Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 9;74(Pt 12):1727–1730. doi: 10.1107/S205698901801561X

Crystal structures of two hydrogen-bonded compounds of chloranilic acid–ethyl­eneurea (1/1) and chloranilic acid–hydantoin (1/2)

Kazuma Gotoh a, Hiroyuki Ishida a,*
PMCID: PMC6281111  PMID: 30574363

The structures of the hydrogen-bonded 1:1 co-crystal of chloranilic acid with ethyl­eneurea and the 1:2 co-crystal of chloranilic acid with hydantoin have been determined at 180 K. In the crystals of both compounds, the base mol­ecules are in the lactam form and no acid–base inter­action involving H-atom transfer is observed. The acid and base mol­ecules are linked by short O—H⋯O and N—H⋯O hydrogen bonds.

Keywords: crystal structure; chloranilic acid; ethyleneurea; imidazolidin-2-one; hydantoin; imidazolidine-2,4-dione; hydrogen bond

Abstract

The structures of the hydrogen-bonded 1:1 co-crystal of chloranilic acid (systematic name: 2,5-di­chloro-3,6-dihy­droxy-1,4-benzo­quinone) with ethyl­eneurea (systematic name: imidazolidin-2-one), C6H2Cl2O4·C3H6N2O, (I), and the 1:2 co-crystal of chloranilic acid with hydantoin (systematic name: imidazolidine-2,4-dione), C6H2Cl2O4·2C3H4N2O2, (II), have been determined at 180 K. In the crystals of both compounds, the base mol­ecules are in the lactam form and no acid–base inter­action involving H-atom transfer is observed. The asymmetric unit of (I) consists of two independent half-mol­ecules of chloranilic acid, with each of the acid mol­ecules lying about an inversion centre, and one ethyl­eneurea mol­ecule. The asymmetric unit of (II) consists of one half-mol­ecule of chloranilic acid, which lies about an inversion centre, and one hydantoin mol­ecule. In the crystal of (I), the acid and base mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming an undulating sheet structure parallel to the ab plane. In (II), the base mol­ecules form an inversion dimer via a pair of N—H⋯O hydrogen bonds, and the base dimers are further linked through another N—H⋯O hydrogen bond into a layer structure parallel to (Inline graphic01). The acid mol­ecule and the base mol­ecule are linked via an O—H⋯O hydrogen bond.

Chemical context  

Chloranilic acid, a dibasic acid with hydrogen-bond donor as well as acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with various organic bases, and also as a model compound for investigating hydrogen-transfer motions in O—H⋯N and N—H⋯O hydrogen-bonded systems (Zaman et al., 2004; Seliger et al., 2009; Asaji et al. 2010; Molčanov & Kojić-Prodić, 2010). In the present study, we have prepared two hydrogen-bonded compounds of chloranilic acid–ethyl­eneurea (1/1) and chloranilic acid–hydantoin (1/2) in order to extend our study on D—H⋯A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in chloranilic acid–organic base systems (Gotoh & Ishida, 2017a ,b , and references therein).graphic file with name e-74-01727-scheme1.jpg

Structural commentary  

In compound (I), the base mol­ecule is in the lactam form and no acid–base inter­action involving H-atom transfer is observed (Fig. 1). In the asymmetric unit, there is one ethyl­eneurea mol­ecule and two crystallographically independent half-mol­ecules of chloranilic acid, with each of the acid mol­ecules lying about an inversion centre. The O atom of ethyl­eneurea participates in two O—H⋯O hydrogen bonds as an acceptor for two O—H groups of chloranilic acid (O2—H2⋯O5 and O4—H4⋯O5; Table 1). The base ring (C7/N1/C8/C9/N2) is essentially planar and makes dihedral angles of 88.75 (6) and 3.27 (6)°, respectively, with the acid C1–C3/C1iii–C3iii and C4–C6/C4ii–C6ii rings [symmetry codes: (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y, −z + 1].

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. O—H⋯O and N—H⋯O hydrogen bonds are shown by dashed lines. [Symmetry codes: (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y, −z + 1.]

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.81 (2) 1.82 (2) 2.6090 (11) 164 (2)
O4—H4⋯O5 0.86 (2) 1.88 (2) 2.6635 (12) 151.0 (19)
N1—H1N⋯O1i 0.85 (2) 2.06 (2) 2.9003 (15) 168 (2)
N2—H2N⋯O3ii 0.85 (2) 2.06 (2) 2.8654 (15) 158.6 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In compound (II), the base mol­ecule is also in the lactam form and no acid–base inter­action involving H-atom transfer is observed (Fig. 2). The chloranilic acid mol­ecule is located on an inversion centre and the asymmetric unit consists of one hydantoin mol­ecule and a half-mol­ecule of chloranilic acid. The acid and base mol­ecules are linked via an O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2), forming a centrosymmetric 1:2 aggregate of the acid and the base. The 1:2 unit is approximately planar with a dihedral angle of 5.42 (5)° between the acid and base rings.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. O—H⋯O hydrogen bonds are shown by dashed lines. [Symmetry code: (iii) −x + Inline graphic, −y + Inline graphic, −z + 1.]

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.86 (2) 1.97 (2) 2.7917 (15) 160 (2)
N1—H1N⋯O3i 0.91 (2) 2.00 (2) 2.8927 (13) 165 (2)
N2—H2N⋯O4ii 0.91 (2) 1.85 (2) 2.7560 (14) 176 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal of compound (I), the acid and base mol­ecules are alternately arranged through O—H⋯O and N—H⋯O hydrogen bonds (O4—H4⋯O5, N1—H1N⋯O1i, N2—H2H⋯O3ii; symmetry codes as in Table 1), forming an undulating tape structure along [3Inline graphic0]. The tapes are stacked along the a axis via another O—H⋯O hydrogen bond (O2—H2—O5; Table 1) into a sheet structure parallel to the ab plane (Fig. 3).

Figure 3.

Figure 3

A partial packing diagram of compound (I), showing the undulating sheet structure formed by O—H⋯O and N—H⋯O hydrogen bonds (light-blue dotted lines). [Symmetry code: (ii) −x, −y + 1, −z + 1.]

In the crystal of (II), two adjacent base mol­ecules, which are related by an inversion centre, form a dimer via a pair of N—H⋯O hydrogen bonds (N1—H1N⋯O3i; symmetry code as in Table 2), and the base dimer and the acid mol­ecule are alternately linked through an O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2), forming a flat tape structure along the a-axis direction (Fig. 4). The base dimers are assembled via another N—H⋯O hydrogen bond (N2—H2N⋯O4ii; symmetry code as in Table 2), forming a layer parallel to (Inline graphic01) as shown in Fig. 5. The O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2) formed between the acid and base mol­ecules links the layers.

Figure 4.

Figure 4

A partial packing diagram of compound (II) viewed approximately along the b axis, showing a hydrogen-bonded tape structure formed by acid mol­ecules and pairs of base mol­ecules. O—H⋯O and N—H⋯O hydrogen bonds are shown by light-blue dotted lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (iii) −x + Inline graphic, −y + Inline graphic, −z + 1.]

Figure 5.

Figure 5

A partial packing diagram of compound (II), showing hydrogen-bonding scheme in the layer formed by base mol­ecules. N—H⋯O hydrogen bonds between the base mol­ecules are shown by light-blue dotted lines, while O—H⋯O hydrogen bonds between the base and acid mol­ecules are shown by red dotted lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (iv) −x + Inline graphic, y − Inline graphic, −z + Inline graphic.]

Database survey  

A search of the Cambridge Structural Database (Version 5.39, last update August 2018; Groom et al., 2016) for organic crystals of chloranilic acid with lactam-form base mol­ecules gave ten hits. In the seven crystals of these compounds, O—H⋯O hydrogen bonds between the O—H group of chloranilic acid and the carbonyl group of base are observed [refcodes ACOJIO (Gotoh & Ishida, 2017a ), AJAGIB (Luo & Palmore, 2002), HUFZUE (Jasinski et al., 2010), ODIHIU, SADTIC, SADTOI and SADTUO (Gotoh & Ishida, 2011)]. In particular, the compounds of chloranilic acid with 2-pyridone (ACOJIO), gabapentin-lactum (HUFZUE), pyrrolidin-2-one (ODIHIU) and piperidin-2-one (SADTUO) show short O—H⋯O hydrogen bonds (O⋯O shorter than 2.5 Å). In the O—H⋯O hydrogen bond [O⋯O = 2.4484 (10) Å] of chloranilic acid–piperidin-2-one (1/2) (SADTUO), the H atom is disordered over two positions.

Synthesis and crystallization  

Single crystals of compound (I) were obtained by slow evaporation from an aceto­nitrile solution (150 ml) of chloranilic acid (330 mg) with ethyl­eneurea (140 mg) at room temperature. Crystals of compound (II) were obtained by slow evaporation from an aceto­nitrile solution (250 ml) of chloranilic acid (350 mg) with hydantoin (340 mg) at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms in compounds (I) and (II) were found in difference Fourier maps. The O- and N-bound H atoms were freely refined. C-bound H atoms were positioned geometrically (C—H = 0.99 Å) and were treated as riding with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C6H2Cl2O4·C3H6N2O C6H2Cl2O4·2C3H4N2O2
M r 295.08 409.14
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 180 180
a, b, c (Å) 5.0180 (4), 14.6142 (10), 15.8882 (11) 19.5690 (8), 5.18661 (10), 16.6103 (3)
β (°) 105.563 (3) 117.965 (3)
V3) 1122.43 (15) 1489.03 (8)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.59 0.49
Crystal size (mm) 0.45 × 0.29 × 0.23 0.49 × 0.33 × 0.24
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999) Numerical (NUMABS; Higashi, 1999)
T min, T max 0.716, 0.873 0.808, 0.888
No. of measured, independent and observed [I > 2σ(I)] reflections 21546, 3266, 3040 14622, 2181, 2029
R int 0.057 0.072
(sin θ/λ)max−1) 0.704 0.704
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.092, 1.07 0.036, 0.100, 1.08
No. of reflections 3266 2181
No. of parameters 179 130
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.31 0.44, −0.40

Computer programs: RAPID-AUTO (Rigaku, 2006), SIR92 (Altomare et al., 1993), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).

Supplementary Material

Crystal structure: contains datablock(s) General, I, II. DOI: 10.1107/S205698901801561X/lh5884sup1.cif

e-74-01727-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801561X/lh5884Isup2.hkl

e-74-01727-Isup2.hkl (260.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901801561X/lh5884IIsup3.hkl

e-74-01727-IIsup3.hkl (175.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901801561X/lh5884Isup4.cml

Supporting information file. DOI: 10.1107/S205698901801561X/lh5884IIsup5.cml

CCDC references: 1876998, 1876997

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I). Crystal data

C6H2Cl2O4·C3H6N2O F(000) = 600.00
Mr = 295.08 Dx = 1.746 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 5.0180 (4) Å Cell parameters from 19204 reflections
b = 14.6142 (10) Å θ = 3.0–30.1°
c = 15.8882 (11) Å µ = 0.59 mm1
β = 105.563 (3)° T = 180 K
V = 1122.43 (15) Å3 Block, brown
Z = 4 0.45 × 0.29 × 0.23 mm

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I). Data collection

Rigaku R-AXIS RAPIDII diffractometer 3040 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.057
ω scans θmax = 30.0°, θmin = 3.0°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −7→7
Tmin = 0.716, Tmax = 0.873 k = −20→19
21546 measured reflections l = −21→22
3266 independent reflections

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: mixed
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2007P] where P = (Fo2 + 2Fc2)/3
3266 reflections (Δ/σ)max = 0.001
179 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methods

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.06653 (5) 0.00389 (2) 0.64704 (2) 0.02517 (9)
Cl2 0.28647 (6) 0.43040 (2) 0.69108 (2) 0.03101 (9)
O1 0.64834 (18) −0.14266 (6) 0.60507 (6) 0.03198 (19)
O2 0.83758 (17) 0.15225 (5) 0.51887 (5) 0.02612 (17)
O3 −0.17821 (19) 0.55990 (6) 0.63245 (6) 0.03138 (19)
O4 0.43441 (18) 0.37722 (6) 0.52805 (6) 0.03039 (19)
O5 0.70481 (17) 0.29928 (5) 0.42370 (5) 0.02644 (17)
N1 0.8521 (2) 0.24152 (9) 0.30842 (7) 0.0372 (3)
N2 0.4933 (2) 0.33134 (8) 0.27881 (7) 0.0323 (2)
C1 0.5873 (2) −0.07583 (7) 0.55745 (7) 0.02118 (19)
C2 0.7619 (2) 0.00483 (7) 0.56565 (7) 0.02058 (19)
C3 0.6846 (2) 0.07805 (7) 0.51226 (6) 0.02064 (19)
C4 −0.0902 (2) 0.53136 (7) 0.57314 (7) 0.0233 (2)
C5 0.1390 (2) 0.46653 (7) 0.58624 (7) 0.0238 (2)
C6 0.2263 (2) 0.43578 (7) 0.51801 (7) 0.0236 (2)
C7 0.6858 (2) 0.29121 (7) 0.34329 (7) 0.0224 (2)
C8 0.7865 (2) 0.24974 (8) 0.21442 (8) 0.0275 (2)
H8A 0.737465 0.189643 0.185683 0.033*
H8B 0.943169 0.276222 0.195803 0.033*
C9 0.5369 (3) 0.31466 (9) 0.19376 (8) 0.0325 (2)
H9A 0.578932 0.372186 0.166986 0.039*
H9B 0.372898 0.285493 0.153938 0.039*
H1N 0.989 (4) 0.2121 (14) 0.3405 (14) 0.059 (6)*
H2N 0.381 (4) 0.3687 (13) 0.2915 (12) 0.041 (5)*
H2 0.766 (4) 0.1933 (16) 0.4861 (14) 0.056 (6)*
H4 0.476 (4) 0.3613 (13) 0.4811 (13) 0.045 (5)*

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02251 (14) 0.02897 (15) 0.02081 (14) −0.00049 (8) 0.00027 (10) 0.00183 (8)
Cl2 0.03685 (16) 0.03457 (16) 0.02165 (15) 0.00812 (10) 0.00789 (11) 0.00275 (9)
O1 0.0284 (4) 0.0277 (4) 0.0345 (4) −0.0009 (3) −0.0007 (3) 0.0114 (3)
O2 0.0273 (4) 0.0226 (4) 0.0252 (4) −0.0031 (3) 0.0014 (3) 0.0039 (3)
O3 0.0355 (4) 0.0356 (4) 0.0262 (4) 0.0082 (3) 0.0138 (3) −0.0009 (3)
O4 0.0333 (4) 0.0350 (4) 0.0243 (4) 0.0124 (3) 0.0100 (3) 0.0016 (3)
O5 0.0319 (4) 0.0244 (4) 0.0230 (4) 0.0017 (3) 0.0071 (3) 0.0006 (3)
N1 0.0378 (6) 0.0468 (6) 0.0272 (5) 0.0224 (5) 0.0093 (4) 0.0057 (4)
N2 0.0336 (5) 0.0411 (5) 0.0240 (5) 0.0163 (4) 0.0106 (4) 0.0045 (4)
C1 0.0207 (4) 0.0220 (4) 0.0204 (4) 0.0018 (3) 0.0047 (3) 0.0012 (3)
C2 0.0192 (4) 0.0236 (5) 0.0178 (4) 0.0012 (3) 0.0029 (3) 0.0002 (3)
C3 0.0215 (4) 0.0221 (4) 0.0181 (4) 0.0003 (3) 0.0049 (3) −0.0006 (3)
C4 0.0253 (5) 0.0233 (5) 0.0225 (5) −0.0001 (4) 0.0083 (4) −0.0004 (4)
C5 0.0260 (5) 0.0245 (5) 0.0213 (5) 0.0019 (4) 0.0070 (4) 0.0010 (4)
C6 0.0244 (5) 0.0231 (5) 0.0240 (5) 0.0016 (3) 0.0077 (4) 0.0002 (3)
C7 0.0239 (4) 0.0191 (4) 0.0246 (5) −0.0005 (3) 0.0070 (4) 0.0021 (3)
C8 0.0254 (5) 0.0315 (5) 0.0275 (5) 0.0034 (4) 0.0100 (4) −0.0007 (4)
C9 0.0346 (6) 0.0416 (6) 0.0240 (5) 0.0125 (5) 0.0127 (4) 0.0075 (4)

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I). Geometric parameters (Å, º)

Cl1—C2 1.7169 (10) N2—C9 1.4464 (15)
Cl2—C5 1.7145 (11) N2—H2N 0.849 (19)
O1—C1 1.2230 (13) C1—C2 1.4537 (14)
O2—C3 1.3165 (12) C1—C3i 1.5092 (14)
O2—H2 0.81 (2) C2—C3 1.3560 (14)
O3—C4 1.2168 (13) C4—C5 1.4612 (14)
O4—C6 1.3264 (12) C4—C6ii 1.5045 (15)
O4—H4 0.86 (2) C5—C6 1.3504 (15)
O5—C7 1.2609 (13) C8—C9 1.5348 (15)
N1—C7 1.3338 (14) C8—H8A 0.9900
N1—C8 1.4455 (15) C8—H8B 0.9900
N1—H1N 0.85 (2) C9—H9A 0.9900
N2—C7 1.3397 (14) C9—H9B 0.9900
C3—O2—H2 114.1 (14) C6—C5—Cl2 121.94 (8)
C6—O4—H4 115.8 (13) C4—C5—Cl2 117.13 (8)
C7—N1—C8 112.92 (10) O4—C6—C5 122.18 (10)
C7—N1—H1N 121.2 (15) O4—C6—C4ii 117.46 (9)
C8—N1—H1N 125.7 (15) C5—C6—C4ii 120.35 (9)
C7—N2—C9 112.46 (10) O5—C7—N1 125.87 (10)
C7—N2—H2N 119.3 (12) O5—C7—N2 125.24 (10)
C9—N2—H2N 127.5 (12) N1—C7—N2 108.88 (10)
O1—C1—C2 123.17 (9) N1—C8—C9 102.65 (9)
O1—C1—C3i 117.64 (9) N1—C8—H8A 111.2
C2—C1—C3i 119.19 (8) C9—C8—H8A 111.2
C3—C2—C1 121.28 (9) N1—C8—H8B 111.2
C3—C2—Cl1 121.68 (8) C9—C8—H8B 111.2
C1—C2—Cl1 117.03 (7) H8A—C8—H8B 109.2
O2—C3—C2 122.48 (9) N2—C9—C8 102.92 (9)
O2—C3—C1i 117.99 (9) N2—C9—H9A 111.2
C2—C3—C1i 119.53 (9) C8—C9—H9A 111.2
O3—C4—C5 123.19 (10) N2—C9—H9B 111.2
O3—C4—C6ii 118.08 (10) C8—C9—H9B 111.2
C5—C4—C6ii 118.73 (9) H9A—C9—H9B 109.1
C6—C5—C4 120.92 (9)
O1—C1—C2—C3 −179.04 (11) C4—C5—C6—O4 179.73 (10)
C3i—C1—C2—C3 0.34 (16) Cl2—C5—C6—O4 −1.31 (16)
O1—C1—C2—Cl1 −0.19 (14) C4—C5—C6—C4ii 0.61 (17)
C3i—C1—C2—Cl1 179.19 (7) Cl2—C5—C6—C4ii 179.57 (8)
C1—C2—C3—O2 179.32 (9) C8—N1—C7—O5 −176.92 (10)
Cl1—C2—C3—O2 0.52 (15) C8—N1—C7—N2 3.23 (15)
C1—C2—C3—C1i −0.34 (16) C9—N2—C7—O5 175.71 (11)
Cl1—C2—C3—C1i −179.14 (7) C9—N2—C7—N1 −4.43 (15)
O3—C4—C5—C6 178.94 (11) C7—N1—C8—C9 −0.84 (14)
C6ii—C4—C5—C6 −0.60 (17) C7—N2—C9—C8 3.73 (14)
O3—C4—C5—Cl2 −0.07 (15) N1—C8—C9—N2 −1.64 (13)
C6ii—C4—C5—Cl2 −179.61 (8)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1.

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O5 0.81 (2) 1.82 (2) 2.6090 (11) 164 (2)
O4—H4···O5 0.86 (2) 1.88 (2) 2.6635 (12) 151.0 (19)
N1—H1N···O1iii 0.85 (2) 2.06 (2) 2.9003 (15) 168 (2)
N2—H2N···O3ii 0.85 (2) 2.06 (2) 2.8654 (15) 158.6 (17)

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+2, −y, −z+1.

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II). Crystal data

C6H2Cl2O4·2C3H4N2O2 F(000) = 832.00
Mr = 409.14 Dx = 1.825 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71075 Å
a = 19.5690 (8) Å Cell parameters from 13670 reflections
b = 5.18661 (10) Å θ = 3.3–30.2°
c = 16.6103 (3) Å µ = 0.49 mm1
β = 117.965 (3)° T = 180 K
V = 1489.03 (8) Å3 Block, brown
Z = 4 0.49 × 0.33 × 0.24 mm

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II). Data collection

Rigaku R-AXIS RAPIDII diffractometer 2029 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.072
ω scans θmax = 30.0°, θmin = 4.1°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −27→27
Tmin = 0.808, Tmax = 0.888 k = −7→7
14622 measured reflections l = −22→23
2181 independent reflections

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: mixed
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4572P] where P = (Fo2 + 2Fc2)/3
2181 reflections (Δ/σ)max < 0.001
130 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.40 e Å3
Primary atom site location: structure-invariant direct methods

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.09683 (2) 1.02553 (6) 0.33978 (2) 0.02980 (12)
O1 0.11596 (5) 1.47273 (17) 0.45960 (6) 0.0313 (2)
O2 0.25729 (5) 0.82514 (16) 0.40485 (6) 0.02794 (19)
O3 0.39430 (5) 0.57413 (17) 0.43836 (6) 0.02824 (19)
O4 0.31705 (4) −0.10296 (18) 0.23989 (6) 0.0296 (2)
N1 0.46359 (5) 0.26895 (19) 0.40528 (6) 0.0269 (2)
N2 0.33612 (5) 0.25929 (18) 0.32811 (6) 0.02336 (19)
C1 0.17655 (6) 1.3650 (2) 0.47556 (7) 0.0229 (2)
C2 0.18138 (6) 1.1410 (2) 0.42588 (7) 0.0228 (2)
C3 0.25018 (6) 1.0302 (2) 0.44779 (7) 0.0223 (2)
C4 0.39913 (6) 0.3869 (2) 0.39566 (7) 0.0226 (2)
C5 0.35871 (6) 0.0519 (2) 0.29613 (7) 0.0229 (2)
C6 0.44610 (6) 0.0494 (2) 0.34539 (8) 0.0255 (2)
H6A 0.466307 −0.112237 0.380266 0.031*
H6B 0.467588 0.070964 0.302420 0.031*
H1N 0.5127 (12) 0.308 (4) 0.4484 (15) 0.054 (5)*
H2 0.3043 (12) 0.772 (4) 0.4269 (14) 0.049 (5)*
H2N 0.2861 (11) 0.313 (4) 0.3055 (13) 0.045 (5)*

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02000 (16) 0.03480 (18) 0.02881 (17) −0.00423 (8) 0.00662 (12) −0.00241 (9)
O1 0.0206 (4) 0.0327 (4) 0.0358 (4) 0.0052 (3) 0.0091 (3) −0.0012 (3)
O2 0.0237 (4) 0.0269 (4) 0.0314 (4) 0.0015 (3) 0.0114 (3) −0.0036 (3)
O3 0.0219 (4) 0.0300 (4) 0.0288 (4) 0.0015 (3) 0.0085 (3) −0.0058 (3)
O4 0.0198 (4) 0.0324 (4) 0.0321 (4) −0.0038 (3) 0.0085 (3) −0.0086 (3)
N1 0.0160 (4) 0.0312 (5) 0.0288 (4) −0.0018 (3) 0.0067 (3) −0.0071 (4)
N2 0.0158 (4) 0.0268 (4) 0.0239 (4) 0.0003 (3) 0.0063 (3) −0.0025 (3)
C1 0.0191 (4) 0.0254 (5) 0.0226 (4) 0.0009 (3) 0.0084 (4) 0.0032 (4)
C2 0.0177 (4) 0.0257 (5) 0.0220 (4) −0.0009 (3) 0.0069 (3) 0.0020 (4)
C3 0.0205 (4) 0.0232 (5) 0.0226 (4) 0.0002 (3) 0.0094 (4) 0.0021 (3)
C4 0.0180 (4) 0.0256 (5) 0.0221 (4) −0.0010 (3) 0.0076 (3) 0.0003 (4)
C5 0.0173 (4) 0.0262 (5) 0.0239 (5) −0.0002 (3) 0.0086 (4) −0.0002 (4)
C6 0.0162 (4) 0.0276 (5) 0.0295 (5) −0.0008 (3) 0.0079 (4) −0.0049 (4)

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II). Geometric parameters (Å, º)

Cl1—C2 1.7094 (10) N2—C5 1.3620 (14)
O1—C1 1.2222 (12) N2—C4 1.3857 (13)
O2—C3 1.3237 (13) N2—H2N 0.912 (18)
O2—H2 0.86 (2) C1—C2 1.4536 (15)
O3—C4 1.2318 (14) C1—C3i 1.5035 (14)
O4—C5 1.2117 (13) C2—C3 1.3475 (14)
N1—C4 1.3425 (13) C5—C6 1.5106 (14)
N1—C6 1.4436 (14) C6—H6A 0.9900
N1—H1N 0.91 (2) C6—H6B 0.9900
C3—O2—H2 112.8 (14) O2—C3—C1i 116.58 (9)
C4—N1—C6 111.82 (8) C2—C3—C1i 120.65 (9)
C4—N1—H1N 125.3 (13) O3—C4—N1 127.75 (10)
C6—N1—H1N 122.5 (13) O3—C4—N2 124.29 (9)
C5—N2—C4 111.40 (8) N1—C4—N2 107.95 (9)
C5—N2—H2N 124.3 (12) O4—C5—N2 126.87 (10)
C4—N2—H2N 124.2 (12) O4—C5—C6 126.41 (10)
O1—C1—C2 123.86 (10) N2—C5—C6 106.71 (9)
O1—C1—C3i 117.46 (10) N1—C6—C5 102.06 (8)
C2—C1—C3i 118.67 (8) N1—C6—H6A 111.4
C3—C2—C1 120.68 (9) C5—C6—H6A 111.4
C3—C2—Cl1 121.94 (8) N1—C6—H6B 111.4
C1—C2—Cl1 117.37 (7) C5—C6—H6B 111.4
O2—C3—C2 122.77 (10) H6A—C6—H6B 109.2
O1—C1—C2—C3 −179.33 (10) C6—N1—C4—N2 −1.64 (12)
C3i—C1—C2—C3 −0.32 (16) C5—N2—C4—O3 −176.84 (11)
O1—C1—C2—Cl1 0.48 (15) C5—N2—C4—N1 2.61 (12)
C3i—C1—C2—Cl1 179.49 (7) C4—N2—C5—O4 176.75 (11)
C1—C2—C3—O2 179.56 (9) C4—N2—C5—C6 −2.45 (12)
Cl1—C2—C3—O2 −0.24 (15) C4—N1—C6—C5 0.19 (12)
C1—C2—C3—C1i 0.32 (16) O4—C5—C6—N1 −177.85 (11)
Cl1—C2—C3—C1i −179.48 (7) N2—C5—C6—N1 1.35 (11)
C6—N1—C4—O3 177.78 (11)

Symmetry code: (i) −x+1/2, −y+5/2, −z+1.

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3 0.86 (2) 1.97 (2) 2.7917 (15) 160 (2)
N1—H1N···O3ii 0.91 (2) 2.00 (2) 2.8927 (13) 165 (2)
N2—H2N···O4iii 0.91 (2) 1.85 (2) 2.7560 (14) 176 (2)

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y+1/2, −z+1/2.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Asaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531–536. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o500–o504. [DOI] [PubMed]
  5. Gotoh, K. & Ishida, H. (2017a). Acta Cryst. E73, 1546–1550. [DOI] [PMC free article] [PubMed]
  6. Gotoh, K. & Ishida, H. (2017b). Acta Cryst. E73, 1840–1844. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  9. Jasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o163–o164. [DOI] [PMC free article] [PubMed]
  10. Luo, T. M. & Palmore, G. T. R. (2002). Cryst. Growth Des. 2, 337–350.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Molčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925–939.
  13. Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  14. Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  15. Seliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281–2286. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  19. Zaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I, II. DOI: 10.1107/S205698901801561X/lh5884sup1.cif

e-74-01727-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801561X/lh5884Isup2.hkl

e-74-01727-Isup2.hkl (260.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901801561X/lh5884IIsup3.hkl

e-74-01727-IIsup3.hkl (175.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901801561X/lh5884Isup4.cml

Supporting information file. DOI: 10.1107/S205698901801561X/lh5884IIsup5.cml

CCDC references: 1876998, 1876997

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES