opposite direction as seen from the N4—N3—C13—C14 torsion angle of −95.26 (16)° (Fig. 2).graphic file with name e-74-01815-scheme1.jpg

Figure 1.

Figure 1

The title mol­ecule with labelling scheme and 50% probability ellipsoids.

Figure 2.

Figure 2

Packing viewed along the a-axis direction. C—H⋯N hydrogen bonds are shown by black dashed lines while π-stacking and C—H⋯π(ring) inter­actions are shown, respectively, by orange and green dashed lines.

Supra­molecular features  

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, the mol­ecules form oblique stacks along the a-axis direction through inter­molecular C—HTrz⋯NTrz (Trz = triazole) hydrogen bonds (Table 1), and offset, very weak π-stacking inter­actions between the A (C1–C6) and B (N1/N2/C1/C6–C8) rings [centroid–centroid distance = 3.9107 (9) Å, dihedral angle = 0.94 (7)°] and π-inter­actions between the C8=O1 carbonyl group and the B rings [O1—centroid = 3.5505 (14) Å, C8–centroid = 3.4546 (17) Å, C8=O1⋯centroid = 75.51 (9)°]. Pairs of stacks are associated through C—HDhydqn⋯π (Dhydqn = di­hydro­quinoxaline) inter­actions, generating small, diamond-shaped channels along the a-axis direction (Table 1 and Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N3–N5/C11/C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N4iii 0.954 (19) 2.419 (19) 3.2282 (19) 142.4 (15)
C2—H2⋯Cg1vii 0.966 (18) 2.986 (19) 3.642 (1) 126.3 (14)

Symmetry codes: (iii) Inline graphic; (vii) Inline graphic.

Database Survey  

A search of the CSD (Version 5.39, updated May 2018; Groom et al., 2016) using the fragment shown in Scheme 2 (R = C, R1 = nothing) generated 37 hits. Of these, the ones most comparable to the title mol­ecule have R1 = CH3 and R = CH2C≡CH (Benzeid et al., 2009), CH2Ph (Ramli et al., 2010a , 2018), C2H5 (Benzeid et al., 2008), (1,3-oxazolidin-3-yl)ethyl (Caleb et al., 2009), CH2CH=CH2 (Ramli et al., 2010b ) and the isomer with R = (1-butyl-1H-1,2,3- triazol-5-yl)methyl (Abad et al., 2018a ). Those with R = CH2C≡CH and C2H5 have Z′ = 1. A common feature of the above subset as well as the majority of the other compounds with different R1 substituents is the geometry of the bicyclic unit, which is either planar or has a slight end-to-end twist. Another feature is the orientation of the R group, which generally has a C—N—C—C torsion angle >65° and in quite a few cases, this is close to 90°. A comparison of the conformation of the title mol­ecule with that of its (1-butyl-1H-1,2,3-triazol-5-yl)methyl isomer shows that the latter has a U shape with the R group extending back over the bicyclic unit as the result of an intra­molecular C—H⋯O hydrogen bond from the α hydrogen of the butyl group while in the former, the more remote position of the butyl group on the triazole ring disfavours such an inter­action and the mol­ecule adopts a Z shape. This conformation is favoured by the opportunity for π-stacking and C—H⋯π(ring) inter­actions in the crystal.graphic file with name e-74-01815-scheme2.jpg

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near the hydrogen atom H12 indicates their role as the respective donors and/or acceptors in the dominant C—H⋯N hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 5 clearly suggest that there are π–π inter­actions in (I). The overall two-dimensional fingerprint plot, Fig. 6(a), and those delineated into H⋯H, H⋯N/N⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, O⋯C/C⋯O, N⋯C/C⋯N and N⋯N contacts (McKinnon et al., 2007) are illus­trated in Fig. 6(b)–(i), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 52.7% to the overall crystal packing, which is reflected in Fig. 6(b) as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The split spike with the tip at d e = d i = 1.13 Å in Fig. 6(b) is due to the short inter­atomic H⋯H contacts (Table 2). The pair of characteristic wings resulting in the fingerprint plot delineated into H⋯N/N⋯H contacts Fig. 6(c), contribute 18.9% to the HS (Table 2) and are viewed as pair of spikes with the tips at d e + d i = 2.23 Å. In the presence of weak C—H⋯π inter­actions (Table 1) in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts with a 17.0% contribution to the HS have a symmetrical distribution of points, Fig. 7(d), with the tips at d e + d i = 2.65 Å (Table 2). Finally, the H⋯O/O⋯H [Fig. 6(e)] contacts (Table 2) in the structure with 6.8% contribution to the HS also have symmetrical distribution of points, namely two pairs of thin and thick edges at d e + d i ∼2.53 and 2.58 Å, respectively.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.2380 to 1.1723 a.u.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Figure 5.

Figure 5

Hirshfeld surface of the title compound plotted over shape-index.

Figure 6.

Figure 6

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯N/N⋯H, (d) H⋯C/C⋯H, (e) H⋯O/O⋯H, (f) C⋯C, (g) O⋯C/C⋯O, (h) N⋯C/C⋯N and (i) N⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 2. Selected interatomic distances (Å).

O1⋯C11 3.3134 (19) C2⋯C10iv 3.586 (2)
O1⋯C13i 3.306 (2) C2⋯C11 3.559 (2)
O1⋯C14i 3.193 (2) C2⋯C11vii 3.589 (2)
O1⋯H10B 2.341 (17) C3⋯C10iv 3.431 (2)
O1⋯H9B 2.75 (2) C4⋯C8iv 3.502 (2)
O1⋯H9C 2.79 (2) C5⋯C8iv 3.491 (2)
O1⋯H13A ii 2.696 (17) C5⋯C7iv 3.429 (2)
O1⋯H13B i 2.62 (2) C11⋯C13ii 3.589 (2)
O1⋯H14A i 2.752 (18) C12⋯C13ii 3.470 (2)
N1⋯N2 2.8013 (17) C16⋯C16viii 3.577 (3)
N2⋯C3iii 3.421 (2) C2⋯H15B vii 2.991 (19)
N2⋯N5 3.1514 (17) C2⋯H10A 2.600 (17)
N4⋯C15 3.364 (2) C2⋯H10B iv 2.928 (17)
N4⋯C12iv 3.228 (2) C8⋯H13A ii 2.918 (18)
N5⋯C2 3.343 (2) C10⋯H2 2.608 (18)
N1⋯H5v 2.680 (18) C11⋯H2vii 2.755 (19)
N3⋯H15B 2.860 (19) C12⋯H13A ii 2.973 (17)
N4⋯H12iv 2.42 (2) H2⋯H10A 2.07 (2)
N4⋯H13B ii 2.944 (19) H4⋯H16B vi 2.52 (3)
N4⋯H15B 2.936 (18) H9B⋯H15A ii 2.40 (3)
N4⋯H3vi 2.821 (18) H13A⋯H15A 2.54 (3)
N5⋯H2 2.819 (19) H14A⋯H16A 2.46 (3)
N5⋯H10B iv 2.733 (17) H14B⋯H16C 2.57 (3)
N5⋯H2vii 2.932 (18) H15A⋯H13A 2.54 (3)
N5⋯H10A vii 2.676 (18) H15A⋯H9B ii 2.40 (3)
N5⋯H13B ii 2.93 (2)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Figure 7.

Figure 7

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯N/N⋯H, (c) H⋯C/C⋯H and (d) H⋯O/O⋯H inter­actions.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯N/N⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 7(a)–(d), respectively.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯N/N⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggests that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Synthesis and crystallization  

To a solution of 3-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­quinoxalin-2(1H)-one (0.68 mmol) in ethanol (15 mL) was added 1-azido­butane (1.03 mmol). The reaction mixture was stirred under reflux for 72 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using as eluent the mixture (hexa­ne/ethyl acetate 8:2). The solid product obtained was crystallized from ethanol to afford colourless crystals in 78% yield.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were located in a difference Fourier map and were freely refined.

Table 3. Experimental details.

Crystal data
Chemical formula C16H19N5O
M r 297.36
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 150
a, b, c (Å) 5.3265 (2), 9.9946 (4), 14.5414 (5)
α, β, γ (°) 103.054 (2), 100.039 (2), 93.108 (2)
V3) 739.03 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.71
Crystal size (mm) 0.25 × 0.21 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.84, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 5735, 2764, 2281
R int 0.030
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.100, 1.07
No. of reflections 2764
No. of parameters 276
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.25, −0.21

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901801589X/xu5949sup1.cif

e-74-01815-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801589X/xu5949Isup2.hkl

e-74-01815-Isup2.hkl (132.9KB, hkl)

Supporting information file. DOI: 10.1107/S205698901801589X/xu5949Isup3.cdx

Supporting information file. DOI: 10.1107/S205698901801589X/xu5949Isup4.cml

CCDC reference: 1878133

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C16H19N5O Z = 2
Mr = 297.36 F(000) = 316
Triclinic, P1 Dx = 1.336 Mg m3
a = 5.3265 (2) Å Cu Kα radiation, λ = 1.54178 Å
b = 9.9946 (4) Å Cell parameters from 3995 reflections
c = 14.5414 (5) Å θ = 3.2–72.1°
α = 103.054 (2)° µ = 0.71 mm1
β = 100.039 (2)° T = 150 K
γ = 93.108 (2)° Plate, colourless
V = 739.03 (5) Å3 0.25 × 0.21 × 0.02 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2764 independent reflections
Radiation source: INCOATEC IµS micro-focus source 2281 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
Detector resolution: 10.4167 pixels mm-1 θmax = 72.1°, θmin = 3.2°
ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −12→11
Tmin = 0.84, Tmax = 0.97 l = −16→17
5735 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 All H-atom parameters refined
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2108P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2764 reflections Δρmax = 0.25 e Å3
276 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0091 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1373 (2) 0.25655 (12) 0.71106 (8) 0.0317 (3)
N1 0.6669 (2) 0.43499 (13) 0.88772 (9) 0.0246 (3)
N2 0.4435 (2) 0.41368 (12) 0.69511 (8) 0.0214 (3)
N3 0.4218 (2) 0.10144 (13) 0.42094 (8) 0.0214 (3)
N4 0.6468 (2) 0.17916 (13) 0.43816 (9) 0.0257 (3)
N5 0.6307 (2) 0.29436 (13) 0.50153 (9) 0.0253 (3)
C1 0.6701 (3) 0.49930 (15) 0.73511 (10) 0.0214 (3)
C2 0.7938 (3) 0.57499 (16) 0.68289 (11) 0.0245 (3)
H2 0.722 (3) 0.5669 (19) 0.6158 (13) 0.034 (5)*
C3 1.0190 (3) 0.65725 (16) 0.72646 (12) 0.0282 (4)
H3 1.102 (3) 0.7133 (19) 0.6888 (13) 0.032 (5)*
C4 1.1277 (3) 0.66500 (17) 0.82210 (12) 0.0291 (4)
H4 1.280 (4) 0.720 (2) 0.8511 (14) 0.039 (5)*
C5 1.0094 (3) 0.59047 (16) 0.87417 (11) 0.0267 (3)
H5 1.084 (3) 0.5905 (18) 0.9413 (13) 0.031 (5)*
C6 0.7797 (3) 0.50745 (15) 0.83176 (10) 0.0227 (3)
C7 0.4566 (3) 0.35724 (15) 0.84935 (10) 0.0234 (3)
C8 0.3301 (3) 0.33717 (15) 0.74734 (10) 0.0231 (3)
C9 0.3266 (3) 0.28202 (18) 0.90846 (12) 0.0302 (4)
H9A 0.422 (4) 0.301 (2) 0.9742 (15) 0.046 (6)*
H9B 0.310 (4) 0.182 (2) 0.8803 (15) 0.051 (6)*
H9C 0.153 (4) 0.304 (2) 0.9088 (14) 0.048 (6)*
C10 0.3087 (3) 0.40222 (16) 0.59533 (10) 0.0232 (3)
H10A 0.338 (3) 0.4926 (18) 0.5805 (12) 0.025 (4)*
H10B 0.125 (3) 0.3822 (17) 0.5929 (12) 0.028 (4)*
C11 0.3937 (3) 0.28917 (15) 0.52445 (10) 0.0207 (3)
C12 0.2596 (3) 0.16668 (16) 0.47318 (10) 0.0222 (3)
H12 0.088 (4) 0.1281 (19) 0.4678 (13) 0.033 (5)*
C13 0.3800 (3) −0.03351 (16) 0.35173 (11) 0.0265 (3)
H13A 0.551 (3) −0.0671 (18) 0.3519 (12) 0.030 (4)*
H13B 0.280 (4) −0.096 (2) 0.3780 (13) 0.036 (5)*
C14 0.2469 (3) −0.02638 (17) 0.25207 (11) 0.0262 (3)
H14A 0.210 (3) −0.123 (2) 0.2122 (13) 0.034 (5)*
H14B 0.078 (3) 0.0099 (18) 0.2559 (12) 0.031 (5)*
C15 0.3969 (3) 0.05954 (18) 0.20269 (11) 0.0293 (4)
H15A 0.570 (4) 0.0313 (19) 0.2062 (13) 0.037 (5)*
H15B 0.412 (3) 0.160 (2) 0.2368 (13) 0.035 (5)*
C16 0.2667 (4) 0.0438 (2) 0.09843 (13) 0.0420 (5)
H16A 0.248 (4) −0.057 (2) 0.0616 (15) 0.047 (6)*
H16B 0.360 (5) 0.095 (3) 0.0645 (17) 0.067 (7)*
H16C 0.092 (5) 0.071 (3) 0.0943 (17) 0.068 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0292 (6) 0.0338 (7) 0.0292 (6) −0.0076 (5) 0.0029 (5) 0.0062 (5)
N1 0.0267 (7) 0.0249 (7) 0.0226 (6) 0.0033 (5) 0.0053 (5) 0.0059 (5)
N2 0.0216 (6) 0.0233 (7) 0.0191 (6) 0.0024 (5) 0.0035 (5) 0.0048 (5)
N3 0.0177 (6) 0.0237 (7) 0.0215 (6) 0.0004 (5) 0.0013 (4) 0.0051 (5)
N4 0.0193 (6) 0.0290 (7) 0.0255 (6) −0.0012 (5) 0.0031 (5) 0.0017 (5)
N5 0.0212 (6) 0.0286 (7) 0.0246 (6) −0.0006 (5) 0.0054 (5) 0.0030 (5)
C1 0.0205 (7) 0.0208 (7) 0.0227 (7) 0.0034 (5) 0.0055 (5) 0.0032 (6)
C2 0.0273 (8) 0.0238 (8) 0.0240 (8) 0.0050 (6) 0.0063 (6) 0.0071 (6)
C3 0.0287 (8) 0.0261 (8) 0.0326 (8) 0.0015 (6) 0.0113 (6) 0.0090 (7)
C4 0.0234 (8) 0.0284 (8) 0.0330 (8) −0.0026 (6) 0.0049 (6) 0.0038 (7)
C5 0.0252 (8) 0.0291 (8) 0.0234 (8) 0.0019 (6) 0.0026 (6) 0.0029 (6)
C6 0.0232 (7) 0.0224 (8) 0.0229 (7) 0.0030 (6) 0.0062 (6) 0.0046 (6)
C7 0.0265 (8) 0.0209 (8) 0.0236 (7) 0.0042 (6) 0.0067 (6) 0.0054 (6)
C8 0.0235 (7) 0.0227 (8) 0.0239 (7) 0.0033 (6) 0.0068 (6) 0.0052 (6)
C9 0.0348 (9) 0.0297 (9) 0.0268 (8) −0.0017 (7) 0.0071 (7) 0.0084 (7)
C10 0.0219 (7) 0.0264 (8) 0.0208 (7) 0.0037 (6) 0.0021 (6) 0.0057 (6)
C11 0.0182 (7) 0.0260 (8) 0.0194 (7) 0.0025 (5) 0.0027 (5) 0.0091 (6)
C12 0.0164 (7) 0.0282 (8) 0.0226 (7) 0.0004 (6) 0.0037 (5) 0.0077 (6)
C13 0.0294 (8) 0.0205 (8) 0.0269 (8) 0.0011 (6) 0.0024 (6) 0.0029 (6)
C14 0.0235 (8) 0.0261 (8) 0.0251 (8) −0.0013 (6) 0.0007 (6) 0.0021 (6)
C15 0.0307 (9) 0.0296 (9) 0.0263 (8) −0.0005 (7) 0.0050 (6) 0.0049 (7)
C16 0.0528 (12) 0.0436 (12) 0.0286 (9) −0.0001 (9) 0.0044 (8) 0.0101 (8)

Geometric parameters (Å, º)

O1—C8 1.2292 (18) C7—C9 1.492 (2)
N1—C7 1.2891 (19) C9—H9A 0.97 (2)
N1—C6 1.3917 (19) C9—H9B 0.98 (2)
N2—C8 1.3780 (19) C9—H9C 0.96 (2)
N2—C1 1.3951 (18) C10—C11 1.495 (2)
N2—C10 1.4787 (17) C10—H10A 0.986 (18)
N3—N4 1.3451 (17) C10—H10B 0.982 (18)
N3—C12 1.3471 (18) C11—C12 1.368 (2)
N3—C13 1.4690 (19) C12—H12 0.954 (19)
N4—N5 1.3196 (18) C13—C14 1.517 (2)
N5—C11 1.3617 (18) C13—H13A 0.986 (18)
C1—C2 1.401 (2) C13—H13B 0.98 (2)
C1—C6 1.407 (2) C14—C15 1.515 (2)
C2—C3 1.382 (2) C14—H14A 0.996 (19)
C2—H2 0.966 (18) C14—H14B 0.992 (18)
C3—C4 1.393 (2) C15—C16 1.522 (2)
C3—H3 1.003 (19) C15—H15A 0.977 (19)
C4—C5 1.377 (2) C15—H15B 1.005 (19)
C4—H4 0.93 (2) C16—H16A 1.02 (2)
C5—C6 1.401 (2) C16—H16B 0.96 (3)
C5—H5 0.988 (18) C16—H16C 0.98 (3)
C7—C8 1.482 (2)
O1···C11 3.3134 (19) C4···C8iv 3.502 (2)
O1···C13i 3.306 (2) C5···C8iv 3.491 (2)
O1···C14i 3.193 (2) C5···C7iv 3.429 (2)
O1···H10B 2.341 (17) C11···C13ii 3.589 (2)
O1···H9B 2.75 (2) C12···C13ii 3.470 (2)
O1···H9C 2.79 (2) C16···C16viii 3.577 (3)
O1···H13Aii 2.696 (17) C2···H15Bvii 2.991 (19)
O1···H13Bi 2.62 (2) C2···H10A 2.600 (17)
O1···H14Ai 2.752 (18) C2···H10Biv 2.928 (17)
N1···N2 2.8013 (17) C3···H15Bvii 3.055 (18)
N2···C3iii 3.421 (2) C4···H16Cvii 3.03 (3)
N2···N5 3.1514 (17) C7···H14Aii 3.081 (19)
N4···C15 3.364 (2) C8···H13Aii 2.918 (18)
N4···C12iv 3.228 (2) C10···H2 2.608 (18)
N5···C2 3.343 (2) C11···H2vii 2.755 (19)
N1···H5v 2.680 (18) C11···H13Bii 3.08 (2)
N3···H15B 2.860 (19) C11···H2 3.086 (19)
N4···H12iv 2.42 (2) C12···H13Aii 2.973 (17)
N4···H13Bii 2.944 (19) C15···H4vi 3.04 (2)
N4···H15B 2.936 (18) C15···H9Bii 3.08 (2)
N4···H3vi 2.821 (18) C16···H16Cviii 3.04 (2)
N5···H2 2.819 (19) H2···H10A 2.07 (2)
N5···H10Biv 2.733 (17) H4···H16Bvi 2.52 (3)
N5···H2vii 2.932 (18) H9B···H15Aii 2.40 (3)
N5···H10Avii 2.676 (18) H13A···H15A 2.54 (3)
N5···H13Bii 2.93 (2) H14A···H16A 2.46 (3)
C2···C10iv 3.586 (2) H14B···H16C 2.57 (3)
C2···C11 3.559 (2) H15A···H13A 2.54 (3)
C2···C11vii 3.589 (2) H15A···H9Bii 2.40 (3)
C3···C10iv 3.431 (2)
C7—N1—C6 118.81 (13) H9B—C9—H9C 104.4 (17)
C8—N2—C1 121.65 (12) N2—C10—C11 112.53 (12)
C8—N2—C10 116.29 (12) N2—C10—H10A 107.5 (10)
C1—N2—C10 122.04 (12) C11—C10—H10A 111.5 (10)
N4—N3—C12 110.55 (12) N2—C10—H10B 107.9 (10)
N4—N3—C13 120.31 (12) C11—C10—H10B 108.4 (10)
C12—N3—C13 129.14 (13) H10A—C10—H10B 108.9 (14)
N5—N4—N3 107.55 (11) N5—C11—C12 108.52 (13)
N4—N5—C11 108.38 (12) N5—C11—C10 123.12 (13)
N2—C1—C2 122.89 (13) C12—C11—C10 128.37 (13)
N2—C1—C6 118.01 (13) N3—C12—C11 105.01 (13)
C2—C1—C6 119.10 (14) N3—C12—H12 121.9 (11)
C3—C2—C1 120.11 (14) C11—C12—H12 133.1 (11)
C3—C2—H2 120.6 (11) N3—C13—C14 112.79 (13)
C1—C2—H2 119.3 (11) N3—C13—H13A 105.8 (10)
C2—C3—C4 120.75 (15) C14—C13—H13A 112.3 (10)
C2—C3—H3 119.2 (10) N3—C13—H13B 107.0 (11)
C4—C3—H3 120.0 (10) C14—C13—H13B 111.2 (11)
C5—C4—C3 119.81 (15) H13A—C13—H13B 107.3 (15)
C5—C4—H4 119.6 (12) C15—C14—C13 114.99 (13)
C3—C4—H4 120.6 (12) C15—C14—H14A 109.5 (10)
C4—C5—C6 120.42 (14) C13—C14—H14A 107.1 (10)
C4—C5—H5 122.2 (11) C15—C14—H14B 109.1 (10)
C6—C5—H5 117.3 (11) C13—C14—H14B 109.3 (10)
N1—C6—C5 118.15 (13) H14A—C14—H14B 106.5 (14)
N1—C6—C1 122.05 (13) C14—C15—C16 111.11 (14)
C5—C6—C1 119.80 (14) C14—C15—H15A 109.0 (11)
N1—C7—C8 123.58 (14) C16—C15—H15A 110.5 (11)
N1—C7—C9 120.01 (13) C14—C15—H15B 110.4 (10)
C8—C7—C9 116.41 (13) C16—C15—H15B 108.5 (10)
O1—C8—N2 121.86 (13) H15A—C15—H15B 107.3 (15)
O1—C8—C7 122.32 (14) C15—C16—H16A 110.7 (12)
N2—C8—C7 115.82 (13) C15—C16—H16B 113.1 (14)
C7—C9—H9A 111.1 (12) H16A—C16—H16B 106.6 (17)
C7—C9—H9B 110.3 (12) C15—C16—H16C 111.0 (14)
H9A—C9—H9B 109.1 (17) H16A—C16—H16C 105.7 (18)
C7—C9—H9C 112.1 (12) H16B—C16—H16C 109 (2)
H9A—C9—H9C 109.6 (16)
C12—N3—N4—N5 0.11 (16) C1—N2—C8—O1 −176.40 (13)
C13—N3—N4—N5 179.17 (12) C10—N2—C8—O1 4.9 (2)
N3—N4—N5—C11 0.03 (15) C1—N2—C8—C7 2.99 (19)
C8—N2—C1—C2 178.01 (13) C10—N2—C8—C7 −175.71 (12)
C10—N2—C1—C2 −3.4 (2) N1—C7—C8—O1 175.85 (14)
C8—N2—C1—C6 −1.0 (2) C9—C7—C8—O1 −4.4 (2)
C10—N2—C1—C6 177.67 (13) N1—C7—C8—N2 −3.5 (2)
N2—C1—C2—C3 −179.52 (13) C9—C7—C8—N2 176.18 (13)
C6—C1—C2—C3 −0.6 (2) C8—N2—C10—C11 −90.45 (15)
C1—C2—C3—C4 0.7 (2) C1—N2—C10—C11 90.85 (16)
C2—C3—C4—C5 −0.3 (2) N4—N5—C11—C12 −0.15 (16)
C3—C4—C5—C6 −0.3 (2) N4—N5—C11—C10 179.35 (13)
C7—N1—C6—C5 −179.41 (14) N2—C10—C11—N5 −69.14 (18)
C7—N1—C6—C1 0.5 (2) N2—C10—C11—C12 110.25 (16)
C4—C5—C6—N1 −179.55 (14) N4—N3—C12—C11 −0.20 (15)
C4—C5—C6—C1 0.5 (2) C13—N3—C12—C11 −179.15 (13)
N2—C1—C6—N1 −1.0 (2) N5—C11—C12—N3 0.22 (16)
C2—C1—C6—N1 180.00 (13) C10—C11—C12—N3 −179.25 (13)
N2—C1—C6—C5 178.96 (13) N4—N3—C13—C14 −95.26 (16)
C2—C1—C6—C5 0.0 (2) C12—N3—C13—C14 83.59 (19)
C6—N1—C7—C8 1.8 (2) N3—C13—C14—C15 63.83 (18)
C6—N1—C7—C9 −177.94 (14) C13—C14—C15—C16 171.75 (15)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) x+1, y, z; (v) −x+2, −y+1, −z+2; (vi) −x+2, −y+1, −z+1; (vii) −x+1, −y+1, −z+1; (viii) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N3–N5/C11/C12 ring.

D—H···A D—H H···A D···A D—H···A
C12—H12···N4iii 0.954 (19) 2.419 (19) 3.2282 (19) 142.4 (15)
C2—H2···Cg1vii 0.966 (18) 2.986 (19) 3.642 (1) 126.3 (14)

Symmetry codes: (iii) x−1, y, z; (vii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by National Science Foundation grant 1228232. Tulane University grant . Hacettepe University Scientific Research Project Unit grant D04 602 004.

References

  1. Abad, N., El Bakri, Y., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x180680.
  2. Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.
  3. Abad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018a). IUCrData, 3, x180482.
  4. Abbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560–6572. [DOI] [PubMed]
  5. Attia, A. S., Abdel Aziz, A. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243–254.
  6. Benzeid, H., Ramli, Y., Vendier, L., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2196. [DOI] [PMC free article] [PubMed]
  7. Benzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234. [DOI] [PMC free article] [PubMed]
  8. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  9. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Caleb, A. A., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2024–o2025. [DOI] [PMC free article] [PubMed]
  11. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. [DOI] [PMC free article] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87–94. [DOI] [PubMed]
  14. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  15. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  16. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  17. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  18. Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663–671.
  19. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  20. Ramli, Y., El Bakri, Y., ’El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCRData 3, x180390.
  21. Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.
  22. Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321. [DOI] [PMC free article] [PubMed]
  23. Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.
  24. Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010a). Acta Cryst. E66, o1922. [DOI] [PMC free article] [PubMed]
  25. Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o1767. [DOI] [PMC free article] [PubMed]
  26. Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o116. [DOI] [PMC free article] [PubMed]
  27. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  31. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  32. Sridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). Eur. J. Chem. 7, 234–238.
  33. Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387–S392.
  34. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  35. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  36. Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287–293. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901801589X/xu5949sup1.cif

e-74-01815-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801589X/xu5949Isup2.hkl

e-74-01815-Isup2.hkl (132.9KB, hkl)

Supporting information file. DOI: 10.1107/S205698901801589X/xu5949Isup3.cdx

Supporting information file. DOI: 10.1107/S205698901801589X/xu5949Isup4.cml

CCDC reference: 1878133

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES