Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 6;74(Pt 12):1695–1699. doi: 10.1107/S2056989018015098

Crystal structures of two 1,3-thia­zolidin-4-one derivatives featuring sulfide and sulfone functional groups

Hemant P Yennawar a, Lee J Silverberg b, Kevin Cannon c, Deepa Gandla d, Sandeep K Kondaveeti d, Michael J Zdilla d, Ahmed Nuriye c,*
PMCID: PMC6281102  PMID: 30574358

The closely related title compounds are comprised of three types of rings: thia­zolidinone, nitrophenyl and cyclo­hexyl. In both structures, the rings are close to mutually perpendicular, with inter­planar dihedral angles greater than 80° in each case.

Keywords: crystal structure, thia­zolidin-4-one, thia­zolidinone, envelope pucker, chair conformation

Abstract

The crystal structures of two closely related compounds, 1-cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one, C15H18N2O3S, (1) and 1-cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one 1,1-dioxide, C15H18N2O5S, (2), are presented. These compounds are comprised of three types of rings: thia­zolidinone, nitrophenyl and cyclo­hexyl. In both structures, the rings are close to mutually perpendicular, with inter­planar dihedral angles greater than 80° in each case. The thia­zol­idinone rings in both structures exhibit envelope puckering with the S atom as flap and the cyclo­hexyl rings are in their expected chair conformations. The two structures superpose fairly well, except for the orientation of the nitro groups with respect to their host phenyl ring, with a difference of about 10° between 1 and 2. The extended structure of 1 has two kinds of weak C—H⋯O inter­actions, giving rise to a closed ring formation involving three symmetry-related mol­ecules. Structure 2 has four C—H⋯O inter­actions, two of which are exclusively between symmetry-related thia­zolidinone dioxide moieties and have a parallel ‘give-and-take-fashion’ counterpart. In the other two inter­actions, the nitrophenyl ring and the cyclo­hexane ring each offer an H atom to the two O atoms on the sulfone group. Additionally, a C—H⋯π inter­action between a C—H group of the cyclo­hexane ring and the nitrophenyl ring of an adjacent mol­ecule helps to consolidate the structure.

Chemical context  

The title compounds were synthesized as a part of our ongoing work on the synthesis of new types of 2,3-disubstituted 1,3-thia­zolidin-4-ones. We have reported the crystal structures of a number of these compounds before (Nuriye et al., 2018; Yennawar et al., 2015). These compounds are synthesized by a tandem nucleophilic addition-carbonyl condensation of thio­glycolic acid with the desired in situ-generated imine. The variation in substitution pattern is set during the synthesis of the imine where alkyl or aryl amines are condensed with an aldehyde (Surrey, 1947; von Erlenmeyer & Oberlin, 1947). In addition, the S atom in the thia­zolidinone ring can be oxidized to the sulfoxide or the sulfone to produce structures with different properties. Thia­zolidinones have well documented biological activity (Thakare et al., 2018; Brown, 1961; Abdel Rahman et al., 1990; Joshi et al., 2014; Suryawanshi et al., 2017; Kaushal & Kaur, 2016; Kumar et al., 2015; Tripathi et al., 2014; Jain et al., 2012; Abhinit et al. 2009; Hamama et al., 2008; Singh et al., 1981). The synthesis and characterization of these compounds could be valuable in investigations for the practical applications of their activities. To the best of our knowledge, only two crystal structures of thia­zolidinone sulfones have been reported in the literature (Orsini et al., 1995; Glasl et al., 1997). The compounds presented in this paper both feature an ortho-nitro­phenyl ring at position 2 and a cyclo­hexane ring at the 3-position of the thia­zolidinone ring. Compound 1 is a sulfide, while compound 2 contains a fully oxidized sulfone functional group.graphic file with name e-74-01695-scheme1.jpg

Structural commentary  

Compound 2 is the dioxide version of 1, both comprising of three types of rings, a thia­zolidinone (A), a nitrophenyl (B) and a cyclo­hexyl (C) ring. In each structure, the inter­planar dihedral angles between the three pairs of rings are close to orthogonal, with values of (in ascending order) A/C = 84.04 (9), B/C = 84.98 (10) and A/B = 85.85 (9)°. The corres­ponding data for 2 span a slightly wider range: B/C = 80.74 (6), A/B = 83.12 (6) and A/C = 87.96 (6)° (Figs. 1 and 2). In both structures, the thia­zolidinone rings exhibit an envelope pucker conformation with the sulfur atom as a flap. The cyclo­hexyl rings are in the most stable chair conformation in both structures. An overlay of the two structures (Fig. 3) shows that they overlap well. Fig. 3 also shows that the nitro group plane in 2 is twisted further away by ca 10° from the nitrophenyl ring plane as compared to that in 1; the dihedral angles between the nitro group plane and the host phenyl ring plane were found to be 18.3 (5)° in 1 and 28.3 (5)° in 2.

Figure 1.

Figure 1

The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of 2 with displacement ellipsoids drawn at the 50% probability level.

Figure 3.

Figure 3

Overlay image of the two title mol­ecules showing the difference in the orientation of the nitro group with respect to the nitrophenyl ring plane.

Looking at the thia­zolidinone ring systems, the C1—N1 and C1—S1 bond lengths are 1.438 (3) and 1.839 (3) Å, respectively, for structure 1 and 1.4527 (13) and 1.8382 (12) Å for structure 2. The N—C—S bond angle is found to be 105.22 (12)° in structure 1 and 101.36 (7)° in structure 2 indicating a compression of the N—C—S bond angle going from the sulfide to the sulfone. Bond length and angle values in the thia­zolidinone ring of the sulfide appear to be typical and match data that we have previously reported (Nuriye et al., 2018). Although structural data for the sulfone are scarce, the data reported by Orsini et al. (1995) matches our findings.

Supra­molecular features  

In structure 1, two weak C—H⋯O type inter­actions (Table 1) result in a closed-ring formation of three symmetry-related mol­ecules (Fig. 4). One of the nitrophenyl-ring carbon atoms donates its H atom to the oxygen atom on the thia­zolidinone ring of a neighboring mol­ecule [C8⋯O1 = 3.411 (5) Å, C—H⋯O = 140°], which then inter­acts with a third symmetry-related mol­ecule through a symmetry-equivalent contact. Finally, this third mol­ecule donates one of its cyclo­hexane protons to the nitro­phenyl oxygen atom of the first mol­ecule [C15⋯O3 = 3.437 (5) Å, 138°], thus completing the three-mol­ecule ring arrangement. In the extended structure, the mol­ecules arrange themselves in distinct layers in (020) planes. Perpendicular to c, the longest axis, there is an alternating pattern of hydro­phobic and hydro­philic surfaces of the mol­ecules, as is evident in the packing diagram (Fig. 5).

Table 1. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.65 3.411 (5) 140
C15—H15B⋯O3ii 0.97 2.66 3.437 (5) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

Hydrogen-bond inter­actions between three symmetry-related mol­ecules of 1 forming a closed-ring system.

Figure 5.

Figure 5

View down the a axis of the packing of 1. The layering of mol­ecules in the (020) plane as well as the alternating pattern of hydro­phobic and hydro­philic regions perpendicular to c axis can be seen.

In structure 2, we observe four C—H⋯O type inter­actions (Table 2). Two of these involve the thia­zolidinone dioxide moieties exclusively and have parallel ‘give-and-take’ type counterparts [C⋯O = 3.4594 (16) Å, 161° and 3.3068 (16) Å, 157°], forming continuous chains propagating along the b-axis direction. The remaining two inter­actions are weaker and involve the carbon atoms of nitrophenyl rings and cyclo­hexane rings of one mol­ecule offering protons to the oxygen pair of the dioxide group [C9⋯O1 3.5144 (16) Å, 132.6° and 3.4381 (16) Å, 129°] of a symmetry-related mol­ecule. Similar to packing of 1, the mol­ecules are arranged in distinct layers but this time in (Inline graphic02) planes. Also seen is the alternating pattern of hydro­phobic and hydro­philic surfaces perpendic­ular to the c-axis direction (Fig. 6).

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.99 2.51 3.4594 (16) 161
C3—H3B⋯O3ii 0.99 2.37 3.3068 (16) 157
C9—H9⋯O1iii 0.95 2.80 3.5144 (16) 133
C10—H10⋯O2iii 1.00 2.72 3.4381 (16) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 6.

Figure 6

View down the b axis of the packing arrangement of 2. The layering of mol­ecules in the (Inline graphic02) plane as well as the alternating pattern of hydro­phobic and hydro­philic regions perpendicular to the c axis can be seen.

Synthesis and crystallization  

1-Cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one: Following the reported method (Cannon et al., 2015), 2-nitro­benzaldehyde (0.725 g, 4.80 mmol) was dissolved in CH2Cl2 (20 ml) and anhydrous MgSO4 (3.0 g) and cyclo­hexyamine (0.5 g, 5 mmol) were added sequentially and stirred for 4 h at r.t. under nitro­gen. The MgSO4 was filtered off and the reaction was concentrated in vacuo to give 0.9826 g of an orange oil, which solidified upon sitting in a freezer and remained solid upon warming up to room temperature.

The crude imine was resuspended in toluene (25 ml) and thio­glycolic acid (0.55 g, 6.0 mmol) was added and the reaction was heated at reflux for 1.5 h with a Dean–Stark trap attached. The reaction was then cooled to room temperature and washed with aqueous NaHCO3 (2 × 35 ml). The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to give an orange oil. The crude substance was purified by flash column chro­ma­tography on silica gel (15 g) using 20–60% ethyl acetate in hexa­nes as the eluent to yield a yellow solid (0.720 g). The solid was recrystallized from ethanol solution to give a pale-yellow solid (0.508 g, 36.4% over two steps). mp 373–383 K; IR: cm−1 1671.1 (C=O); 1H NMR (CDCl3): 8.08–7.46 (4H, m, aromatics), 6.25 (1H, C2), 3.94 (1H, tt, J = 12.2 Hz, and J = 3.6 Hz, NCH), 3.76 (1H, dd, C5, J = 0.7 Hz, and J = 15.7 Hz), 3.47 (1H, d, C5, J = 15.7 Hz), 1.96–0.86 (10H, m, cyclo­hexyls); 13C NMR: 172.95 (C4), 146.05, 139.12, 134.02, 129.04, 126.72, 125.68, 58.82 (C2), 55.74, 32.20(C5), 31.25, 30.29, 25.89, 25.70, 25.19; MS: (m/z) 306 (M +) C15H18O3N2S (306.10).

Crystals for X-ray data collection were grown by dissolving 0.101 g of the solid in hot ethanol and slow evaporation of the solvent.

1-Cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one 1,1-dioxide: 1-Cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one (0.553 mmol) was dissolved in glacial acetic acid (2.4 ml), to which an aqueous solution of KMnO4 (175 mg, 1.11 mmol, in 3.0 ml water) was added dropwise at room temperature with vigorous stirring, and stirred for an additional 5 min. Solid sodium bis­ulfite (NaHSO3/Na2S2O5) was then added until the solution remained colorless; 3.0 ml of water was then added and the mixture was stirred for a further 10 min. The resulting solid precipitate was filtered and rinsed with water. The resulting powder was purified by recrystallization from CH3OH solution. Yield (64%); m.p. 471–472 K; IR: cm−1 1689.6 (C=O), 1326.9, 1308.1, 1162.7 (S=O); 1H NMR (CDCl3): 8.38 (1H, dd, J = 8.0, and J = 1.2 Hz, aromatic), 7.78 (1H, dddd, J = 8.0, 8.0, 1.2, 0.8 Hz, aromatic), 7.68 (1H, ddd, J = 8.0, 8.0, 1.2 Hz, aromatic), 7.54 (1H, dd, J = 7.6, 1.2 Hz, aromatic), 6.77 (1H, s, C2), 4.41 (1H, tt, J = 12.0, and J = 3.6 Hz, NCH), 3.76 (dd, J = 16.0 Hz, and J = 0.4 Hz, 1H), 3.69 (d, J = 16.4 Hz, 1 H), 1.96–0.82 (10 H, m, cyclo­hexyls); 13C NMR: 163.41 (C4), 147.80, 134.43, 131.22, 128.82, 126.92 75.77, 54.52, 50.16, 31.39, 29.67, 25.50, 25.16, 24.84; MS: (m/z) 339 ([M + H]+) C15H18O5N2S (338.09).

Crystals for X-ray data collection were grown by slow evaporation of a hot methanol solution of the compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.93 Å (aromatic), 0.97 Å (methyl­ene) and 0.98 Å (meth­yl), with U iso(H) = 1.2U eq(aromatic or methyl­ene C) or 1.5U eq(methyl C).

Table 3. Experimental details.

  1 2
Crystal data
Chemical formula C15H18N2O3S C15H18N2O5S
M r 306.37 338.37
Crystal system, space group Orthorhombic, P b c a Triclinic, P Inline graphic
Temperature (K) 298 100
a, b, c (Å) 9.582 (13), 11.444 (15), 26.69 (4) 7.114 (2), 9.401 (3), 12.038 (3)
α, β, γ (°) 90, 90, 90 94.808 (5), 92.110 (5), 107.198 (5)
V3) 2927 (7) 764.8 (4)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.23 0.24
Crystal size (mm) 0.27 × 0.25 × 0.2 0.29 × 0.11 × 0.06
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001) Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.732, 0.955 0.815, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 24930, 3685, 2924 9076, 3728, 3475
R int 0.029 0.015
(sin θ/λ)max−1) 0.673 0.663
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.135, 1.08 0.030, 0.082, 1.05
No. of reflections 3685 3728
No. of parameters 190 208
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.17 0.45, −0.34

Computer programs: SMART and SAINT (Bruker, 2001), COSMO and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 and SHELXL2016 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989018015098/hb7781sup1.cif

e-74-01695-sup1.cif (904KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018015098/hb77811sup2.hkl

e-74-01695-1sup2.hkl (294.3KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018015098/hb77812sup3.hkl

e-74-01695-2sup3.hkl (182.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018015098/hb77811sup4.cml

Supporting information file. DOI: 10.1107/S2056989018015098/hb77812sup5.cml

CCDC references: 1875395, 1875394

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1). Crystal data

C15H18N2O3S Dx = 1.391 Mg m3
Mr = 306.37 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 5287 reflections
a = 9.582 (13) Å θ = 2.6–24.3°
b = 11.444 (15) Å µ = 0.23 mm1
c = 26.69 (4) Å T = 298 K
V = 2927 (7) Å3 Plate, colorless
Z = 8 0.27 × 0.25 × 0.2 mm
F(000) = 1296

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1). Data collection

Bruker SMART CCD area detector diffractometer 2924 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
phi and ω scans θmax = 28.6°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→12
Tmin = 0.732, Tmax = 0.955 k = −13→15
24930 measured reflections l = −34→35
3685 independent reflections

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.9885P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3685 reflections Δρmax = 0.35 e Å3
190 parameters Δρmin = −0.17 e Å3

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.64305 (5) 0.59741 (4) 0.55845 (2) 0.05141 (17)
O1 0.95808 (13) 0.40036 (13) 0.55305 (5) 0.0543 (4)
O2 0.43309 (16) 0.62101 (16) 0.64290 (7) 0.0743 (5)
O3 0.23757 (18) 0.55133 (18) 0.66333 (8) 0.0905 (6)
N1 0.76951 (13) 0.42423 (13) 0.60346 (5) 0.0360 (3)
N2 0.34792 (16) 0.54315 (17) 0.64206 (6) 0.0524 (4)
C1 0.63847 (16) 0.48476 (15) 0.60757 (7) 0.0374 (4)
H1 0.631265 0.521843 0.640564 0.045*
C2 0.84294 (17) 0.43948 (18) 0.56067 (7) 0.0417 (4)
C3 0.7632 (2) 0.5110 (2) 0.52278 (7) 0.0533 (5)
H3A 0.713666 0.460539 0.499625 0.064*
H3B 0.826129 0.560651 0.503872 0.064*
C4 0.51274 (17) 0.40812 (15) 0.59855 (6) 0.0371 (4)
C5 0.37756 (17) 0.43693 (18) 0.61324 (7) 0.0418 (4)
C6 0.26504 (19) 0.3690 (2) 0.60127 (8) 0.0533 (5)
H6 0.176194 0.390377 0.611901 0.064*
C7 0.2834 (2) 0.2698 (2) 0.57371 (8) 0.0603 (6)
H7 0.206700 0.224720 0.564627 0.072*
C8 0.4151 (2) 0.2367 (2) 0.55939 (8) 0.0585 (5)
H8 0.428365 0.168290 0.541158 0.070*
C9 0.5272 (2) 0.30517 (18) 0.57219 (7) 0.0470 (4)
H9 0.616167 0.281283 0.562734 0.056*
C10 0.83474 (16) 0.37054 (16) 0.64788 (6) 0.0359 (4)
H10 0.911045 0.320833 0.635901 0.043*
C11 0.73624 (19) 0.29343 (17) 0.67713 (6) 0.0438 (4)
H11A 0.701899 0.231608 0.655539 0.053*
H11B 0.656828 0.339271 0.688165 0.053*
C12 0.8082 (2) 0.2396 (2) 0.72259 (7) 0.0544 (5)
H12A 0.740381 0.195440 0.741803 0.065*
H12B 0.879757 0.185814 0.711273 0.065*
C13 0.8736 (2) 0.3306 (2) 0.75583 (7) 0.0580 (6)
H13A 0.924527 0.292580 0.782674 0.070*
H13B 0.801130 0.378481 0.770746 0.070*
C14 0.9720 (2) 0.4073 (2) 0.72616 (8) 0.0602 (6)
H14A 1.050130 0.360810 0.714471 0.072*
H14B 1.008345 0.468373 0.747720 0.072*
C15 0.89855 (19) 0.46261 (18) 0.68135 (8) 0.0498 (5)
H15A 0.825973 0.514902 0.693159 0.060*
H15B 0.965152 0.508361 0.662267 0.060*

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0457 (3) 0.0450 (3) 0.0635 (3) 0.0006 (2) −0.0051 (2) 0.0116 (2)
O1 0.0367 (7) 0.0788 (10) 0.0473 (8) 0.0056 (6) 0.0121 (5) 0.0074 (7)
O2 0.0446 (8) 0.0696 (11) 0.1087 (14) 0.0105 (8) −0.0022 (8) −0.0240 (10)
O3 0.0650 (10) 0.0923 (14) 0.1142 (15) 0.0137 (10) 0.0447 (11) −0.0008 (12)
N1 0.0265 (6) 0.0465 (8) 0.0350 (7) 0.0030 (6) 0.0009 (5) 0.0024 (6)
N2 0.0391 (8) 0.0655 (11) 0.0525 (10) 0.0153 (8) 0.0033 (7) 0.0072 (8)
C1 0.0293 (7) 0.0437 (9) 0.0392 (9) 0.0029 (7) −0.0013 (6) 0.0000 (7)
C2 0.0358 (8) 0.0510 (10) 0.0384 (9) −0.0043 (7) 0.0015 (7) 0.0026 (8)
C3 0.0499 (10) 0.0674 (13) 0.0427 (10) −0.0001 (10) 0.0020 (8) 0.0133 (9)
C4 0.0297 (7) 0.0488 (10) 0.0328 (8) 0.0009 (7) −0.0028 (6) 0.0050 (7)
C5 0.0335 (8) 0.0559 (11) 0.0361 (9) 0.0031 (7) −0.0018 (7) 0.0113 (8)
C6 0.0319 (8) 0.0767 (15) 0.0514 (11) −0.0066 (9) −0.0026 (8) 0.0171 (10)
C7 0.0471 (11) 0.0782 (16) 0.0557 (12) −0.0246 (11) −0.0119 (9) 0.0133 (12)
C8 0.0618 (13) 0.0614 (13) 0.0522 (12) −0.0143 (11) −0.0078 (10) −0.0044 (10)
C9 0.0401 (9) 0.0551 (11) 0.0458 (10) −0.0031 (8) −0.0012 (8) −0.0047 (9)
C10 0.0277 (7) 0.0446 (9) 0.0354 (8) 0.0052 (6) 0.0010 (6) 0.0004 (7)
C11 0.0447 (9) 0.0524 (11) 0.0341 (9) −0.0078 (8) −0.0021 (7) −0.0002 (8)
C12 0.0598 (11) 0.0640 (13) 0.0395 (10) −0.0026 (10) −0.0014 (9) 0.0090 (9)
C13 0.0509 (11) 0.0862 (16) 0.0368 (10) 0.0024 (11) −0.0085 (8) −0.0009 (10)
C14 0.0443 (10) 0.0800 (16) 0.0564 (12) −0.0056 (10) −0.0177 (9) −0.0020 (11)
C15 0.0384 (9) 0.0538 (12) 0.0570 (12) −0.0061 (8) −0.0118 (8) −0.0006 (9)

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1). Geometric parameters (Å, º)

S1—C1 1.839 (3) C8—H8 0.9300
S1—C3 1.792 (3) C8—C9 1.373 (3)
O1—C2 1.208 (2) C9—H9 0.9300
O2—N2 1.209 (3) C10—H10 0.9800
O3—N2 1.204 (2) C10—C11 1.510 (3)
N1—C1 1.438 (3) C10—C15 1.511 (3)
N1—C2 1.353 (3) C11—H11A 0.9700
N1—C10 1.474 (2) C11—H11B 0.9700
N2—C5 1.466 (3) C11—C12 1.525 (3)
C1—H1 0.9800 C12—H12A 0.9700
C1—C4 1.509 (3) C12—H12B 0.9700
C2—C3 1.508 (3) C12—C13 1.505 (3)
C3—H3A 0.9700 C13—H13A 0.9700
C3—H3B 0.9700 C13—H13B 0.9700
C4—C5 1.393 (3) C13—C14 1.511 (3)
C4—C9 1.379 (3) C14—H14A 0.9700
C5—C6 1.367 (3) C14—H14B 0.9700
C6—H6 0.9300 C14—C15 1.525 (3)
C6—C7 1.364 (4) C15—H15A 0.9700
C7—H7 0.9300 C15—H15B 0.9700
C7—C8 1.372 (4)
C3—S1—C1 90.40 (12) C8—C9—C4 122.42 (19)
C1—N1—C10 120.64 (14) C8—C9—H9 118.8
C2—N1—C1 117.15 (15) N1—C10—H10 107.2
C2—N1—C10 120.80 (16) N1—C10—C11 113.22 (15)
O2—N2—C5 119.36 (17) N1—C10—C15 110.87 (17)
O3—N2—O2 121.8 (2) C11—C10—H10 107.2
O3—N2—C5 118.8 (2) C11—C10—C15 110.80 (17)
S1—C1—H1 109.8 C15—C10—H10 107.2
N1—C1—S1 105.22 (12) C10—C11—H11A 109.4
N1—C1—H1 109.8 C10—C11—H11B 109.4
N1—C1—C4 113.88 (17) C10—C11—C12 111.39 (17)
C4—C1—S1 108.22 (12) H11A—C11—H11B 108.0
C4—C1—H1 109.8 C12—C11—H11A 109.4
O1—C2—N1 124.72 (17) C12—C11—H11B 109.4
O1—C2—C3 123.40 (17) C11—C12—H12A 109.2
N1—C2—C3 111.88 (17) C11—C12—H12B 109.2
S1—C3—H3A 110.6 H12A—C12—H12B 107.9
S1—C3—H3B 110.6 C13—C12—C11 112.2 (2)
C2—C3—S1 105.59 (16) C13—C12—H12A 109.2
C2—C3—H3A 110.6 C13—C12—H12B 109.2
C2—C3—H3B 110.6 C12—C13—H13A 109.5
H3A—C3—H3B 108.8 C12—C13—H13B 109.5
C5—C4—C1 124.04 (18) C12—C13—C14 110.66 (19)
C9—C4—C1 119.83 (16) H13A—C13—H13B 108.1
C9—C4—C5 116.05 (17) C14—C13—H13A 109.5
C4—C5—N2 121.60 (17) C14—C13—H13B 109.5
C6—C5—N2 116.18 (18) C13—C14—H14A 109.4
C6—C5—C4 122.2 (2) C13—C14—H14B 109.4
C5—C6—H6 120.1 C13—C14—C15 111.34 (18)
C7—C6—C5 119.84 (19) H14A—C14—H14B 108.0
C7—C6—H6 120.1 C15—C14—H14A 109.4
C6—C7—H7 120.0 C15—C14—H14B 109.4
C6—C7—C8 119.92 (19) C10—C15—C14 111.15 (19)
C8—C7—H7 120.0 C10—C15—H15A 109.4
C7—C8—H8 120.3 C10—C15—H15B 109.4
C7—C8—C9 119.5 (2) C14—C15—H15A 109.4
C9—C8—H8 120.3 C14—C15—H15B 109.4
C4—C9—H9 118.8 H15A—C15—H15B 108.0
S1—C1—C4—C5 −81.4 (2) C2—N1—C1—C4 102.13 (19)
S1—C1—C4—C9 95.38 (19) C2—N1—C10—C11 −143.59 (18)
O1—C2—C3—S1 −155.76 (17) C2—N1—C10—C15 91.2 (2)
O2—N2—C5—C4 18.2 (3) C3—S1—C1—N1 25.72 (13)
O2—N2—C5—C6 −161.08 (19) C3—S1—C1—C4 −96.37 (16)
O3—N2—C5—C4 −163.46 (19) C4—C5—C6—C7 −0.5 (3)
O3—N2—C5—C6 17.2 (3) C5—C4—C9—C8 2.3 (3)
N1—C1—C4—C5 162.03 (16) C5—C6—C7—C8 2.0 (3)
N1—C1—C4—C9 −21.2 (2) C6—C7—C8—C9 −1.3 (3)
N1—C2—C3—S1 24.8 (2) C7—C8—C9—C4 −1.0 (3)
N1—C10—C11—C12 179.86 (15) C9—C4—C5—N2 179.17 (16)
N1—C10—C15—C14 −177.41 (15) C9—C4—C5—C6 −1.6 (3)
N2—C5—C6—C7 178.77 (17) C10—N1—C1—S1 150.33 (13)
C1—S1—C3—C2 −28.32 (15) C10—N1—C1—C4 −91.31 (19)
C1—N1—C2—O1 175.24 (18) C10—N1—C2—O1 8.7 (3)
C1—N1—C2—C3 −5.3 (2) C10—N1—C2—C3 −171.82 (16)
C1—N1—C10—C11 50.3 (2) C10—C11—C12—C13 54.7 (2)
C1—N1—C10—C15 −74.9 (2) C11—C10—C15—C14 56.0 (2)
C1—C4—C5—N2 −4.0 (3) C11—C12—C13—C14 −54.6 (2)
C1—C4—C5—C6 175.29 (17) C12—C13—C14—C15 55.4 (3)
C1—C4—C9—C8 −174.68 (18) C13—C14—C15—C10 −56.6 (2)
C2—N1—C1—S1 −16.23 (18) C15—C10—C11—C12 −54.8 (2)

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.93 2.65 3.411 (5) 140
C15—H15B···O3ii 0.97 2.66 3.437 (5) 138

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1, y, z.

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2). Crystal data

C15H18N2O5S Z = 2
Mr = 338.37 F(000) = 356
Triclinic, P1 Dx = 1.469 Mg m3
a = 7.114 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.401 (3) Å Cell parameters from 1021 reflections
c = 12.038 (3) Å θ = 2.6–25.0°
α = 94.808 (5)° µ = 0.24 mm1
β = 92.110 (5)° T = 100 K
γ = 107.198 (5)° Block, colorless
V = 764.8 (4) Å3 0.29 × 0.11 × 0.06 mm

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2). Data collection

Bruker SMART CCD area detector diffractometer 3728 independent reflections
Radiation source: fine-focus sealed tube 3475 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.015
phi and ω scans θmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −9→9
Tmin = 0.815, Tmax = 0.989 k = −12→12
9076 measured reflections l = −15→15

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4077P] where P = (Fo2 + 2Fc2)/3
3728 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.34 e Å3

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.60965 (4) 0.67214 (3) 0.85449 (2) 0.01180 (8)
O1 0.67190 (12) 0.55058 (9) 0.89218 (7) 0.01731 (18)
O2 0.74722 (12) 0.78778 (9) 0.80246 (8) 0.01862 (18)
O3 0.27805 (12) 0.90586 (9) 0.92007 (7) 0.01539 (17)
O4 0.54722 (14) 0.41291 (10) 0.63921 (8) 0.0228 (2)
O5 0.57817 (15) 0.22722 (11) 0.72569 (10) 0.0296 (2)
N1 0.29029 (13) 0.71982 (10) 0.78749 (8) 0.01082 (18)
N2 0.49472 (15) 0.32058 (11) 0.70700 (9) 0.0170 (2)
C1 0.38198 (15) 0.60257 (11) 0.76329 (9) 0.0105 (2)
H1 0.4147 0.5983 0.6832 0.013*
C2 0.34073 (16) 0.80345 (12) 0.88860 (9) 0.0114 (2)
C3 0.49252 (16) 0.75554 (12) 0.95740 (9) 0.0136 (2)
H3A 0.4276 0.6827 1.0094 0.016*
H3B 0.5881 0.8429 1.0007 0.016*
C4 0.26158 (16) 0.44866 (12) 0.79064 (9) 0.0112 (2)
C5 0.31876 (16) 0.31896 (12) 0.76822 (9) 0.0130 (2)
C6 0.21380 (18) 0.18142 (13) 0.80081 (10) 0.0166 (2)
H6 0.2592 0.0968 0.7858 0.020*
C7 0.04245 (19) 0.16798 (14) 0.85541 (11) 0.0198 (2)
H7 −0.0318 0.0740 0.8773 0.024*
C8 −0.01917 (18) 0.29359 (14) 0.87772 (10) 0.0193 (2)
H8 −0.1375 0.2850 0.9143 0.023*
C9 0.08976 (17) 0.43194 (13) 0.84728 (10) 0.0146 (2)
H9 0.0464 0.5169 0.8654 0.018*
C10 0.18316 (16) 0.76881 (12) 0.69763 (9) 0.0117 (2)
H10 0.1191 0.8408 0.7335 0.014*
C11 0.02037 (16) 0.63935 (12) 0.63537 (9) 0.0137 (2)
H11A −0.0743 0.5895 0.6886 0.016*
H11B 0.0783 0.5647 0.5997 0.016*
C12 −0.08705 (17) 0.69932 (13) 0.54591 (10) 0.0167 (2)
H12A −0.1903 0.6151 0.5043 0.020*
H12B −0.1522 0.7688 0.5824 0.020*
C13 0.05666 (19) 0.78087 (14) 0.46475 (10) 0.0190 (2)
H13A −0.0150 0.8207 0.4090 0.023*
H13B 0.1151 0.7098 0.4244 0.023*
C14 0.22021 (18) 0.90929 (13) 0.52708 (10) 0.0188 (2)
H14A 0.1627 0.9848 0.5618 0.023*
H14B 0.3150 0.9582 0.4735 0.023*
C15 0.32904 (17) 0.85282 (13) 0.61788 (10) 0.0156 (2)
H15A 0.3984 0.7854 0.5827 0.019*
H15B 0.4287 0.9387 0.6602 0.019*

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.00952 (13) 0.01062 (13) 0.01482 (14) 0.00278 (9) −0.00059 (9) 0.00021 (9)
O1 0.0150 (4) 0.0156 (4) 0.0222 (4) 0.0069 (3) −0.0040 (3) 0.0006 (3)
O2 0.0134 (4) 0.0156 (4) 0.0239 (4) −0.0002 (3) 0.0037 (3) 0.0016 (3)
O3 0.0187 (4) 0.0137 (4) 0.0148 (4) 0.0072 (3) 0.0002 (3) −0.0008 (3)
O4 0.0229 (4) 0.0203 (4) 0.0274 (5) 0.0086 (4) 0.0096 (4) 0.0034 (4)
O5 0.0233 (5) 0.0216 (5) 0.0491 (6) 0.0149 (4) 0.0014 (4) 0.0033 (4)
N1 0.0128 (4) 0.0093 (4) 0.0114 (4) 0.0050 (3) −0.0005 (3) 0.0008 (3)
N2 0.0142 (4) 0.0121 (4) 0.0240 (5) 0.0047 (4) −0.0021 (4) −0.0039 (4)
C1 0.0104 (4) 0.0090 (5) 0.0123 (5) 0.0033 (4) 0.0000 (4) 0.0008 (4)
C2 0.0116 (5) 0.0102 (5) 0.0115 (5) 0.0015 (4) 0.0010 (4) 0.0024 (4)
C3 0.0154 (5) 0.0142 (5) 0.0119 (5) 0.0062 (4) −0.0010 (4) −0.0001 (4)
C4 0.0109 (5) 0.0104 (5) 0.0115 (5) 0.0022 (4) −0.0022 (4) 0.0014 (4)
C5 0.0116 (5) 0.0121 (5) 0.0144 (5) 0.0031 (4) −0.0030 (4) 0.0003 (4)
C6 0.0201 (5) 0.0104 (5) 0.0179 (5) 0.0030 (4) −0.0065 (4) 0.0017 (4)
C7 0.0213 (6) 0.0147 (5) 0.0190 (6) −0.0023 (4) −0.0036 (4) 0.0065 (4)
C8 0.0160 (5) 0.0221 (6) 0.0176 (6) 0.0010 (4) 0.0028 (4) 0.0062 (5)
C9 0.0143 (5) 0.0151 (5) 0.0147 (5) 0.0047 (4) 0.0007 (4) 0.0022 (4)
C10 0.0131 (5) 0.0104 (5) 0.0122 (5) 0.0046 (4) −0.0015 (4) 0.0015 (4)
C11 0.0130 (5) 0.0122 (5) 0.0145 (5) 0.0025 (4) −0.0009 (4) −0.0002 (4)
C12 0.0153 (5) 0.0189 (5) 0.0156 (5) 0.0062 (4) −0.0030 (4) −0.0011 (4)
C13 0.0228 (6) 0.0224 (6) 0.0130 (5) 0.0089 (5) −0.0028 (4) 0.0022 (4)
C14 0.0224 (6) 0.0173 (5) 0.0169 (5) 0.0052 (5) −0.0017 (4) 0.0067 (4)
C15 0.0155 (5) 0.0147 (5) 0.0160 (5) 0.0029 (4) −0.0007 (4) 0.0047 (4)

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2). Geometric parameters (Å, º)

S1—O1 1.4419 (9) C7—C8 1.3858 (18)
S1—O2 1.4360 (9) C8—H8 0.9500
S1—C1 1.8382 (12) C8—C9 1.3896 (16)
S1—C3 1.7729 (12) C9—H9 0.9500
O3—C2 1.2143 (14) C10—H10 1.0000
O4—N2 1.2281 (14) C10—C11 1.5276 (15)
O5—N2 1.2267 (14) C10—C15 1.5291 (16)
N1—C1 1.4527 (13) C11—H11A 0.9900
N1—C2 1.3671 (14) C11—H11B 0.9900
N1—C10 1.4810 (14) C11—C12 1.5354 (16)
N2—C5 1.4726 (15) C12—H12A 0.9900
C1—H1 1.0000 C12—H12B 0.9900
C1—C4 1.5177 (15) C12—C13 1.5242 (17)
C2—C3 1.5294 (15) C13—H13A 0.9900
C3—H3A 0.9900 C13—H13B 0.9900
C3—H3B 0.9900 C13—C14 1.5257 (17)
C4—C5 1.4040 (15) C14—H14A 0.9900
C4—C9 1.3963 (16) C14—H14B 0.9900
C5—C6 1.3853 (16) C14—C15 1.5342 (16)
C6—H6 0.9500 C15—H15A 0.9900
C6—C7 1.3841 (18) C15—H15B 0.9900
C7—H7 0.9500
O1—S1—C1 111.35 (5) C9—C8—H8 119.5
O1—S1—C3 113.14 (6) C4—C9—H9 119.3
O2—S1—O1 119.26 (6) C8—C9—C4 121.39 (11)
O2—S1—C1 108.34 (5) C8—C9—H9 119.3
O2—S1—C3 109.11 (6) N1—C10—H10 107.5
C3—S1—C1 92.26 (5) N1—C10—C11 112.55 (9)
C1—N1—C10 120.68 (9) N1—C10—C15 109.90 (9)
C2—N1—C1 117.45 (9) C11—C10—H10 107.5
C2—N1—C10 120.48 (9) C11—C10—C15 111.61 (9)
O4—N2—C5 118.45 (10) C15—C10—H10 107.5
O5—N2—O4 123.92 (11) C10—C11—H11A 109.8
O5—N2—C5 117.62 (11) C10—C11—H11B 109.8
S1—C1—H1 110.0 C10—C11—C12 109.49 (9)
N1—C1—S1 101.36 (7) H11A—C11—H11B 108.2
N1—C1—H1 110.0 C12—C11—H11A 109.8
N1—C1—C4 114.61 (9) C12—C11—H11B 109.8
C4—C1—S1 110.64 (7) C11—C12—H12A 109.5
C4—C1—H1 110.0 C11—C12—H12B 109.5
O3—C2—N1 124.96 (10) H12A—C12—H12B 108.1
O3—C2—C3 123.40 (10) C13—C12—C11 110.88 (10)
N1—C2—C3 111.61 (9) C13—C12—H12A 109.5
S1—C3—H3A 111.1 C13—C12—H12B 109.5
S1—C3—H3B 111.1 C12—C13—H13A 109.5
C2—C3—S1 103.22 (8) C12—C13—H13B 109.5
C2—C3—H3A 111.1 C12—C13—C14 110.58 (10)
C2—C3—H3B 111.1 H13A—C13—H13B 108.1
H3A—C3—H3B 109.1 C14—C13—H13A 109.5
C5—C4—C1 123.62 (10) C14—C13—H13B 109.5
C9—C4—C1 120.00 (10) C13—C14—H14A 109.4
C9—C4—C5 116.27 (10) C13—C14—H14B 109.4
C4—C5—N2 121.73 (10) C13—C14—C15 111.06 (10)
C6—C5—N2 115.57 (10) H14A—C14—H14B 108.0
C6—C5—C4 122.70 (11) C15—C14—H14A 109.4
C5—C6—H6 120.2 C15—C14—H14B 109.4
C7—C6—C5 119.66 (11) C10—C15—C14 110.26 (10)
C7—C6—H6 120.2 C10—C15—H15A 109.6
C6—C7—H7 120.5 C10—C15—H15B 109.6
C6—C7—C8 119.05 (11) C14—C15—H15A 109.6
C8—C7—H7 120.5 C14—C15—H15B 109.6
C7—C8—H8 119.5 H15A—C15—H15B 108.1
C7—C8—C9 120.90 (12)
S1—C1—C4—C5 −69.60 (12) C1—C4—C5—C6 175.39 (10)
S1—C1—C4—C9 106.31 (10) C1—C4—C9—C8 −177.24 (10)
O1—S1—C1—N1 148.94 (7) C2—N1—C1—S1 −24.61 (11)
O1—S1—C1—C4 26.96 (9) C2—N1—C1—C4 94.57 (11)
O1—S1—C3—C2 −147.19 (7) C2—N1—C10—C11 −138.49 (10)
O2—S1—C1—N1 −78.01 (8) C2—N1—C10—C15 96.45 (12)
O2—S1—C1—C4 160.01 (7) C3—S1—C1—N1 32.98 (7)
O2—S1—C3—C2 77.52 (8) C3—S1—C1—C4 −88.99 (8)
O3—C2—C3—S1 −153.99 (9) C4—C5—C6—C7 1.63 (17)
O4—N2—C5—C4 −28.26 (16) C5—C4—C9—C8 −1.03 (16)
O4—N2—C5—C6 151.15 (11) C5—C6—C7—C8 −0.87 (17)
O5—N2—C5—C4 152.98 (11) C6—C7—C8—C9 −0.79 (18)
O5—N2—C5—C6 −27.60 (15) C7—C8—C9—C4 1.78 (18)
N1—C1—C4—C5 176.56 (10) C9—C4—C5—N2 178.71 (10)
N1—C1—C4—C9 −7.52 (14) C9—C4—C5—C6 −0.67 (16)
N1—C2—C3—S1 24.31 (11) C10—N1—C1—S1 141.97 (8)
N1—C10—C11—C12 178.54 (9) C10—N1—C1—C4 −98.85 (11)
N1—C10—C15—C14 −177.81 (9) C10—N1—C2—O3 12.62 (16)
N2—C5—C6—C7 −177.78 (10) C10—N1—C2—C3 −165.64 (9)
C1—S1—C3—C2 −32.79 (8) C10—C11—C12—C13 57.68 (12)
C1—N1—C2—O3 179.23 (10) C11—C10—C15—C14 56.59 (12)
C1—N1—C2—C3 0.97 (13) C11—C12—C13—C14 −57.84 (13)
C1—N1—C10—C11 55.34 (13) C12—C13—C14—C15 56.73 (13)
C1—N1—C10—C15 −69.72 (12) C13—C14—C15—C10 −55.78 (13)
C1—C4—C5—N2 −5.23 (16) C15—C10—C11—C12 −57.33 (12)

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O1i 0.99 2.51 3.4594 (16) 161
C3—H3B···O3ii 0.99 2.37 3.3068 (16) 157
C9—H9···O1iii 0.95 2.80 3.5144 (16) 133
C10—H10···O2iii 1.00 2.72 3.4381 (16) 129

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+2; (iii) x−1, y, z.

Funding Statement

This work was funded by National Science Foundation, Division of Chemistry grant CHEM-0131112.

References

  1. Abdel Rahman, R. M., El Gendy, Z. & Mahmoud, M. B. (1990). J. Indian Chem. Soc. 67, 61.
  2. Abhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47–64.
  3. Brown, F. (1961). Chem. Rev. 61, 463–521.
  4. Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2013). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cannon, K. C., Gandla, D., Lauro, S., Silverberg, L. J., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7, 73–84.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Erlenmeyer, H. & Oberlin, V. (1947). Helv. Chim. Acta, 30, 1329–1335. [PubMed]
  9. Glasl, D., Otto, H. & Rihs, G. (1997). Helv. Chim. Acta, 80, 671–683.
  10. Hamama, W. S., Ismail, M. A., Shaaban, S. & Zoorob, H. H. (2008). J. Het. Chem. 45, 939–956.
  11. Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. A. (2012). Bioorg. Med. Chem. 20, 3378–3395. [DOI] [PubMed]
  12. Joshi, A., Anderson, C., Binch, H., Hadida, S., Yoo, S., Bergeron, D., Decker, C., terHaar, E., Moore, J., Garcia-Guzman, M. & Termin, A. (2014). Bioorg. Med. Chem. Lett. 24, 845–849. [DOI] [PubMed]
  13. Kaushal, M. & Kaur, A. (2016). World J. Pharm. Res 5, 1966–1977.
  14. Kumar, D., Kumar, V., Mundlia, J., Pradhan, D. & Malik, S. (2015). Cent. Nerv. Syst. Agent. Med. Chem. 15, 23–27. [PubMed]
  15. Nuriye, A., Yennawar, H., Cannon, K. & Tierney, J. (2018). Acta Cryst. E74, 1509–1512. [DOI] [PMC free article] [PubMed]
  16. Orsini, F., Bombieri, G., Benetollo, F., Vigorita, M. G. & Previtera, T. (1995). J. Chem. Crystallogr. 25, 589–595.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Singh, S. P., Parmar, S. S., Raman, R. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.
  20. Surrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911–2912. [DOI] [PubMed]
  21. Suryawanshi, R., Jadhav, S., Makwana, N., Desai, D., Chaturbhuj, D., Sonawani, A., Idicula-Thomas, S., Murugesan, V., Katti, S. B., Tripathy, S., Paranjape, R. & Kulkarni, S. (2017). Bioorg. Chem. 71, 211–218. [DOI] [PubMed]
  22. Thakare, M. P., Shaikh, R. & Tayade, D. (2018). Heterocycl. Lett. 8, 493–506.
  23. Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. & Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52–77. [DOI] [PubMed]
  24. Yennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264–267. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989018015098/hb7781sup1.cif

e-74-01695-sup1.cif (904KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018015098/hb77811sup2.hkl

e-74-01695-1sup2.hkl (294.3KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018015098/hb77812sup3.hkl

e-74-01695-2sup3.hkl (182.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018015098/hb77811sup4.cml

Supporting information file. DOI: 10.1107/S2056989018015098/hb77812sup5.cml

CCDC references: 1875395, 1875394

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES