Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 9;74(Pt 12):1746–1750. doi: 10.1107/S2056989018015219

Crystal structure and Hirshfeld surface analysis of 1-{[2-oxo-3-(prop-1-en-2-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-1-yl]meth­yl}-3-(prop-1-en-2-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

Asmaa Saber a,*, Nada Kheira Sebbar b, Tuncer Hökelek c, Brahim Hni a, Joel T Mague d, El Mokhtar Essassi a
PMCID: PMC6281105  PMID: 30574367

In the title compound, the benzo­diazo­lone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of inter­molecular C—H⋯O hydrogen bonds generate layers parallel to the bc plane.

Keywords: crystal structure, hydrogen bond, benzo­diazo­lone, Hirshfeld surface

Abstract

In the title compound, C21H20N4O2, the intra­molecular C—H⋯O hydrogen-bonded benzo­diazo­lone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of inter­molecular C—H⋯O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.8%), H⋯C/C⋯H (30.7%) and H⋯O/O⋯H (11.2%) inter­actions.

Chemical context  

The benzimidazole unit is an important pharmacophore and a privileged structure in the functions of biological mol­ecules. Benzimidazole derivatives have attracted considerable attention from researchers because their bioactive and pharmaceutical properties. Many members of this family are widely used as anti­convulsant, anti-fungal, analgesic, anti­microbial, anti-histaminic and hypnotic or anti-inflammatory agents (Ayhan-Kılcıgil et al., 2007; Soderlind et al., 1999; Luo et al., 2011; Walia et al., 2011; Navarrete-Vázquez et al., 2001). Benzimid­azolone derivatives also find commercial use as dyes for acrylic fibres. The search for new heterocyclic systems including the benzimidazolone moiety with biological activities therefore is of much current importance (Mondieig et al., 2013; Lakhrissi et al., 2008; Ouzidan et al., 2011; Dardouri et al., 2011). In this context, we are inter­ested in the synthesis of the title compound, 1-{[2-oxo-3-(prop-1-en-2-yl)2,3-di­hydro-1H-1,3-benzo­diazol-1-yl)meth­yl}-3-(prop-1-en-2-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one, by reaction of di­chloro­methane with 1-(prop-1-en-2-yl)-1H-benzimidazol-2(3H)-one under phase-transfer catalysis (PTC) conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base. We report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

Structural commentary  

In the title compound (Fig. 1), the intra­molecular C—H⋯O hydrogen-bonded (Table 1) benzo­diazo­lone moieties are planar with the largest deviations being 0.017 (1) Å for atom C7 in the N1-containing unit (r.m.s. deviation = 0.011 Å) and 0.026 (1) Å for atom C18 in the N3-containing unit (r.m.s. deviation = 0.019 Å). The dihedral angle between the mean planes of the benzo­diazo­lone moieties is 57.35 (3)°.graphic file with name e-74-01746-scheme1.jpg

Figure 1.

Figure 1

The title mol­ecule with the labelling scheme and 50% probability ellipsoids. Intra­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2 0.951 (14) 2.493 (14) 3.3598 (11) 151.4 (10)
C10—H10A⋯O1i 0.986 (14) 2.596 (14) 3.3498 (12) 133.3 (11)
C10—H10B⋯O2vi 0.998 (14) 2.488 (14) 3.4780 (12) 171.4 (11)
C13—H13⋯O1 0.961 (13) 2.477 (13) 3.3381 (11) 149.1 (11)

Symmetry codes: (i) Inline graphic; (vi) Inline graphic.

Supra­molecular features  

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, two sets of inter­molecular C—H⋯O hydrogen bonds (Table 1) generate layers parallel to the bc plane. In these layers, one of the benzo­diazole units in each mol­ecule is approximately parallel to the bc plane while the other half of the mol­ecule protrudes from the surface (Fig. 2).

Figure 2.

Figure 2

The packing viewed along the b-axis direction giving an elevation view of two adjacent layers. Inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots appearing near O1, O2 and hydrogen atoms H5, H10A and H10B indicate their roles as the respective donors and acceptors in the dominant C—H ⋯ O hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 5 clearly indicates that no π–π inter­actions are present in the title structure.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1476 to 1.2686 a.u.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms corresponding to positive and negative potentials.

Figure 5.

Figure 5

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and N⋯C/C⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 6 bg, respectively, together with their relative contributions to the Hirshfeld surface. The most important contribution to the overall crystal packing (51.8%) is from H⋯H inter­actions, which are shown in Fig. 6 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The spike with the tip at d e = d i = 1.08 Å in Fig. 6 b is due to the short inter­atomic H⋯H contacts (Table 2). The fingerprint plot, Fig. 6 c, delineated into H⋯C/C⋯H contacts, which make a 30.7% contribution to the HS, shows a pair of characteristic wings and a pair of spikes with the tips at d e + d i ∼2.65 Å. The H⋯O/O⋯H contacts in the structure with a 11.2% contribution to the HS have a symmetrical distribution of points, Fig. 6 d, with the tips at d e + d i = 2.40 Å arising from the short intra- and/or inter­atomic C—H ⋯ O hydrogen bonding (Table 1) as well as from the H⋯O/O⋯H contacts (Table 2). Finally, the H⋯N/N⋯H (Fig. 6 e) contacts in the structure with a 5.1% contribution to the HS also have a symmetrical distribution of points, with the pair of wings appearing at d e + d i = 2.80 Å.

Figure 6.

Figure 6

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) N⋯C/C⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Selected interatomic distances (Å).

O1⋯C10 3.2233 (12) C3⋯H11A vi 3.017 (12)
O1⋯C13 3.3381 (12) C4⋯H20B vii 3.013 (14)
O1⋯C10i 3.3499 (12) C5⋯H11A 2.980 (12)
O2⋯C20 3.1500 (13) C7⋯H13 3.084 (13)
O2⋯C5 3.3598 (12) C7⋯H21B v 2.962 (14)
O1⋯H11B 2.510 (12) C7⋯H10A 2.891 (14)
O1⋯H13 2.477 (13) C8⋯H2 2.956 (13)
O1⋯H10A i 2.595 (14) C9⋯H2 2.981 (13)
O1⋯H20C ii 2.917 (15) C9⋯H15ix 2.898 (13)
O1⋯H10A 2.667 (14) C10⋯H9B x 3.051 (14)
O2⋯H3iii 2.772 (13) C11⋯H2iii 3.077 (13)
O2⋯H5 2.493 (14) C11⋯H13 3.009 (13)
O2⋯H11A 2.505 (12) C11⋯H5 2.972 (13)
O2⋯H20C 2.581 (15) C13⋯H11B 2.965 (12)
O2⋯H10B iv 2.487 (14) C13⋯H9A iii 3.051 (14)
O2⋯H15v 2.781 (14) C14⋯H9A iii 2.989 (14)
N1⋯C3iv 3.3814 (12) C16⋯H21A 3.080 (14)
N2⋯C21v 3.4318 (13) C17⋯H21A 2.979 (14)
N3⋯H3iii 2.938 (13) C18⋯H16v 2.858 (14)
N3⋯H16v 2.920 (14) C18⋯H5 3.093 (14)
C1⋯C21v 3.5839 (13) C18⋯H20C 2.852 (15)
C2⋯C11vi 3.5159 (12) C18⋯H3iii 2.701 (13)
C2⋯C9 3.4314 (13) C19⋯H16 2.977 (14)
C3⋯C18vii 3.3908 (13) C21⋯H16 2.874 (14)
C3⋯C11vi 3.3994 (12) H2⋯H11B vii 2.428 (18)
C7⋯C21v 3.5253 (13) H5⋯H11A 2.583 (18)
C16⋯C21 3.3315 (14) H9B⋯H10C 2.495 (19)
C16⋯C18viii 3.4599 (13) H9B⋯H10B x 2.44 (2)
C1⋯H21A v 2.941 (14) H9B⋯H15ix 2.578 (19)
C1⋯H9A 3.064 (13) H10C⋯H9B 2.495 (19)
C1⋯H11A vi 2.946 (12) H20A⋯H21B 2.45 (2)
C2⋯H11A vi 2.786 (12) H20A⋯H20A xi 2.34 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic.

The Hirshfeld surface representations for the function dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions in Fig. 7 ad, respectively.

Figure 7.

Figure 7

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.39, update of August 2018; Groom et al., 2016) for benzimidazolin-2-one derivatives in which both nitro­gen atoms form exocyclic C—N bonds gave 61 hits. In these structures, the bicyclic ring system is either planar, has a slight twist end-to-end or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape. The closest examples to the title compound are NOTQUI (Díez-Barra et al., 1997) and XEVJOX (Huang et al., 2001) with ZICNEE (Shi & Thummel, 1995) as a more distant relative (see Fig. 8). In XEVJOX, the N—C—N angle connecting the two bicyclic units [114.19 (12)°] is essentially the same as in the title compound [114.04 (7)°]. In both of these, the bicyclic units are in an anti arrangement and this is basically the same for ZICNEE. Inter­estingly, the three bicyclic units in NOTQUI are close to all being syn to one another.

Figure 8.

Figure 8

NOTQUI, XEVJOX and ZICNEE.

Synthesis and crystallization  

To a solution of 1-(prop-1-en-2-yl)-1H-benzimidazol-2(3H)-one (2.87mmol) in di­chloro­methane (30 ml) as reagent and solvent were added potassium carbonate (5.71 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide (0.37 mmol). The mixture was heated for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol solution to afford colourless crystals in 67% yield.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were located in a difference-Fourier map and were freely refined.

Table 3. Experimental details.

Crystal data
Chemical formula C21H20N4O2
M r 360.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.5244 (5), 8.6312 (4), 17.9845 (8)
β (°) 94.134 (1)
V3) 1784.25 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.39 × 0.22
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 33699, 4912, 4269
R int 0.027
(sin θ/λ)max−1) 0.696
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.113, 1.09
No. of reflections 4912
No. of parameters 324
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.47, −0.18

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018015219/xu5947sup1.cif

e-74-01746-sup1.cif (31.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015219/xu5947Isup2.hkl

e-74-01746-Isup2.hkl (235.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018015219/xu5947Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018015219/xu5947Isup4.cml

CCDC reference: 1875883

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C21H20N4O2 F(000) = 760
Mr = 360.41 Dx = 1.342 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.5244 (5) Å Cell parameters from 9896 reflections
b = 8.6312 (4) Å θ = 2.3–29.6°
c = 17.9845 (8) Å µ = 0.09 mm1
β = 94.134 (1)° T = 100 K
V = 1784.25 (14) Å3 Block, colourless
Z = 4 0.40 × 0.39 × 0.22 mm

Data collection

Bruker SMART APEX CCD diffractometer 4912 independent reflections
Radiation source: fine-focus sealed tube 4269 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 8.3333 pixels mm-1 θmax = 29.7°, θmin = 1.8°
φ and ω scans h = −15→15
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −11→11
Tmin = 0.89, Tmax = 0.98 l = −25→25
33699 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: difference Fourier map
wR(F2) = 0.113 All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.248P] where P = (Fo2 + 2Fc2)/3
4912 reflections (Δ/σ)max < 0.001
324 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14989 (6) 0.48310 (8) 0.43717 (4) 0.01960 (15)
O2 0.23203 (6) 0.33229 (8) 0.13640 (4) 0.01728 (15)
N1 0.15509 (6) 0.53341 (9) 0.30979 (4) 0.01421 (16)
N2 0.14171 (6) 0.73261 (9) 0.38646 (4) 0.01478 (16)
N3 0.26416 (6) 0.31586 (9) 0.26564 (4) 0.01347 (16)
N4 0.39789 (6) 0.21797 (9) 0.19636 (4) 0.01465 (16)
C1 0.14167 (7) 0.79263 (10) 0.31433 (5) 0.01364 (17)
C2 0.13453 (8) 0.94353 (11) 0.28808 (5) 0.01628 (18)
H2 0.1277 (11) 1.0298 (15) 0.3234 (7) 0.020 (3)*
C3 0.13427 (8) 0.96453 (11) 0.21101 (5) 0.01748 (18)
H3 0.1274 (10) 1.0686 (15) 0.1888 (7) 0.021 (3)*
C4 0.14246 (8) 0.83917 (11) 0.16280 (5) 0.01769 (18)
H4 0.1443 (11) 0.8573 (15) 0.1091 (7) 0.021 (3)*
C5 0.15041 (8) 0.68681 (11) 0.18947 (5) 0.01611 (18)
H5 0.1568 (11) 0.5978 (16) 0.1588 (7) 0.024 (3)*
C6 0.14948 (7) 0.66652 (10) 0.26575 (5) 0.01342 (17)
C7 0.14860 (7) 0.57243 (10) 0.38459 (5) 0.01462 (17)
C8 0.12521 (8) 0.81967 (11) 0.45309 (5) 0.01582 (18)
C9 0.20574 (8) 0.92203 (12) 0.47637 (5) 0.02068 (19)
H9A 0.2757 (12) 0.9366 (16) 0.4506 (7) 0.027 (3)*
H9B 0.1940 (12) 0.9911 (16) 0.5186 (7) 0.027 (3)*
C10 0.01276 (8) 0.78748 (12) 0.48653 (5) 0.01963 (19)
H10A 0.0075 (12) 0.6777 (17) 0.5012 (8) 0.029 (3)*
H10B −0.0541 (12) 0.8114 (16) 0.4499 (8) 0.026 (3)*
H10C 0.0073 (11) 0.8515 (16) 0.5326 (8) 0.027 (3)*
C11 0.15234 (7) 0.37476 (10) 0.28445 (5) 0.01449 (17)
H11A 0.0994 (10) 0.3665 (14) 0.2396 (7) 0.016 (3)*
H11B 0.1243 (11) 0.3110 (14) 0.3247 (7) 0.018 (3)*
C12 0.35153 (7) 0.25387 (10) 0.31484 (5) 0.01369 (17)
C13 0.36158 (8) 0.24451 (11) 0.39187 (5) 0.01675 (18)
H13 0.3032 (11) 0.2870 (16) 0.4215 (7) 0.022 (3)*
C14 0.46041 (9) 0.16942 (11) 0.42436 (5) 0.01995 (19)
H14 0.4683 (12) 0.1616 (16) 0.4794 (8) 0.027 (3)*
C15 0.54473 (8) 0.10818 (12) 0.38065 (5) 0.0208 (2)
H15 0.6129 (12) 0.0591 (17) 0.4037 (7) 0.031 (3)*
C16 0.53439 (8) 0.11942 (11) 0.30305 (5) 0.01861 (19)
H16 0.5928 (11) 0.0792 (17) 0.2729 (8) 0.028 (3)*
C17 0.43617 (7) 0.19291 (10) 0.27099 (5) 0.01441 (17)
C18 0.29128 (7) 0.29272 (10) 0.19241 (5) 0.01344 (17)
C19 0.45369 (8) 0.16277 (10) 0.13270 (5) 0.01655 (18)
C20 0.38248 (9) 0.05439 (13) 0.08298 (6) 0.0238 (2)
H20A 0.4249 (13) 0.0262 (18) 0.0389 (8) 0.040 (4)*
H20B 0.3693 (12) −0.0429 (18) 0.1112 (8) 0.034 (4)*
H20C 0.3068 (13) 0.0959 (18) 0.0661 (8) 0.033 (3)*
C21 0.56303 (9) 0.20343 (13) 0.12450 (6) 0.0232 (2)
H21A 0.6039 (12) 0.2754 (17) 0.1589 (8) 0.028 (3)*
H21B 0.6045 (12) 0.1602 (16) 0.0827 (8) 0.030 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0239 (3) 0.0166 (3) 0.0187 (3) 0.0040 (3) 0.0045 (3) 0.0038 (2)
O2 0.0170 (3) 0.0173 (3) 0.0171 (3) 0.0021 (2) −0.0019 (2) 0.0004 (2)
N1 0.0163 (3) 0.0111 (4) 0.0153 (3) 0.0012 (3) 0.0022 (3) −0.0005 (3)
N2 0.0180 (3) 0.0121 (4) 0.0143 (3) 0.0011 (3) 0.0021 (3) −0.0008 (3)
N3 0.0124 (3) 0.0133 (3) 0.0146 (3) 0.0022 (3) 0.0004 (3) −0.0010 (3)
N4 0.0134 (3) 0.0157 (4) 0.0149 (3) 0.0026 (3) 0.0016 (3) −0.0004 (3)
C1 0.0114 (4) 0.0139 (4) 0.0156 (4) −0.0004 (3) 0.0006 (3) −0.0006 (3)
C2 0.0157 (4) 0.0132 (4) 0.0198 (4) −0.0015 (3) 0.0004 (3) −0.0014 (3)
C3 0.0171 (4) 0.0145 (4) 0.0206 (4) −0.0030 (3) −0.0002 (3) 0.0024 (3)
C4 0.0173 (4) 0.0187 (5) 0.0169 (4) −0.0025 (3) 0.0001 (3) 0.0022 (3)
C5 0.0158 (4) 0.0163 (4) 0.0162 (4) −0.0006 (3) 0.0008 (3) −0.0016 (3)
C6 0.0111 (4) 0.0116 (4) 0.0175 (4) 0.0000 (3) 0.0007 (3) −0.0003 (3)
C7 0.0129 (4) 0.0142 (4) 0.0169 (4) 0.0016 (3) 0.0024 (3) −0.0005 (3)
C8 0.0178 (4) 0.0159 (4) 0.0138 (4) 0.0052 (3) 0.0008 (3) −0.0013 (3)
C9 0.0204 (4) 0.0202 (5) 0.0213 (4) 0.0016 (4) 0.0007 (3) −0.0049 (4)
C10 0.0173 (4) 0.0237 (5) 0.0181 (4) 0.0029 (3) 0.0031 (3) −0.0017 (4)
C11 0.0114 (4) 0.0116 (4) 0.0206 (4) 0.0004 (3) 0.0018 (3) −0.0020 (3)
C12 0.0134 (4) 0.0107 (4) 0.0168 (4) 0.0002 (3) −0.0003 (3) 0.0000 (3)
C13 0.0190 (4) 0.0146 (4) 0.0167 (4) 0.0006 (3) 0.0011 (3) −0.0017 (3)
C14 0.0237 (5) 0.0180 (4) 0.0175 (4) 0.0007 (3) −0.0030 (3) 0.0004 (3)
C15 0.0192 (4) 0.0198 (5) 0.0226 (4) 0.0039 (3) −0.0039 (3) 0.0015 (4)
C16 0.0153 (4) 0.0186 (4) 0.0218 (4) 0.0035 (3) 0.0010 (3) 0.0002 (3)
C17 0.0142 (4) 0.0129 (4) 0.0160 (4) −0.0002 (3) 0.0003 (3) −0.0003 (3)
C18 0.0133 (4) 0.0108 (4) 0.0162 (4) −0.0008 (3) 0.0012 (3) −0.0011 (3)
C19 0.0181 (4) 0.0157 (4) 0.0163 (4) 0.0027 (3) 0.0044 (3) 0.0008 (3)
C20 0.0235 (5) 0.0256 (5) 0.0231 (4) −0.0021 (4) 0.0070 (4) −0.0083 (4)
C21 0.0180 (4) 0.0292 (5) 0.0230 (5) 0.0011 (4) 0.0053 (4) 0.0011 (4)

Geometric parameters (Å, º)

O1—C7 1.2194 (11) C8—C10 1.4936 (13)
O2—C18 1.2241 (11) C9—H9A 0.967 (13)
N1—C7 1.3938 (11) C9—H9B 0.982 (14)
N1—C6 1.3943 (11) C10—H10A 0.986 (14)
N1—C11 1.4428 (11) C10—H10B 0.998 (14)
N2—C7 1.3853 (12) C10—H10C 1.001 (14)
N2—C1 1.3969 (11) C11—H11A 0.978 (12)
N2—C8 1.4386 (11) C11—H11B 0.982 (12)
N3—C18 1.3899 (11) C12—C13 1.3843 (12)
N3—C12 1.3980 (11) C12—C17 1.4003 (12)
N3—C11 1.4478 (11) C13—C14 1.4010 (13)
N4—C18 1.3850 (11) C13—H13 0.961 (13)
N4—C17 1.3991 (11) C14—C15 1.3970 (14)
N4—C19 1.4343 (11) C14—H14 0.991 (14)
C1—C2 1.3858 (12) C15—C16 1.3956 (13)
C1—C6 1.4026 (12) C15—H15 0.960 (14)
C2—C3 1.3976 (13) C16—C17 1.3863 (12)
C2—H2 0.986 (12) C16—H16 0.959 (14)
C3—C4 1.3940 (13) C19—C21 1.3265 (13)
C3—H3 0.984 (13) C19—C20 1.4975 (14)
C4—C5 1.4005 (13) C20—H20A 0.992 (15)
C4—H4 0.980 (13) C20—H20B 0.998 (15)
C5—C6 1.3839 (12) C20—H20C 0.971 (15)
C5—H5 0.951 (14) C21—H21A 0.973 (14)
C8—C9 1.3271 (14) C21—H21B 0.993 (15)
O1···C10 3.2233 (12) C3···H11Avi 3.017 (12)
O1···C13 3.3381 (12) C4···H20Bvii 3.013 (14)
O1···C10i 3.3499 (12) C5···H11A 2.980 (12)
O2···C20 3.1500 (13) C7···H13 3.084 (13)
O2···C5 3.3598 (12) C7···H21Bv 2.962 (14)
O1···H11B 2.510 (12) C7···H10A 2.891 (14)
O1···H13 2.477 (13) C8···H2 2.956 (13)
O1···H10Ai 2.595 (14) C9···H2 2.981 (13)
O1···H20Cii 2.917 (15) C9···H15ix 2.898 (13)
O1···H10A 2.667 (14) C10···H9Bx 3.051 (14)
O2···H3iii 2.772 (13) C11···H2iii 3.077 (13)
O2···H5 2.493 (14) C11···H13 3.009 (13)
O2···H11A 2.505 (12) C11···H5 2.972 (13)
O2···H20C 2.581 (15) C13···H11B 2.965 (12)
O2···H10Biv 2.487 (14) C13···H9Aiii 3.051 (14)
O2···H15v 2.781 (14) C14···H9Aiii 2.989 (14)
N1···C3iv 3.3814 (12) C16···H21A 3.080 (14)
N2···C21v 3.4318 (13) C17···H21A 2.979 (14)
N3···H3iii 2.938 (13) C18···H16v 2.858 (14)
N3···H16v 2.920 (14) C18···H5 3.093 (14)
C1···C21v 3.5839 (13) C18···H20C 2.852 (15)
C2···C11vi 3.5159 (12) C18···H3iii 2.701 (13)
C2···C9 3.4314 (13) C19···H16 2.977 (14)
C3···C18vii 3.3908 (13) C21···H16 2.874 (14)
C3···C11vi 3.3994 (12) H2···H11Bvii 2.428 (18)
C7···C21v 3.5253 (13) H5···H11A 2.583 (18)
C16···C21 3.3315 (14) H9B···H10C 2.495 (19)
C16···C18viii 3.4599 (13) H9B···H10Bx 2.44 (2)
C1···H21Av 2.941 (14) H9B···H15ix 2.578 (19)
C1···H9A 3.064 (13) H10C···H9B 2.495 (19)
C1···H11Avi 2.946 (12) H20A···H21B 2.45 (2)
C2···H11Avi 2.786 (12) H20A···H20Axi 2.34 (2)
C7—N1—C6 110.21 (7) C8—C10—H10C 109.8 (8)
C7—N1—C11 122.19 (7) H10A—C10—H10C 107.5 (11)
C6—N1—C11 127.12 (7) H10B—C10—H10C 109.9 (11)
C7—N2—C1 110.10 (7) N1—C11—N3 114.04 (7)
C7—N2—C8 123.56 (7) N1—C11—H11A 109.1 (7)
C1—N2—C8 126.06 (8) N3—C11—H11A 107.2 (7)
C18—N3—C12 110.11 (7) N1—C11—H11B 107.4 (7)
C18—N3—C11 122.45 (7) N3—C11—H11B 108.7 (7)
C12—N3—C11 126.81 (7) H11A—C11—H11B 110.4 (10)
C18—N4—C17 109.78 (7) C13—C12—N3 131.31 (8)
C18—N4—C19 124.12 (7) C13—C12—C17 122.02 (8)
C17—N4—C19 125.86 (7) N3—C12—C17 106.66 (7)
C2—C1—N2 131.38 (8) C12—C13—C14 116.83 (8)
C2—C1—C6 121.47 (8) C12—C13—H13 121.4 (8)
N2—C1—C6 107.15 (8) C14—C13—H13 121.7 (8)
C1—C2—C3 117.10 (8) C15—C14—C13 121.19 (9)
C1—C2—H2 119.7 (7) C15—C14—H14 121.3 (8)
C3—C2—H2 123.2 (7) C13—C14—H14 117.5 (8)
C4—C3—C2 121.38 (8) C16—C15—C14 121.58 (9)
C4—C3—H3 117.6 (7) C16—C15—H15 118.0 (8)
C2—C3—H3 121.0 (7) C14—C15—H15 120.4 (8)
C3—C4—C5 121.44 (8) C17—C16—C15 117.13 (8)
C3—C4—H4 119.7 (8) C17—C16—H16 121.1 (8)
C5—C4—H4 118.8 (8) C15—C16—H16 121.8 (8)
C6—C5—C4 116.95 (8) C16—C17—N4 131.39 (8)
C6—C5—H5 118.6 (8) C16—C17—C12 121.25 (8)
C4—C5—H5 124.4 (8) N4—C17—C12 107.33 (7)
C5—C6—N1 131.61 (8) O2—C18—N4 127.76 (8)
C5—C6—C1 121.65 (8) O2—C18—N3 126.13 (8)
N1—C6—C1 106.75 (7) N4—C18—N3 106.11 (7)
O1—C7—N2 127.56 (8) C21—C19—N4 119.01 (9)
O1—C7—N1 126.66 (8) C21—C19—C20 125.66 (9)
N2—C7—N1 105.77 (7) N4—C19—C20 115.23 (8)
C9—C8—N2 118.63 (8) C19—C20—H20A 110.5 (9)
C9—C8—C10 127.17 (8) C19—C20—H20B 108.6 (8)
N2—C8—C10 114.13 (8) H20A—C20—H20B 107.6 (12)
C8—C9—H9A 121.6 (8) C19—C20—H20C 113.4 (9)
C8—C9—H9B 121.1 (8) H20A—C20—H20C 108.9 (12)
H9A—C9—H9B 117.2 (12) H20B—C20—H20C 107.6 (12)
C8—C10—H10A 110.9 (8) C19—C21—H21A 121.2 (8)
C8—C10—H10B 110.3 (8) C19—C21—H21B 119.9 (8)
H10A—C10—H10B 108.4 (11) H21A—C21—H21B 118.9 (12)
C7—N2—C1—C2 178.97 (9) C18—N3—C11—N1 −106.27 (9)
C8—N2—C1—C2 4.89 (14) C12—N3—C11—N1 83.78 (10)
C7—N2—C1—C6 −0.36 (9) C18—N3—C12—C13 −177.76 (9)
C8—N2—C1—C6 −174.44 (8) C11—N3—C12—C13 −6.78 (15)
N2—C1—C2—C3 −178.63 (8) C18—N3—C12—C17 1.01 (9)
C6—C1—C2—C3 0.62 (13) C11—N3—C12—C17 171.99 (8)
C1—C2—C3—C4 −0.86 (13) N3—C12—C13—C14 178.01 (9)
C2—C3—C4—C5 0.49 (14) C17—C12—C13—C14 −0.60 (13)
C3—C4—C5—C6 0.15 (13) C12—C13—C14—C15 0.41 (14)
C4—C5—C6—N1 179.51 (9) C13—C14—C15—C16 0.17 (15)
C4—C5—C6—C1 −0.39 (13) C14—C15—C16—C17 −0.55 (15)
C7—N1—C6—C5 −178.70 (9) C15—C16—C17—N4 −177.31 (9)
C11—N1—C6—C5 −6.53 (15) C15—C16—C17—C12 0.36 (14)
C7—N1—C6—C1 1.21 (9) C18—N4—C17—C16 177.76 (9)
C11—N1—C6—C1 173.38 (8) C19—N4—C17—C16 3.22 (16)
C2—C1—C6—C5 0.00 (13) C18—N4—C17—C12 −0.16 (10)
N2—C1—C6—C5 179.41 (8) C19—N4—C17—C12 −174.69 (8)
C2—C1—C6—N1 −179.92 (8) C13—C12—C17—C16 0.22 (14)
N2—C1—C6—N1 −0.51 (9) N3—C12—C17—C16 −178.69 (8)
C1—N2—C7—O1 −179.53 (8) C13—C12—C17—N4 178.40 (8)
C8—N2—C7—O1 −5.27 (14) N3—C12—C17—N4 −0.51 (9)
C1—N2—C7—N1 1.08 (9) C17—N4—C18—O2 −179.70 (9)
C8—N2—C7—N1 175.34 (7) C19—N4—C18—O2 −5.05 (15)
C6—N1—C7—O1 179.19 (8) C17—N4—C18—N3 0.76 (10)
C11—N1—C7—O1 6.57 (13) C19—N4—C18—N3 175.42 (8)
C6—N1—C7—N2 −1.42 (9) C12—N3—C18—O2 179.36 (9)
C11—N1—C7—N2 −174.04 (7) C11—N3—C18—O2 7.92 (14)
C7—N2—C8—C9 120.14 (10) C12—N3—C18—N4 −1.10 (9)
C1—N2—C8—C9 −66.54 (12) C11—N3—C18—N4 −172.54 (7)
C7—N2—C8—C10 −62.69 (11) C18—N4—C19—C21 127.96 (10)
C1—N2—C8—C10 110.64 (10) C17—N4—C19—C21 −58.25 (13)
C7—N1—C11—N3 −105.28 (9) C18—N4—C19—C20 −55.46 (12)
C6—N1—C11—N3 83.41 (10) C17—N4—C19—C20 118.33 (10)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x, y−1, z; (iv) −x, y−1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) −x, y+1/2, −z+1/2; (vii) x, y+1, z; (viii) −x+1, y−1/2, −z+1/2; (ix) −x+1, −y+1, −z+1; (x) −x, −y+2, −z+1; (xi) −x+1, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2 0.951 (14) 2.493 (14) 3.3598 (11) 151.4 (10)
C10—H10A···O1i 0.986 (14) 2.596 (14) 3.3498 (12) 133.3 (11)
C10—H10B···O2vi 0.998 (14) 2.488 (14) 3.4780 (12) 171.4 (11)
C13—H13···O1 0.961 (13) 2.477 (13) 3.3381 (11) 149.1 (11)

Symmetry codes: (i) −x, −y+1, −z+1; (vi) −x, y+1/2, −z+1/2.

Funding Statement

This work was funded by Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hökelek.

References

  1. Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611. [DOI] [PubMed]
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853. [DOI] [PMC free article] [PubMed]
  5. Díez-Barra, E., Dotor, J., de la Hoz, A., Foces-Foces, C., Enjalbal, C., Aubagnac, J. L., Claramunt, R. M. & Elguero, J. (1997). Tetrahedron, 53, 7689–7704.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  8. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  9. Huang, K. S., Haddadin, M. J., Olmstead, M. M. & Kurth, M. J. (2001). J. Org. Chem. 66, 1310–1315. [DOI] [PubMed]
  10. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433. [DOI] [PubMed]
  13. Luo, Y., Yao, J. P., Yang, L., Feng, C. L., Tang, W., Wang, G. F., Zuo, J. P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83. [DOI] [PubMed]
  14. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  15. Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61.
  16. Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Corés, R., Hernandez, M. & Castillo, R. (2001). Bioorg. Med. Chem. Lett. 11, 187–190. [DOI] [PubMed]
  17. Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Shi, Z. & Thummel, R. P. (1995). J. Org. Chem. 60, 5935–5945.
  22. Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36. [PubMed]
  23. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  24. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  25. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  26. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  27. Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. Chem. 1, 565–574.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018015219/xu5947sup1.cif

e-74-01746-sup1.cif (31.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015219/xu5947Isup2.hkl

e-74-01746-Isup2.hkl (235.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018015219/xu5947Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018015219/xu5947Isup4.cml

CCDC reference: 1875883

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES