Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 16;74(Pt 12):1795–1799. doi: 10.1107/S2056989018015980

Formation and structural characterization of a potassium amidino­guanidinate

Volker Lorenz a, Phil Liebing a, Liane Hilfert a, Sabine Busse a, Frank T Edelmann a,*
PMCID: PMC6281103  PMID: 30574376

In the polymeric potassium complex [{iPrN= CHN(iPr)N(NiPr)2K}2(μ-DME)]n, the amidino­guanidinate ligand adopts an unusual mixed σ-/π-coordination mode.

Keywords: crystal structure, amidinate ligands, guanidinate ligands, amidino­guanidinate, potassium, π-coordination

Abstract

The first potassium amidino­guanidinate complex, catena-poly[[bis­(μ-1-amidinato-N,N′,N′′,N′′′-tetra­iso­propyl­guanidinato-κ5 N 1:N 1,N 2:N 2,N 4)dipotassium]-μ-1,2-di­meth­oxy­ethane-κ2 O:O′], [K2(C14H32N4)2(C4H10O2)]n or [{iPrN= CHN(iPr)N(NiPr)2K}2(μ-DME)]n where DME is 1,2-di­meth­oxy­ethane, has been synthesized and structurally characterized. The title compound was isolated in 76% yield from a reaction of N,N′-diiso­propyl­carbodi­imide with potassium hydride in DME. The single-crystal X-ray structure determination of the title compound revealed a polymeric chain structure comprising cage-like dimeric units, with the amidino­guanidinate ligand displaying a mixed σ-/π-coordination mode.

Chemical context  

Hetero­allylic N,N′-chelating donor ligands such as amidinate anions [RC(NR)2] and guanidinate anions [R 2NC(NR)2] are of significant importance in various fields of organometallic and coordination chemistry. It is generally accepted that both types of N,N′-chelating ligands can be regarded as ‘steric cyclo­penta­dienyl equivalents’ (Bailey & Pace, 2001; Collins, 2011; Edelmann, 2013). Over the past three decades, amidinato and guanidinato complexes have been synthesized for nearly every metallic element in the Periodic Table ranging from lithium to the f-block elements (Edelmann, 2009, 2012, 2013; Trifonov, 2010). Important applications of amidinate and guanidinate ligands include the stabilization of unusually low oxidation states (e.g. MgI and FeI) as well as the design of highly active homogeneous catalysts (Collins, 2011; Edelmann, 2013; Chen et al., 2018). Metal amidinate and guanidinate complexes bearing small aliphatic substituents have also been established as ALD (= atomic layer deposition) and MOCVD (= metal–organic chemical vapor deposition) precursors for the deposition of thin films of metals, metal oxides, metal nitrides etc. (Devi, 2013). Formally, amidinate anions are nitro­gen analogues of carboxyl­ate anions, while guanidinates are related in the same way to carbamate anions. However, in contrast to the carboxyl­ates and carbamates, the steric properties of amidinates and guanidinates can be tuned over a wide range by employing different substituents at the outer nitro­gen atoms as well as at the central carbon atom of the chelating NCN unit. The most important starting materials in this area are lithium amidinates, which are normally prepared in a straightforward manner by the addition of lithium alkyls to N,N′-diorganocarbodi­imides in a 1:1 molar ratio. Lithium guanidinates are formed in the same manner by adding lithium-N,N-di­alkyl­amides to N,N′-diorganocarbodi­imides (Stalke et al., 1992; Aharonovich et al., 2008; Chlupatý et al., 2011; Nevoralová et al., 2013; Hong et al., 2013). All of these reactions are generally quite straightforward and afford the desired products in high yields. Less investigated are amidin­ate salts of the heavier alkali metals sodium and potassium (Cole et al., 2003; Cole & Junk, 2003; Junk & Cole, 2007; Yao et al., 2009; Dröse et al., 2010, Chen et al., 2018).graphic file with name e-74-01795-scheme1.jpg

We recently reported in this journal that, under certain conditions, seemingly straightforward reactions of lithium alkyls with N,N′-diorganocarbodi­imides can take a different course, leading to lithium salts of dimerized amidinates ligands (‘amidino­guanidinates’) (Sroor et al., 2016). These could even become the major reaction products when the N,N′-diorg­ano­carbodi­imides are used in a twofold molar excess. The first complexes comprising amidino­guanidinate ligands included the lithium precursors Li[nBuC(=NR)(NR)C(NR)2] [R = iPr, Cy (= cyclo­hex­yl)] and the holmium(III) complex [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (Sroor et al., 2016). In this contribution, we report the synthesis and structural characterization of the first potassium amidino­guanidinate derivative, polymeric catena-poly[[bis­(μ-1-amidinato-N,N′,N′′,N′′′-tetra­iso­propyl­guanidinato-κ5 N 1:N 1,N 2:N 2,N 4)dipotassium]-μ-1,2-di­meth­oxy­ethane-κ2 O:O′] [{iPrN=CHN(iPr)N(NiPr)2K}2(μ-DME)]n.

As illustrated in Fig. 1, the title compound was formed when N,N′-diiso­propyl­carbodi­imide was added to a suspension of potassium hydride in 1,2-di­meth­oxy­ethane (DME). With the attempt to prepare the corresponding amidinate K[HC(NiPr)2], the reactants were used in a molar ratio 1:1. After filtration and concentration of the filtrate to a small volume, the product crystallized directly at room temperature and could be isolated as colorless, plate-like, moisture-sensitive crystals in 76% yield (calculated after determination of the crystal structure). The compound was characterized through elemental analysis as well as IR, NMR (1H and 13C) and mass spectra. However, the usual set of analytical and spectroscopic methods did not allow for an unequivocal elucidation of the mol­ecular structure. NMR data clearly indicated the presence of coordinated DME. However, both the 1H and 13C NMR spectra showed two sets of iso-propyl resonances, thereby ruling out the formation of a simple potassium formamidinate salt of the composition ‘(DME)K[HC(NiPr)2]’. Fortunately, the single crystals obtained directly from the filtered and concentrated reaction solution were suitable for X-ray diffraction analysis. This study confirmed the formation of a new amidino­guanidinate complex through dimerization of N,N′-diiso­propyl­carbodi­imide in the coordination sphere of potassium.

Figure 1.

Figure 1

Formation of the title compound by reaction of potassium hydride with N,N′-diiso­propyl­carbodi­imide in DME.

Structural commentary  

The mol­ecular structure of the title compound consists of centrosymmetric dimeric units, being composed of two potassium atoms and two amidino­guanidinate ligands (Fig. 2). The guanidinate unit is attached to potassium in an N,N′-chelating mode, with the K atom in the N3C plane of the guanidinate. The same guanidinate moiety is linked to the symmetry-equivalent K atom in an η3-di­aza­allyl mode, i.e. the metal atom is situated above the N1/C1/N2 plane. The exposed nitro­gen donor of the amidinate backbone (N4) in the title compound is attached to the metal center in a simple monodentate coordination, with the N atom having a perfectly planar environment (sum of bond angles = 360.0°). This is in agreement with the expected sp 2 hybridization of atom N4 (cf. Scheme). As a result of the μ-bridging coordination of the amidino­guanidinate ligand, the potassium atom is surrounded by a σ-chelating guanidinate group, a π-di­aza­allyl-coordinated guanidinate group, and a single amidinate nitro­gen atom in a T-shaped fashion. A pseudo-square-planar coordination is completed by one oxygen atom of a μ-κOO′-coordinated DME ligand. Through this bridging DME coordination, the dimeric units are inter­connected into a one-dimensional coordination polymer (Fig. 3).

Figure 2.

Figure 2

Mol­ecular structure of the title compound in the crystal. Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms omitted for clarity. Symmetry codes: (′) −x, −y, 2 − z; (′′) −x, −1 − y, 2 − z.

Figure 3.

Figure 3

Illustration of the polymeric chain structure of the title compound, extending along the crystallographic b axis.

An increased tendency towards π-coordination modes is characteristic for the heavier alkali metals and has frequently been observed in other complexes with nitro­gen ligands (e.g. von Bülow et al., 2004; Liebing & Merzweiler, 2015). However, in potassium amidinates and guanidinates, a symmetric double-chelating coordination is usually preferred over coordination modes with a contribution of the π-electron system (Fig. 4) (Giesbrecht et al., 1999; Benndorf et al., 2011). A similar mixed σ-/π-coordination to that in the title compound has been recently observed by us in a potassium di­thio­carbamate (Liebing, 2017).

Figure 4.

Figure 4

Coordination modes of 1,3-di­aza­allyl-type ligands (= amidinate or guanidinate) observed in potassium complexes: symmetric double-chelating (A), single-chelating and η3-coordination of the 1,3-di­aza­allyl π-system (B).

The K—N bond lengths to the σ-bonded guanidinate group are 2.793 (2) Å (N1) and 2.814 (2) Å (N2), while the bond to the single amidinate nitro­gen donor (N4) is considerably longer at 2.939 (2) Å. All these values are within the range usually observed for K—N bonds (crystal structures deposited in the CSD; Groom et al., 2016). The K—N distances to the π-coordinated guanidinate group are 2.882 (2) Å (N1) and 2.979 (2) Å (N2), and the corresponding K—C1 separation was determined to be 2.967 (2) Å. The latter value is considerably smaller than in a structurally related potassium di­thio­carbamate [K—C 3.150 (2) Å; Liebing, 2017].

Supra­molecular features  

The crystal structure of the title compound does not display any specific inter­actions between the polymeric chains. The closest inter­chain contact is 3.632 (3) Å (C5⋯C14) between the methyl carbon atoms of isopropyl groups.

Database survey  

For a review article on related alkali metal bis­(ar­yl)formamidinates, see: Junk & Cole (2007). For other structurally characterized alkali metal amidinates and guanidinates, see: Giesbrecht et al. (1999), Stalke et al. (1992), Cole et al. (2003), Aharonovich et al. (2008), Chlupatý et al. (2011), Cole & Junk (2003), Junk & Cole (2007), Benndorf et al. (2011), Nevoralová et al. (2013) and Hong et al. (2013).

Synthesis and crystallization  

General Procedures: The reaction was carried out under an inert atmosphere of dry argon employing standard Schlenk and glove-box techniques. The solvent di­meth­oxy­ethane (DME) was distilled from sodium/benzo­phenone under nitro­gen atmosphere prior to use. All glassware was oven-dried at 393 K for at least 24 h, assembled while hot, and cooled under high vacuum prior to use. The starting material N,N′-diiso­propyl­carbodi­imide was obtained from Sigma–Aldrich and used as received. Commercially available potassium hydride was freed from protecting paraffin oil by thoroughly washing with n-pentane and stored in a glove-box. The 1H and 13C NMR spectra were recorded in solutions on a Bruker Biospin AVIII 400 MHz spectrometer at 298 K. Chemical shifts are referenced to tetra­methyl­silane. The IR spectrum was measured with a Bruker Optics VERTEX 70v spectrometer, and the electron impact mass spectrum was recorded using a MAT95 spectrometer with an ionization energy of 70 eV. Microanalysis of the title compound was performed using a ‘vario EL cube’ apparatus from Elementar Analysensysteme GmbH. The melting/decomposition point was measured on a Büchi Melting Point B-540 apparatus.

Synthesis of [{ i PrN=CHN( i Pr)N(N i Pr)2K}2( μ -DME)] n : 1.6 mL (1.26 g, 10.0 mmol) of N,N′-diiso­propyl­carbodi­imide were added to a stirred suspension of 0.41 g (10 mmol) of KH in 50 ml of DME. The reaction mixture was stirred for two days and refluxed for an additional 2 h. After cooling to room temperature, all insoluble solid parts were filtered off and the volume of the resulting clear solution was reduced to ca 25 ml. After three days at room temperature, the title compound crystallized as colorless, plate-like crystals suitable for single-crystal X-ray diffraction. Yield: 1.3 g (76%). M.p. 378 K (dec.). C32H68K2N8O2 (M = 675.15 g mol−1): calculated C 56.93, H 10.15, N 16.60; found: C 56.81, H 10.24, N 16.33%. IR (ATR): ν = 2952 m, 2858 m, 2824 w, 1626 m, 1538 s, 1465 m, 1453 m, 1383 m, 1369 m, 1358 m, 1343 m, 1318 m, 1298 m, 1196 m, 1162 m, 1125 m, 1111 m 1048 w, 993 m, 955 w, 946 w, 858 w, 815 w, 674 w, 575 w, 516 w, 442 m 373 w, 338 m, 295 w, 262 m cm−1. 1H NMR (400.1 MHz, THF-d 8, 293 K): δ = 7.90 (s, 2H, N—CH=N), 3.47 [sept, 4H, CH(CH3)2], 3.43 (s, 8H, DME), 3.27 (s, 12H, DME), 3.01 [sept, 4H, CH(CH3)2], 1.15 [d, 24H, CH(CH 3)2], 0.94 [d, 24H, CH(CH 3)2] ppm. 13C NMR (100.6 MHz, THF-d 8, 293 K): δ = 166.0 (N—CH=N), 150.0 (N—CN—N), 72.6 (DME), 58.9 (DME), 55.5 [CH(CH3)2], 49.4 [CH(CH3)2], 28.2 [CH(CH3)2], 25.0 [CH(CH3)2] ppm. MS (EI, 70 eV): m/z = 254 (5) [C14H30N4]+, 211 (30) [C14H30N4 − iPr]+, 184 (32), 170 (38), 144 (82), 129 (100).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms attached to C atoms were fixed geometrically and refined using a riding model. CH3 groups were allowed to rotate freely around the C—C vector, and the corresponding C—H distances were constrained to 0.98 Å. C—H distances within CH2 groups were constrained to 0.99 Å, C—H distances within the iPr CH groups to 1.00 Å, and the C—H distance within the amidinate group (i.e. at C2) to 0.95 Å. The U iso(H) values were set at 1.5U eq(C) for methyl groups and at 1.2U eq(C) in all other cases. The reflections (001) and (010) disagreed strongly with the structural model and were therefore omitted from the refinement.

Table 1. Experimental details.

Crystal data
Chemical formula [K2(C14H32N4)2(C4H10O2)]
M r 337.57
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 153
a, b, c (Å) 10.3207 (6), 10.5311 (6), 11.6703 (7)
α, β, γ (°) 71.605 (4), 64.168 (4), 63.516 (4)
V3) 1010.23 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.46 × 0.37 × 0.16
 
Data collection
Diffractometer STOE IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 9148, 3941, 3368
R int 0.104
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.139, 1.03
No. of reflections 3941
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.68

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL2018/3 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018015980/zl2742sup1.cif

e-74-01795-sup1.cif (1,007.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015980/zl2742Isup2.hkl

e-74-01795-Isup2.hkl (314.1KB, hkl)

CCDC reference: 1862025

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[K2(C14H32N4)2(C4H10O2)] Z = 2
Mr = 337.57 F(000) = 370
Triclinic, P1 Dx = 1.110 Mg m3
a = 10.3207 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.5311 (6) Å Cell parameters from 12337 reflections
c = 11.6703 (7) Å θ = 2.0–29.2°
α = 71.605 (4)° µ = 0.27 mm1
β = 64.168 (4)° T = 153 K
γ = 63.516 (4)° Plate, colorless
V = 1010.23 (11) Å3 0.46 × 0.37 × 0.16 mm

Data collection

STOE IPDS 2T diffractometer 3368 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.104
Detector resolution: 6.67 pixels mm-1 θmax = 26.0°, θmin = 2.4°
area detector scans h = −12→12
9148 measured reflections k = −12→12
3941 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: heavy-atom method
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0873P)2] where P = (Fo2 + 2Fc2)/3
3941 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.68 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1180 (2) 0.10787 (17) 0.76592 (16) 0.0246 (4)
C2 0.2802 (2) −0.03149 (19) 0.59010 (17) 0.0258 (4)
H1 0.343661 −0.037395 0.502260 0.031*
C3 −0.1057 (2) 0.1371 (2) 0.72593 (19) 0.0334 (4)
H2 −0.033813 0.142578 0.634615 0.040*
C4 −0.1524 (3) 0.0079 (2) 0.7597 (2) 0.0423 (5)
H4 −0.207873 0.020053 0.704601 0.051*
H3 −0.219625 0.000043 0.850132 0.051*
H5 −0.059844 −0.079402 0.745993 0.051*
C5 −0.2492 (3) 0.2737 (3) 0.7413 (3) 0.0484 (6)
H7 −0.306745 0.278110 0.691062 0.073*
H8 −0.218236 0.357464 0.710293 0.073*
H6 −0.314695 0.273254 0.832358 0.073*
C6 0.3490 (2) 0.0683 (2) 0.7999 (2) 0.0333 (4)
H9 0.389908 0.086282 0.703653 0.040*
C7 0.4370 (3) −0.0860 (3) 0.8468 (2) 0.0436 (5)
H10 0.545801 −0.099728 0.821237 0.065*
H12 0.429255 −0.151624 0.808497 0.065*
H11 0.392692 −0.105796 0.940845 0.065*
C8 0.3718 (3) 0.1705 (3) 0.8520 (3) 0.0480 (6)
H14 0.481983 0.153889 0.821431 0.072*
H15 0.331857 0.153064 0.946321 0.072*
H13 0.315981 0.269944 0.821474 0.072*
C9 0.2355 (2) 0.22472 (19) 0.53339 (18) 0.0308 (4)
H16 0.349595 0.201466 0.493239 0.037*
C10 0.1732 (3) 0.2586 (2) 0.4266 (2) 0.0446 (5)
H17 0.205883 0.333363 0.360018 0.067*
H19 0.060151 0.292378 0.462140 0.067*
H18 0.213228 0.171778 0.388692 0.067*
C11 0.1659 (4) 0.3553 (2) 0.5973 (2) 0.0507 (6)
H21 0.182135 0.437472 0.531850 0.076*
H22 0.215296 0.337369 0.658908 0.076*
H20 0.054980 0.376198 0.642701 0.076*
C12 0.3481 (2) −0.2763 (2) 0.60265 (19) 0.0340 (4)
H23 0.414440 −0.253644 0.512021 0.041*
C13 0.2278 (3) −0.3213 (3) 0.6014 (3) 0.0536 (6)
H25 0.279619 −0.407185 0.559670 0.080*
H26 0.164617 −0.243316 0.553660 0.080*
H24 0.161667 −0.342468 0.690020 0.080*
C14 0.4483 (3) −0.3951 (2) 0.6748 (2) 0.0494 (6)
H27 0.502364 −0.480376 0.632053 0.074*
H29 0.383544 −0.418301 0.763433 0.074*
H28 0.523942 −0.363514 0.675633 0.074*
C15 0.2643 (4) −0.5193 (4) 1.0541 (3) 0.0671 (8)
H32 0.344120 −0.476641 1.009850 0.101*
H31 0.312830 −0.623859 1.058811 0.101*
H30 0.206810 −0.494569 1.141425 0.101*
C16 0.0442 (3) −0.5234 (2) 1.0445 (2) 0.0473 (6)
H34 −0.025475 −0.488497 1.127880 0.057*
H33 0.089693 −0.629485 1.060744 0.057*
N1 −0.02933 (18) 0.12443 (17) 0.81012 (15) 0.0280 (3)
N2 0.18526 (17) 0.09405 (17) 0.84450 (15) 0.0282 (3)
N3 0.20814 (18) 0.09943 (16) 0.62832 (15) 0.0265 (3)
N4 0.26831 (18) −0.14760 (16) 0.66462 (15) 0.0278 (3)
O1 0.1619 (2) −0.46565 (17) 0.98535 (16) 0.0478 (4)
K1 0.08968 (5) −0.15986 (4) 0.94197 (4) 0.02868 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0225 (8) 0.0230 (8) 0.0240 (8) −0.0074 (7) −0.0036 (7) −0.0060 (6)
C2 0.0208 (8) 0.0280 (9) 0.0252 (9) −0.0077 (7) −0.0031 (7) −0.0083 (7)
C3 0.0260 (9) 0.0427 (11) 0.0315 (10) −0.0131 (8) −0.0093 (8) −0.0056 (8)
C4 0.0296 (10) 0.0456 (12) 0.0566 (14) −0.0113 (9) −0.0133 (10) −0.0196 (10)
C5 0.0423 (13) 0.0415 (12) 0.0665 (16) −0.0096 (10) −0.0336 (12) −0.0016 (10)
C6 0.0193 (9) 0.0454 (11) 0.0331 (10) −0.0124 (8) −0.0045 (8) −0.0089 (8)
C7 0.0270 (10) 0.0482 (12) 0.0511 (13) −0.0049 (9) −0.0141 (10) −0.0141 (10)
C8 0.0339 (11) 0.0525 (13) 0.0652 (16) −0.0197 (10) −0.0167 (11) −0.0130 (11)
C9 0.0290 (9) 0.0281 (9) 0.0306 (10) −0.0125 (8) −0.0064 (8) −0.0013 (7)
C10 0.0593 (15) 0.0372 (11) 0.0388 (12) −0.0190 (11) −0.0221 (11) 0.0021 (9)
C11 0.0791 (18) 0.0309 (11) 0.0438 (13) −0.0248 (12) −0.0210 (13) −0.0008 (9)
C12 0.0331 (10) 0.0280 (9) 0.0324 (10) −0.0101 (8) 0.0000 (8) −0.0118 (7)
C13 0.0543 (15) 0.0539 (14) 0.0586 (15) −0.0274 (12) −0.0031 (13) −0.0283 (12)
C14 0.0427 (12) 0.0291 (10) 0.0476 (13) 0.0001 (9) −0.0029 (11) −0.0080 (9)
C15 0.077 (2) 0.0673 (18) 0.0608 (18) −0.0303 (16) −0.0307 (16) 0.0023 (14)
C16 0.0517 (14) 0.0360 (11) 0.0388 (12) −0.0176 (10) −0.0021 (11) −0.0035 (9)
N1 0.0207 (7) 0.0335 (8) 0.0283 (8) −0.0087 (6) −0.0071 (6) −0.0064 (6)
N2 0.0192 (7) 0.0338 (8) 0.0294 (8) −0.0084 (6) −0.0057 (6) −0.0078 (6)
N3 0.0257 (7) 0.0244 (7) 0.0251 (8) −0.0092 (6) −0.0038 (6) −0.0053 (6)
N4 0.0242 (8) 0.0260 (8) 0.0284 (8) −0.0072 (6) −0.0035 (7) −0.0090 (6)
O1 0.0516 (10) 0.0365 (8) 0.0448 (9) −0.0172 (7) −0.0098 (8) −0.0012 (6)
K1 0.0274 (2) 0.0255 (2) 0.0275 (2) −0.00806 (16) −0.00473 (17) −0.00624 (14)

Geometric parameters (Å, º)

C1—N2 1.313 (2) C10—H17 0.9800
C1—N1 1.321 (2) C10—H19 0.9800
C1—N3 1.472 (2) C10—H18 0.9800
C1—K1 2.9685 (17) C11—H21 0.9800
C1—K1i 3.2060 (18) C11—H22 0.9800
C2—N4 1.279 (2) C11—H20 0.9800
C2—N3 1.356 (2) C12—N4 1.464 (2)
C2—H1 0.9500 C12—C14 1.511 (3)
C3—N1 1.450 (2) C12—C13 1.520 (3)
C3—C4 1.523 (3) C12—H23 1.0000
C3—C5 1.525 (3) C13—H25 0.9800
C3—H2 1.0000 C13—H26 0.9800
C4—K1 3.495 (2) C13—H24 0.9800
C4—H4 0.9800 C14—H27 0.9800
C4—H3 0.9800 C14—H29 0.9800
C4—H5 0.9800 C14—H28 0.9800
C5—H7 0.9800 C15—O1 1.414 (4)
C5—H8 0.9800 C15—K1 3.483 (3)
C5—H6 0.9800 C15—H32 0.9800
C6—N2 1.454 (2) C15—H31 0.9800
C6—C7 1.523 (3) C15—H30 0.9800
C6—C8 1.531 (3) C16—O1 1.409 (3)
C6—H9 1.0000 C16—C16ii 1.502 (5)
C7—H10 0.9800 C16—H34 0.9900
C7—H12 0.9800 C16—H33 0.9900
C7—H11 0.9800 N1—K1i 2.7931 (16)
C8—H14 0.9800 N1—K1 2.8809 (16)
C8—H15 0.9800 N2—K1i 2.8135 (16)
C8—H13 0.9800 N2—K1 2.9786 (16)
C9—N3 1.478 (2) N4—K1 2.9394 (16)
C9—C11 1.504 (3) O1—K1 2.8880 (16)
C9—C10 1.520 (3) K1—K1i 3.4252 (8)
C9—H16 1.0000
N2—C1—N1 120.49 (16) K1—C15—H32 72.0
N2—C1—N3 120.05 (15) O1—C15—H31 109.5
N1—C1—N3 119.42 (15) K1—C15—H31 160.6
N2—C1—K1 77.68 (10) H32—C15—H31 109.5
N1—C1—K1 73.27 (10) O1—C15—H30 109.5
N3—C1—K1 118.28 (10) K1—C15—H30 87.3
N2—C1—K1i 60.96 (10) H32—C15—H30 109.5
N1—C1—K1i 60.10 (10) H31—C15—H30 109.5
N3—C1—K1i 174.37 (11) O1—C16—C16ii 108.0 (2)
K1—C1—K1i 67.26 (4) O1—C16—H34 110.1
N4—C2—N3 124.26 (17) C16ii—C16—H34 110.1
N4—C2—H1 117.9 O1—C16—H33 110.1
N3—C2—H1 117.9 C16ii—C16—H33 110.1
N1—C3—C4 110.43 (17) H34—C16—H33 108.4
N1—C3—C5 109.08 (17) C1—N1—C3 121.64 (16)
C4—C3—C5 109.46 (17) C1—N1—K1i 95.69 (11)
N1—C3—H2 109.3 C3—N1—K1i 141.98 (12)
C4—C3—H2 109.3 C1—N1—K1 80.68 (10)
C5—C3—H2 109.3 C3—N1—K1 115.75 (11)
C3—C4—K1 87.31 (11) K1i—N1—K1 74.25 (4)
C3—C4—H4 109.5 C1—N2—C6 121.77 (16)
K1—C4—H4 159.9 C1—N2—K1i 94.96 (11)
C3—C4—H3 109.5 C6—N2—K1i 142.90 (12)
K1—C4—H3 73.4 C1—N2—K1 76.81 (10)
H4—C4—H3 109.5 C6—N2—K1 117.91 (11)
C3—C4—H5 109.5 K1i—N2—K1 72.44 (4)
K1—C4—H5 52.6 C2—N3—C1 118.08 (14)
H4—C4—H5 109.5 C2—N3—C9 118.91 (15)
H3—C4—H5 109.5 C1—N3—C9 122.73 (14)
C3—C5—H7 109.5 C2—N4—C12 115.65 (16)
C3—C5—H8 109.5 C2—N4—K1 123.14 (12)
H7—C5—H8 109.5 C12—N4—K1 121.21 (11)
C3—C5—H6 109.5 C16—O1—C15 112.12 (19)
H7—C5—H6 109.5 C16—O1—K1 121.11 (14)
H8—C5—H6 109.5 C15—O1—K1 102.68 (15)
N2—C6—C7 110.45 (16) N1i—K1—N2i 48.14 (4)
N2—C6—C8 109.34 (17) N1i—K1—N1 105.75 (4)
C7—C6—C8 109.17 (18) N2i—K1—N1 88.98 (5)
N2—C6—H9 109.3 N1i—K1—O1 98.99 (5)
C7—C6—H9 109.3 N2i—K1—O1 97.20 (5)
C8—C6—H9 109.3 N1—K1—O1 151.41 (5)
C6—C7—H10 109.5 N1i—K1—N4 152.08 (4)
C6—C7—H12 109.5 N2i—K1—N4 153.54 (5)
H10—C7—H12 109.5 N1—K1—N4 70.20 (4)
C6—C7—H11 109.5 O1—K1—N4 94.19 (5)
H10—C7—H11 109.5 N1i—K1—C1 107.91 (5)
H12—C7—H11 109.5 N2i—K1—C1 109.93 (5)
C6—C8—H14 109.5 N1—K1—C1 26.05 (5)
C6—C8—H15 109.5 O1—K1—C1 150.33 (5)
H14—C8—H15 109.5 N4—K1—C1 56.14 (5)
C6—C8—H13 109.5 N1i—K1—N2 87.43 (4)
H14—C8—H13 109.5 N2i—K1—N2 107.56 (4)
H15—C8—H13 109.5 N1—K1—N2 45.91 (4)
N3—C9—C11 111.21 (16) O1—K1—N2 151.32 (5)
N3—C9—C10 112.21 (15) N4—K1—N2 69.83 (4)
C11—C9—C10 109.47 (18) C1—K1—N2 25.51 (5)
N3—C9—H16 107.9 N1i—K1—C1i 24.21 (4)
C11—C9—H16 107.9 N2i—K1—C1i 24.08 (4)
C10—C9—H16 107.9 N1—K1—C1i 99.77 (5)
C9—C10—H17 109.5 O1—K1—C1i 96.93 (5)
C9—C10—H19 109.5 N4—K1—C1i 168.88 (4)
H17—C10—H19 109.5 C1—K1—C1i 112.74 (4)
C9—C10—H18 109.5 N2—K1—C1i 99.86 (4)
H17—C10—H18 109.5 N1i—K1—K1i 54.05 (3)
H19—C10—H18 109.5 N2i—K1—K1i 56.01 (3)
C9—C11—H21 109.5 N1—K1—K1i 51.71 (3)
C9—C11—H22 109.5 O1—K1—K1i 149.99 (4)
H21—C11—H22 109.5 N4—K1—K1i 115.82 (3)
C9—C11—H20 109.5 C1—K1—K1i 59.68 (3)
H21—C11—H20 109.5 N2—K1—K1i 51.55 (3)
H22—C11—H20 109.5 C1i—K1—K1i 53.06 (3)
N4—C12—C14 109.95 (18) N1i—K1—C15 82.81 (6)
N4—C12—C13 108.55 (17) N2i—K1—C15 98.69 (7)
C14—C12—C13 110.70 (19) N1—K1—C15 171.13 (7)
N4—C12—H23 109.2 O1—K1—C15 23.33 (6)
C14—C12—H23 109.2 N4—K1—C15 101.16 (7)
C13—C12—H23 109.2 C1—K1—C15 149.29 (7)
C12—C13—H25 109.5 N2—K1—C15 134.07 (6)
C12—C13—H26 109.5 C1i—K1—C15 89.00 (6)
H25—C13—H26 109.5 K1i—K1—C15 136.79 (6)
C12—C13—H24 109.5 N1i—K1—C4 128.35 (5)
H25—C13—H24 109.5 N2i—K1—C4 85.06 (5)
H26—C13—H24 109.5 N1—K1—C4 43.73 (5)
C12—C14—H27 109.5 O1—K1—C4 108.80 (5)
C12—C14—H29 109.5 N4—K1—C4 68.65 (5)
H27—C14—H29 109.5 C1—K1—C4 63.44 (5)
C12—C14—H28 109.5 N2—K1—C4 87.95 (5)
H27—C14—H28 109.5 C1i—K1—C4 107.77 (5)
H29—C14—H28 109.5 K1i—K1—C4 84.16 (4)
O1—C15—K1 53.99 (12) C15—K1—C4 132.11 (6)
O1—C15—H32 109.5
N1—C3—C4—K1 −13.87 (15) C7—C6—N2—C1 −107.2 (2)
C5—C3—C4—K1 −133.98 (16) C8—C6—N2—C1 132.6 (2)
N2—C1—N1—C3 −178.76 (16) C7—C6—N2—K1i 81.9 (2)
N3—C1—N1—C3 −1.1 (2) C8—C6—N2—K1i −38.3 (3)
K1—C1—N1—C3 −114.58 (16) C7—C6—N2—K1 −15.8 (2)
K1i—C1—N1—C3 172.45 (19) C8—C6—N2—K1 −136.00 (15)
N2—C1—N1—K1i 8.79 (17) N4—C2—N3—C1 4.0 (3)
N3—C1—N1—K1i −173.54 (12) N4—C2—N3—C9 178.04 (16)
K1—C1—N1—K1i 72.97 (4) N2—C1—N3—C2 88.5 (2)
N2—C1—N1—K1 −64.18 (16) N1—C1—N3—C2 −89.2 (2)
N3—C1—N1—K1 113.48 (14) K1—C1—N3—C2 −3.3 (2)
K1i—C1—N1—K1 −72.97 (4) N2—C1—N3—C9 −85.4 (2)
C4—C3—N1—C1 113.8 (2) N1—C1—N3—C9 97.0 (2)
C5—C3—N1—C1 −125.92 (19) K1—C1—N3—C9 −177.14 (12)
C4—C3—N1—K1i −78.5 (2) C11—C9—N3—C2 −171.40 (18)
C5—C3—N1—K1i 41.8 (3) C10—C9—N3—C2 65.6 (2)
C4—C3—N1—K1 18.8 (2) C11—C9—N3—C1 2.4 (3)
C5—C3—N1—K1 139.15 (14) C10—C9—N3—C1 −120.61 (19)
N1—C1—N2—C6 176.79 (17) N3—C2—N4—C12 176.46 (17)
N3—C1—N2—C6 −0.9 (3) N3—C2—N4—K1 −2.6 (2)
K1—C1—N2—C6 114.86 (16) C14—C12—N4—C2 129.07 (19)
K1i—C1—N2—C6 −174.49 (19) C13—C12—N4—C2 −109.7 (2)
N1—C1—N2—K1i −8.72 (17) C14—C12—N4—K1 −51.9 (2)
N3—C1—N2—K1i 173.63 (13) C13—C12—N4—K1 69.4 (2)
K1—C1—N2—K1i −70.65 (4) C16ii—C16—O1—C15 −172.2 (3)
N1—C1—N2—K1 61.93 (15) C16ii—C16—O1—K1 66.3 (3)
N3—C1—N2—K1 −115.72 (14) K1—C15—O1—C16 −131.5 (2)
K1i—C1—N2—K1 70.65 (4)

Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y−1, −z+2.

Funding Statement

This work was funded by Otto-von-Guericke-Universität Magdeburg grant .

References

  1. Aharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869–1877.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141.
  4. Benndorf, P., Preuss, C. & Roesky, P. W. (2011). J. Organomet. Chem. 696, 1150–1155.
  5. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Bülow, R. von, Deuerlein, S., Stey, T., Herbst-Irmer, R., Gornitzka, H. & Stalke, D. (2004). Z. Naturforsch. Teil B, 59, 1471–1479.
  7. Chen, C., Jiang, J., Mao, X., Cong, Y., Cui, Y., Pan, X. & Wu, J. (2018). Inorg. Chem. 57, 3158–3168. [DOI] [PubMed]
  8. Chlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346–2354.
  9. Cole, M. L., Evans, D. J., Junk, P. C. & Smith, M. K. (2003). Chem. Eur. J. 9, 415–424. [DOI] [PubMed]
  10. Cole, M. L. & Junk, P. C. (2003). J. Organomet. Chem. 666, 55–62.
  11. Collins, S. (2011). Coord. Chem. Rev. 255, 118–138.
  12. Devi, A. (2013). Coord. Chem. Rev. 257, 3332–3384.
  13. Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010). J. Organomet. Chem. 695, 1953–1956.
  14. Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268. [DOI] [PubMed]
  15. Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672.
  16. Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374.
  17. Giesbrecht, G. R., Shafir, A. & Arnold, J. (1999). J. Chem. Soc. Dalton Trans. pp. 3601–3604.
  18. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  19. Hong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312–7322.
  20. Junk, P. C. & Cole, M. L. (2007). Chem. Commun. pp. 1579–1590. [DOI] [PubMed]
  21. Liebing, P. (2017). Acta Cryst. E73, 1375–1378. [DOI] [PMC free article] [PubMed]
  22. Liebing, P. & Merzweiler, K. (2015). Z. Anorg. Allg. Chem. 641, 1911–1917.
  23. Nevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745–746, 186–189.
  24. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  25. Sroor, F. M., Liebing, P., Hrib, C. G., Gräsing, D., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1526–1531. [DOI] [PMC free article] [PubMed]
  26. Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1–C5.
  27. Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
  28. Trifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327–1347.
  29. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  30. Yao, S., Chan, H.-S., Lam, C.-K. & Lee, H. K. (2009). Inorg. Chem. 48, 9936–9946. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018015980/zl2742sup1.cif

e-74-01795-sup1.cif (1,007.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015980/zl2742Isup2.hkl

e-74-01795-Isup2.hkl (314.1KB, hkl)

CCDC reference: 1862025

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES