Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 30;74(Pt 12):1887–1890. doi: 10.1107/S2056989018016377

Crystal structure and Hirshfeld surface analysis of (E)-2,4-di-tert-butyl-6-[(3-chloro-4-methyl­phenyl­imino)­meth­yl]phenol

Sevgi Kansiz a, Mustafa Macit b, Necmi Dege a, Vadim A Pavlenko c,*
PMCID: PMC6281108  PMID: 30574394

The mol­ecule has mirror symmetry with the all non-H atoms, except tert-butyl groups, located on the mirror plane. An intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, the mol­ecules are connected by C—H⋯π inter­actions

Keywords: crystal structure, Schiff bases, 3-chloro-4-methyl­phenyl­imino, Hirshfeld surface

Abstract

The title Schiff base compound, C22H28ClNO, shows mirror symmetry with all its non-H atoms, except the tert-butyl groups, located on the mirror plane. There is an intra­molecular O—H⋯N hydrogen bond present forming an S(6) ring motif. In the crystal, the mol­ecules are connected by C—H⋯π inter­actions, generating a three-dimensional supra­molecular structure. Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (68.9%) and C⋯H/H⋯C (11.7%) inter­actions.

Chemical context  

In coordination chemistry, Schiff bases have found wide use as ligands (Calligaris et al., 1972; Hökelek et al., 2004; Moroz et al., 2012; Kansiz et al., 2018). Schiff bases are important for various areas of chemistry and biochemistry because of their biological activity (El-masry et al., 2000) and photochromic properties and have applications in various fields such as the measurement and control of radiation intensities in imaging systems and optical computers (Elmalı et al., 1999), electronics, optoelectronics and photonics (Iwan et al., 2007). They have been used as starting materials in the synthesis of many important medicinal substances. In the present study, a new Schiff base compound was synthesized and its crystal structure determined by X-ray diffraction. In addition, to understand the inter­molecular inter­actions in the crystal structure, Hirshfeld surface analysis was performed.graphic file with name e-74-01887-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The title Schiff base compound shows mirror symmetry with all the non-H atoms, except the tert-butyl groups, located on the mirror plane. The C14—O1 bond distance is 1.349 (3) Å, the C8=N1 and C5—N1 bond lengths are 1.278 (4) and 1.412 (4) Å, respectively, and the C7—Cl1 bond distance is 1.744 (3) Å. There is an intra­molecular O—H⋯N hydrogen bond present (Table 1), forming an S(6) ring motif.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 10% probability level. Symmetry code: (i) x, −y + Inline graphic, z.

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C9–C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.582 (3) 149
C1—H1BCg1i 0.96 2.77 3.5072 (4) 134

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, the mol­ecules are connected by C1—H1B⋯π inter­actions, generating a three-dimensional supra­molecular structure (Table 1 and Fig. 2).

Figure 2.

Figure 2

A view of the crystal packing of the title compound. Dashed lines denote the intra­molecular and inter­molecular hydrogen bonds.

Database survey  

There are no previous reports of the title structure. However, several related structure have been reported (CSD, version 5.39, update May 2018; Groom et al., 2016), including bis­{(E)-1-[(3-chloro-4-methyl­phenyl­imino)­meth­yl]naphthalen-2-olate-N,O}copper(II) (SICXOU; Toprak et al., 2018), 2-{(E)-[(3-chloro-4-methyl­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­oxy)phenol (TERTUI; Atalay et al., 2017), {2,2′-[4-chloro-5-methyl-o-phenyl­enebis(nitrilo­methyl­idyne)]dipheno­lato}nick­el(II) (WABDEK; Wang, 2010) and 4-[(E)-(3-chloro-4-methyl­phen­yl)imino­meth­yl]-2-meth­oxy-3-nitro­phenyl acetate (GAPPOE; Su et al., 2012). In all four compounds, the C—Cl bond lengths vary from 1.724 to 1.743 Å. In the title compound, the C7—Cl1 bond length is 1.744 (3) Å.

Hirshfeld surface analysis  

The Hirshfeld surface analysis was performed using CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the synthesized complex. The Hirshfeld surfaces mapped over d norm, d e and d i are illustrated in Figs. 3 and 4. The red spots on the surfaces indicate the inter­molecular contacts involved in strong hydrogen bonds and inter­atomic contacts (Şen et al., 2017; Kansız & Dege, 2018; Sen et al., 2018; Gumus et al., 2018). The Hirshfeld surfaces were calculated using a standard (high) surface resolution with the three-dimensional d norm surfaces mapped over a fixed colour scale of −0.031 (red) to 2.139 (blue) a.u. The red spots identified in Fig. 3 correspond to the near-type H⋯π contacts resulting from the C—H⋯π inter­actions (Table 1).

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped over d norm, d i and d e.

Figure 4.

Figure 4

Hirshfeld surface mapped over d norm for visualizing the inter­molecular inter­actions of the title compound.

Fig. 5 shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6(a) (H⋯H) shows the two-dimensional fingerprint of the (d i, d e) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to d i = d e = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (68.9%). The graph shown in Fig. 6(b) shows the (C⋯H/H⋯C) contacts between the carbon atoms inside the surface and the hydrogen atoms outside the Hirshfeld surface and vice versa, which contribute 11.7%. There are two symmetrical wings on the left and right sides. Furthermore, there are also Cl⋯H/H⋯Cl (11%), C⋯C (4.5%), C⋯N/N⋯C (2.2%), O⋯H/H⋯O (1.3%) and N⋯H/H⋯N (0.4%) contacts.

Figure 5.

Figure 5

Overall fingerprint plot for the title compound.

Figure 6.

Figure 6

Two-dimensional fingerprint plots with a d norm view of the (a) H⋯H (68.9%), (b) C⋯H/H⋯C (11.7%), (c) Cl⋯H/H⋯Cl (11%) and (d) C⋯C (4.5%) contacts in the title compound.

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.030 to 0.044 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 7 where the C—H⋯π donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

Figure 7.

Figure 7

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy.

Synthesis and crystallization  

The title compound was prepared by refluxing a mixture of a solution containing 3,5-di-tert-butyl-2-hy­droxy­benzaldehyde (46.8 mg, 0.2 mmol) in ethanol (30 mL) and a solution containing 3-chloro-4-methyl­aniline (28.32 mg, 0.2 mmol) in ethanol (20 mL). The reaction mixture was stirred for 4 h under reflux. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (m.p. 417–419 K; yield 84%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å and refined as riding, with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C22H28ClNO
M r 357.90
Crystal system, space group Monoclinic, P21/m
Temperature (K) 296
a, b, c (Å) 9.6753 (10), 7.0072 (6), 15.3749 (13)
β (°) 93.425 (7)
V3) 1040.51 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.74 × 0.65 × 0.48
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.879, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 5895, 2300, 1298
R int 0.028
(sin θ/λ)max−1) 0.628
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.168, 1.00
No. of reflections 2300
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.22

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXLXT (Sheldrick, 2015a ), SHELXL2017/1 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016377/xu5948sup1.cif

e-74-01887-sup1.cif (297.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016377/xu5948Isup2.hkl

e-74-01887-Isup2.hkl (184.5KB, hkl)

CCDC reference: 1873612

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C22H28ClNO F(000) = 384
Mr = 357.90 Dx = 1.142 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
a = 9.6753 (10) Å Cell parameters from 5548 reflections
b = 7.0072 (6) Å θ = 2.1–30.7°
c = 15.3749 (13) Å µ = 0.19 mm1
β = 93.425 (7)° T = 296 K
V = 1040.51 (17) Å3 Prism, orange
Z = 2 0.74 × 0.65 × 0.48 mm

Data collection

Stoe IPDS 2 diffractometer 2300 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1298 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.028
rotation method scans θmax = 26.5°, θmin = 2.1°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −12→12
Tmin = 0.879, Tmax = 0.940 k = −8→8
5895 measured reflections l = −18→19

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0964P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2300 reflections Δρmax = 0.28 e Å3
145 parameters Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2129 (4) 0.250000 0.2502 (2) 0.0799 (9)
H1A 0.122313 0.250000 0.272431 0.120*
H1B 0.223846 0.361862 0.215178 0.120*
C2 0.3181 (3) 0.250000 0.3253 (2) 0.0633 (8)
C3 0.2795 (3) 0.250000 0.4107 (2) 0.0703 (9)
H3 0.185649 0.250000 0.420637 0.084*
C4 0.3723 (3) 0.250000 0.4806 (2) 0.0700 (9)
H4 0.340566 0.250000 0.536544 0.084*
C5 0.5133 (3) 0.250000 0.46997 (18) 0.0556 (7)
C6 0.5560 (3) 0.250000 0.38600 (19) 0.0600 (7)
H6 0.649961 0.250000 0.376348 0.072*
C7 0.4596 (3) 0.250000 0.3165 (2) 0.0639 (8)
C8 0.5942 (3) 0.250000 0.61807 (19) 0.0568 (7)
H8 0.502444 0.250000 0.632881 0.068*
C9 0.7006 (3) 0.250000 0.68668 (18) 0.0521 (7)
C10 0.6637 (3) 0.250000 0.77307 (19) 0.0566 (7)
H10 0.570247 0.250000 0.784241 0.068*
C11 0.7595 (3) 0.250000 0.84146 (18) 0.0571 (7)
C12 0.8995 (3) 0.250000 0.82148 (19) 0.0620 (8)
H12 0.966318 0.250000 0.867572 0.074*
C13 0.9445 (3) 0.250000 0.7374 (2) 0.0590 (7)
C14 0.8423 (3) 0.250000 0.66939 (18) 0.0551 (7)
C15 1.0991 (3) 0.250000 0.7198 (2) 0.0722 (9)
C16 1.1330 (2) 0.0710 (4) 0.6677 (2) 0.0980 (10)
H16A 1.076649 0.068596 0.614163 0.147*
H16B 1.228999 0.073060 0.655013 0.147*
H16C 1.114737 −0.040681 0.701290 0.147*
C17 1.1899 (4) 0.250000 0.8041 (3) 0.1274 (18)
H17A 1.285592 0.250000 0.790824 0.191*
H17C 1.170713 0.138138 0.837395 0.191*
C18 0.7224 (3) 0.250000 0.9368 (2) 0.0753 (9)
C19 0.7730 (5) 0.4303 (8) 0.9793 (2) 0.176 (2)
H19A 0.734855 0.537623 0.947277 0.264*
H19B 0.744536 0.434730 1.037976 0.264*
H19C 0.872234 0.434730 0.979833 0.264*
C20 0.5646 (4) 0.250000 0.9437 (3) 0.1131 (15)
H20A 0.525969 0.136290 0.917256 0.170*
H20B 0.543785 0.250000 1.003968 0.170*
Cl1 0.52181 (11) 0.250000 0.21237 (6) 0.1032 (4)
N1 0.6191 (2) 0.250000 0.53735 (15) 0.0599 (6)
O1 0.8791 (2) 0.250000 0.58613 (13) 0.0748 (6)
H1 0.809294 0.250000 0.553116 0.112*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.088 (2) 0.066 (2) 0.083 (2) 0.000 −0.0157 (18) 0.000
C2 0.0734 (18) 0.0410 (17) 0.0749 (19) 0.000 −0.0011 (15) 0.000
C3 0.0559 (16) 0.077 (2) 0.077 (2) 0.000 0.0003 (16) 0.000
C4 0.0621 (17) 0.086 (2) 0.0633 (18) 0.000 0.0113 (15) 0.000
C5 0.0611 (16) 0.0480 (17) 0.0576 (16) 0.000 0.0032 (13) 0.000
C6 0.0630 (16) 0.0543 (18) 0.0631 (17) 0.000 0.0085 (14) 0.000
C7 0.0786 (19) 0.0547 (19) 0.0587 (16) 0.000 0.0068 (15) 0.000
C8 0.0531 (14) 0.0530 (18) 0.0649 (17) 0.000 0.0079 (13) 0.000
C9 0.0527 (14) 0.0458 (16) 0.0582 (15) 0.000 0.0074 (13) 0.000
C10 0.0546 (15) 0.0551 (18) 0.0616 (16) 0.000 0.0165 (14) 0.000
C11 0.0642 (16) 0.0530 (18) 0.0550 (15) 0.000 0.0112 (14) 0.000
C12 0.0595 (16) 0.065 (2) 0.0611 (17) 0.000 0.0016 (13) 0.000
C13 0.0554 (15) 0.0556 (18) 0.0669 (17) 0.000 0.0113 (14) 0.000
C14 0.0574 (15) 0.0524 (17) 0.0566 (16) 0.000 0.0128 (13) 0.000
C15 0.0519 (16) 0.082 (2) 0.083 (2) 0.000 0.0124 (15) 0.000
C16 0.0684 (14) 0.090 (2) 0.139 (2) 0.0156 (13) 0.0353 (16) −0.0004 (17)
C17 0.0520 (18) 0.219 (6) 0.110 (3) 0.000 −0.002 (2) 0.000
C18 0.079 (2) 0.091 (3) 0.0563 (17) 0.000 0.0149 (16) 0.000
C19 0.204 (4) 0.235 (5) 0.095 (2) −0.106 (4) 0.061 (3) −0.087 (3)
C20 0.102 (3) 0.168 (4) 0.073 (2) 0.000 0.036 (2) 0.000
Cl1 0.1117 (8) 0.1390 (10) 0.0595 (5) 0.000 0.0104 (5) 0.000
N1 0.0608 (13) 0.0617 (16) 0.0578 (14) 0.000 0.0075 (11) 0.000
O1 0.0613 (11) 0.1072 (18) 0.0574 (12) 0.000 0.0166 (10) 0.000

Geometric parameters (Å, º)

C1—C2 1.494 (5) C12—C13 1.389 (4)
C1—H1A 0.9600 C12—H12 0.9300
C1—H1B 0.9600 C13—C14 1.395 (4)
C1—H1Bi 0.9600 C13—C15 1.536 (4)
C2—C7 1.383 (4) C14—O1 1.349 (3)
C2—C3 1.387 (4) C15—C17 1.523 (5)
C3—C4 1.359 (4) C15—C16 1.534 (3)
C3—H3 0.9300 C15—C16i 1.534 (3)
C4—C5 1.383 (4) C16—H16A 0.9600
C4—H4 0.9300 C16—H16B 0.9600
C5—C6 1.379 (4) C16—H16C 0.9600
C5—N1 1.412 (4) C17—H17A 0.9600
C6—C7 1.376 (4) C17—H17C 0.9600
C6—H6 0.9300 C17—H17Ci 0.9600
C7—Cl1 1.744 (3) C18—C19i 1.491 (4)
C8—N1 1.278 (4) C18—C19 1.491 (4)
C8—C9 1.429 (4) C18—C20 1.537 (5)
C8—H8 0.9300 C19—H19A 0.9600
C9—C10 1.396 (4) C19—H19B 0.9600
C9—C14 1.412 (3) C19—H19C 0.9600
C10—C11 1.360 (4) C20—H20A 0.9600
C10—H10 0.9300 C20—H20B 0.9595
C11—C12 1.407 (4) C20—H20Ai 0.9600
C11—C18 1.530 (4) O1—H1 0.8200
C2—C1—H1A 108.6 O1—C14—C13 119.7 (2)
C2—C1—H1B 109.9 O1—C14—C9 119.5 (3)
H1A—C1—H1B 109.5 C13—C14—C9 120.8 (2)
C2—C1—H1Bi 109.91 (9) C17—C15—C16 108.31 (19)
H1A—C1—H1Bi 109.5 C17—C15—C16i 108.3 (2)
H1B—C1—H1Bi 109.5 C16—C15—C16i 109.7 (3)
C7—C2—C3 114.6 (3) C17—C15—C13 111.6 (3)
C7—C2—C1 123.8 (3) C16—C15—C13 109.45 (18)
C3—C2—C1 121.5 (3) C16i—C15—C13 109.45 (18)
C4—C3—C2 123.1 (3) C15—C16—H16A 109.5
C4—C3—H3 118.4 C15—C16—H16B 109.5
C2—C3—H3 118.4 H16A—C16—H16B 109.5
C3—C4—C5 121.1 (3) C15—C16—H16C 109.5
C3—C4—H4 119.5 H16A—C16—H16C 109.5
C5—C4—H4 119.5 H16B—C16—H16C 109.5
C6—C5—C4 117.6 (3) C15—C17—H17A 109.4
C6—C5—N1 116.2 (2) C15—C17—H17C 109.5
C4—C5—N1 126.1 (2) H17A—C17—H17C 109.5
C7—C6—C5 120.0 (3) C15—C17—H17Ci 109.48 (8)
C7—C6—H6 120.0 H17A—C17—H17Ci 109.5
C5—C6—H6 120.0 H17C—C17—H17Ci 109.5
C6—C7—C2 123.6 (3) C19i—C18—C19 115.8 (5)
C6—C7—Cl1 117.2 (2) C19i—C18—C11 109.23 (18)
C2—C7—Cl1 119.2 (3) C19—C18—C11 109.23 (18)
N1—C8—C9 123.2 (2) C19i—C18—C20 105.8 (2)
N1—C8—H8 118.4 C19—C18—C20 105.8 (2)
C9—C8—H8 118.4 C11—C18—C20 110.9 (3)
C10—C9—C14 119.1 (3) C18—C19—H19A 109.5
C10—C9—C8 119.2 (2) C18—C19—H19B 109.5
C14—C9—C8 121.7 (2) H19A—C19—H19B 109.5
C11—C10—C9 122.3 (2) C18—C19—H19C 109.5
C11—C10—H10 118.9 H19A—C19—H19C 109.5
C9—C10—H10 118.9 H19B—C19—H19C 109.5
C10—C11—C12 116.9 (2) C18—C20—H20A 109.5
C10—C11—C18 123.5 (2) C18—C20—H20B 109.4
C12—C11—C18 119.6 (3) H20A—C20—H20B 108.1
C13—C12—C11 124.2 (3) C18—C20—H20Ai 109.49 (9)
C13—C12—H12 117.9 H20A—C20—H20Ai 112.2
C11—C12—H12 117.9 H20B—C20—H20Ai 108.1
C12—C13—C14 116.8 (2) C8—N1—C5 122.8 (2)
C12—C13—C15 121.8 (3) C14—O1—H1 109.5
C14—C13—C15 121.5 (3)
C7—C2—C3—C4 0.000 (1) C12—C13—C14—O1 180.000 (1)
C1—C2—C3—C4 180.000 (1) C15—C13—C14—O1 0.000 (1)
C2—C3—C4—C5 0.000 (1) C12—C13—C14—C9 0.000 (1)
C3—C4—C5—C6 0.000 (1) C15—C13—C14—C9 180.000 (1)
C3—C4—C5—N1 180.000 (1) C10—C9—C14—O1 180.000 (1)
C4—C5—C6—C7 0.000 (1) C8—C9—C14—O1 0.000 (1)
N1—C5—C6—C7 180.000 (1) C10—C9—C14—C13 0.000 (1)
C5—C6—C7—C2 0.000 (1) C8—C9—C14—C13 180.000 (1)
C5—C6—C7—Cl1 180.000 (1) C12—C13—C15—C17 0.000 (1)
C3—C2—C7—C6 0.000 (1) C14—C13—C15—C17 180.000 (1)
C1—C2—C7—C6 180.000 (1) C12—C13—C15—C16 119.9 (2)
C3—C2—C7—Cl1 180.000 (1) C14—C13—C15—C16 −60.1 (2)
C1—C2—C7—Cl1 0.000 (1) C12—C13—C15—C16i −119.9 (2)
N1—C8—C9—C10 180.000 (1) C14—C13—C15—C16i 60.1 (2)
N1—C8—C9—C14 0.000 (1) C10—C11—C18—C19i 116.2 (3)
C14—C9—C10—C11 0.000 (1) C12—C11—C18—C19i −63.8 (3)
C8—C9—C10—C11 180.000 (1) C10—C11—C18—C19 −116.2 (3)
C9—C10—C11—C12 0.000 (1) C12—C11—C18—C19 63.8 (3)
C9—C10—C11—C18 180.000 (1) C10—C11—C18—C20 0.000 (2)
C10—C11—C12—C13 0.000 (2) C12—C11—C18—C20 180.000 (1)
C18—C11—C12—C13 180.000 (1) C9—C8—N1—C5 180.000 (1)
C11—C12—C13—C14 0.000 (1) C6—C5—N1—C8 180.000 (1)
C11—C12—C13—C15 180.000 (1) C4—C5—N1—C8 0.000 (1)

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C9–C14 benzene ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.84 2.582 (3) 149
C1—H1B···Cg1ii 0.96 2.77 3.5072 (4) 134

Symmetry code: (ii) −x+1, y+1/2, −z+1.

References

  1. Atalay, Ş., Gerçeker, S., Meral, S. & Bülbül, H. (2017). IUCrData, 2, x171725.
  2. Calligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. Rev. 7, 385–403.
  3. Elmalı, A., Kabak, M., Kavlakoğlu, E. & Elerman, Y. (1999). J. Mol. Struct. 510, 207–214.
  4. El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gumus, M. K., Kansiz, S., Dege, N. & Kalibabchuk, V. A. (2018). Acta Cryst. E74, 1211–1214. [DOI] [PMC free article] [PubMed]
  8. Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. [DOI] [PubMed]
  9. Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041. [DOI] [PubMed]
  10. Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.
  11. Kansiz, S., Macit, M., Dege, N. & Tsapyuk, G. G. (2018). Acta Cryst. E74, 1513–1516. [DOI] [PMC free article] [PubMed]
  12. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  13. Sen, P., Kansiz, S., Golenya, I. A. & Dege, N. (2018). Acta Cryst. E74, 1147–1150. [DOI] [PMC free article] [PubMed]
  14. Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  19. Su, D.-C., Wang, F.-T., Mao, C.-G. & Qian, S.-S. (2012). Acta Cryst. E68, o303. [DOI] [PMC free article] [PubMed]
  20. Toprak, Ş., Tanak, H., Macit, M., Dege, N. & Orbay, M. (2018). J. Mol. Struct. 1174, 184–191.
  21. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.
  22. Wang, H. (2010). Acta Cryst. E66, m1571. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016377/xu5948sup1.cif

e-74-01887-sup1.cif (297.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016377/xu5948Isup2.hkl

e-74-01887-Isup2.hkl (184.5KB, hkl)

CCDC reference: 1873612

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES