Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 16;74(Pt 12):1800–1803. doi: 10.1107/S2056989018016043

Synthesis, mol­ecular structure and Hirshfeld surface analysis of (4-meth­oxy­phen­yl)[2-(methyl­sulfan­yl)thio­phen-3-yl]methanone

S Nagaraju a, M A Sridhar a,*, CS Pradeepa Kumara b, M P Sadashiva b, B N Lakshminarayana c, N K Lokanath d
PMCID: PMC6281100  PMID: 30574377

The title mol­ecule is substanti­ally twisted, with a dihedral angle of 43.70 (2)° between the 2-(methyl­sulfan­yl)thio­phene and 4-meth­oxy­phenyl rings. In the crystal, mol­ecules are linked through C—H⋯O inter­actions, forming a bifurcated layer stacking along the b-axis direction enclosing Inline graphic(10) ring motifs.

Keywords: crystal structure, thio­phene, Hirschfeld surface

Abstract

The title compound, C13H12O2S2, crystallizes in the triclinic space group P Inline graphic. The mol­ecular structure is substanti­ally twisted, with a dihedral angle of 43.70 (2)° between the 2-(methyl­sulfan­yl)thio­phene and 4-meth­oxy­phenyl rings. In the crystal, mol­ecules are linked through C—H⋯O inter­actions and form a bifurcated layer stacking along the b-axis direction and enclosing R 2 2(10) ring motifs. The phenyl rings are involved in π–π inter­actions with a centroid–centroid separation of 3.760 (2) Å. The Hirshfeld surfaces were studied and the contributions of the various inter­molecular inter­actions were qu­anti­fied.

Chemical context  

Thio­phenes are five-membered sulfur-containing heterocyclic compounds with important applications in areas such as agrochemistry, pharmaceuticals, mol­ecular electronics, liquid crystalline materials and corrosion inhibition. Thio­phenes are also important building blocks in organic synthesis. Their aromatic character gives enough stabilization to allow the manipulation of various substituents (Mishra et al., 2011). α-Oxoketene thio­acetals are powerful building blocks for the synthesis of numerous heterocyclic scaffolds, where the carbonyl carbon generally provides hard centers and the carbon-bearing methyl­sulfanyl group acts as a soft electrophilic center (Junjappa et al., 1990). This synthetic building block was used for the synthesis of (4-meth­oxy­phen­yl) [2-(methyl­sulfan­yl)thio­phen-3-yl]methanone (Pradeepa Kumara et al., 2016). graphic file with name e-74-01800-scheme1.jpg

Structural commentary  

In the title compound, the 2-(methyl­sulfan­yl)thio­phene and 4-meth­oxy­phenyl aromatic rings are connected via a C(=O)—C methanone bridge (Fig. 1). The compound is substanti­ally twisted about the methanone bridge as indicated by the dihedral angle of 43.70 (2)° between the thio­phene (S1/C1/C5/C7/C10) and phenyl (C2–C6/C11/C13) rings. The methyl group at S2 is in a +syn-periplanar conformation, as indicated by the C8—S2—C10—S1 torsion angle of 6.09 (16)°. However, in the related compound (4-fluoro­phen­yl)[2-(methyl­sulfan­yl)thio­phen-3-yl]methanone (Nagaraju et al., 2018), this group is in a -syn-periplanar conformation with a torsion angle of −1.7 (2)°. Atom C12 adopts a nearly trigonal geometry, as indicated by the bond angles C7–C12–O2 = 119.5 (2)°, O2–C12–C4 = 119.2 (2)° and C4—C12—C7 = 121.3 (2)°. The meth­oxy group attached at C11 is in a −anti-periplanar conformation [C3—C11—O1—C9 = −176.9 (2)°]. The bond lengths and angles are normal (Sreenatha et al., 2017; Rajni Swamy et al., 2014; Gopinath et al., 2016).

Figure 1.

Figure 1

Mol­ecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

The crystal structure features inter­molecular hydrogen-bonding inter­actions of the type C9—H9A⋯O2 (Fig. 2, Table 1) and displays a bifurcated layer stacking along the b-axis direction through C6—H6⋯O2 inter­actions, which link inversion-related mol­ecules into dimers enclosing an Inline graphic(10) ring motif. π–π stacking inter­actions are also observed between the phenyl rings (centroid Cg) of adjacent mol­ecules [CgCg(2 − x, −y, 1 − z) = 3.760 (2) Å]. The packing of the title compound is illustrated in Fig. 3.

Figure 2.

Figure 2

The Inline graphic(10) ring motif formed via inter­molecular C6—H6⋯O2 hydrogen bonds (Table 1). The π–π inter­actions are also shown.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.48 3.374 (4) 161
C9—H9A⋯O2ii 0.96 2.45 3.400 (4) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Packing for of the title compound viewed along the b axis.

Hirshfeld surfaces and 2D fingerprint plots  

Hirshfeld surface (HS) analysis and the associated fingerprint plots (FP) (CrystalExplorer; Spackman & Jayatilaka, 2009) are useful tools for visualizing the types of inter­molecular inter­actions present in a crystal structure and qu­antify their percentage contributions to the crystal packing. The 3D HS mapped over d norm between −0.2106 a.u (blue) and 1.2279 a.u (red) is shown in Fig. 4. The area and volume of the HS are 287.29 Å2 and 305.24 Å3, respectively. The deep-red spots on the d norm surface are due to the presence of inter­molecular C—H⋯O inter­actions (Sreenatha et al., 2018). The 2D FP analysis (Fig. 5) shows that the H⋯H contacts make the highest contribution (39.3%) followed by the H⋯C/C⋯H contacts (20.1%), which are seen as a pair of blunt spikes in the region 1.2 Å < (d i + d e) < 1.75 Å. The H⋯S/S⋯H contacts make a contribution of 16.9% and appear as butterfly wings in the region 1.2 Å < (d i + d e) < 1.9 Å. The pair of sharp spikes is observed in the region 1.2 Å < (d i + d e) < 1.32 Å is due to the presence of H⋯O/O⋯H contacts (15.6% contribution). The C⋯C contacts (3.4% contribution) are visible as wings in almost the same region, 1.7 Å < (d i + d e) < 1.72 Å. The relative contributions of all the contacts to the Hirshfeld surface are depicted in Fig. 6.

Figure 4.

Figure 4

Hirshfeld surface for the title compound mapped over d norm in the range −0.2106 to 1.2279 a.u. highlighting the C—H⋯O inter­molecular inter­actions.

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯S/S⋯H, (e) H⋯O/O⋯H, (f) C⋯C, (g) S⋯C/C⋯S and (h) S⋯S inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Figure 6.

Figure 6

The relative contributions (%) to the Hirshfeld surface for the various contacts.

Database survey  

A search for thio­phene derivatives was carried out in the Cambridge Structural Database (CSD, Version 5.39, update of February 2018; Groom et al., 2016). The most relevant compounds are 5-[bis­(4-eth­oxy­phen­yl)amino]­thio­phene-2-carbaldehyde (HOJCIU; Tan et al., 2014) and 2-[4-(benz­yloxy)phen­yl]-5-(3,4-di­meth­oxy­phen­yl)-3, 4-di­methyl­thio­phene (ACETEI; Shi et al., 2004), which are both non-planar. In ethyl 4-acetyl-5-anilino-3-methyl­thio­phene-2-carboxyl­ate (AFIGIH; Mabkhot et al., 2013), the thio­phene and phenyl rings make a dihedral angle of 36.81 (10)°.

Synthesis and crystallization  

To α-oxoketene di­thio­acetal (0.1 mol) and 1,4-di­thiane-2,5-diol (0.05 mol) in dry ethanol (10 mL), anhydrous potassium carbonate (0.12 mol) was added. The reaction mixture was refluxed on a water bath for 30 minutes (the condenser being protected by a calcium chloride guard tube). After completion of the reaction (monitored by TLC), the catalyst was filtered off and washed with fresh ethanol. The combined ethanol solution was removed on a rotary evaporator to obtain a viscous liquid. The crude product was purified by column chromatography using silica gel with 5% ethyl acetate and petroleum ether to yield the title compound as a yellow solid product, which was recrystallized from di­chloro­methane solution. M.p. 489–493 K. IR (KBr) νmax = 3449, 3079, 2923, 2841, 1772, 1600, 1493, 1253, 1167, 1015, 842, 694, 550 cm−1. 1H NMR (300 MHz, CDCl3): 7.79–7.77 (m, 2 H), 7.27–7.25 (m, 1H), 7.16–7.14 (m, 1H), 6.9–6.93 (m, 2H), 3.86 (s, 3H), 2.58 (s, 3H) ppm. 13 C NMR (75 MHz, CDCl3): 188.86, 162.73, 151.33, 135.36, 131.60, 131.47, 130.24, 130.59, 122.02, 113.44, 55.37, 18.06. HRMS (ESI): calculated for C13H12O2S2 [M + H]+ 265.0312; found 265.0407.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed at calculated positions and refined using a riding model with C—H = 0.93 Å and U iso(H) = 1.2U eq(C) for aromatic ring atoms and with C—H = 0.96 Å with U iso(H) = 1.5U eq(C) for methyl groups.

Table 2. Experimental details.

Crystal data
Chemical formula C13H12O2S2
M r 264.35
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 7.806 (4), 8.263 (3), 10.414 (6)
α, β, γ (°) 97.260 (11), 109.65 (2), 93.79 (2)
V3) 623.3 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.30 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker APEX
No. of measured, independent and observed [I > 2σ(I)] reflections 2924, 2165, 1899
R int 0.109
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.128, 1.09
No. of reflections 2165
No. of parameters 157
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.33

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018016043/vm2213sup1.cif

e-74-01800-sup1.cif (304.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016043/vm2213Isup2.hkl

e-74-01800-Isup2.hkl (173.6KB, hkl)

CCDC reference: 1871776

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the Department of Physics, University of Mysore, and Adichuchanagiri Institute of Technology, Chikkamagaluru, Karnataka for support

supplementary crystallographic information

Crystal data

C13H12O2S2 Z = 2
Mr = 264.35 F(000) = 276
Triclinic, P1 Dx = 1.409 Mg m3
a = 7.806 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.263 (3) Å Cell parameters from 2924 reflections
c = 10.414 (6) Å θ = 3.5–25.0°
α = 97.260 (11)° µ = 0.41 mm1
β = 109.65 (2)° T = 293 K
γ = 93.79 (2)° Block, colourless
V = 623.3 (5) Å3 0.30 × 0.26 × 0.20 mm

Data collection

Bruker APEX diffractometer 1899 reflections with I > 2σ(I)
Radiation source: graphite Rint = 0.109
Detector resolution: 0.894 pixels mm-1 θmax = 25.0°, θmin = 3.5°
SAINT (Bruker, 2006) [not correct; type of scans needed] h = −9→9
2924 measured reflections k = −9→9
2165 independent reflections l = −12→11

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.072P)2 + 0.1135P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128 (Δ/σ)max < 0.001
S = 1.09 Δρmax = 0.37 e Å3
2165 reflections Δρmin = −0.33 e Å3
157 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.060 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.77364 (8) 0.32143 (7) −0.09953 (6) 0.0412 (3)
S2 0.73606 (8) 0.60555 (7) 0.10012 (6) 0.0422 (3)
O1 0.7606 (3) −0.1498 (2) 0.62854 (18) 0.0582 (5)
O2 0.7950 (3) 0.4642 (2) 0.33504 (18) 0.0601 (5)
C1 0.8084 (3) 0.1302 (3) −0.0527 (3) 0.0450 (6)
H1 0.820956 0.039871 −0.110524 0.054*
C2 0.6715 (3) 0.0359 (3) 0.3139 (2) 0.0419 (6)
H2 0.607492 0.011357 0.219380 0.050*
C3 0.8621 (3) 0.1072 (3) 0.5930 (2) 0.0437 (6)
H3 0.927331 0.131023 0.687398 0.052*
C4 0.7766 (3) 0.1880 (3) 0.3679 (2) 0.0361 (5)
C5 0.8153 (3) 0.1275 (3) 0.0773 (2) 0.0402 (5)
H5 0.834586 0.034541 0.119774 0.048*
C6 0.8701 (3) 0.2215 (3) 0.5107 (2) 0.0407 (5)
H6 0.938609 0.323029 0.550038 0.049*
C7 0.7900 (3) 0.2813 (3) 0.1446 (2) 0.0352 (5)
C8 0.6913 (4) 0.6721 (3) −0.0642 (3) 0.0525 (6)
H8A 0.594501 0.598579 −0.133310 0.079*
H8B 0.800026 0.672480 −0.087893 0.079*
H8C 0.655487 0.781032 −0.059371 0.079*
C9 0.6614 (5) −0.3123 (4) 0.5746 (3) 0.0726 (9)
H9A 0.704580 −0.365458 0.505805 0.109*
H9B 0.533040 −0.303439 0.533903 0.109*
H9C 0.681017 −0.375822 0.648323 0.109*
C10 0.7680 (3) 0.4010 (3) 0.0595 (2) 0.0341 (5)
C11 0.7571 (3) −0.0450 (3) 0.5371 (2) 0.0426 (5)
C12 0.7881 (3) 0.3201 (3) 0.2846 (2) 0.0397 (5)
C13 0.6597 (3) −0.0792 (3) 0.3964 (2) 0.0459 (6)
H13 0.586967 −0.179094 0.358019 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0427 (4) 0.0471 (4) 0.0361 (4) 0.0025 (3) 0.0176 (3) 0.0050 (3)
S2 0.0402 (4) 0.0346 (4) 0.0488 (4) −0.0026 (2) 0.0148 (3) 0.0010 (2)
O1 0.0729 (13) 0.0652 (12) 0.0423 (10) 0.0013 (10) 0.0272 (9) 0.0124 (8)
O2 0.0870 (15) 0.0460 (10) 0.0429 (10) 0.0040 (9) 0.0214 (9) −0.0041 (8)
C1 0.0512 (14) 0.0421 (13) 0.0453 (13) 0.0072 (10) 0.0235 (11) 0.0008 (10)
C2 0.0356 (12) 0.0535 (14) 0.0302 (10) −0.0047 (10) 0.0073 (9) −0.0002 (9)
C3 0.0400 (12) 0.0615 (15) 0.0258 (10) 0.0005 (11) 0.0106 (9) −0.0013 (10)
C4 0.0325 (11) 0.0448 (12) 0.0296 (10) −0.0001 (9) 0.0115 (8) 0.0009 (9)
C5 0.0409 (12) 0.0393 (12) 0.0421 (12) 0.0079 (9) 0.0157 (10) 0.0067 (9)
C6 0.0375 (12) 0.0484 (13) 0.0311 (11) −0.0036 (10) 0.0110 (9) −0.0048 (9)
C7 0.0290 (10) 0.0398 (11) 0.0335 (11) 0.0008 (8) 0.0089 (8) 0.0007 (9)
C8 0.0504 (15) 0.0444 (13) 0.0623 (16) −0.0009 (11) 0.0170 (12) 0.0173 (12)
C9 0.108 (3) 0.0627 (18) 0.0627 (18) −0.0042 (17) 0.0516 (18) 0.0122 (14)
C10 0.0243 (10) 0.0389 (11) 0.0356 (11) −0.0033 (8) 0.0096 (8) −0.0005 (9)
C11 0.0407 (13) 0.0548 (14) 0.0372 (11) 0.0036 (11) 0.0204 (9) 0.0068 (10)
C12 0.0351 (12) 0.0443 (12) 0.0336 (11) −0.0001 (9) 0.0080 (9) −0.0026 (9)
C13 0.0409 (13) 0.0528 (14) 0.0387 (12) −0.0097 (11) 0.0129 (10) −0.0014 (10)

Geometric parameters (Å, º)

S1—C10 1.719 (2) C4—C6 1.400 (3)
S1—C1 1.724 (3) C4—C12 1.494 (3)
S2—C10 1.744 (2) C5—C7 1.430 (3)
S2—C8 1.793 (3) C5—H5 0.9300
O1—C11 1.360 (3) C6—H6 0.9300
O1—C9 1.448 (4) C7—C10 1.391 (3)
O2—C12 1.230 (3) C7—C12 1.458 (3)
C1—C5 1.340 (4) C8—H8A 0.9600
C1—H1 0.9300 C8—H8B 0.9600
C2—C13 1.379 (3) C8—H8C 0.9600
C2—C4 1.394 (3) C9—H9A 0.9600
C2—H2 0.9300 C9—H9B 0.9600
C3—C6 1.365 (3) C9—H9C 0.9600
C3—C11 1.397 (4) C11—C13 1.387 (3)
C3—H3 0.9300 C13—H13 0.9300
C10—S1—C1 92.19 (11) S2—C8—H8A 109.5
C10—S2—C8 100.76 (12) S2—C8—H8B 109.5
C11—O1—C9 117.8 (2) H8A—C8—H8B 109.5
C5—C1—S1 111.72 (18) S2—C8—H8C 109.5
C5—C1—H1 124.1 H8A—C8—H8C 109.5
S1—C1—H1 124.1 H8B—C8—H8C 109.5
C13—C2—C4 121.9 (2) O1—C9—H9A 109.5
C13—C2—H2 119.0 O1—C9—H9B 109.5
C4—C2—H2 119.0 H9A—C9—H9B 109.5
C6—C3—C11 120.7 (2) O1—C9—H9C 109.5
C6—C3—H3 119.6 H9A—C9—H9C 109.5
C11—C3—H3 119.6 H9B—C9—H9C 109.5
C2—C4—C6 117.6 (2) C7—C10—S1 110.79 (16)
C2—C4—C12 124.3 (2) C7—C10—S2 127.08 (17)
C6—C4—C12 118.1 (2) S1—C10—S2 122.13 (14)
C1—C5—C7 113.6 (2) O1—C11—C13 125.0 (2)
C1—C5—H5 123.2 O1—C11—C3 115.7 (2)
C7—C5—H5 123.2 C13—C11—C3 119.3 (2)
C3—C6—C4 121.0 (2) O2—C12—C7 119.5 (2)
C3—C6—H6 119.5 O2—C12—C4 119.2 (2)
C4—C6—H6 119.5 C7—C12—C4 121.33 (19)
C10—C7—C5 111.7 (2) C2—C13—C11 119.5 (2)
C10—C7—C12 120.6 (2) C2—C13—H13 120.3
C5—C7—C12 127.7 (2) C11—C13—H13 120.3
C10—S1—C1—C5 0.0 (2) C8—S2—C10—S1 6.09 (16)
C13—C2—C4—C6 −0.5 (4) C9—O1—C11—C13 2.7 (4)
C13—C2—C4—C12 −177.3 (2) C9—O1—C11—C3 −176.9 (2)
S1—C1—C5—C7 0.8 (3) C6—C3—C11—O1 179.4 (2)
C11—C3—C6—C4 −1.4 (4) C6—C3—C11—C13 −0.2 (4)
C2—C4—C6—C3 1.7 (3) C10—C7—C12—O2 −11.1 (3)
C12—C4—C6—C3 178.7 (2) C5—C7—C12—O2 168.1 (2)
C1—C5—C7—C10 −1.4 (3) C10—C7—C12—C4 168.49 (19)
C1—C5—C7—C12 179.4 (2) C5—C7—C12—C4 −12.4 (4)
C5—C7—C10—S1 1.3 (2) C2—C4—C12—O2 141.9 (3)
C12—C7—C10—S1 −179.42 (16) C6—C4—C12—O2 −34.8 (3)
C5—C7—C10—S2 −179.26 (16) C2—C4—C12—C7 −37.6 (3)
C12—C7—C10—S2 0.0 (3) C6—C4—C12—C7 145.6 (2)
C1—S1—C10—C7 −0.78 (18) C4—C2—C13—C11 −1.1 (4)
C1—S1—C10—S2 179.77 (14) O1—C11—C13—C2 −178.2 (2)
C8—S2—C10—C7 −173.3 (2) C3—C11—C13—C2 1.4 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O2i 0.93 2.48 3.374 (4) 161
C9—H9A···O2ii 0.96 2.45 3.400 (4) 172

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y−1, z.

References

  1. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gopinath, S., Sethusankar, K., Stoeckli-Evans, H., Rafiq, M. & Mohanakrishnan, A. K. (2016). Acta Cryst. E72, 1310–1314. [DOI] [PMC free article] [PubMed]
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Junjappa, H., Ila, H. & Asokan, C. V. (1990). Tetrahedron, 46, 5423–5506.
  5. Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049. [DOI] [PMC free article] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Mishra, R., Jha, K. K., Kumar, S. & Isha, T. (2011). Pharma Chem 3, 38–54.
  8. Nagaraju, S., Sridhar, M. A., Sreenatha, N. R., Pradeepa Kumara, C. S. & Sadashiva, M. P. (2018). X-ray Struct. Anal. Online, 34, 13–14.
  9. Pradeepa Kumara, C. S., Byre Gowda, G., Vinay Kumar, K. S., Ramesh, N., Sadashiva, M. P. & Junjappa, H. (2016). Tetrahedron Lett. 57, 4302–4305.
  10. Rajni Swamy, V., Gunasekaran, P., Krishnakumar, R. V., Srinivasan, N. & Müller, P. (2014). Acta Cryst. E70, o974–o975. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  13. Shi, J.-X., Zheng, X.-F., Zhu, K., Lei, Y.-J. & Shi, J.-G. (2004). Acta Cryst. E60, o1977–o1978.
  14. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23–24.
  17. Sreenatha, N. R., Lakshminarayana, B. N., Madan Kumar, S., Mahadeva Prasad, T. N. K. S., Kiran, D., Vijayshankar, S. & Byrappa, K. (2017). Chem. Data Collections, 11, 131–138.
  18. Tan, J.-Y., Kong, M. & Wu, J.-Y. (2014). Acta Cryst. E70, o1075–o1076. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018016043/vm2213sup1.cif

e-74-01800-sup1.cif (304.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016043/vm2213Isup2.hkl

e-74-01800-Isup2.hkl (173.6KB, hkl)

CCDC reference: 1871776

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES