Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 30;74(Pt 12):1913–1918. doi: 10.1107/S2056989018016651

Crystal structure and Hirshfeld surface analysis of two imidazo[1,2-a]pyridine derivatives: N-tert-butyl-2-(4-meth­oxy­phen­yl)-5-methyl­imidazo[1,2-a]pyridin-3-amine and N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyridin-3-amine

G Dhanalakshmi a, Mala Ramanjaneyulu b, Sathiah Thennarasu b, S Aravindhan c,*
PMCID: PMC6281107  PMID: 30574400

In the title imidazo[1,2-a]pyridine derivatives, N-tert-butyl-2-(4-meth­oxy­phen­yl)-5-methyl­imidazo[1,2-a]pyridin-3-amine, (I), and N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyridin-3-amine, (II), the 4-meth­oxy­phenyl ring in (I) and the 4-(di­methyl­amino)­phenyl ring in (II) are inclined to the mean planes of the respective imidazole rings by 26.69 (9) and 31.35 (10)°.

Keywords: crystal structure; imidazole; imidazo[1,2-a]pyridine derivatives; N—H⋯N hydrogen bonding; C—H⋯π inter­actions; offset π–π inter­actions; Hirshfeld surface analysis; fingerprint plots

Abstract

In the title imidazo[1,2-a]pyridine derivatives, N-tert-butyl-2-(4-meth­oxy­phen­yl)-5-methyl­imidazo[1,2-a]pyridin-3-amine, C19H23N3O, (I), and N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyridin-3-amine, C19H24N4, (II), the 4-meth­oxy­phenyl ring in (I) and the 4-(di­methyl­amino)­phenyl ring in (II) are inclined to the respective imidazole rings by 26.69 (9) and 31.35 (10)°. In the crystal of (I), mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains propagating along the [001] direction. The chains are linked by C—H⋯π inter­actions, forming layers parallel to the (010) plane. In (II), the crystal packing also features N—H⋯N hydrogen bonds, which together with C—H⋯N hydrogen bonds link mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯π inter­actions to form layers parallel to the (100) plane. Inversion-related layers are linked by offset π–π inter­actions [inter­centroid distance = 3.577 (1) Å]. The inter­molecular inter­actions of both compounds were analyzed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

Chemical context  

Imidazoles are heterocyclic compounds which show important pharmacological and biochemical properties. They exhibit anti-fungal (Banfi et al., 2006), anti-bacterial (Jackson et al., 2000), anti-tumour (Dooley et al., 1992; Cui et al., 2003), anti-protozoal (Biftu et al., 2006), anti-herpes (Gudmundsson & Johns, 2007), anti-inflammatory (Rupert et al., 2003), anti-ulcerative, anti-hypertensive, anti-histaminic and anti-helminthic properties (Spasov et al., 1999). They also exhibit different therapeutic (Silvestre et al., 1998; Lhassani et al., 1999; Ertl et al., 2000) and fluorescence properties (Kawai et al., 2001; Abdullah, 2005). Imidazo[1,2-a]pyridines have been shown to be highly active against human cytomegalovirus and varicella-zoster virus (Gueffier et al., 1998; Mavel et al., 2002). In the present study, we report the synthesis, the single crystal X-ray diffraction studies, and Hirshfeld surface analysis of two new novel imidazole derivatives, N-tert-butyl-2-(4-meth­oxy­phen­yl)-5-methyl­imidazo[1,2-a]pyridin-3-amine, (I), and N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyridin-3-amine, (II).graphic file with name e-74-01913-scheme1.jpg

Structural commentary  

The mol­ecular structure of compound (I) is shown in Fig. 1, and that of compound (II) in Fig. 2. The overall conformation of the two mol­ecules is similar, as shown in the structural overlap drawing, Fig. 3. In compound (I), the imidazole ring system is planar with an r.m.s deviation of 0.062 Å and a maximum deviation of 0.071 (2) Å for atom C1. In compound (II), the imidazole ring system is planar with an r.m.s deviation of 0.029 Å and a maximum deviation of 0.031 (2) Å for atom N2. In (I) the pyridine ring (N2/C1–C5) of the imidazole ring system makes a dihedral angle of 4.91 (11)° with the five-membered ring (N2/N3/C5–C7), while the corresponding angle in (II) is 2.90 (13)°. In both compounds, the difference in endocyclic angles [129.27 (19)° for bond angle C4—C5—N3 and 132.33 (17)° for bond angle C1—N2—C6 in compound (I), and 131.1 (2) and 130.4 (2)°, respectively, in compound (II)] of the imidazole ring systems are due to the merging of five- and six-membered rings and the strain is taken up by angular distortion rather than by bond length distortion.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

A structural overlap view of mol­ecules (I) and (II).

The dihedral angle between the pyridine (N2/C1–C5) and the benzene (C8–C13) rings is 25.04 (10)° in (I) and 31.11 (12) ° in (II). In (I) the meth­oxy group (C11/O1/C14) lies in the plane of the benzene ring (C8–C13) to which it is attached, with a dihedral angle of 0.6 (2)°. In (II) the di­methyl­amine group (N4/C14/C15) also lies close to the plane of the benzene ring (C8–C13) with a dihedral angle of 1.42 (19)°. The dihedral angle between atoms N1/C16/C18 and the imidazole ring mean plane is 80.28 (19)° in (I) and 84.6 (2)° in (II). The sum of the bond angles around atom N2 is 359.87 ° in (I), and the sums around atoms N2 and N4 in (II) are 359.85 and 360.0°, respectively, indicating sp 2 hybridization. In compound (I) the torsion angles C10—C9—C8—C7 and C18—C16—N1—C6 are −178.9 (2) and 170.52 (18)°, respectively, while the corresponding torsion angles in compound (II) are −177.9 (2) and 179.4 (2)°, respectively. This shows that for both compounds the imidazole ring is (−) anti­periplanar with the benzene ring and (+) anti­periplanar with the side-chain atoms N1, C16 and C18.

Supra­molecular features  

In the crystal of (I), mol­ecules are linked by N1—H1A⋯N3i hydrogen bonds (Table 1), forming C(8) chains propagating along the c-axis direction, as shown in Fig. 4. The chains are linked by C—H⋯π inter­actions, forming layers lying parallel to the ac plane (Fig. 4, Table 1).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg4 is the centroid of the imidazole ring system N2/N3/C1–C7.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.84 (2) 2.41 (2) 3.226 (2) 163.6 (19)
C14—H14ACg4ii 0.96 2.93 3.862 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

The crystal packing of compound (I) viewed along the b axis, showing the inter­molecular N—H⋯N hydrogen bonds as dashed lines (Table 1). The C—H⋯π inter­actions are also represented by cyan dashed lines (Table 1).

In the crystal of (II), mol­ecules are linked by N1—H1A⋯N3i and C13—H13⋯N3i hydrogen bonds (Table 2), forming chains propagating along the [001] direction, as shown in Fig. 5. The chains are also linked by C—H⋯π inter­actions, forming layers lying parallel to the bc plane (Fig. 5, Table 2). Inversion-related layers are linked by offset π–π inter­actions involving the pyridine ring of the imidazole ring system: Cg2⋯Cg2iii = 3.577 (1) Å, Cg2 is the centroid of the pyridine ring (N2/C1–C5), α = 0.0 (1)°, β = 22.3°, inter­planar distance = 3.309 (1) Å, offset = 1.357 Å; symmetry code (iii) −x + 1, −y + 1, −z + 1.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg3 is the centroid of benzene ring C8–C13.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.86 (3) 2.56 (3) 3.412 (3) 167 (2)
C13—H13⋯N3i 0.93 2.57 3.467 (3) 161
C19—H19BCg3ii 0.96 2.87 3.829 (4) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 5.

Figure 5

The crystal packing of compound (II) viewed along the a axis, showing the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds and C—H⋯π inter­actions as dashed lines (Table 2).

Hirshfeld Surface Analysis  

Hirshfeld surface analysis was used to qu­antify the inter­molecular contacts of the title compounds, using the software CrystalExplorer17.5 (Turner et al., 2017). The bright-red spots on the Hirshfeld surface mapped over d norm [Fig. 6(a) and 7(a)], show the presence of N—H⋯N and C—H⋯ N inter­actions with neighbouring mol­ecules. The surfaces mapped over the electrostatic potential are illustrated in Fig. 6(b) and 7(b), while Fig. 6(c) and 7(c) show the inter­molecular contacts. The presence of red and blue triangles on the shape index map [Fig. 7(d)], indicates the presence of π–π stacking inter­actions in compound (II), and their absence in Fig. 6(d) shows that such inter­actions are absent in compound (I). The large flat region in Fig. 7(e), shown on the curvature map, confirms the presence of C—H⋯π inter­actions in compound (II). The fragment patches on the Hirshfeld surface [Figs. 6(f) and 7(f)] show the coordination environments of the mol­ecules. The complete two-dimensional fingerprint plots are shown in Fig. 8(a) and 9(a). The H⋯H, C⋯H, N⋯H, C⋯N, H⋯O and C⋯C inter­actions are illustrated in Fig. 8(b)–8(e) for (I) and Fig. 9(b)–9(e) for (II). The H⋯H inter­actions make the largest contributions [Fig. 8(b) and 9(b)] to the overall Hirshfeld surfaces [68.3% for compound (I) and 71.6% for compound (II)]. The C⋯H inter­actions appear as two wings in the fingerprint plot [Fig. 8(c) and 9(c)], showing a contribution of 18.2% for compound (I) and 17.7% for compound (II) of the Hirshfeld surfaces. The contribution from the N⋯H contacts, corresponding to C—H⋯N inter­actions, is represented by a pair of sharp spikes with a contribution of 7.1% for compound (I) and 8.2% for compound (II) of the Hirshfeld surfaces [Fig. 8(d) and 9(d)]. The H⋯O contacts have a contribution of 5.4% of the Hirshfeld surface for compound (I). The C⋯C contacts, which refers to π–π inter­actions, contribute 1.8% of the Hirshfeld surfaces for compound (II). This can be seen in the shape of a butterfly at d e = d i 1.7Å [Fig. 9(e)].

Figure 6.

Figure 6

View of the Hirshfeld surface for compound (I), mapped over: (a) d norm; (b) electrostatic potential; (c) inter­molecular contacts; (d) shape index; (e) curvature; (f) fragment patches.

Figure 7.

Figure 7

View of the Hirshfeld surface for compound (II), mapped over: (a) d norm; (b) electrostatic potential; (c) inter­molecular contacts; (d) shape index; (e) curvature; (f) fragment patches.

Figure 8.

Figure 8

Two-dimensional fingerprint plots for compound (I): (a) all inter­molecular inter­actions; (b) H⋯H contacts; (c) C⋯·H contacts; (d) H⋯ N contacts; (e) H⋯O contacts.

Figure 9.

Figure 9

Two-dimensional fingerprint plots for compound (II): (a) all inter­molecular inter­actions; (b) H⋯H contacts; (c) H⋯C contacts; (d) N⋯ H contacts; (e) C⋯C contacts.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016) revealed 29 hits for substructure imidazo[1,2-a]pyridin-3-amine and 16 hits for 5-methyl imidazo[1,2-a]pyridin-3-amine. Two compounds, (5-methyl­imidazo-[1,2-a]pyridin-2-yl)methanol (CSD refcode PONVUL; Elaatiaoui et al., 2014), and ethyl 5-methyl­imidazo[1,2-a]pyridine-2-carboxyl­ate (DUSWOE; Yao et al., 2010) are close analogues of compound (I). A third compound, (E)-2-phenyl-N-(thio­phen-2-yl­methyl­idene)-imidazo[1,2-a]pyridin-3-amine (OLEBOY; Elaatiaoui et al., 2016), is a close analogue of compound (II). The crystal packing of compounds (I) and (II) are stabilized by N—H⋯N, C—H⋯N and C—H⋯π inter­actions, but the above mentioned crystal structures exhibit in general C—H⋯O, O—H⋯N and π–π inter­actions.

An inter­esting pyrazine analogue of compound (II) has been reported, i.e. N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyrazin-3-amine (WIGKOO; Fatima et al., 2013). Here the pyrazine and benzene rings are inclined to each other by 16.96 (7)°, compared to the corresponding dihedral angle of 31.11 (12)° involving the pyridine and benzene rings in (II). In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains along [010], which in turn are linked by C—H⋯N hydrogen bonds forming layers parallel to the ab plane. This is very similar to the crystal-packing arrangement observed for compound (II).

Synthesis and crystallization  

Compound (I)

5-Methyl-2-amino­pyridine (10 mmol) and 4-meth­oxy­benzaldehyde (1 eq.) were solubilized in ethanol. To this solution, tert-butyl isocyanide (1 eq.) and iodine (0.5 mmol %) were added. The reaction mixture was stirred at room temperature overnight. The white precipitate that had formed was filtered off and purified further using silica-gel column chromatography to give a white solid in 60% yield.

Compound (II)

2-Amino­pyridine (10 mmol) and 4-(di­methyl­amino) benzaldehyde (1 eq.) were solubilized in ethanol. To this solution, tert-butyl isocyanide (1 eq.) and iodine (0.5 mmol %) were added. The reaction mixture was stirred at room temperature overnight. The white precipitate that formed was filtered off and purified further using silica-gel column chromatography to give a yellow solid (yield 0.282 g, 91%).

Spectroscopic data : NMR spectra were recorded on a Bruker 400 MHz NMR spectrophotometer in CdCl3 and chemical shifts were recorded in parts per million relative to tetra­methyl­silane (TMS), used as an inter­nal standard.

Compound (I)

1H NMR (400 MHz, CDCl3) δ = 8.57 (ddd, J = 4.9, 1.8, 0.9, 1H), 8.14 (dt, J = 8.0, 1.0, 1H), 7.77 (td, J = 7.7, 1.8, 1H), 7.40 (d, J = 9.0, 1H), 7.16 (ddd, J = 7.5, 4.9, 1.2, 1H), 7.01 (dd, J = 9.0, 6.7, 1H), 6.46–6.41 (m, 1H), 4.99 (s, 1H), 2.96 (s, 3H), 0.93 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 155.31, 148.37, 142.86, 138.16, 137.65, 137.35, 136.54, 130.34, 124.28, 121.80, 121.79, 115.58, 113.91, 105.48, 57.20, 28.97, 20.21.

Compound (II)

1H NMR (CDCl3, 500 MHz): dH 1.05 [s, 9H, –C(CH3)3], 2.97 [s, 6H, Ar-N(CH3)2], 6.69 (t, 1H, -Ar-H), 6.77 (d, 2H, J = 8.40 Hz, –Ar-H), 7.17 (t, 1H, –Ar-H, –Ar-H), 7.53 (d, 1H, J = 8.40 Hz, –Ar-H), 7.8 (d, 2H, J = 4.5 Hz, –Ar-H), 8.19 (d, 1H, J = 8.40 Hz, –Ar-H). ESI–MS: calculated for C19H24N4 [M + H]+ 308.2007; found: 308.27.

Crystals of compounds (I) and (II), suitable for X-ray diffraction analysis, were obtained by slow evaporation from ethyl alcohol (EtOH) solution at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For both compounds the NH H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.93–0.96 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C19H23N3O C19H24N4
M r 309.40 308.42
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 296 296
a, b, c (Å) 9.2357 (7), 15.6388 (12), 11.984 (1) 34.9185 (14), 8.4656 (5), 11.8361 (6)
β (°) 93.998 (3) 91.061 (5)
V3) 1726.7 (2) 3498.2 (3)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.07
Crystal size (mm) 0.15 × 0.15 × 0.10 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.552, 0.746 0.697, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 16458, 3208, 2109 32313, 3259, 1834
R int 0.044 0.071
(sin θ/λ)max−1) 0.606 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.119, 1.03 0.049, 0.159, 1.02
No. of reflections 3208 3259
No. of parameters 218 218
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.13 0.22, −0.18

Computer programs: APEX2, SAINT and XPREP (Bruker, 2016), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989018016651/su5459sup1.cif

e-74-01913-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016651/su5459Isup2.hkl

e-74-01913-Isup2.hkl (256.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018016651/su5459IIsup3.hkl

e-74-01913-IIsup3.hkl (260.6KB, hkl)

CCDC references: 1838744, 1858376

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the SAIF, IIT, Madras for the data collection.

supplementary crystallographic information

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) . Crystal data

C19H23N3O F(000) = 664
Mr = 309.40 Dx = 1.190 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.2357 (7) Å Cell parameters from 3732 reflections
b = 15.6388 (12) Å θ = 2.6–29.2°
c = 11.984 (1) Å µ = 0.08 mm1
β = 93.998 (3)° T = 296 K
V = 1726.7 (2) Å3 Block, colourless
Z = 4 0.15 × 0.15 × 0.10 mm

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) . Data collection

Bruker Kappa APEXII CCD diffractometer 3208 independent reflections
Radiation source: fine-focus sealed tube 2109 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
ω and φ scan θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −11→11
Tmin = 0.552, Tmax = 0.746 k = −18→18
16458 measured reflections l = −14→13

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6929P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3208 reflections Δρmax = 0.15 e Å3
218 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0063 (11)

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.02423 (18) 0.88980 (13) 0.62308 (14) 0.0800 (6)
N1 0.58139 (18) 0.64812 (11) 0.72686 (14) 0.0385 (4)
H1A 0.560 (2) 0.6854 (13) 0.7736 (17) 0.045 (6)*
N2 0.71475 (16) 0.66024 (10) 0.55928 (13) 0.0381 (4)
N3 0.55442 (18) 0.72815 (11) 0.43982 (13) 0.0417 (4)
C1 0.8497 (2) 0.62484 (14) 0.59167 (19) 0.0480 (6)
C2 0.9389 (2) 0.60796 (16) 0.5092 (2) 0.0618 (7)
H2 1.028199 0.582474 0.528113 0.074*
C3 0.9016 (3) 0.62747 (17) 0.3962 (2) 0.0633 (7)
H3 0.963493 0.611842 0.341717 0.076*
C4 0.7768 (2) 0.66868 (14) 0.36672 (18) 0.0524 (6)
H4 0.754319 0.684394 0.292687 0.063*
C5 0.6809 (2) 0.68762 (13) 0.44948 (16) 0.0401 (5)
C6 0.5944 (2) 0.68161 (12) 0.61971 (15) 0.0345 (5)
C7 0.5016 (2) 0.72552 (12) 0.54407 (15) 0.0361 (5)
C8 0.3630 (2) 0.76695 (12) 0.56396 (15) 0.0367 (5)
C9 0.2546 (2) 0.77465 (15) 0.47894 (17) 0.0516 (6)
H9 0.270036 0.752223 0.408881 0.062*
C10 0.1244 (2) 0.81454 (16) 0.49472 (18) 0.0574 (6)
H10 0.053459 0.818460 0.435930 0.069*
C11 0.0997 (2) 0.84844 (15) 0.59730 (18) 0.0512 (6)
C12 0.2067 (2) 0.84190 (15) 0.68339 (18) 0.0540 (6)
H12 0.190965 0.864567 0.753249 0.065*
C13 0.3361 (2) 0.80227 (14) 0.66681 (17) 0.0463 (5)
H13 0.407187 0.799021 0.725600 0.056*
C14 −0.1377 (3) 0.8996 (2) 0.5385 (2) 0.0848 (9)
H14A −0.170048 0.844251 0.512568 0.127*
H14B −0.102994 0.931447 0.477349 0.127*
H14C −0.217011 0.929636 0.568295 0.127*
C15 0.8957 (3) 0.61354 (19) 0.7129 (2) 0.0712 (8)
H15A 0.992141 0.590353 0.720247 0.107*
H15B 0.830116 0.575101 0.746182 0.107*
H15C 0.894405 0.667913 0.749953 0.107*
C16 0.4969 (2) 0.56772 (13) 0.73775 (17) 0.0478 (5)
C17 0.3348 (3) 0.58040 (18) 0.7103 (3) 0.0830 (9)
H17A 0.318020 0.596991 0.633344 0.124*
H17B 0.299696 0.624313 0.757429 0.124*
H17C 0.284589 0.527895 0.722769 0.124*
C18 0.5237 (3) 0.53949 (16) 0.85894 (19) 0.0676 (7)
H18A 0.491235 0.583342 0.907398 0.101*
H18B 0.625574 0.529685 0.875337 0.101*
H18C 0.471174 0.487645 0.870558 0.101*
C19 0.5532 (3) 0.50019 (15) 0.6600 (2) 0.0712 (8)
H19A 0.654518 0.490342 0.679215 0.107*
H19B 0.540247 0.519762 0.584077 0.107*
H19C 0.500409 0.447913 0.667862 0.107*

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0547 (10) 0.1337 (17) 0.0507 (11) 0.0372 (11) −0.0036 (8) −0.0104 (11)
N1 0.0478 (10) 0.0425 (10) 0.0246 (9) −0.0031 (8) −0.0024 (7) −0.0012 (8)
N2 0.0392 (9) 0.0403 (9) 0.0346 (10) −0.0010 (7) 0.0019 (7) −0.0022 (7)
N3 0.0473 (10) 0.0488 (10) 0.0290 (9) 0.0023 (8) 0.0035 (7) 0.0027 (8)
C1 0.0412 (12) 0.0509 (13) 0.0513 (14) 0.0026 (10) −0.0018 (10) −0.0050 (11)
C2 0.0425 (13) 0.0714 (17) 0.0720 (18) 0.0081 (12) 0.0084 (12) −0.0068 (14)
C3 0.0550 (15) 0.0765 (17) 0.0612 (17) 0.0001 (13) 0.0240 (13) −0.0099 (14)
C4 0.0582 (15) 0.0613 (15) 0.0392 (13) −0.0063 (12) 0.0147 (11) −0.0027 (11)
C5 0.0472 (12) 0.0430 (11) 0.0307 (11) −0.0073 (10) 0.0058 (9) −0.0019 (9)
C6 0.0374 (10) 0.0398 (11) 0.0263 (10) −0.0045 (9) 0.0019 (8) −0.0040 (8)
C7 0.0416 (11) 0.0407 (11) 0.0257 (10) −0.0025 (9) −0.0001 (8) 0.0006 (9)
C8 0.0400 (11) 0.0428 (11) 0.0267 (10) −0.0002 (9) −0.0013 (8) 0.0032 (9)
C9 0.0536 (13) 0.0747 (16) 0.0256 (11) 0.0113 (12) −0.0037 (10) −0.0055 (11)
C10 0.0494 (13) 0.0846 (17) 0.0363 (13) 0.0130 (12) −0.0114 (10) −0.0019 (12)
C11 0.0428 (12) 0.0695 (15) 0.0410 (13) 0.0112 (11) 0.0000 (10) 0.0011 (11)
C12 0.0516 (13) 0.0801 (16) 0.0300 (12) 0.0137 (12) 0.0002 (10) −0.0098 (11)
C13 0.0457 (12) 0.0609 (14) 0.0307 (12) 0.0066 (10) −0.0090 (9) −0.0043 (10)
C14 0.0514 (15) 0.127 (3) 0.074 (2) 0.0277 (16) −0.0128 (14) −0.0110 (18)
C15 0.0511 (14) 0.097 (2) 0.0626 (17) 0.0198 (14) −0.0146 (12) −0.0050 (15)
C16 0.0568 (13) 0.0468 (12) 0.0386 (12) −0.0101 (11) −0.0062 (10) 0.0059 (10)
C17 0.0623 (17) 0.0747 (18) 0.109 (2) −0.0249 (14) −0.0135 (16) 0.0225 (17)
C18 0.097 (2) 0.0635 (16) 0.0422 (14) −0.0124 (14) 0.0028 (13) 0.0133 (12)
C19 0.112 (2) 0.0494 (14) 0.0506 (15) −0.0149 (15) −0.0056 (14) −0.0033 (12)

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) . Geometric parameters (Å, º)

O1—C11 1.368 (3) C10—C11 1.372 (3)
O1—C14 1.414 (3) C10—H10 0.9300
N1—C6 1.400 (2) C11—C12 1.382 (3)
N1—C16 1.490 (3) C12—C13 1.373 (3)
N1—H1A 0.84 (2) C12—H12 0.9300
N2—C1 1.394 (3) C13—H13 0.9300
N2—C5 1.398 (2) C14—H14A 0.9600
N2—C6 1.409 (2) C14—H14B 0.9600
N3—C5 1.327 (2) C14—H14C 0.9600
N3—C7 1.373 (2) C15—H15A 0.9600
C1—C2 1.355 (3) C15—H15B 0.9600
C1—C15 1.495 (3) C15—H15C 0.9600
C2—C3 1.407 (3) C16—C18 1.522 (3)
C2—H2 0.9300 C16—C19 1.523 (3)
C3—C4 1.346 (3) C16—C17 1.523 (3)
C3—H3 0.9300 C17—H17A 0.9600
C4—C5 1.407 (3) C17—H17B 0.9600
C4—H4 0.9300 C17—H17C 0.9600
C6—C7 1.385 (3) C18—H18A 0.9600
C7—C8 1.469 (3) C18—H18B 0.9600
C8—C9 1.383 (3) C18—H18C 0.9600
C8—C13 1.389 (3) C19—H19A 0.9600
C9—C10 1.380 (3) C19—H19B 0.9600
C9—H9 0.9300 C19—H19C 0.9600
C11—O1—C14 118.61 (19) C13—C12—H12 119.7
C6—N1—C16 118.36 (16) C11—C12—H12 119.7
C6—N1—H1A 112.9 (14) C12—C13—C8 121.27 (19)
C16—N1—H1A 112.4 (14) C12—C13—H13 119.4
C1—N2—C5 121.38 (17) C8—C13—H13 119.4
C1—N2—C6 132.33 (17) O1—C14—H14A 109.5
C5—N2—C6 106.16 (15) O1—C14—H14B 109.5
C5—N3—C7 105.83 (16) H14A—C14—H14B 109.5
C2—C1—N2 116.8 (2) O1—C14—H14C 109.5
C2—C1—C15 122.6 (2) H14A—C14—H14C 109.5
N2—C1—C15 120.36 (19) H14B—C14—H14C 109.5
C1—C2—C3 122.6 (2) C1—C15—H15A 109.5
C1—C2—H2 118.7 C1—C15—H15B 109.5
C3—C2—H2 118.7 H15A—C15—H15B 109.5
C4—C3—C2 120.3 (2) C1—C15—H15C 109.5
C4—C3—H3 119.9 H15A—C15—H15C 109.5
C2—C3—H3 119.9 H15B—C15—H15C 109.5
C3—C4—C5 119.0 (2) N1—C16—C18 106.10 (17)
C3—C4—H4 120.5 N1—C16—C19 109.17 (18)
C5—C4—H4 120.5 C18—C16—C19 110.05 (19)
N3—C5—N2 111.49 (16) N1—C16—C17 112.57 (18)
N3—C5—C4 129.27 (19) C18—C16—C17 109.6 (2)
N2—C5—C4 119.23 (19) C19—C16—C17 109.3 (2)
C7—C6—N1 134.20 (17) C16—C17—H17A 109.5
C7—C6—N2 104.80 (15) C16—C17—H17B 109.5
N1—C6—N2 120.27 (17) H17A—C17—H17B 109.5
N3—C7—C6 111.55 (17) C16—C17—H17C 109.5
N3—C7—C8 120.23 (17) H17A—C17—H17C 109.5
C6—C7—C8 128.23 (17) H17B—C17—H17C 109.5
C9—C8—C13 117.03 (18) C16—C18—H18A 109.5
C9—C8—C7 120.86 (17) C16—C18—H18B 109.5
C13—C8—C7 122.08 (18) H18A—C18—H18B 109.5
C10—C9—C8 122.11 (19) C16—C18—H18C 109.5
C10—C9—H9 118.9 H18A—C18—H18C 109.5
C8—C9—H9 118.9 H18B—C18—H18C 109.5
C11—C10—C9 119.9 (2) C16—C19—H19A 109.5
C11—C10—H10 120.0 C16—C19—H19B 109.5
C9—C10—H10 120.0 H19A—C19—H19B 109.5
O1—C11—C10 125.4 (2) C16—C19—H19C 109.5
O1—C11—C12 115.63 (19) H19A—C19—H19C 109.5
C10—C11—C12 119.0 (2) H19B—C19—H19C 109.5
C13—C12—C11 120.7 (2)
C5—N2—C1—C2 −8.4 (3) N1—C6—C7—N3 −166.5 (2)
C6—N2—C1—C2 176.4 (2) N2—C6—C7—N3 3.3 (2)
C5—N2—C1—C15 166.7 (2) N1—C6—C7—C8 14.0 (4)
C6—N2—C1—C15 −8.5 (3) N2—C6—C7—C8 −176.20 (18)
N2—C1—C2—C3 2.2 (3) N3—C7—C8—C9 29.4 (3)
C15—C1—C2—C3 −172.7 (2) C6—C7—C8—C9 −151.2 (2)
C1—C2—C3—C4 3.7 (4) N3—C7—C8—C13 −148.62 (19)
C2—C3—C4—C5 −3.5 (4) C6—C7—C8—C13 30.8 (3)
C7—N3—C5—N2 −1.7 (2) C13—C8—C9—C10 −0.8 (3)
C7—N3—C5—C4 176.8 (2) C7—C8—C9—C10 −178.9 (2)
C1—N2—C5—N3 −172.63 (17) C8—C9—C10—C11 0.3 (4)
C6—N2—C5—N3 3.7 (2) C14—O1—C11—C10 −0.2 (4)
C1—N2—C5—C4 8.7 (3) C14—O1—C11—C12 179.3 (2)
C6—N2—C5—C4 −174.96 (18) C9—C10—C11—O1 179.6 (2)
C3—C4—C5—N3 179.1 (2) C9—C10—C11—C12 0.0 (4)
C3—C4—C5—N2 −2.5 (3) O1—C11—C12—C13 −179.5 (2)
C16—N1—C6—C7 75.4 (3) C10—C11—C12—C13 0.1 (4)
C16—N1—C6—N2 −93.2 (2) C11—C12—C13—C8 −0.6 (4)
C1—N2—C6—C7 171.71 (19) C9—C8—C13—C12 0.9 (3)
C5—N2—C6—C7 −4.1 (2) C7—C8—C13—C12 179.0 (2)
C1—N2—C6—N1 −16.7 (3) C6—N1—C16—C18 170.52 (18)
C5—N2—C6—N1 167.46 (17) C6—N1—C16—C19 52.0 (2)
C5—N3—C7—C6 −1.1 (2) C6—N1—C16—C17 −69.6 (3)
C5—N3—C7—C8 178.47 (17)

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) . Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the imidazole ring system N2/N3/C1–C7.

D—H···A D—H H···A D···A D—H···A
N1—H1A···N3i 0.84 (2) 2.41 (2) 3.226 (2) 163.6 (19)
C14—H14A···Cg4ii 0.96 2.93 3.862 (3) 165

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x−1, y, z.

N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) . Crystal data

C19H24N4 F(000) = 1328
Mr = 308.42 Dx = 1.171 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 34.9185 (14) Å Cell parameters from 4941 reflections
b = 8.4656 (5) Å θ = 2.3–21.5°
c = 11.8361 (6) Å µ = 0.07 mm1
β = 91.061 (5)° T = 296 K
V = 3498.2 (3) Å3 Block, brown
Z = 8 0.15 × 0.10 × 0.10 mm

N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) . Data collection

Bruker Kappa APEXII CCD diffractometer 3259 independent reflections
Radiation source: fine-focus sealed tube 1834 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.071
ω and φ scan θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −42→42
Tmin = 0.697, Tmax = 0.745 k = −10→10
32313 measured reflections l = −14→14

N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0675P)2 + 2.4598P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
3259 reflections Δρmax = 0.22 e Å3
218 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0021 (4)

N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.58246 (6) 0.2712 (2) 0.25418 (17) 0.0442 (6)
H1A 0.5872 (7) 0.328 (3) 0.196 (2) 0.059 (8)*
N2 0.55040 (5) 0.3250 (2) 0.42684 (15) 0.0409 (5)
N3 0.58530 (6) 0.5154 (2) 0.50989 (15) 0.0438 (5)
N4 0.72538 (7) 0.8380 (3) 0.2431 (2) 0.0757 (8)
C1 0.52002 (7) 0.2237 (3) 0.4153 (2) 0.0508 (7)
H1 0.517019 0.162595 0.350459 0.061*
C2 0.49463 (8) 0.2134 (3) 0.4987 (2) 0.0571 (7)
H2 0.473839 0.145323 0.491098 0.068*
C3 0.49907 (8) 0.3043 (3) 0.5975 (2) 0.0582 (7)
H3 0.481526 0.294650 0.655271 0.070*
C4 0.52893 (7) 0.4063 (3) 0.6088 (2) 0.0534 (7)
H4 0.531869 0.466408 0.674089 0.064*
C5 0.55533 (7) 0.4205 (3) 0.52145 (18) 0.0421 (6)
C6 0.57963 (7) 0.3602 (3) 0.35289 (18) 0.0393 (6)
C7 0.60021 (6) 0.4794 (3) 0.40559 (18) 0.0401 (6)
C8 0.63292 (7) 0.5687 (3) 0.36299 (18) 0.0402 (6)
C9 0.66073 (7) 0.6297 (3) 0.4354 (2) 0.0497 (7)
H9 0.658973 0.610551 0.512451 0.060*
C10 0.69081 (8) 0.7177 (3) 0.3970 (2) 0.0553 (7)
H10 0.708854 0.756665 0.448615 0.066*
C11 0.69492 (7) 0.7499 (3) 0.2825 (2) 0.0508 (7)
C12 0.66718 (7) 0.6877 (3) 0.2090 (2) 0.0508 (7)
H12 0.669089 0.705457 0.131802 0.061*
C13 0.63701 (7) 0.6006 (3) 0.24861 (19) 0.0462 (6)
H13 0.618807 0.561903 0.197371 0.055*
C14 0.75347 (10) 0.8995 (5) 0.3193 (3) 0.1142 (15)
H14A 0.741602 0.971727 0.370444 0.171*
H14B 0.772753 0.954037 0.277596 0.171*
H14C 0.765061 0.814507 0.361250 0.171*
C15 0.72835 (11) 0.8749 (5) 0.1261 (3) 0.1039 (13)
H15A 0.727624 0.779098 0.082673 0.156*
H15B 0.752067 0.928862 0.113508 0.156*
H15C 0.707347 0.941516 0.103264 0.156*
C16 0.60865 (8) 0.1322 (3) 0.25466 (19) 0.0507 (7)
C17 0.64993 (10) 0.1807 (4) 0.2766 (4) 0.1032 (13)
H17A 0.657379 0.256783 0.220981 0.155*
H17B 0.666177 0.089525 0.272039 0.155*
H17C 0.652367 0.226531 0.350538 0.155*
C18 0.60542 (11) 0.0597 (4) 0.1387 (2) 0.0899 (12)
H18A 0.579787 0.021809 0.125922 0.135*
H18B 0.623086 −0.026745 0.133299 0.135*
H18C 0.611317 0.137832 0.082842 0.135*
C19 0.59690 (11) 0.0154 (4) 0.3429 (3) 0.0996 (13)
H19A 0.597112 0.065823 0.415539 0.149*
H19B 0.614509 −0.071669 0.344110 0.149*
H19C 0.571574 −0.022513 0.325394 0.149*

N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0602 (14) 0.0398 (12) 0.0327 (12) 0.0071 (10) 0.0018 (10) −0.0009 (9)
N2 0.0434 (12) 0.0376 (11) 0.0417 (11) −0.0020 (10) 0.0017 (9) −0.0031 (9)
N3 0.0492 (12) 0.0451 (12) 0.0372 (11) −0.0053 (10) 0.0044 (9) −0.0036 (9)
N4 0.0694 (17) 0.0800 (19) 0.0784 (18) −0.0236 (15) 0.0188 (14) 0.0092 (14)
C1 0.0549 (16) 0.0452 (15) 0.0524 (16) −0.0078 (13) −0.0015 (13) −0.0073 (12)
C2 0.0529 (17) 0.0563 (17) 0.0623 (17) −0.0120 (14) 0.0069 (14) −0.0029 (14)
C3 0.0564 (17) 0.0631 (18) 0.0556 (17) −0.0070 (15) 0.0144 (13) 0.0000 (14)
C4 0.0596 (17) 0.0574 (17) 0.0434 (14) −0.0049 (15) 0.0107 (12) −0.0057 (13)
C5 0.0490 (15) 0.0422 (14) 0.0350 (13) −0.0032 (12) 0.0017 (11) −0.0043 (11)
C6 0.0462 (14) 0.0375 (13) 0.0343 (12) 0.0014 (11) 0.0017 (11) −0.0019 (10)
C7 0.0438 (14) 0.0400 (13) 0.0365 (13) 0.0026 (11) 0.0020 (10) 0.0013 (11)
C8 0.0437 (14) 0.0388 (13) 0.0384 (13) 0.0017 (12) 0.0037 (10) −0.0016 (11)
C9 0.0542 (16) 0.0538 (16) 0.0411 (14) −0.0058 (14) 0.0017 (12) −0.0010 (12)
C10 0.0514 (16) 0.0569 (17) 0.0575 (17) −0.0098 (14) 0.0015 (13) −0.0036 (13)
C11 0.0501 (16) 0.0431 (15) 0.0596 (17) −0.0023 (13) 0.0114 (13) −0.0004 (13)
C12 0.0621 (17) 0.0482 (15) 0.0426 (14) 0.0011 (14) 0.0128 (13) 0.0041 (12)
C13 0.0516 (16) 0.0464 (15) 0.0407 (14) −0.0017 (13) 0.0015 (11) 0.0005 (11)
C14 0.082 (3) 0.131 (4) 0.129 (3) −0.059 (3) −0.003 (2) 0.019 (3)
C15 0.107 (3) 0.115 (3) 0.092 (3) −0.034 (2) 0.043 (2) 0.006 (2)
C16 0.0687 (18) 0.0412 (14) 0.0422 (14) 0.0131 (13) 0.0054 (12) −0.0005 (11)
C17 0.074 (2) 0.082 (3) 0.154 (4) 0.029 (2) −0.012 (2) −0.021 (2)
C18 0.145 (3) 0.071 (2) 0.0538 (18) 0.040 (2) 0.0069 (19) −0.0116 (16)
C19 0.150 (3) 0.066 (2) 0.084 (2) 0.046 (2) 0.043 (2) 0.0315 (19)

N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) . Geometric parameters (Å, º)

N1—C6 1.395 (3) C10—C11 1.393 (3)
N1—C16 1.491 (3) C10—H10 0.9300
N1—H1A 0.86 (3) C11—C12 1.393 (4)
N2—C1 1.369 (3) C12—C13 1.375 (3)
N2—C6 1.389 (3) C12—H12 0.9300
N2—C5 1.389 (3) C13—H13 0.9300
N3—C5 1.329 (3) C14—H14A 0.9600
N3—C7 1.383 (3) C14—H14B 0.9600
N4—C11 1.387 (3) C14—H14C 0.9600
N4—C14 1.419 (4) C15—H15A 0.9600
N4—C15 1.425 (4) C15—H15B 0.9600
C1—C2 1.342 (4) C15—H15C 0.9600
C1—H1 0.9300 C16—C19 1.500 (4)
C2—C3 1.406 (4) C16—C18 1.506 (4)
C2—H2 0.9300 C16—C17 1.516 (4)
C3—C4 1.358 (4) C17—H17A 0.9600
C3—H3 0.9300 C17—H17B 0.9600
C4—C5 1.403 (3) C17—H17C 0.9600
C4—H4 0.9300 C18—H18A 0.9600
C6—C7 1.381 (3) C18—H18B 0.9600
C7—C8 1.467 (3) C18—H18C 0.9600
C8—C9 1.383 (3) C19—H19A 0.9600
C8—C13 1.390 (3) C19—H19B 0.9600
C9—C10 1.372 (3) C19—H19C 0.9600
C9—H9 0.9300
C6—N1—C16 118.45 (19) C13—C12—C11 121.2 (2)
C6—N1—H1A 112.8 (17) C13—C12—H12 119.4
C16—N1—H1A 108.6 (17) C11—C12—H12 119.4
C1—N2—C6 130.4 (2) C12—C13—C8 121.9 (2)
C1—N2—C5 121.9 (2) C12—C13—H13 119.0
C6—N2—C5 107.55 (18) C8—C13—H13 119.0
C5—N3—C7 105.59 (18) N4—C14—H14A 109.5
C11—N4—C14 120.6 (3) N4—C14—H14B 109.5
C11—N4—C15 121.0 (3) H14A—C14—H14B 109.5
C14—N4—C15 118.4 (3) N4—C14—H14C 109.5
C2—C1—N2 119.2 (2) H14A—C14—H14C 109.5
C2—C1—H1 120.4 H14B—C14—H14C 109.5
N2—C1—H1 120.4 N4—C15—H15A 109.5
C1—C2—C3 120.8 (3) N4—C15—H15B 109.5
C1—C2—H2 119.6 H15A—C15—H15B 109.5
C3—C2—H2 119.6 N4—C15—H15C 109.5
C4—C3—C2 120.1 (2) H15A—C15—H15C 109.5
C4—C3—H3 119.9 H15B—C15—H15C 109.5
C2—C3—H3 119.9 N1—C16—C19 110.3 (2)
C3—C4—C5 119.7 (2) N1—C16—C18 106.4 (2)
C3—C4—H4 120.1 C19—C16—C18 110.4 (3)
C5—C4—H4 120.1 N1—C16—C17 111.6 (2)
N3—C5—N2 110.80 (19) C19—C16—C17 109.3 (3)
N3—C5—C4 131.1 (2) C18—C16—C17 108.7 (3)
N2—C5—C4 118.1 (2) C16—C17—H17A 109.5
C7—C6—N2 104.74 (19) C16—C17—H17B 109.5
C7—C6—N1 136.7 (2) H17A—C17—H17B 109.5
N2—C6—N1 118.4 (2) C16—C17—H17C 109.5
C6—C7—N3 111.3 (2) H17A—C17—H17C 109.5
C6—C7—C8 128.5 (2) H17B—C17—H17C 109.5
N3—C7—C8 120.1 (2) C16—C18—H18A 109.5
C9—C8—C13 116.5 (2) C16—C18—H18B 109.5
C9—C8—C7 121.5 (2) H18A—C18—H18B 109.5
C13—C8—C7 122.0 (2) C16—C18—H18C 109.5
C10—C9—C8 122.1 (2) H18A—C18—H18C 109.5
C10—C9—H9 119.0 H18B—C18—H18C 109.5
C8—C9—H9 119.0 C16—C19—H19A 109.5
C9—C10—C11 121.5 (2) C16—C19—H19B 109.5
C9—C10—H10 119.3 H19A—C19—H19B 109.5
C11—C10—H10 119.3 C16—C19—H19C 109.5
N4—C11—C10 121.7 (2) H19A—C19—H19C 109.5
N4—C11—C12 121.5 (2) H19B—C19—H19C 109.5
C10—C11—C12 116.8 (2)
C6—N2—C1—C2 −178.1 (2) C5—N3—C7—C6 −0.7 (3)
C5—N2—C1—C2 −1.4 (4) C5—N3—C7—C8 177.1 (2)
N2—C1—C2—C3 −0.5 (4) C6—C7—C8—C9 −150.6 (2)
C1—C2—C3—C4 1.2 (4) N3—C7—C8—C9 32.0 (3)
C2—C3—C4—C5 0.0 (4) C6—C7—C8—C13 31.5 (4)
C7—N3—C5—N2 −0.4 (2) N3—C7—C8—C13 −145.9 (2)
C7—N3—C5—C4 −178.6 (3) C13—C8—C9—C10 0.2 (4)
C1—N2—C5—N3 −175.9 (2) C7—C8—C9—C10 −177.9 (2)
C6—N2—C5—N3 1.4 (3) C8—C9—C10—C11 −0.1 (4)
C1—N2—C5—C4 2.5 (3) C14—N4—C11—C10 −0.4 (4)
C6—N2—C5—C4 179.9 (2) C15—N4—C11—C10 −177.6 (3)
C3—C4—C5—N3 176.3 (3) C14—N4—C11—C12 −179.6 (3)
C3—C4—C5—N2 −1.8 (4) C15—N4—C11—C12 3.2 (4)
C1—N2—C6—C7 175.3 (2) C9—C10—C11—N4 −179.6 (3)
C5—N2—C6—C7 −1.7 (2) C9—C10—C11—C12 −0.4 (4)
C1—N2—C6—N1 −7.4 (4) N4—C11—C12—C13 −179.9 (2)
C5—N2—C6—N1 175.56 (19) C10—C11—C12—C13 0.8 (4)
C16—N1—C6—C7 81.8 (4) C11—C12—C13—C8 −0.8 (4)
C16—N1—C6—N2 −94.4 (3) C9—C8—C13—C12 0.3 (4)
N2—C6—C7—N3 1.6 (3) C7—C8—C13—C12 178.3 (2)
N1—C6—C7—N3 −175.0 (2) C6—N1—C16—C19 59.6 (3)
N2—C6—C7—C8 −176.1 (2) C6—N1—C16—C18 179.4 (2)
N1—C6—C7—C8 7.4 (4) C6—N1—C16—C17 −62.1 (3)

N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) . Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of benzene ring C8–C13.

D—H···A D—H H···A D···A D—H···A
N1—H1A···N3i 0.86 (3) 2.56 (3) 3.412 (3) 167 (2)
C13—H13···N3i 0.93 2.57 3.467 (3) 161
C19—H19B···Cg3ii 0.96 2.87 3.829 (4) 174

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, y−1, z.

References

  1. Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15.
  2. Banfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58, 76–84. [DOI] [PubMed]
  3. Biftu, T., Feng, D., Fisher, M., Liang, G. B., Qian, X., Scribner, A., Dennis, R., Lee, S., Liberator, P. A., Brown, C., Gurnett, A., Leavitt, P. S., Thompson, D., Mathew, J., Misura, A., Samaras, S., Tamas, T., Sina, J. F., McNulty, K. A., McKnight, C. G., Schmatz, D. M. & Wyvratt, M. (2006). Bioorg. Med. Chem. Lett. 16, 2479–2483. [DOI] [PubMed]
  4. Bruker (2016). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA..
  5. Cui, B., Zheng, B. L., He, K. & Zheng, Q. Y. (2003). J. Nat. Prod. 66, 1101–1103. [DOI] [PubMed]
  6. Dooley, S. W., Jarvis, W. R., Martone, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257–259. [DOI] [PubMed]
  7. Elaatiaoui, A., Elkalai, F., Benchat, N., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x160723.
  8. Elaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189–o1190. [DOI] [PMC free article] [PubMed]
  9. Ertl, P., Rohde, B. & Selzer, P. (2000). J. Med. Chem. 43, 3714–3717. [DOI] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Fatima, Z., Srinivasan, T., Koorathota, S., Thennarasu, S. & Velmurugan, D. (2013). Acta Cryst. E69, o612–o613. [DOI] [PMC free article] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Gudmundsson, K. S. & Johns, B. A. (2007). Bioorg. Med. Chem. Lett. 17, 2735–2739. [DOI] [PubMed]
  14. Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. (1998). J. Med. Chem. 41, 5108–5112. [DOI] [PubMed]
  15. Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159–162. [DOI] [PubMed]
  16. Kawai, M., Lee, M. J., Evans, K. O. & Nordlund, T. M. (2001). J. Fluoresc. 11, 23–32.
  17. Lhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271–274. [DOI] [PubMed]
  18. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  19. Mavel, S., Renou, J. L., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941–946. [DOI] [PubMed]
  20. Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Silvestre, J., Leeson, P. A. & Castañer, J. (1998). Drugs Fut. 23, 598–601.
  24. Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243.
  25. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  26. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  28. Yao, J., Wang, L., Guo, B., An, K. & Guan, J. (2010). Acta Cryst. E66, o1999. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989018016651/su5459sup1.cif

e-74-01913-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016651/su5459Isup2.hkl

e-74-01913-Isup2.hkl (256.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018016651/su5459IIsup3.hkl

e-74-01913-IIsup3.hkl (260.6KB, hkl)

CCDC references: 1838744, 1858376

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES