Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 6;74(Pt 12):1710–1716. doi: 10.1107/S2056989018015207

Crystal structures and the Hirshfeld surface analysis of (E)-4-nitro-N′-(o-chloro, o- and p-methyl­benzyl­idene)benzene­sulfono­hydrazides

Akshatha R Salian a, Sabine Foro b, B Thimme Gowda a,c,*
PMCID: PMC6281112  PMID: 30574361

The crystal structures of three N′-(aryl­idene)4-nitro­benzene­sulfono­hydrazides, namely, (E)-4-nitro-N′-(2-chloro­benzyl­idene)benzene­sulfono­hydrazide (I), (E)-4-nitro-N′-(2-methyl­benzyl­idene) benzene­sulfono­hydrazide (II) and (E)-4-nitro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide (III), have been studied to investigate the effect of the nature and site of substitutions on the structural parameters and the supra­molecular features in these compounds. Hirshfeld surface analysis was also carried out to examine the contributions of the various atom–atom inter­actions in the crystal packing of the three compounds.

Keywords: crystal structure, N-(aryl­idene)-aryl­sulfono­hydrazides, hydrogen bonding, ring motif, Hirshfeld surface analysis, fingerprint plots

Abstract

The crystal structures of (E)-N′-(2-chloro­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide, C13H10ClN3O4S (I), (E)-N′-(2-methyl­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide, C14H13N3O4S (II), and (E)-N′-(4-methyl­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide monohydrate, C14H13N3O4S·H2O (III), have been synthesized, characterized and their crystal structures determined to study the effects of the nature and sites of substitutions on the structural parameters and the hydrogen-bonding inter­actions. All three compounds crystallize in the monoclinic crystal system, with space group P21 for (I) and P21/c for (II) and (III). Compound (III) crystallizes as a monohydrate. All three compounds adopt an E configuration around the C=N bond. The mol­ecules are bent at the S atom with C—S—N—N torsion angles of −59.0 (3), 58.0 (2) and −70.2 (1)° in (I), (II) and (III), respectively. The sulfono­hydrazide parts are also non-linear, as is evident from the S—N—N—C torsional angles of 159.3 (3), −164.2 (1) and 152.3 (1)° in (I), (II) and (III), respectively, while the hydrazide parts are almost planar with the N—N=C—C torsion angles being −179.1 (3)° in (I), 176.7 (2)° in (II) and 175.0 (2)° in (III). The 4-nitro-substituted phenyl­sulfonyl and 2/4-substituted benzyl­idene rings are inclined to each other by 81.1 (1)° in (I), 81.4 (1)° in (II) and 74.4 (1)° in (III). The compounds show differences in hydrogen-bonding inter­actions. In the crystal of (I), mol­ecules are linked via N—H⋯O hydrogen bonds, forming C(4) chains along the a-axis direction that are inter­connected by weak C—H⋯O hydrogen bonds, generating layers parallel to the ac plane. In the crystal of (II), the amino H atom shows bifurcated N—H⋯O(O) hydrogen bonding with both O atoms of the nitro group generating C(9) chains along the b-axis direction. The chains are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional framework. In the crystal of (III), mol­ecules are linked by Ow—H⋯O, N—H⋯Ow and C—H⋯O hydrogen bonds, forming layers lying parallel to the bc plane. The fingerprint plots generated for the three compounds show that for (I) and (II) the O⋯H/H⋯O contacts make the largest contributions, while for the para-substituted compound (III), H⋯H contacts are the major contributors to the Hirshfeld surfaces.

Chemical context  

Sulfonyl hydrazides have been used extensively to synthesize new Schiff bases owing to the presence of two chemically and biologically important sulfonyl and hydrazine moieties (Murtaza et al., 2016). Reactions of hydrazines with other functional groups produce compounds with unique physical and chemical characteristics (Xavier et al., 2012). Hydrazones derived from the condensation reactions of hydrazides with aldehydes show excellent biological properties (Küçükgüzel et al., 2006). As a result of the ease of the electron-transport mechanism through the π-conjugated framework, the azomethine-bridged benzene derivatives exhibit excellent optical non-linearities (Manivannan & Dhanuskodi, 2004). Organic polymers containing the azomethine group are known to have good mechanical strength (Morgan et al., 1987) and high thermal stability (Catanescu et al., 2001). As part of our continuing studies to explore the effect of the nature and site of substituents on the crystal structures of sulfonyl hydrazide derivatives (Salian et al., 2018), we report herein the synthesis, crystal structures and Hirshfeld surface analyses of the title compounds, (E)-4-nitro-N′-(2-chloro­benzyl­idene)benzene­sulfono­hydrazide (I), (E)-4-nitro-N′-(2-methyl­benzyl­­idene)benzene­sulfono­hydrazide (II) and (E)-4-nitro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide monohydrate (III).graphic file with name e-74-01710-scheme1.jpg

Structural commentary  

The title compounds crystallize in the monoclinic crystal system, in space group P21 for (I) and P21/c for (II) and (III). The mol­ecular structures of the three compounds are shown in Figs. 1, 2 and 3. Compound (III) crystallizes as a monohydrate. In all three compounds the configuration about the C=N bond is E, with C7=N2 bond lengths of 1.269 (5), 1.275 (2) and 1.263 (3) Å in (I), (II) and (III), respectively. The respective N1—N2 bond lengths of 1.404 (4), 1.400 (2) and 1.398 (2) Å are consistent with the azine bond lengths of 1.40 Å in similar structures (Salian et al., 2018), indicating the delocalization of π-electron density over the hydrazone portion of the mol­ecules. The conformation of the N—H and C—H bonds in (I) and (II), with respect to the ortho-substit­uents, are syn to each other (Figs. 1 and 2). In the central parts of each mol­ecule the S1—N1—N2=C7 torsion angles deviate from linearity with values of 159.3 (3)° in (I), −164.2 (1)° in (II) and 152.3 (1)° in (III), while the hydrazide parts are almost planar with the N1—N2=C7—C8 torsion angles being −179.1 (3), 176.7 (2) and 175.0 (2)° in (I), (II) and (III), respectively. The dihedral angles between the 4-nitro­benzene ring (C1–C6) and benzene ring (C8–C13) are 81.1 (1), 81.4 (1) and 74.4 (1)°, respectively. The plane of the nitro group (N3/O3/O4) is inclined to the 4-nitro­benzene ring (C1–C6) by 9.3 (5) ° in (I) and 9.1 (3) ° in (II), but is significantly out of plane in (III) with a dihedral angle of 16.1 (2)°.

Figure 1.

Figure 1

Mol­ecular structure of compound (I), showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

Figure 2.

Figure 2

Mol­ecular structure of compound (II), showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

Figure 3.

Figure 3

Mol­ecular structure of compound (III), showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

Supra­molecular features  

In the crystals of the title compounds there are significant difference in the hydrogen-bonding inter­actions. In the crystal of the ortho-chloro-substituted compound (I), mol­ecules are linked via N—H⋯O hydrogen bonds, forming C4 chains along the a-axis direction (Table 1 and Fig. 4). These chains are inter­connected by weak C—H⋯O hydrogen bonds, generating layers parallel to the ab plane (Table 1 and Fig. 5). In the crystal of the ortho-methyl-substituted compound (II), the amino H atom shows bifurcated N—H⋯O(O) hydrogen bonding with both the O atoms of the nitro group, generating chains with a C(9) motif that propagate along the b-axis direction (Table 2 and Fig. 6). These chains are linked by C—H⋯O hydrogen bonds, resulting in the formation of a three-dimensional framework (Table 2 and Fig. 7). Finally, in the crystal of the para-methyl-substituted compound (III), the presence of the water mol­ecule of crystallization has an important effect on the crystal packing. The mol­ecules of compound (III) are bridged by the water mol­ecule, via Ow—H⋯O and N—H⋯Ow hydrogen bonds, forming layers lying parallel to the bc plane that are reinforced by C—H⋯O hydrogen bonds (Table 3 and Fig. 8).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 2.02 (3) 2.853 (4) 163 (4)
C3—H3⋯O2ii 0.93 2.46 3.290 (4) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

A partial view along the c axis of the crystal packing of compound (I), with hydrogen bonds shown as dashed lines.

Figure 5.

Figure 5

The crystal packing of compound (I), viewed along the c axis, with hydrogen bonds shown as dashed lines.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.84 (2) 2.51 (2) 3.230 (2) 144 (2)
N1—H1N⋯O4i 0.84 (2) 2.44 (2) 3.260 (3) 164 (2)
C2—H2⋯O2ii 0.93 2.58 3.284 (2) 133
C12—H12⋯O1iii 0.93 2.44 3.341 (3) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 6.

Figure 6

A partial view along the a axis of the crystal packing of compound (II), with hydrogen bonds shown as dashed lines.

Figure 7.

Figure 7

The crystal packing of compound (II), viewed along the a axis,with hydrogen bonds shown as dashed lines.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.85 (2) 2.00 (2) 2.848 (2) 173 (2)
O5—H51⋯O2ii 0.81 (2) 2.29 (2) 3.006 (2) 148 (3)
O5—H52⋯O1iii 0.80 (2) 2.17 (2) 2.949 (2) 166 (3)
C5—H5⋯O1iii 0.93 2.52 3.167 (2) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 8.

Figure 8

The crystal packing of compound (III), viewed along the b axis, with hydrogen bonds shown as dashed lines.

Hirshfeld surface analysis  

The type of inter­molecular contacts and their qu­anti­tative contribution to the crystal packing in all the three compounds were studied by Hirshfeld surfaces and two-dimensional fingerprint plots, which were generated using CrystalExplorer3.1 (Wolff et al., 2012). The Hirshfeld surfaces mapped over d norm are in the scale of −0.56–1.43 a.u. The bright-red spots on the Hirshfeld surfaces mapped over d norm indicate the strong N—H⋯O inter­actions present in the crystal structure (McKinnon et al., 2004; Spackman & Jayatilaka, 2009); these correspond to N1—H1N⋯O1i in (I) (Fig. 9 a; Table 1), N1—H1N⋯O3i and N1—H1N⋯O4i in (II) (Fig. 9 b; Table 2) and N1—H1N⋯O5i, O5—H51⋯O2ii and O5—H52⋯O1iii in (III) (Fig. 9 c; Table 3). The fingerprint plots corresponding to the various contacts contributing more than 10% (along with the C⋯C contacts) to the Hirshfeld surfaces are shown in Fig. 10. Table 4 lists all the contacts present in the crystal structures of the three compounds, and their respective percentage contributions to the Hirshfeld surfaces. The O⋯H/H⋯O contacts correspond to the N—H⋯O/O—H⋯O inter­actions at d e + d i ∼2.2 Å in (I) and (III) and at 2.6 Å in (II), which is very close to the hydrogen-bonding distances observed in these compounds [Tables 1, 2 and 3 for (I), (II) and (III), respectively]. These inter­actions are the major contributor in (I) and (II) [35.0% in (I) and 37.3% in (II)] followed by H⋯H contacts [17.5% in (I) and 28.4% in (II)]. In (III), H⋯H inter­actions make the largest contribution to the Hirshfeld surface (37.2%), followed by O⋯H/H⋯O contacts (32.0%). The H⋯H inter­actions appear as a short single peak at d e + d i ∼2.2 Å in the fingerprint plot of (III) (see Fig. 10 c). The distinct pair of wings corresponds to C⋯H/H⋯C contacts, which are the third largest contributor to the Hirshfeld surfaces in all three compounds [17.3% in (I), 13.4% in (II) and 11.0% in (III)]. A significant difference is in the percentage contribution from C⋯C contacts found for the three compounds. They are characterized by two overlapping broad peaks in the fingerprint plot for (II) (see Fig. 10 b), accounting for 7.8% of the Hirshfeld surface with d e + d i ∼3.4 Å, whereas for (I) and (III) these inter­actions make negligible contributions of 1.0 and 0.3%, respectively. The O⋯C/C⋯O contacts contribute 4.3% in (I), 1.8% in (II) and 9.4% in (III). N⋯H/H⋯N contacts contribute 4.3, 7.3 and 5.0% in (I), (II) and (III), respectively. In (I), the Cl⋯H/H⋯Cl, Cl⋯C/C⋯Cl, Cl⋯O/O⋯Cl and Cl⋯N/N⋯Cl contacts contribute 6.1, 4.7, 3.1 and 1.4%, respectively, to the Hirshfeld surfaces. The percentage contributions for the various inter­actions in the title compounds are compared in Table 4.

Figure 9.

Figure 9

View of the Hirshfeld surface mapped over d norm for (a) (I), (b) (II) and (c) (III).

Figure 10.

Figure 10

Two-dimensional fingerprint plots showing the contributions of the different types of inter­actions in (a) (I), (b) (II) and (c) (III).

Table 4. Hirshfeld contact inter­actions (%).

Contact type (I) (II) (III)
O⋯H/H⋯O 35.0 37.3 32.0
H⋯H 17.5 28.4 37.2
C⋯H/H⋯C 17.3 13.4 11.0
O⋯C/C⋯O 4.3 1.8 9.4
C⋯C 1.0 7.8 0.3
N⋯H/H⋯N 4.3 7.3 5.0
N⋯C/C⋯N 2.2 0.1 1.2
O⋯N/N⋯O 1.1 1.4 1.4
O⋯O 1.9 2.4 0.0
S⋯C/C⋯S 0.0 0.1 0.1
Cl⋯C/C⋯Cl 4.7 - -
Cl⋯H/H⋯Cl 6.1 - -
Cl⋯O/O⋯Cl 3.1 - -
Cl⋯N/N⋯Cl 1.4 - -

Database survey  

Structures similar to the title compounds that have been reported in the literature include N′-[(E)-4-methyl­benzyl­idene]-4-methyl­benzene­sulfono­hydrazide (Tabatabaee et al., 2007), (E)-N′-(4-chloro­benzyl­idene)-p-toluene­sulfono­hydrazide 0.15-hydrate (Kia et al., 2009a ), (E)-N′-(4-chloro­benzyl­idene)-4-methyl­benzene­sulfono­hydrazide (Balaji et al., 2014), (E)-N′-(4-bromo­benzyl­idene)-p-toluene­sulfono­hydrazide (Kia et al., 2009b ), (E)-N′-(4-nitro­benzyl­idene)-benzene­sulfono­hydrazide (Hussain et al., 2017a ), E)-4-methyl-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide (Hussain et al., 2017b ). (E)-N′-(2-methyl­benzyl­idene)-4-chloro­benzene­sulfono­hydrazide and (E)-N′-(4-methyl­benzyl­idene)-4-chloro­benzene­sulfono­hydrazide (Salian et al., 2018). In all the structures, inter­molecular N—H⋯O hydrogen bonds link neighbouring mol­ecules to form chains, which are linked by ππ inter­actions, further stabilizing the crystal structures. The chains are linked via C—H⋯O hydrogen bonds, forming layers. This situation is similar to that in the recently reported structures of (E)-N′-benzyl­idene-4-chloro­benzene­sulfono­lydrazine and the 2-methyl­benzil­idene derivative, (E)-N′-(2-methyl­benzyl­idene)-4-chloro­benzene­sulfono­lydrazine (Salian et al., 2018).

Synthesis and crystallization  

Synthesis of 4-nitro­benzene­sulfono­hydrazide

Hydrazine hydrate (99%, 5 ml) was added to 4-nitro­benzene­sulfonyl chloride (0.01 mol), dissolved in ethanol (30 ml) at 273 K under constant stirring. The stirring continued for 15 min at 273 K and then at 303 K for 3 h. The reaction mixture was then concentrated by evaporating off the excess ethanol. The solid product obtained, i.e. 4-nitro­benzene­sulfono­hydrazide, was washed with cold water and dried.

Synthesis of the title compounds (I), (II) and (III)

The title compounds were synthesized by refluxing the mixtures of 4-nitro­benzene­sulfono­hydrazide (0.01 mol) and 0.01 mol of 2-chloro­benzaldehyde for (I), 2-methyl­benzaldehyde for (II), and 4-methyl­benzaldehyde for (III), in ethanol (30 ml) and two drops of glacial acetic acid for 4 h. The reaction mixtures were cooled to room temperature and concentrated by evaporating off the excess of solvent. The solid products obtained were washed with cold water, dried and recrystallized to constant melting points from ethanol. Purity of the compounds was checked by TLC. All three compounds were characterized by measuring their IR, 1H and 13C NMR spectra.

(E )- N ′-(2-chloro­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide (I)

Colourless prismatic crystals; m.p: 438–439 K; IR (cm−1): 3182.5 (N—H asym. stretch), 1604.8 (C=N), 1311.6 (S=O asym. stretch) and 1168.9 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 7.16–7.18 (m, 2H, Ar-H), 7.45–7.47 (m, 2H, Ar-H), 7.91 (s, 1H), 8.15 (d, 2H, Ar-H), 8.41 (d, 2H, Ar-H), 11.71 (s, 1H): 13C NMR (400 MHz, DMSO-d6): δ 124.41, 126.67, 127.34, 128.75, 129.67, 130.55, 131.46, 133.08, 143.80, 144.27, 149.88.

( E )- N ′-(2-methyl­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide (II)

Yellow rod-shaped crystals; m.p: 417–418 K; IR (cm−1): 3217.3 (N—H asym. stretch), 1602.9 (C=N), 1332.1 (S=O asym. stretch) and 1172.7 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 2.31 (s, 3H), 7.34-7.37 (m, 3H, Ar-H), 7.40 (t, 1H, Ar-H), 7.81 (d, 1H, Ar-H), 8.16 (d, 1H, Ar-H), 8.31 (s, 1H), 8.44 (d, 2H, Ar-H), 12.10 (s, 1H). 13C NMR (400 MHz, DMSO-d6): δ 20.97, 124.21, 125.90, 126.78, 128.75, 129.01, 130.61, 131.68, 139.99, 144.48, 148.13, 149.74.

(E )- N ′-(4-methyl­benzyl­idene)-4-nitro­benzene­sulfono­hydrazide (III)

Yellow prismatic crystals; m.p: 447–448 K; IR (cm−1): 3291.5 (N—H asym. stretch), 1606.7 (C=N), 1305.8 (S=O asym. stretch) and 1165.0 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 2.31 (s, 3H), 7.34 (d, 2H, Ar-H), 7.60 (d, 2H, Ar-H), 8.16 (d, 2H, Ar-H), 8.30 (s, 1H), 8.42 (d, 2H, Ar-H), 12.03 (s, 1H): 13C NMR (400 MHz, DMSO-d6): δ 20.96, 123.81, 126.65, 128.59, 128.96, 130.47, 139.94, 144.64, 147.96, 149.58.

Single crystals of the title compounds used for the single-crystal X-ray diffraction analyses were obtained by slow evaporation of the solvent in their DMF solutions at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The C-bound H atoms were positioned with idealized geometry and refined using a riding model with the aromatic C—H = 0.93 Å. The amino H atoms were refined with an N—H distance restraint of 0.86 (2) Å. For (III), the H atoms of the water mol­ecule were refined with the O—H distance restrained to 0.82 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2U eq(C-aromatic, N, O) and 1.5U eq(C-meth­yl). For (I), the low angle reflection (0 Inline graphic 1) had a poor agreement with its calculated value and was omitted from the refinement.

Table 5. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C13H10ClN3O4S C14H13N3O4S C14H13N3O4S·H2O
M r 339.75 319.33 337.35
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293 293
a, b, c (Å) 4.9498 (6), 22.340 (3), 7.0003 (9) 7.190 (1), 15.288 (2), 13.596 (2) 22.589 (2), 5.4424 (4), 12.7180 (9)
β (°) 104.40 (1) 97.68 (2) 92.146 (6)
V3) 749.76 (17) 1481.1 (4) 1562.4 (2)
Z 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.42 0.24 0.24
Crystal size (mm) 0.24 × 0.24 × 0.12 0.50 × 0.48 × 0.24 0.40 × 0.36 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.907, 0.952 0.889, 0.945 0.911, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 4582, 2696, 2457 9810, 2719, 2271 9384, 2870, 2178
R int 0.015 0.020 0.021
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.078, 1.01 0.038, 0.097, 1.05 0.034, 0.092, 1.02
No. of reflections 2696 2719 2870
No. of parameters 202 203 218
No. of restraints 2 2 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.20 0.28, −0.32 0.19, −0.28
Absolute structure Flack x determined using 1102 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.05 (3)

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989018015207/su5460sup1.cif

e-74-01710-sup1.cif (951.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015207/su5460Isup2.hkl

e-74-01710-Isup2.hkl (215.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018015207/su5460IIsup3.hkl

e-74-01710-IIsup3.hkl (217.6KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018015207/su5460IIIsup4.hkl

e-74-01710-IIIsup4.hkl (229.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018015207/su5460Isup5.cml

Supporting information file. DOI: 10.1107/S2056989018015207/su5460IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989018015207/su5460IIIsup7.cml

CCDC references: 1578712, 1578713, 1578715

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank SAIF Panjab University for extending the services of their NMR facility and Mangalore University for providing all the facilities required.

supplementary crystallographic information

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) . Crystal data

C13H10ClN3O4S F(000) = 348
Mr = 339.75 Dx = 1.505 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 4.9498 (6) Å Cell parameters from 1264 reflections
b = 22.340 (3) Å θ = 3.0–27.7°
c = 7.0003 (9) Å µ = 0.42 mm1
β = 104.40 (1)° T = 293 K
V = 749.76 (17) Å3 Prism, colourless
Z = 2 0.24 × 0.24 × 0.12 mm

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) . Data collection

Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector 2457 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.015
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −3→5
Tmin = 0.907, Tmax = 0.952 k = −26→26
4582 measured reflections l = −8→7
2696 independent reflections

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.0544P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2696 reflections Δρmax = 0.14 e Å3
202 parameters Δρmin = −0.20 e Å3
2 restraints Absolute structure: Flack x determined using 1102 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.05 (3)

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.0897 (2) −0.10843 (5) 0.44188 (16) 0.0737 (3)
S1 0.59163 (16) 0.12968 (4) 0.08796 (12) 0.0429 (2)
O1 0.8691 (5) 0.11233 (13) 0.0900 (4) 0.0603 (7)
O2 0.4169 (5) 0.15582 (12) −0.0845 (3) 0.0519 (6)
O3 0.8117 (8) 0.27393 (16) 0.9402 (5) 0.0788 (9)
O4 0.4147 (8) 0.3096 (2) 0.7925 (5) 0.1064 (14)
N1 0.4239 (6) 0.07005 (13) 0.1288 (4) 0.0445 (7)
H1N 0.248 (5) 0.0750 (18) 0.109 (5) 0.053*
N2 0.5519 (6) 0.04007 (13) 0.3042 (4) 0.0472 (7)
N3 0.6159 (8) 0.27887 (16) 0.7968 (5) 0.0619 (9)
C1 0.6093 (7) 0.17729 (15) 0.2929 (5) 0.0411 (7)
C2 0.8188 (7) 0.16808 (16) 0.4642 (5) 0.0480 (8)
H2 0.9556 0.1393 0.4672 0.058*
C3 0.8216 (7) 0.20189 (17) 0.6288 (5) 0.0509 (9)
H3 0.9590 0.1963 0.7451 0.061*
C4 0.6175 (8) 0.24394 (16) 0.6174 (5) 0.0467 (8)
C5 0.4109 (8) 0.25443 (17) 0.4481 (6) 0.0517 (9)
H5 0.2762 0.2836 0.4456 0.062*
C6 0.4083 (8) 0.22071 (16) 0.2829 (5) 0.0479 (8)
H6 0.2728 0.2271 0.1662 0.057*
C7 0.3937 (8) 0.00577 (16) 0.3719 (6) 0.0498 (9)
H7 0.2072 0.0013 0.3054 0.060*
C8 0.5085 (8) −0.02677 (16) 0.5566 (5) 0.0504 (9)
C9 0.3835 (9) −0.07856 (17) 0.6049 (6) 0.0553 (9)
C10 0.4901 (10) −0.1087 (2) 0.7781 (6) 0.0719 (11)
H10 0.4014 −0.1428 0.8084 0.086*
C11 0.7282 (13) −0.0882 (2) 0.9061 (7) 0.0875 (17)
H11 0.8007 −0.1084 1.0237 0.105*
C12 0.8616 (12) −0.0377 (2) 0.8620 (7) 0.0861 (16)
H12 1.0268 −0.0247 0.9471 0.103*
C13 0.7476 (11) −0.00665 (19) 0.6908 (6) 0.0715 (13)
H13 0.8324 0.0285 0.6645 0.086*

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0766 (7) 0.0678 (6) 0.0675 (6) −0.0191 (6) 0.0002 (5) 0.0046 (6)
S1 0.0340 (4) 0.0534 (5) 0.0430 (4) 0.0058 (4) 0.0128 (3) 0.0063 (4)
O1 0.0368 (13) 0.080 (2) 0.0683 (16) 0.0089 (12) 0.0213 (12) −0.0014 (14)
O2 0.0519 (14) 0.0638 (15) 0.0395 (13) 0.0067 (12) 0.0103 (11) 0.0142 (12)
O3 0.084 (2) 0.083 (2) 0.0589 (18) −0.0005 (18) −0.0023 (17) −0.0094 (17)
O4 0.110 (3) 0.128 (3) 0.076 (2) 0.055 (3) 0.011 (2) −0.027 (2)
N1 0.0362 (15) 0.0500 (16) 0.0443 (16) 0.0064 (13) 0.0041 (13) 0.0079 (12)
N2 0.0466 (17) 0.0437 (16) 0.0472 (17) 0.0088 (14) 0.0039 (14) 0.0061 (13)
N3 0.072 (2) 0.0595 (19) 0.053 (2) 0.0030 (18) 0.0142 (19) −0.0050 (17)
C1 0.0350 (17) 0.0456 (17) 0.0433 (18) 0.0022 (14) 0.0110 (14) 0.0077 (14)
C2 0.0355 (18) 0.054 (2) 0.052 (2) 0.0097 (15) 0.0059 (16) 0.0040 (16)
C3 0.0401 (19) 0.059 (2) 0.048 (2) 0.0028 (16) 0.0006 (16) 0.0039 (17)
C4 0.048 (2) 0.047 (2) 0.045 (2) −0.0013 (16) 0.0096 (17) 0.0016 (16)
C5 0.048 (2) 0.050 (2) 0.056 (2) 0.0108 (16) 0.0100 (19) 0.0057 (18)
C6 0.044 (2) 0.052 (2) 0.0443 (19) 0.0118 (16) 0.0048 (16) 0.0082 (16)
C7 0.057 (2) 0.046 (2) 0.043 (2) 0.0017 (16) 0.0059 (17) −0.0016 (16)
C8 0.065 (2) 0.0430 (19) 0.0394 (18) 0.0024 (18) 0.0053 (17) −0.0017 (15)
C9 0.070 (3) 0.0474 (19) 0.0442 (19) −0.0012 (18) 0.0055 (18) −0.0009 (16)
C10 0.101 (3) 0.058 (2) 0.051 (2) −0.007 (3) 0.007 (2) 0.007 (2)
C11 0.132 (5) 0.068 (3) 0.046 (2) −0.005 (3) −0.011 (3) 0.011 (2)
C12 0.111 (4) 0.074 (3) 0.051 (2) −0.015 (3) −0.021 (2) 0.000 (2)
C13 0.095 (4) 0.054 (2) 0.052 (3) −0.018 (2) −0.006 (2) 0.003 (2)

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) . Geometric parameters (Å, º)

Cl1—C9 1.743 (4) C4—C5 1.379 (5)
S1—O1 1.424 (3) C5—C6 1.378 (5)
S1—O2 1.424 (2) C5—H5 0.9300
S1—N1 1.632 (3) C6—H6 0.9300
S1—C1 1.770 (3) C7—C8 1.468 (5)
O3—N3 1.214 (4) C7—H7 0.9300
O4—N3 1.204 (4) C8—C13 1.390 (6)
N1—N2 1.404 (4) C8—C9 1.393 (5)
N1—H1N 0.86 (2) C9—C10 1.373 (6)
N2—C7 1.269 (5) C10—C11 1.370 (7)
N3—C4 1.481 (5) C10—H10 0.9300
C1—C6 1.379 (5) C11—C12 1.380 (7)
C1—C2 1.391 (5) C11—H11 0.9300
C2—C3 1.375 (5) C12—C13 1.378 (6)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.367 (5) C13—H13 0.9300
C3—H3 0.9300
O1—S1—O2 120.09 (15) C6—C5—H5 120.7
O1—S1—N1 107.89 (16) C4—C5—H5 120.7
O2—S1—N1 104.77 (15) C1—C6—C5 119.1 (3)
O1—S1—C1 107.59 (16) C1—C6—H6 120.5
O2—S1—C1 109.75 (16) C5—C6—H6 120.5
N1—S1—C1 105.87 (15) N2—C7—C8 119.2 (3)
N2—N1—S1 113.8 (2) N2—C7—H7 120.4
N2—N1—H1N 115 (3) C8—C7—H7 120.4
S1—N1—H1N 114 (3) C13—C8—C9 117.3 (3)
C7—N2—N1 115.4 (3) C13—C8—C7 120.9 (4)
O4—N3—O3 123.9 (4) C9—C8—C7 121.8 (3)
O4—N3—C4 117.3 (4) C10—C9—C8 121.8 (4)
O3—N3—C4 118.8 (4) C10—C9—Cl1 117.7 (3)
C6—C1—C2 121.4 (3) C8—C9—Cl1 120.5 (3)
C6—C1—S1 119.4 (3) C11—C10—C9 119.4 (4)
C2—C1—S1 119.0 (3) C11—C10—H10 120.3
C3—C2—C1 119.4 (3) C9—C10—H10 120.3
C3—C2—H2 120.3 C10—C11—C12 120.7 (4)
C1—C2—H2 120.3 C10—C11—H11 119.7
C4—C3—C2 118.3 (3) C12—C11—H11 119.7
C4—C3—H3 120.8 C11—C12—C13 119.3 (5)
C2—C3—H3 120.8 C11—C12—H12 120.3
C3—C4—C5 123.1 (3) C13—C12—H12 120.3
C3—C4—N3 118.2 (3) C12—C13—C8 121.4 (4)
C5—C4—N3 118.7 (3) C12—C13—H13 119.3
C6—C5—C4 118.6 (3) C8—C13—H13 119.3
O1—S1—N1—N2 56.0 (3) C3—C4—C5—C6 0.5 (6)
O2—S1—N1—N2 −175.0 (2) N3—C4—C5—C6 −178.2 (3)
C1—S1—N1—N2 −59.0 (3) C2—C1—C6—C5 −1.9 (5)
S1—N1—N2—C7 159.3 (3) S1—C1—C6—C5 174.9 (3)
O1—S1—C1—C6 151.0 (3) C4—C5—C6—C1 0.8 (5)
O2—S1—C1—C6 18.7 (3) N1—N2—C7—C8 −179.1 (3)
N1—S1—C1—C6 −93.9 (3) N2—C7—C8—C13 22.2 (5)
O1—S1—C1—C2 −32.1 (3) N2—C7—C8—C9 −158.0 (4)
O2—S1—C1—C2 −164.4 (3) C13—C8—C9—C10 0.2 (6)
N1—S1—C1—C2 83.0 (3) C7—C8—C9—C10 −179.6 (4)
C6—C1—C2—C3 1.7 (5) C13—C8—C9—Cl1 −177.9 (3)
S1—C1—C2—C3 −175.1 (3) C7—C8—C9—Cl1 2.3 (5)
C1—C2—C3—C4 −0.4 (5) C8—C9—C10—C11 −1.1 (7)
C2—C3—C4—C5 −0.7 (6) Cl1—C9—C10—C11 177.1 (4)
C2—C3—C4—N3 178.0 (3) C9—C10—C11—C12 −0.2 (8)
O4—N3—C4—C3 −170.0 (4) C10—C11—C12—C13 2.3 (9)
O3—N3—C4—C3 8.2 (5) C11—C12—C13—C8 −3.2 (9)
O4—N3—C4—C5 8.7 (6) C9—C8—C13—C12 2.0 (7)
O3—N3—C4—C5 −173.0 (4) C7—C8—C13—C12 −178.2 (5)

(E)-N'-(2-Chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 (2) 2.02 (3) 2.853 (4) 163 (4)
C3—H3···O2ii 0.93 2.46 3.290 (4) 149

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z+1.

(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) . Crystal data

C14H13N3O4S F(000) = 664
Mr = 319.33 Dx = 1.432 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.190 (1) Å Cell parameters from 2833 reflections
b = 15.288 (2) Å θ = 2.6–27.8°
c = 13.596 (2) Å µ = 0.24 mm1
β = 97.68 (2)° T = 293 K
V = 1481.1 (4) Å3 Rod, yellow
Z = 4 0.50 × 0.48 × 0.24 mm

(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) . Data collection

Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector 2271 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.020
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −8→5
Tmin = 0.889, Tmax = 0.945 k = −18→18
9810 measured reflections l = −11→16
2719 independent reflections

(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: mixed
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.8005P] where P = (Fo2 + 2Fc2)/3
2719 reflections (Δ/σ)max = 0.001
203 parameters Δρmax = 0.28 e Å3
2 restraints Δρmin = −0.32 e Å3

(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1811 (3) 0.53913 (12) 0.11782 (14) 0.0392 (4)
C2 0.2549 (3) 0.45557 (13) 0.12179 (16) 0.0472 (5)
H2 0.3779 0.4459 0.1104 0.057*
C3 0.1428 (3) 0.38663 (13) 0.14295 (16) 0.0515 (5)
H3 0.1894 0.3298 0.1470 0.062*
C4 −0.0386 (3) 0.40354 (13) 0.15791 (14) 0.0458 (5)
C5 −0.1143 (3) 0.48574 (14) 0.15301 (16) 0.0506 (5)
H5 −0.2384 0.4948 0.1628 0.061*
C6 −0.0019 (3) 0.55474 (13) 0.13323 (16) 0.0475 (5)
H6 −0.0489 0.6115 0.1303 0.057*
C7 0.5612 (3) 0.62282 (12) 0.35371 (15) 0.0414 (4)
H7 0.5251 0.6771 0.3756 0.050*
C8 0.6602 (3) 0.56164 (13) 0.42534 (15) 0.0419 (5)
C9 0.7375 (3) 0.58901 (15) 0.52053 (16) 0.0513 (5)
C10 0.8215 (3) 0.52648 (19) 0.58632 (19) 0.0651 (7)
H10 0.8717 0.5436 0.6500 0.078*
C11 0.8321 (3) 0.4407 (2) 0.5599 (2) 0.0701 (8)
H11 0.8900 0.4004 0.6053 0.084*
C12 0.7574 (3) 0.41387 (16) 0.4665 (2) 0.0651 (7)
H12 0.7657 0.3555 0.4483 0.078*
C13 0.6700 (3) 0.47378 (14) 0.39960 (18) 0.0513 (5)
H13 0.6172 0.4553 0.3369 0.062*
C14 0.7337 (4) 0.68279 (18) 0.5534 (2) 0.0781 (8)
H14A 0.6070 0.7041 0.5427 0.117*
H14B 0.8104 0.7174 0.5157 0.117*
H14C 0.7813 0.6868 0.6226 0.117*
N1 0.4195 (2) 0.66562 (10) 0.20225 (12) 0.0431 (4)
H1N 0.347 (3) 0.6988 (13) 0.2284 (16) 0.052*
N2 0.5234 (2) 0.60339 (10) 0.26201 (12) 0.0413 (4)
N3 −0.1566 (3) 0.32996 (13) 0.18268 (14) 0.0592 (5)
O1 0.2086 (2) 0.69660 (9) 0.05038 (11) 0.0591 (4)
O2 0.4735 (2) 0.59482 (10) 0.04571 (11) 0.0590 (4)
O3 −0.3229 (3) 0.34312 (13) 0.18613 (15) 0.0833 (6)
O4 −0.0808 (3) 0.25947 (12) 0.19986 (16) 0.0867 (6)
S1 0.32586 (7) 0.62811 (3) 0.09402 (4) 0.04312 (16)

(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0478 (11) 0.0349 (10) 0.0357 (10) −0.0027 (8) 0.0079 (8) 0.0008 (8)
C2 0.0516 (12) 0.0409 (11) 0.0520 (12) 0.0030 (9) 0.0168 (10) −0.0018 (9)
C3 0.0726 (14) 0.0318 (10) 0.0524 (13) −0.0001 (10) 0.0170 (11) −0.0017 (9)
C4 0.0584 (12) 0.0446 (11) 0.0351 (10) −0.0133 (9) 0.0086 (9) −0.0002 (8)
C5 0.0455 (11) 0.0544 (13) 0.0526 (13) −0.0045 (9) 0.0095 (9) 0.0029 (10)
C6 0.0487 (12) 0.0400 (11) 0.0542 (13) 0.0035 (9) 0.0088 (10) 0.0048 (9)
C7 0.0414 (10) 0.0371 (10) 0.0472 (11) 0.0000 (8) 0.0116 (8) −0.0037 (9)
C8 0.0340 (10) 0.0463 (11) 0.0473 (12) 0.0009 (8) 0.0121 (8) 0.0023 (9)
C9 0.0409 (11) 0.0646 (14) 0.0494 (13) −0.0001 (10) 0.0097 (9) 0.0019 (11)
C10 0.0462 (13) 0.096 (2) 0.0527 (14) 0.0022 (13) 0.0074 (10) 0.0156 (14)
C11 0.0456 (13) 0.085 (2) 0.0818 (19) 0.0105 (12) 0.0173 (13) 0.0388 (16)
C12 0.0535 (13) 0.0495 (13) 0.097 (2) 0.0086 (11) 0.0280 (13) 0.0170 (13)
C13 0.0481 (12) 0.0456 (12) 0.0628 (14) 0.0025 (9) 0.0172 (10) 0.0021 (10)
C14 0.0869 (19) 0.0817 (19) 0.0621 (17) −0.0032 (15) −0.0039 (14) −0.0177 (14)
N1 0.0500 (10) 0.0349 (9) 0.0449 (10) 0.0041 (7) 0.0077 (8) −0.0020 (7)
N2 0.0413 (9) 0.0383 (9) 0.0457 (10) 0.0024 (7) 0.0103 (7) −0.0003 (7)
N3 0.0799 (11) 0.0527 (12) 0.0460 (10) −0.0222 (10) 0.0126 (10) −0.0024 (9)
O1 0.0738 (10) 0.0416 (8) 0.0592 (10) −0.0047 (7) −0.0012 (8) 0.0139 (7)
O2 0.0715 (10) 0.0577 (9) 0.0545 (9) −0.0116 (8) 0.0326 (8) −0.0072 (7)
O3 0.0790 (10) 0.0840 (13) 0.0928 (14) −0.0339 (10) 0.0331 (11) −0.0027 (11)
O4 0.1088 (16) 0.0507 (11) 0.1012 (15) −0.0198 (10) 0.0163 (12) 0.0168 (10)
S1 0.0545 (3) 0.0361 (3) 0.0402 (3) −0.0054 (2) 0.0117 (2) 0.0023 (2)

(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) . Geometric parameters (Å, º)

C1—C6 1.381 (3) C9—C14 1.503 (3)
C1—C2 1.381 (3) C10—C11 1.364 (4)
C1—S1 1.7687 (19) C10—H10 0.9300
C2—C3 1.380 (3) C11—C12 1.375 (4)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.371 (3) C12—C13 1.381 (3)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.368 (3) C13—H13 0.9300
C4—N3 1.475 (3) C14—H14A 0.9600
C5—C6 1.377 (3) C14—H14B 0.9600
C5—H5 0.9300 C14—H14C 0.9600
C6—H6 0.9300 N1—N2 1.400 (2)
C7—N2 1.275 (2) N1—S1 1.6380 (17)
C7—C8 1.465 (3) N1—H1N 0.839 (15)
C7—H7 0.9300 N3—O4 1.216 (3)
C8—C13 1.392 (3) N3—O3 1.220 (3)
C8—C9 1.402 (3) O1—S1 1.4233 (15)
C9—C10 1.391 (3) O2—S1 1.4157 (15)
C6—C1—C2 121.50 (18) C9—C10—H10 119.1
C6—C1—S1 119.39 (15) C10—C11—C12 120.1 (2)
C2—C1—S1 119.10 (15) C10—C11—H11 120.0
C3—C2—C1 118.86 (19) C12—C11—H11 120.0
C3—C2—H2 120.6 C11—C12—C13 119.8 (2)
C1—C2—H2 120.6 C11—C12—H12 120.1
C4—C3—C2 118.70 (19) C13—C12—H12 120.1
C4—C3—H3 120.6 C12—C13—C8 120.5 (2)
C2—C3—H3 120.6 C12—C13—H13 119.7
C5—C4—C3 123.12 (19) C8—C13—H13 119.7
C5—C4—N3 118.3 (2) C9—C14—H14A 109.5
C3—C4—N3 118.5 (2) C9—C14—H14B 109.5
C4—C5—C6 118.25 (19) H14A—C14—H14B 109.5
C4—C5—H5 120.9 C9—C14—H14C 109.5
C6—C5—H5 120.9 H14A—C14—H14C 109.5
C5—C6—C1 119.56 (19) H14B—C14—H14C 109.5
C5—C6—H6 120.2 N2—N1—S1 114.00 (12)
C1—C6—H6 120.2 N2—N1—H1N 118.6 (15)
N2—C7—C8 121.51 (18) S1—N1—H1N 112.8 (15)
N2—C7—H7 119.2 C7—N2—N1 115.88 (16)
C8—C7—H7 119.2 O4—N3—O3 123.7 (2)
C13—C8—C9 119.5 (2) O4—N3—C4 117.6 (2)
C13—C8—C7 119.03 (19) O3—N3—C4 118.7 (2)
C9—C8—C7 121.37 (19) O2—S1—O1 120.69 (10)
C10—C9—C8 118.2 (2) O2—S1—N1 107.39 (9)
C10—C9—C14 119.2 (2) O1—S1—N1 105.46 (9)
C8—C9—C14 122.5 (2) O2—S1—C1 107.72 (9)
C11—C10—C9 121.8 (2) O1—S1—C1 108.17 (9)
C11—C10—H10 119.1 N1—S1—C1 106.63 (9)
C6—C1—C2—C3 −0.9 (3) C10—C11—C12—C13 −0.6 (3)
S1—C1—C2—C3 178.33 (16) C11—C12—C13—C8 1.3 (3)
C1—C2—C3—C4 0.9 (3) C9—C8—C13—C12 −1.0 (3)
C2—C3—C4—C5 −0.1 (3) C7—C8—C13—C12 −178.05 (19)
C2—C3—C4—N3 −178.67 (19) C8—C7—N2—N1 176.70 (15)
C3—C4—C5—C6 −0.8 (3) S1—N1—N2—C7 −164.16 (14)
N3—C4—C5—C6 177.81 (19) C5—C4—N3—O4 −170.4 (2)
C4—C5—C6—C1 0.8 (3) C3—C4—N3—O4 8.3 (3)
C2—C1—C6—C5 0.0 (3) C5—C4—N3—O3 8.7 (3)
S1—C1—C6—C5 −179.19 (16) C3—C4—N3—O3 −172.7 (2)
N2—C7—C8—C13 −17.0 (3) N2—N1—S1—O2 −57.23 (15)
N2—C7—C8—C9 165.96 (18) N2—N1—S1—O1 172.86 (13)
C13—C8—C9—C10 −0.1 (3) N2—N1—S1—C1 58.01 (15)
C7—C8—C9—C10 176.89 (18) C6—C1—S1—O2 −158.52 (16)
C13—C8—C9—C14 179.5 (2) C2—C1—S1—O2 22.28 (19)
C7—C8—C9—C14 −3.5 (3) C6—C1—S1—O1 −26.54 (19)
C8—C9—C10—C11 0.9 (3) C2—C1—S1—O1 154.26 (16)
C14—C9—C10—C11 −178.7 (2) C6—C1—S1—N1 86.46 (17)
C9—C10—C11—C12 −0.5 (4) C2—C1—S1—N1 −92.74 (17)

(E)-N'-(2-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.84 (2) 2.51 (2) 3.230 (2) 144 (2)
N1—H1N···O4i 0.84 (2) 2.44 (2) 3.260 (3) 164 (2)
C2—H2···O2ii 0.93 2.58 3.284 (2) 133
C12—H12···O1iii 0.93 2.44 3.341 (3) 164

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z; (iii) −x+1, y−1/2, −z+1/2.

(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) . Crystal data

C14H13N3O4S·H2O F(000) = 704
Mr = 337.35 Dx = 1.434 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 22.589 (2) Å Cell parameters from 3331 reflections
b = 5.4424 (4) Å θ = 3.1–27.8°
c = 12.7180 (9) Å µ = 0.24 mm1
β = 92.146 (6)° T = 293 K
V = 1562.4 (2) Å3 Prism, yellow
Z = 4 0.40 × 0.36 × 0.16 mm

(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) . Data collection

Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector 2178 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.021
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −19→27
Tmin = 0.911, Tmax = 0.963 k = −6→6
9384 measured reflections l = −14→15
2870 independent reflections

(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: mixed
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3615P] where P = (Fo2 + 2Fc2)/3
2870 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.19 e Å3
6 restraints Δρmin = −0.28 e Å3

(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29814 (2) −0.41337 (9) 0.00460 (3) 0.04151 (15)
O1 0.31514 (6) −0.4922 (3) −0.09707 (10) 0.0540 (4)
O2 0.28665 (6) −0.5896 (2) 0.08395 (10) 0.0533 (4)
O3 0.50400 (7) 0.4229 (3) 0.11440 (12) 0.0697 (5)
O4 0.45497 (7) 0.4367 (3) 0.25661 (11) 0.0619 (4)
N1 0.23739 (7) −0.2563 (3) −0.01813 (12) 0.0465 (4)
H1N 0.2396 (9) −0.153 (3) −0.0681 (14) 0.056*
N2 0.21027 (7) −0.1771 (3) 0.07293 (12) 0.0470 (4)
N3 0.46427 (7) 0.3533 (3) 0.16974 (13) 0.0463 (4)
C1 0.35122 (7) −0.2010 (3) 0.05425 (13) 0.0367 (4)
C2 0.38690 (8) −0.0791 (4) −0.01472 (14) 0.0439 (4)
H2 0.3852 −0.1181 −0.0860 0.053*
C3 0.42513 (8) 0.1012 (4) 0.02325 (14) 0.0440 (4)
H3 0.4500 0.1839 −0.0215 0.053*
C4 0.42543 (7) 0.1550 (3) 0.12892 (14) 0.0383 (4)
C5 0.39051 (8) 0.0344 (4) 0.19866 (14) 0.0431 (4)
H5 0.3923 0.0746 0.2698 0.052*
C6 0.35286 (8) −0.1470 (3) 0.16104 (13) 0.0424 (4)
H6 0.3289 −0.2321 0.2065 0.051*
C7 0.17972 (8) 0.0167 (4) 0.06417 (16) 0.0505 (5)
H7 0.1791 0.1035 0.0012 0.061*
C8 0.14529 (8) 0.1070 (4) 0.15155 (16) 0.0501 (5)
C9 0.11387 (10) 0.3238 (4) 0.14097 (19) 0.0669 (6)
H9 0.1164 0.4165 0.0799 0.080*
C10 0.07863 (11) 0.4042 (5) 0.2206 (2) 0.0754 (7)
H10 0.0578 0.5505 0.2118 0.090*
C11 0.07354 (10) 0.2750 (5) 0.31180 (19) 0.0670 (6)
C12 0.10618 (11) 0.0627 (5) 0.32272 (19) 0.0725 (7)
H12 0.1044 −0.0267 0.3848 0.087*
C13 0.14130 (10) −0.0210 (4) 0.24460 (17) 0.0626 (6)
H13 0.1627 −0.1658 0.2545 0.075*
C14 0.03449 (12) 0.3685 (6) 0.3974 (2) 0.0970 (10)
H14A 0.0205 0.2322 0.4374 0.146*
H14B 0.0013 0.4553 0.3660 0.146*
H14C 0.0569 0.4774 0.4430 0.146*
O5 0.25535 (9) 0.4283 (3) 0.31149 (13) 0.0753 (5)
H51 0.2502 (12) 0.445 (5) 0.2487 (14) 0.090*
H52 0.2685 (12) 0.296 (4) 0.328 (2) 0.090*

(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0456 (3) 0.0425 (3) 0.0370 (3) −0.0023 (2) 0.00972 (18) −0.0038 (2)
O1 0.0622 (9) 0.0571 (8) 0.0437 (7) −0.0028 (7) 0.0164 (6) −0.0144 (7)
O2 0.0653 (9) 0.0448 (7) 0.0506 (8) −0.0067 (7) 0.0131 (7) 0.0041 (6)
O3 0.0700 (10) 0.0800 (11) 0.0592 (9) −0.0336 (9) 0.0065 (8) 0.0081 (8)
O4 0.0664 (9) 0.0616 (9) 0.0579 (8) −0.0062 (8) 0.0040 (7) −0.0154 (7)
N1 0.0452 (9) 0.0583 (10) 0.0363 (9) −0.0017 (8) 0.0052 (7) −0.0027 (7)
N2 0.0416 (9) 0.0569 (10) 0.0430 (9) −0.0024 (8) 0.0087 (7) −0.0077 (8)
N3 0.0474 (9) 0.0467 (9) 0.0444 (8) −0.0028 (7) −0.0023 (7) 0.0059 (7)
C1 0.0349 (9) 0.0406 (9) 0.0350 (9) 0.0037 (8) 0.0060 (7) 0.0004 (8)
C2 0.0456 (10) 0.0545 (11) 0.0323 (9) −0.0030 (9) 0.0102 (8) −0.0018 (9)
C3 0.0415 (10) 0.0532 (11) 0.0380 (10) −0.0026 (9) 0.0117 (8) 0.0063 (9)
C4 0.0356 (9) 0.0402 (9) 0.0393 (9) 0.0028 (7) 0.0023 (7) 0.0036 (7)
C5 0.0458 (10) 0.0536 (12) 0.0303 (9) −0.0018 (9) 0.0045 (8) 0.0007 (8)
C6 0.0417 (10) 0.0518 (11) 0.0341 (9) −0.0030 (9) 0.0084 (8) 0.0057 (8)
C7 0.0420 (11) 0.0591 (12) 0.0505 (12) −0.0031 (10) 0.0043 (9) −0.0030 (10)
C8 0.0425 (11) 0.0548 (12) 0.0533 (12) −0.0013 (9) 0.0039 (9) −0.0123 (10)
C9 0.0678 (15) 0.0632 (14) 0.0700 (15) 0.0114 (12) 0.0066 (12) −0.0006 (12)
C10 0.0706 (16) 0.0697 (15) 0.0857 (19) 0.0242 (13) 0.0016 (14) −0.0173 (14)
C11 0.0539 (13) 0.0848 (17) 0.0624 (15) 0.0074 (13) 0.0029 (11) −0.0267 (13)
C12 0.0834 (17) 0.0808 (17) 0.0542 (14) 0.0141 (15) 0.0159 (12) −0.0067 (13)
C13 0.0661 (14) 0.0672 (14) 0.0548 (13) 0.0171 (12) 0.0086 (11) −0.0087 (11)
C14 0.0808 (18) 0.127 (3) 0.0847 (19) 0.0258 (18) 0.0152 (15) −0.0400 (18)
O5 0.1131 (15) 0.0646 (10) 0.0485 (9) 0.0000 (10) 0.0078 (10) −0.0005 (9)

(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) . Geometric parameters (Å, º)

S1—O2 1.4230 (13) C6—H6 0.9300
S1—O1 1.4284 (13) C7—C8 1.465 (3)
S1—N1 1.6335 (17) C7—H7 0.9300
S1—C1 1.7652 (18) C8—C13 1.379 (3)
O3—N3 1.221 (2) C8—C9 1.381 (3)
O4—N3 1.220 (2) C9—C10 1.383 (3)
N1—N2 1.398 (2) C9—H9 0.9300
N1—H1N 0.850 (15) C10—C11 1.365 (3)
N2—C7 1.263 (3) C10—H10 0.9300
N3—C4 1.473 (2) C11—C12 1.375 (3)
C1—C2 1.383 (2) C11—C14 1.514 (3)
C1—C6 1.389 (2) C12—C13 1.372 (3)
C2—C3 1.382 (3) C12—H12 0.9300
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.375 (2) C14—H14A 0.9600
C3—H3 0.9300 C14—H14B 0.9600
C4—C5 1.375 (2) C14—H14C 0.9600
C5—C6 1.377 (3) O5—H51 0.808 (16)
C5—H5 0.9300 O5—H52 0.802 (17)
O2—S1—O1 120.13 (8) C1—C6—H6 120.5
O2—S1—N1 107.70 (8) N2—C7—C8 121.14 (19)
O1—S1—N1 104.45 (8) N2—C7—H7 119.4
O2—S1—C1 109.10 (8) C8—C7—H7 119.4
O1—S1—C1 108.56 (8) C13—C8—C9 117.7 (2)
N1—S1—C1 105.98 (8) C13—C8—C7 122.4 (2)
N2—N1—S1 113.94 (12) C9—C8—C7 119.9 (2)
N2—N1—H1N 117.2 (14) C8—C9—C10 120.4 (2)
S1—N1—H1N 113.8 (15) C8—C9—H9 119.8
C7—N2—N1 116.04 (17) C10—C9—H9 119.8
O4—N3—O3 124.16 (17) C11—C10—C9 121.9 (2)
O4—N3—C4 118.13 (15) C11—C10—H10 119.0
O3—N3—C4 117.71 (16) C9—C10—H10 119.0
C2—C1—C6 121.61 (17) C10—C11—C12 117.2 (2)
C2—C1—S1 119.44 (13) C10—C11—C14 120.5 (2)
C6—C1—S1 118.77 (13) C12—C11—C14 122.3 (3)
C3—C2—C1 119.35 (16) C13—C12—C11 121.9 (2)
C3—C2—H2 120.3 C13—C12—H12 119.1
C1—C2—H2 120.3 C11—C12—H12 119.1
C4—C3—C2 118.22 (16) C12—C13—C8 120.8 (2)
C4—C3—H3 120.9 C12—C13—H13 119.6
C2—C3—H3 120.9 C8—C13—H13 119.6
C3—C4—C5 123.13 (17) C11—C14—H14A 109.5
C3—C4—N3 118.79 (15) C11—C14—H14B 109.5
C5—C4—N3 118.07 (16) H14A—C14—H14B 109.5
C4—C5—C6 118.66 (16) C11—C14—H14C 109.5
C4—C5—H5 120.7 H14A—C14—H14C 109.5
C6—C5—H5 120.7 H14B—C14—H14C 109.5
C5—C6—C1 119.01 (16) H51—O5—H52 113 (3)
C5—C6—H6 120.5
O2—S1—N1—N2 46.42 (15) C3—C4—C5—C6 −0.8 (3)
O1—S1—N1—N2 175.19 (13) N3—C4—C5—C6 178.33 (16)
C1—S1—N1—N2 −70.24 (14) C4—C5—C6—C1 −0.3 (3)
S1—N1—N2—C7 152.32 (14) C2—C1—C6—C5 0.8 (3)
O2—S1—C1—C2 153.79 (14) S1—C1—C6—C5 −174.26 (14)
O1—S1—C1—C2 21.22 (17) N1—N2—C7—C8 175.00 (16)
N1—S1—C1—C2 −90.50 (15) N2—C7—C8—C13 −4.2 (3)
O2—S1—C1—C6 −31.06 (16) N2—C7—C8—C9 177.82 (19)
O1—S1—C1—C6 −163.64 (14) C13—C8—C9—C10 −1.6 (3)
N1—S1—C1—C6 84.65 (15) C7—C8—C9—C10 176.5 (2)
C6—C1—C2—C3 −0.1 (3) C8—C9—C10—C11 0.2 (4)
S1—C1—C2—C3 174.89 (14) C9—C10—C11—C12 1.5 (4)
C1—C2—C3—C4 −1.0 (3) C9—C10—C11—C14 −180.0 (2)
C2—C3—C4—C5 1.4 (3) C10—C11—C12—C13 −1.7 (4)
C2—C3—C4—N3 −177.66 (16) C14—C11—C12—C13 179.8 (2)
O4—N3—C4—C3 163.87 (17) C11—C12—C13—C8 0.3 (4)
O3—N3—C4—C3 −16.5 (2) C9—C8—C13—C12 1.4 (3)
O4—N3—C4—C5 −15.3 (2) C7—C8—C13—C12 −176.6 (2)
O3—N3—C4—C5 164.39 (17)

(E)-N'-(4-Methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate (III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O5i 0.85 (2) 2.00 (2) 2.848 (2) 173 (2)
O5—H51···O2ii 0.81 (2) 2.29 (2) 3.006 (2) 148 (3)
O5—H52···O1iii 0.80 (2) 2.17 (2) 2.949 (2) 166 (3)
C5—H5···O1iii 0.93 2.52 3.167 (2) 127

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, y+1, z; (iii) x, −y−1/2, z+1/2.

Funding Statement

This work was funded by Department of Science and Technology, Government of India grant DST-PURSE to A. R. Salian. University Grants Commission grant UGC--BSR one-time grant to faculty to B. T. Gowda.

References

  1. Balaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250–o1251. [DOI] [PMC free article] [PubMed]
  2. Catanescu, O., Grigoras, M., Colotin, G., Dobreanu, A., Hurduc, N. & Simionescu, C. I. (2001). Eur. Polym. J. 37, 2213–2216.
  3. Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017a). ACS Omega, 2, 420–431. [DOI] [PMC free article] [PubMed]
  4. Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017b). Sci. Rep. 7, 5832. [DOI] [PMC free article] [PubMed]
  5. Kia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o821–o822. [DOI] [PMC free article] [PubMed]
  6. Kia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o1119–o1120. [DOI] [PMC free article] [PubMed]
  7. Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359. [DOI] [PubMed]
  8. Manivannan, S. & Dhanuskodi, S. (2004). J. Cryst. Growth, 262, 473–478.
  9. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  10. Morgan, P. W., Kwolek, S. L. & Pletcher, T. C. (1987). Macromolecules, 20, 729–739.
  11. Murtaza, S., Shamim, S., Kousar, N., Tahir, M. N., Sirajuddin, M. & Rana, U. A. (2016). J. Mol. Struct. 1107, 99–108.
  12. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613–1618. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.
  20. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.
  21. Xavier, A. J., Thakur, M. & Marie, J. M. (2012). J. Chem. Pharm. Res. 4, 986–990.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989018015207/su5460sup1.cif

e-74-01710-sup1.cif (951.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015207/su5460Isup2.hkl

e-74-01710-Isup2.hkl (215.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018015207/su5460IIsup3.hkl

e-74-01710-IIsup3.hkl (217.6KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018015207/su5460IIIsup4.hkl

e-74-01710-IIIsup4.hkl (229.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018015207/su5460Isup5.cml

Supporting information file. DOI: 10.1107/S2056989018015207/su5460IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989018015207/su5460IIIsup7.cml

CCDC references: 1578712, 1578713, 1578715

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES