Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 9;74(Pt 12):1772–1777. doi: 10.1107/S2056989018015645

Binary charge-transfer complexes using pyromellitic acid dianhydride featuring C—H⋯O hydrogen bonds

Tania N Hill a, Andreas Lemmerer a,*
PMCID: PMC6281116  PMID: 30574372

Four binary charge-transfer complexes were made using pyromellitic acid dianhydride (pmda), all of which show alternating donor and acceptor stacks, which have weak C—H⋯O hydrogen bonds connecting the donor and acceptor mol­ecules.

Keywords: crystal structure, charge transfer, Hirshfeld surface, hydrogen bonding

Abstract

Four binary charge-transfer complexes were made using pyromellitic acid dianhydride (pmda), those being pmda–naphthalene (1/1), C10H2O6·C10H8, (I), pmda–fluoranthene (1/1), C10H2O6·C16H10, (II), pmda–9-methyl­anthracene (1/1), C10H2O6·C15H12, (III), and pmda–ethyl anthracene-9-carboxyl­ate (1/2), C10H2O6·2C17H12O3, (IV). All charge-transfer complexes show alternating donor and acceptor stacks, which have weak C—H⋯O hydrogen bonds connecting the donor and acceptor mol­ecules. In addition, complex (I) has Z′ = 1/2, complex (II) has a Z′ = 2 and complex (IV) has half mol­ecule of pyromellitic acid dianhydride in the asymmetric unit.

Chemical context  

Crystal engineering, the conception and synthesis of mol­ecular solid state structures, is fundamentally based upon the discernment and subsequent exploitation of inter­molecular inter­actions. Consequently, non-covalent bonding inter­actions are primarily used to achieve the organization of mol­ecules and ions in the solid state in order to produce materials with desired properties. and this understanding using a variety of inter­molecular inter­actions is at the very heart of crystal engineering. Recently, it has been shown that one can synthesize supra­molecular assemblies that contain anywhere from three to six different mol­ecular moieties (Paul et al., 2018). Supra­molecular synthesis chiefly uses the hydrogen-bond inter­action as the most directional of the known inter­molecular inter­actions (Aakeröy & Beatty, 2001). An equally important inter­action is that of charge transfer (CT) between an electron-rich π-system (donor) and an electron-poor π-system (acceptor) (Herbstein, 2005). Classic donor mol­ecules (polycyclic aromatic hydro­carbons) generally have an electron-rich π-system. On the other hand, aromatic hydro­carbons with strongly polarizing groups, such as 1,3,5-tri­nitro­benzene (TNB), have an electron-poor π-system and are classified as the acceptor mol­ecule (Hill et al., 2018a ,b ). Another common acceptor mol­ecule is pyromellitic acid dianhydride (pmda), which has electron-withdrawing O atoms of the carb­oxy­lic acid dianhydride groups. (pmda)·(pyrene) complexes have been investigated for order–disorder transitions as a function of temperature using infrared and Raman spectroscopy (Isaac et al., 2018), (pmda)·(naphthalene) has been studied via Raman spectroscopy for having orientational disorder (Macfarlane & Ushioda, 1977), disorder in (pmda)·(perylene) via computer simulation (Boeyens & Levendis, 1986), and photoconductivity and magentoconductance in pmda·(pyrene) (Kato et al., 2017). To this end, we have synthesized four new charge-transfer co-crystals that show no disorder: (pmda)·(naphthalene) (I), (pmda)·(fluoranthene) (II), (pmda)·(9-methyl­anthracene) (III), and (pmda)2·(9-ethyl ester anthracene) (IV).graphic file with name e-74-01772-scheme1.jpg

Structural commentary  

The asymmetric units and atom-labelling schemes are shown in Fig. 1, together with their displacement ellipsoids, for all charge-transfer complexes. As a result of the strong polarizing effect of the carb­oxy­lic acid dianhydride groups, pmda has an electron-poor π-system and functions as an acceptor. On the other side, the donor mol­ecules comprising polycyclic aromatic hydro­carbons have an electron-rich π-system. The packing of the mol­ecules of the four complexes follows a donor (D) acceptor (A) π–π inter­action, which is the major driving force in the formation of these complexes, as seen in Figs. 2 and 3 (donor mol­ecules shown in blue/yellow and acceptor in green/red), resulting in a general face-to-face π-stacking, with Table 1 summarizing the closest centroid–centroid distances between the pmda acceptor and aromatic donor systems. The inter­molecular inter­actions of the DA stacks can be qu­anti­fied using Hirshfeld surface analysis as well as the resulting fingerprint plots using the programme CrystalExplorer 17.5 (Spackman & McKinnon, 2002). Table 2 summarizes the percentages for all combinations of contacts between C, H and O atoms and the relevant fingerprint plots are given in the supporting information. In the paper by Chen et al. (2017), the authors describe that regions of blue and red triangles on the Hirshfeld surface using the shape index as evidence of π–π inter­actions. Fig. 4 shows such surfaces plotted for the pmda mol­ecules in (I)–(IV), and for comparison the shape index of the pmda mol­ecule in its unimolecular crystal structure. The red triangles show concave regions indicative of ring carbons of the π stacked mol­ecule above it. Complexes (I)–(IV) display a high number of triangles, which reveals the increased proportion of π–π stacking observed for the four structures.. The shape index of pmda shows no such pattern [Fig. 4(a)]. This π stacking can be qu­anti­fied by looking at the contribution of the C⋯C contacts contained in the fingerprint plots, which vary only slightly from 19.9 to 21.0%. The greatest contribution to the Hirshfeld surfaces are seen in the H⋯O contacts, which vary from 48.5 to 58.4%. In comparison, the C⋯C contacts only make up 0.2% in pmda⋯pmda and the C⋯O contacts have the greatest single contribution at 43%. In summary, the introduction of an aromatic polycylic changes the biggest contributor from C⋯O in pmda to H⋯O in pmda-aromatic polycyclics.

Figure 1.

Figure 1

Perspective views of compounds (I)–(IV), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x, 1 − y, z; (ii) −x, 1 − y, 1 − z; (iii) −x, y, 1 − z; (iv) −x, 1 − y, −z; (v) −x, y, −z; (vi) x − 1, y − 1, z − 1.]

Figure 2.

Figure 2

(a) A packing diagram of (I) showing the layers of donor (blue) and acceptor (green) mol­ecules. (b) Hydrogen-bonding diagram for (I) showing the C—H⋯O hydrogen-bonded rings formed between the pmda and naphthalene mol­ecules.

Figure 3.

Figure 3

Packing diagrams for (II)–(IV). The donor mol­ecules are shown in blue or yellow, and the acceptor mol­ecules in green or red.

Table 1. Centroid distances (Å) between the pmda and the ring centroids (Cg) of the aromatic polycyclics.

Structure Acceptor Cg Donor Cg CgCg Symmetry Operator
(I) C1–O1 (Cg3) C4–C6 (Cg6) 3.3724 (2) x + Inline graphic, y − Inline graphic, −z
(II) O1–C10 (Cg5) C11–C19 (Cg14) 3.3193 (5) x, y, z
(III) C2–C9 (Cg3) C11–C24 (Cg10) 3.2994 (4) x − 1, y, z
(IV) C1–O1 (Cg9) C11–C24 (Cg3) 3.3280 (3) 1 − x, −y, 1 − z

Table 2. Proportion (%) of inter­molecular contacts between donor and acceptor (pmda) mol­ecules in the Hirshfeld fingerprint plots.

Structure C⋯C H⋯H C⋯H O⋯O O⋯H C⋯O
(pmda) 0.2 8.0 1.0 29.9 17.9 43.0
(I) 19.8 6.6 3.9 9.5 58.4 1.7
(IIA) 21.0 8.6 5.4 5.5 52.8 6.6
(IIB) 20.6 11.7 6.2 7.1 48.5 5.9
(III) 20.2 9.5 4.1 4.2 56.8 5.2
(IV) 20.9 10.8 2.7 4.4 53.9 7.3

Figure 4.

Figure 4

The mol­ecular Hirshfeld surfaces mapped over shape index for the pmda mol­ecule by itself (PYMDAN) and for the pmda acceptor mol­ecule in charge transfer complexes (I)–(IV).

Supra­molecular features  

Compound (I) crystallizes in the C2/m space group with one quarter of the pmda and naphthalene mol­ecules occupying a twofold axis and a mirror plane, resulting in Z′ = 0.25 for the asymmetric unit. The donor and acceptor mol­ecules stack along the c-axis direction, and in a checker board fashion along the ab plane [Fig. 2(a)]. In the direction of the a-axis, there is a symmetrical C4—H4⋯O2 inter­action from both ends of the naphthalene mol­ecule to the oxygen atoms on the pmda [Fig. 2(b), Table 3]. As a result of the mirror plane symmetry, this results in a very symmetrical Inline graphic(5) ring as described using graph-set notation (Bernstein et al., 1995). Along the b-axis, there is an additional hydrogen bonded ring, Inline graphic(8), resulting from C3—H3⋯O1 hydrogen-bond inter­action [Fig. 2(b)].

Table 3. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.68 3.2748 (14) 121
C3—H3⋯O1ii 0.95 2.63 3.3463 (13) 133
C5—H5⋯O1ii 0.95 2.69 3.4127 (14) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Compound (II) crystallizes in the Pca21 space group with two pmda and two fluoranthene mol­ecules in the asymmetric unit. One set of D/A pairs is shown in blue/green, and the second is shown in yellow/red. The separation of the two D/A pairs can be clearly seen in Fig. 3(a). Between the four unique pmda acceptor and fluoranthene donors there are numerous C—H⋯O inter­actions (Table 4). As the fluoranthene has only C and H atoms, it is the mol­ecule that has the most weak hydrogen-bond donor groups (C—H), and the pmda, with six oxygen atoms, has numerous good hydrogen-bond acceptor atoms (O). Fig. 5(a) and 5(b) illustrate four of the hydrogen bonds emanating from the two symmetry-independent fluoranthene mol­ecules, which form a number of hydrogen-bonded rings: Inline graphic(7), Inline graphic(7), Inline graphic(8) and Inline graphic(12).

Table 4. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.95 2.67 3.373 (5) 132
C16—H16⋯O8 0.95 2.59 3.444 (5) 150
C17—H17⋯O3ii 0.95 2.65 3.576 (5) 166
C18—H18⋯O1ii 0.95 2.67 3.332 (5) 127
C22—H22⋯O4iii 0.95 2.59 3.481 (5) 155
C25—H25⋯O11iii 0.95 2.55 3.347 (5) 142
C29—H29⋯O12iv 0.95 2.71 3.370 (5) 127
C42—H42⋯O6 0.95 2.49 3.413 (5) 165
C43—H43⋯O11iii 0.95 2.58 3.293 (5) 132
C44—H44⋯O10iii 0.95 2.52 3.428 (5) 160
C45—H45⋯O12iv 0.95 2.57 3.429 (5) 150
C46—H46⋯O9v 0.95 2.64 3.256 (5) 123
C48—H48⋯O9vi 0.95 2.55 3.473 (5) 164
C50—H50⋯O7vi 0.95 2.5 3.420 (5) 164
C52—H52⋯O6 0.95 2.62 3.525 (5) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 5.

Figure 5

Hydrogen-bonding diagrams for (II)–(IV). Atom labels correspond to those given in the hydrogen-bonding tables.

Compound (III) crystallizes in the P Inline graphic space group with both the pmda and 9-methyl­anthracene in the asymmetric unit. The packing of the structure shows the typical donor–acceptor stacking along the a axis [Fig. 3(b)] and has the closest centroid-to-centroid distance of all four charge-transfer complexes at 3.2994 (4) Å (Table 1). Perpendicular to the stacking axis, the donor and acceptor mol­ecules form hydrogen-bonded layers using four distinct C—H⋯O hydrogen bonds (Table 5). The combination of these individually or in groups results in three types of hydrogen bonded rings, Inline graphic(10), Inline graphic(13) and Inline graphic(24), shown in Fig. 5(c).

Table 5. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.55 3.376 (4) 145
C14—H14⋯O2ii 0.95 2.63 3.347 (4) 133
C16—H16⋯O4iii 0.95 2.68 3.365 (4) 130
C22—H22⋯O5iv 0.95 2.64 3.323 (4) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Compound (IV) crystallizes in the P21/c space group with half a pmda (on a centre of inversion) and one complete 9-ethyl ester anthracene mol­ecule in the asymmetric unit, giving a ratio of one acceptor to two donors. [Fig. 3(c)]. Two donor mol­ecules form a hydrogen-bonded ring dimer [Fig. 5(d)], graph-set Inline graphic(14), via a C21—H21⋯O4 hydrogen bond Two pmda mol­ecules are connected to the donor via discrete hydrogen bonds C12—H12⋯O2 and C15—H15⋯O3 (Table 6).

Table 6. Hydrogen-bond geometry (Å, °) for (IV) .

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.65 3.351 (2) 131
C15—H15⋯O3ii 0.95 2.55 3.306 (2) 137
C21—H21⋯O4iii 0.95 2.48 3.433 (2) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

One of the major differences between the four complexes is the symmetry of the asymmetric unit. Pmda, being a very symmetrical mol­ecule with point group D 2h, is shown to crystallize with Z′ = 0.25, 0.5 and 1 in the title complexes. In the literature, the most common case is with Z′ = 0.5, such as those with anthracene (ANTPML; Boeyens & Herbstein, 1965; ANTPML01 and ANTPML01; Robertson & Stezowski, 1978), acridine (BIWVUY; Karl et al., 1982b ), bi­phenyl­ene (DURZAR, DURZAR01, DURZAR02; Stezowski et al., 1986), chrysene (FILHIR; Bulgarovskaya et al., 1987b ) to name but a few. More unusual is the case with Z′ = 0.25, seen only twice in 9,10-di­bromo­anthracene (FILHEN; Bulgarovskaya et al., 1987a ) and naphthalene (NAPYMA01; Le Bars-Combe et al., 1979). It has also been observed were pmda is present with both Z′ = 0.5 and 1, such as in RUYWIR (Kurebayashi et al., 2001), 3,6-di­bromo­carbazole (VILFIF; Bulgarovskaya et al., 1989) and N-methyl-3,6-di­bromo­carbazole (WEXKEP; Dzyabchenko et al., 1994). In summary, we have characterized a further new set of four CT complexes of pmda and aromatic mol­ecules.

Database survey  

A database survey in the Cambridge Structural Database (CSD, Version 5.39; November 2017 update; Groom et al., 2016) was undertaken for any structures containing the pmda moiety. A total of 26 complexes were found, four showing polymorphism [BECNUS02 (Karl et al., 1982a ) and BECNUS10 (Bugarovskaya et al., 1982); DURZAR and DURZAR01 (Stezowski et al., 1986); NAPYMA01 (Le Bars-Combe et al., 1979) and NAPYMA12 (Le Bars-Combe et al., 1981); PYRPMA04 (Herbstein et al., 1994) and PYRPMA11 (Kato et al., 2017)] and one showing stoichiometric variation [VILFEB and VILFIF (Bulgarovskaya et al., 1989)].

Synthesis and crystallization  

All chemicals were purchased from commercial sources (Sigma Aldrich) and used as received without further purification. The pyromellitic acid dianhydride charge transfer complexes were prepared in a 10 mL ethano­lic solution with a 1:1 stoichiometric ratio of the donor to the acceptor mol­ecule which was then heated and stirred until total dissolution took place (approx. 4 h). The solution was then cooled very slowly and allowed to evaporate to obtain crystals suitable for X-ray diffraction. Detailed masses are as follows: (I): 0.100 g of pyromellitic acid dianhydride and 0.059 g of naphthalene; (II): 0.100 g of pyromellitic acid dianhydride and 0.093 g of fluoranthene; (III): 0.100 g of pyromellitic acid dianhydride and 0.088 g of 9-methyl­anthracene; and (IV): 0.100 g of pyromellitic acid dianhydride and 0.12 1 g of 9-ethyl ester anthracene.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 7. For all compounds, the C-bound H atoms were geometrically placed (C—H bond lengths of 0.96 (methyl CH3), and 0.95 (Ar—H) Å) and refined as riding with U iso(H) = 1.2U eq(Ar-C) or U iso(H) = 1.5U eq(methyl-C).

Table 7. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C10H2O6·C10H8 C10H2O6·C16H10 C10H2O6·C15H12 C17H12O3·0.5C10H2O6
M r 346.28 420.36 410.36 373.32
Crystal system, space group Monoclinic, C2/m Orthorhombic, P c a21 Triclinic, P Inline graphic Monoclinic, P21/c
Temperature (K) 173 173 173 173
a, b, c (Å) 9.1478 (4), 12.8195 (6), 6.7459 (3) 57.356 (9), 7.0172 (10), 9.3429 (13) 7.1012 (8), 9.5674 (12), 13.6147 (16) 9.1949 (7), 17.9751 (14), 10.9716 (10)
α, β, γ (°) 90, 104.202 (3), 90 90, 90, 90 99.109 (4), 99.941 (4), 92.219 (4) 90, 112.829 (2), 90
V3) 766.91 (6) 3760.3 (9) 897.53 (19) 1671.3 (2)
Z 2 8 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.11 0.11 0.11
Crystal size (mm) 0.40 × 0.08 × 0.05 0.5 × 0.1 × 0.1 0.19 × 0.06 × 0.05 0.55 × 0.1 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector
Absorption correction Multi-scan SADABS (Krause et al., 2015) Multi-scan SADABS (Krause et al., 2015) Multi-scan SADABS (Krause et al., 2015) Multi-scan SADABS (Krause et al., 2015)
T min, T max 0.9, 0.95 0.9, 0.95 0.9, 0.95 0.9, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 3774, 967, 841 40403, 6983, 5636 20202, 3280, 2159 13071, 4035, 2731
R int 0.042 0.054 0.075 0.046
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.098, 1.04 0.045, 0.106, 1.08 0.073, 0.223, 1.02 0.043, 0.112, 1.05
No. of reflections 967 6983 3280 4035
No. of parameters 63 577 281 254
No. of restraints 0 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.3 0.21, −0.17 0.67, −0.28 0.30, −0.26

Computer programs: APEX3, SAINT-Plus and XPREP (Bruker 2016), SHELXS97 (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, IV, shelx. DOI: 10.1107/S2056989018015645/eb2013sup1.cif

e-74-01772-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015645/eb2013Isup2.hkl

e-74-01772-Isup2.hkl (79.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018015645/eb2013IIsup3.hkl

e-74-01772-IIsup3.hkl (554.9KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018015645/eb2013IIIsup4.hkl

e-74-01772-IIIsup4.hkl (261.8KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989018015645/eb2013IVsup5.hkl

e-74-01772-IVsup5.hkl (321.7KB, hkl)

Fingerprint plots for all five compounds mentioned in the text. DOI: 10.1107/S2056989018015645/eb2013sup6.pdf

e-74-01772-sup6.pdf (1.3MB, pdf)

CCDC references: 1877153, 1877152, 1877151, 1877150

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Pyromellitic acid dianhydride–naphthalene (1/1) (I). Crystal data

C10H2O6·C10H8 F(000) = 356
Mr = 346.28 Dx = 1.5 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 2019 reflections
a = 9.1478 (4) Å θ = 2.8–28.2°
b = 12.8195 (6) Å µ = 0.11 mm1
c = 6.7459 (3) Å T = 173 K
β = 104.202 (3)° Plate, yellow
V = 766.91 (6) Å3 0.40 × 0.08 × 0.05 mm
Z = 2

Pyromellitic acid dianhydride–naphthalene (1/1) (I). Data collection

Bruker D8 Venture Photon CCD area detector diffractometer 841 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
ω scans θmax = 28.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −11→12
Tmin = 0.9, Tmax = 0.95 k = −16→16
3774 measured reflections l = −8→8
967 independent reflections

Pyromellitic acid dianhydride–naphthalene (1/1) (I). Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2771P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.36 e Å3
967 reflections Δρmin = −0.3 e Å3
63 parameters Extinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.011 (3)
0 constraints

Pyromellitic acid dianhydride–naphthalene (1/1) (I). Special details

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Pyromellitic acid dianhydride–naphthalene (1/1) (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.29033 (11) 0.41071 (8) 0.62113 (16) 0.0267 (3)
C2 0.13074 (10) 0.44565 (8) 0.55335 (13) 0.0221 (3)
C3 0 0.38652 (11) 0.5 0.0238 (3)
H3 0 0.312417 0.5 0.029*
O1 0.34466 (8) 0.32627 (6) 0.65041 (12) 0.0379 (3)
O2 0.37963 (11) 0.5 0.65364 (16) 0.0309 (3)
C4 0.27282 (12) 0.44493 (10) 0.10439 (16) 0.0358 (3)
H4 0.365478 0.407881 0.140233 0.043*
C5 0.13998 (12) 0.39113 (10) 0.05322 (16) 0.0324 (3)
H5 0.141317 0.317033 0.053253 0.039*
C6 0 0.44465 (12) 0 0.0262 (3)

Pyromellitic acid dianhydride–naphthalene (1/1) (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0203 (5) 0.0307 (6) 0.0273 (5) 0.0019 (4) 0.0023 (4) −0.0027 (4)
C2 0.0187 (5) 0.0248 (5) 0.0219 (5) 0.0025 (3) 0.0032 (3) 0.0002 (3)
C3 0.0225 (6) 0.0209 (6) 0.0263 (7) 0 0.0030 (5) 0
O1 0.0283 (4) 0.0329 (5) 0.0476 (5) 0.0107 (3) 0.0000 (3) −0.0026 (3)
O2 0.0181 (5) 0.0337 (6) 0.0382 (6) 0 0.0017 (4) 0
C4 0.0221 (5) 0.0545 (7) 0.0289 (6) 0.0073 (5) 0.0029 (4) 0.0021 (5)
C5 0.0294 (6) 0.0377 (6) 0.0295 (5) 0.0060 (4) 0.0059 (4) 0.0020 (4)
C6 0.0224 (6) 0.0353 (8) 0.0204 (6) 0 0.0042 (5) 0

Pyromellitic acid dianhydride–naphthalene (1/1) (I). Geometric parameters (Å, º)

C1—O1 1.1872 (12) C4—C5 1.3659 (16)
C1—O2 1.3921 (12) C4—C4i 1.412 (3)
C1—C2 1.4878 (12) C4—H4 0.9497
C2—C3 1.3868 (12) C5—C6 1.4190 (13)
C2—C2i 1.394 (2) C5—H5 0.95
C3—H3 0.9499 C6—C6ii 1.419 (3)
O1—C1—O2 121.20 (9) C5—C4—C4i 120.33 (7)
O1—C1—C2 131.66 (10) C5—C4—H4 119.7
O2—C1—C2 107.13 (8) C4i—C4—H4 120
C3—C2—C2i 123.13 (6) C4—C5—C6 120.76 (12)
C3—C2—C1 129.34 (9) C4—C5—H5 119.6
C2i—C2—C1 107.52 (6) C6—C5—H5 119.6
C2—C3—C2iii 113.73 (12) C5—C6—C5iv 122.18 (15)
C2—C3—H3 123.1 C5—C6—C6ii 118.91 (7)
C2iii—C3—H3 123.1 C5iv—C6—C6ii 118.91 (7)
C1i—O2—C1 110.63 (11)
O1—C1—C2—C3 −1.92 (18) O1—C1—O2—C1i −176.38 (6)
O2—C1—C2—C3 179.21 (8) C2—C1—O2—C1i 2.63 (15)
O1—C1—C2—C2i 177.30 (11) C4i—C4—C5—C6 −0.22 (11)
O2—C1—C2—C2i −1.57 (9) C4—C5—C6—C5iv −179.78 (11)
C2i—C2—C3—C2iii 0 C4—C5—C6—C6ii 0.22 (11)
C1—C2—C3—C2iii 179.11 (11)

Symmetry codes: (i) x, −y+1, z; (ii) −x, −y+1, −z; (iii) −x, y, −z+1; (iv) −x, y, −z.

Pyromellitic acid dianhydride–naphthalene (1/1) (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O2v 0.95 2.68 3.2748 (14) 121
C3—H3···O1vi 0.95 2.63 3.3463 (13) 133
C5—H5···O1vi 0.95 2.69 3.4127 (14) 133

Symmetry codes: (v) −x+1, y, −z+1; (vi) −x+1/2, −y+1/2, −z+1.

Pyromellitic acid dianhydride–fluoranthene (1/1) (II). Crystal data

C10H2O6·C16H10 F(000) = 1728
Mr = 420.36 Dx = 1.485 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 9936 reflections
a = 57.356 (9) Å θ = 2.9–25.0°
b = 7.0172 (10) Å µ = 0.11 mm1
c = 9.3429 (13) Å T = 173 K
V = 3760.3 (9) Å3 Needle, yellow
Z = 8 0.5 × 0.1 × 0.1 mm

Pyromellitic acid dianhydride–fluoranthene (1/1) (II). Data collection

Bruker D8 Venture Photon CCD area detector diffractometer 5636 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
ω scans θmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −68→69
Tmin = 0.9, Tmax = 0.95 k = −8→8
40403 measured reflections l = −11→11
6983 independent reflections

Pyromellitic acid dianhydride–fluoranthene (1/1) (II). Refinement

Refinement on F2 0 constraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.1599P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
6983 reflections Δρmax = 0.21 e Å3
577 parameters Δρmin = −0.17 e Å3
1 restraint

Pyromellitic acid dianhydride–fluoranthene (1/1) (II). Special details

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Pyromellitic acid dianhydride–fluoranthene (1/1) (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.82357 (7) 1.1250 (5) 0.7955 (4) 0.0292 (9)
C2 0.81768 (6) 1.0608 (5) 0.6489 (4) 0.0222 (9)
C3 0.83230 (7) 1.0187 (5) 0.5355 (4) 0.0247 (9)
H3 0.848791 1.028283 0.541393 0.03*
C4 0.82087 (6) 0.9617 (5) 0.4134 (4) 0.0223 (8)
C5 0.83073 (7) 0.9076 (5) 0.2727 (4) 0.0274 (9)
C6 0.79114 (7) 0.8856 (5) 0.2571 (4) 0.0265 (9)
C7 0.79692 (6) 0.9479 (4) 0.4036 (4) 0.0211 (9)
C8 0.78227 (6) 0.9916 (5) 0.5173 (4) 0.0239 (8)
H8 0.765778 0.98281 0.510836 0.029*
C9 0.79363 (6) 1.0491 (5) 0.6408 (4) 0.0237 (9)
C10 0.78389 (7) 1.1076 (5) 0.7808 (4) 0.0263 (9)
O1 0.80273 (5) 1.1492 (3) 0.8698 (3) 0.0313 (6)
O2 0.76441 (5) 1.1242 (4) 0.8216 (3) 0.0367 (7)
O3 0.84189 (5) 1.1546 (4) 0.8516 (3) 0.0398 (7)
O4 0.81209 (4) 0.8637 (3) 0.1825 (3) 0.0296 (6)
O5 0.77309 (5) 0.8529 (4) 0.1999 (3) 0.0362 (7)
O6 0.85035 (5) 0.8965 (4) 0.2327 (3) 0.0373 (7)
C11 0.79962 (7) 0.4589 (4) 0.4321 (4) 0.0220 (9)
C12 0.79336 (6) 0.5209 (5) 0.5780 (4) 0.0216 (8)
C13 0.81464 (6) 0.5575 (5) 0.6486 (4) 0.0209 (8)
C14 0.83381 (6) 0.5247 (5) 0.5586 (4) 0.0247 (9)
C15 0.82429 (6) 0.4634 (5) 0.4204 (4) 0.0235 (9)
C16 0.83500 (7) 0.4131 (5) 0.2922 (4) 0.0292 (9)
H16 0.851483 0.416417 0.282892 0.035*
C17 0.82101 (7) 0.3579 (5) 0.1783 (4) 0.0324 (10)
H17 0.828098 0.323881 0.09003 0.039*
C18 0.79686 (7) 0.3513 (5) 0.1905 (4) 0.0309 (10)
H18 0.787731 0.311898 0.110994 0.037*
C19 0.78599 (7) 0.4014 (5) 0.3169 (4) 0.0271 (9)
H19 0.769492 0.396593 0.325054 0.032*
C20 0.77293 (6) 0.5517 (5) 0.6511 (4) 0.0270 (9)
H20 0.758286 0.52863 0.606837 0.032*
C21 0.77417 (7) 0.6187 (5) 0.7942 (4) 0.0281 (9)
H21 0.760053 0.640805 0.844686 0.034*
C22 0.79487 (6) 0.6527 (5) 0.8623 (4) 0.0266 (9)
H22 0.794862 0.696499 0.958518 0.032*
C23 0.81630 (6) 0.6229 (5) 0.7904 (4) 0.0252 (9)
C24 0.83898 (7) 0.6531 (5) 0.8429 (5) 0.0316 (9)
H24 0.841192 0.695894 0.938428 0.038*
C25 0.85813 (7) 0.6204 (5) 0.7558 (5) 0.0357 (10)
H25 0.873296 0.643029 0.792923 0.043*
C26 0.85582 (7) 0.5545 (5) 0.6131 (5) 0.0331 (10)
H26 0.869228 0.531161 0.55609 0.04*
C27 0.95132 (7) 0.2701 (5) 0.3916 (4) 0.0273 (9)
C28 0.94915 (6) 0.3286 (4) 0.2407 (4) 0.0211 (8)
C29 0.96640 (6) 0.3586 (5) 0.1395 (4) 0.0240 (9)
H29 0.982522 0.342393 0.159271 0.029*
C30 0.95802 (6) 0.4145 (4) 0.0070 (4) 0.0214 (8)
C31 0.97109 (7) 0.4574 (5) −0.1257 (5) 0.0284 (9)
C32 0.93229 (7) 0.5019 (5) −0.1718 (4) 0.0268 (9)
C33 0.93452 (7) 0.4410 (5) −0.0213 (4) 0.0236 (9)
C34 0.91744 (6) 0.4095 (5) 0.0794 (4) 0.0247 (9)
H34 0.901313 0.425949 0.059588 0.03*
C35 0.92565 (6) 0.3521 (5) 0.2117 (4) 0.0239 (9)
C36 0.91269 (7) 0.3065 (5) 0.3450 (5) 0.0299 (9)
O7 0.92884 (4) 0.2590 (3) 0.4485 (3) 0.0315 (7)
O8 0.89225 (5) 0.3043 (4) 0.3676 (3) 0.0396 (7)
O9 0.96799 (5) 0.2355 (4) 0.4632 (3) 0.0396 (7)
O10 0.95479 (5) 0.5088 (3) −0.2297 (3) 0.0318 (7)
O11 0.91570 (5) 0.5429 (4) −0.2403 (3) 0.0382 (7)
O12 0.99143 (5) 0.4552 (4) −0.1519 (3) 0.0370 (7)
C37 0.94594 (6) 0.8366 (4) 0.2153 (4) 0.0224 (8)
C38 0.95615 (6) 0.8863 (4) 0.0751 (4) 0.0212 (8)
C39 0.93732 (6) 0.9377 (5) −0.0149 (4) 0.0224 (9)
C40 0.91574 (6) 0.9237 (5) 0.0587 (4) 0.0215 (8)
C41 0.92138 (6) 0.8593 (5) 0.2046 (4) 0.0218 (8)
C42 0.90731 (7) 0.8204 (5) 0.3214 (4) 0.0277 (9)
H42 0.890861 0.833772 0.315028 0.033*
C43 0.91770 (7) 0.7615 (5) 0.4480 (4) 0.0309 (10)
H43 0.908251 0.734899 0.52909 0.037*
C44 0.94165 (7) 0.7410 (5) 0.4578 (4) 0.0302 (10)
H44 0.948373 0.701203 0.545763 0.036*
C45 0.95597 (7) 0.7771 (5) 0.3420 (4) 0.0261 (9)
H45 0.972381 0.761441 0.34947 0.031*
C46 0.97819 (7) 0.8917 (5) 0.0193 (4) 0.0278 (9)
H46 0.991274 0.855935 0.075564 0.033*
C47 0.98106 (7) 0.9521 (5) −0.1249 (4) 0.0303 (9)
H47 0.996364 0.956701 −0.16371 0.036*
C48 0.96282 (7) 1.0037 (5) −0.2099 (4) 0.0296 (10)
H48 0.965573 1.043925 −0.305523 0.036*
C49 0.93963 (6) 0.9974 (4) −0.1556 (4) 0.0240 (9)
C50 0.91870 (7) 1.0472 (5) −0.2278 (5) 0.0322 (10)
H50 0.919178 1.088363 −0.32461 0.039*
C51 0.89775 (7) 1.0355 (5) −0.1570 (4) 0.0296 (9)
H51 0.883939 1.071225 −0.206259 0.036*
C52 0.89595 (7) 0.9724 (5) −0.0137 (4) 0.0286 (9)
H52 0.88115 0.96405 0.031533 0.034*

Pyromellitic acid dianhydride–fluoranthene (1/1) (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.035 (2) 0.023 (2) 0.030 (2) 0.0012 (17) 0.000 (2) −0.0011 (17)
C2 0.025 (2) 0.0174 (18) 0.024 (2) 0.0030 (15) 0.0004 (18) −0.0001 (15)
C3 0.023 (2) 0.0215 (19) 0.029 (2) 0.0009 (16) 0.0007 (18) −0.0023 (16)
C4 0.028 (2) 0.0169 (17) 0.022 (2) 0.0022 (16) 0.0019 (18) −0.0020 (15)
C5 0.032 (3) 0.0204 (19) 0.030 (2) 0.0005 (16) 0.003 (2) −0.0028 (17)
C6 0.029 (2) 0.0221 (19) 0.029 (2) −0.0001 (16) 0.0037 (19) −0.0039 (18)
C7 0.026 (2) 0.0146 (17) 0.023 (2) −0.0004 (15) −0.0003 (18) −0.0023 (15)
C8 0.025 (2) 0.0201 (17) 0.026 (2) −0.0004 (16) 0.0009 (19) 0.0016 (15)
C9 0.028 (2) 0.0165 (18) 0.027 (2) 0.0021 (15) −0.0001 (18) 0.0005 (16)
C10 0.033 (2) 0.0182 (18) 0.028 (2) −0.0013 (16) 0.004 (2) 0.0002 (16)
O1 0.0394 (17) 0.0318 (14) 0.0226 (16) 0.0010 (12) 0.0035 (14) −0.0063 (12)
O2 0.0370 (18) 0.0329 (15) 0.0402 (19) −0.0011 (12) 0.0127 (14) −0.0046 (13)
O3 0.0395 (18) 0.0430 (16) 0.0368 (18) 0.0043 (13) −0.0064 (16) −0.0115 (14)
O4 0.0320 (16) 0.0330 (15) 0.0238 (15) 0.0015 (12) 0.0020 (13) −0.0062 (12)
O5 0.0347 (17) 0.0394 (15) 0.0345 (17) −0.0004 (13) −0.0071 (15) −0.0096 (13)
O6 0.0295 (17) 0.0480 (17) 0.0344 (18) 0.0026 (13) 0.0100 (14) −0.0077 (14)
C11 0.028 (2) 0.0155 (17) 0.022 (2) 0.0036 (16) 0.0003 (17) 0.0015 (15)
C12 0.026 (2) 0.0149 (17) 0.024 (2) 0.0005 (15) −0.0016 (18) −0.0015 (15)
C13 0.026 (2) 0.0155 (18) 0.021 (2) −0.0001 (15) 0.0011 (17) −0.0002 (15)
C14 0.027 (2) 0.0196 (19) 0.027 (2) 0.0003 (15) 0.0003 (18) −0.0037 (16)
C15 0.028 (2) 0.0188 (18) 0.024 (2) 0.0010 (16) 0.0018 (18) 0.0012 (15)
C16 0.036 (2) 0.0242 (19) 0.028 (2) −0.0002 (17) 0.006 (2) −0.0025 (16)
C17 0.053 (3) 0.026 (2) 0.018 (2) 0.0076 (19) 0.011 (2) −0.0013 (17)
C18 0.047 (3) 0.025 (2) 0.021 (2) 0.0057 (18) −0.004 (2) 0.0012 (16)
C19 0.032 (2) 0.0209 (18) 0.029 (2) 0.0016 (16) −0.0035 (19) −0.0018 (16)
C20 0.029 (2) 0.0215 (19) 0.030 (2) 0.0009 (16) 0.0007 (19) −0.0017 (16)
C21 0.036 (2) 0.0237 (19) 0.025 (2) 0.0019 (17) 0.0102 (19) 0.0005 (16)
C22 0.036 (2) 0.0245 (19) 0.019 (2) 0.0001 (16) 0.0040 (19) −0.0038 (16)
C23 0.033 (2) 0.0147 (17) 0.028 (2) 0.0022 (15) −0.0033 (19) 0.0006 (16)
C24 0.038 (2) 0.028 (2) 0.029 (2) −0.0019 (17) −0.004 (2) −0.0036 (17)
C25 0.028 (2) 0.035 (2) 0.044 (3) −0.0008 (18) −0.005 (2) −0.007 (2)
C26 0.027 (2) 0.031 (2) 0.042 (3) 0.0008 (17) −0.001 (2) −0.0073 (19)
C27 0.038 (2) 0.0209 (19) 0.023 (2) −0.0012 (17) 0.001 (2) 0.0014 (16)
C28 0.027 (2) 0.0154 (17) 0.021 (2) −0.0006 (15) 0.0009 (17) −0.0011 (15)
C29 0.025 (2) 0.0205 (18) 0.027 (2) 0.0029 (15) −0.0039 (17) 0.0029 (16)
C30 0.025 (2) 0.0145 (17) 0.024 (2) −0.0008 (15) 0.0027 (17) −0.0032 (15)
C31 0.035 (3) 0.0181 (18) 0.032 (2) 0.0003 (16) 0.001 (2) 0.0007 (17)
C32 0.036 (2) 0.023 (2) 0.022 (2) 0.0023 (17) 0.000 (2) 0.0015 (16)
C33 0.032 (2) 0.0182 (18) 0.021 (2) 0.0026 (16) 0.0001 (18) 0.0014 (15)
C34 0.026 (2) 0.0203 (19) 0.028 (2) 0.0018 (16) −0.0001 (19) −0.0007 (16)
C35 0.030 (2) 0.0162 (17) 0.025 (2) 0.0009 (15) 0.0039 (18) −0.0007 (15)
C36 0.036 (2) 0.0209 (19) 0.033 (2) 0.0020 (17) 0.005 (2) 0.0030 (17)
O7 0.0381 (16) 0.0324 (15) 0.0241 (16) 0.0020 (12) 0.0034 (13) 0.0066 (12)
O8 0.0348 (17) 0.0429 (16) 0.0411 (19) 0.0011 (13) 0.0147 (15) 0.0044 (14)
O9 0.0449 (18) 0.0443 (17) 0.0295 (16) 0.0003 (14) −0.0095 (15) 0.0090 (14)
O10 0.0377 (17) 0.0334 (14) 0.0241 (15) 0.0025 (12) 0.0060 (14) 0.0084 (12)
O11 0.0432 (18) 0.0424 (16) 0.0291 (17) 0.0034 (13) −0.0054 (15) 0.0109 (14)
O12 0.0331 (17) 0.0369 (15) 0.0410 (18) 0.0003 (12) 0.0123 (15) 0.0048 (13)
C37 0.029 (2) 0.0138 (16) 0.024 (2) −0.0023 (15) 0.0005 (18) −0.0011 (14)
C38 0.026 (2) 0.0124 (17) 0.025 (2) −0.0031 (14) −0.0004 (18) −0.0006 (15)
C39 0.027 (2) 0.0136 (17) 0.027 (2) −0.0017 (14) −0.0008 (18) 0.0003 (15)
C40 0.029 (2) 0.0169 (18) 0.019 (2) −0.0039 (15) 0.0007 (17) −0.0004 (15)
C41 0.029 (2) 0.0148 (17) 0.021 (2) −0.0038 (15) 0.0013 (17) 0.0006 (14)
C42 0.031 (2) 0.0230 (19) 0.029 (2) −0.0005 (16) 0.0037 (19) 0.0020 (16)
C43 0.041 (3) 0.027 (2) 0.024 (2) −0.0029 (17) 0.007 (2) 0.0011 (17)
C44 0.049 (3) 0.0235 (19) 0.018 (2) −0.0020 (18) −0.005 (2) 0.0035 (15)
C45 0.033 (2) 0.0187 (17) 0.027 (2) −0.0014 (16) −0.009 (2) 0.0002 (16)
C46 0.026 (2) 0.0207 (18) 0.036 (2) −0.0011 (16) −0.0002 (19) −0.0007 (17)
C47 0.029 (2) 0.0282 (19) 0.034 (3) −0.0030 (17) 0.011 (2) −0.0004 (17)
C48 0.041 (3) 0.0218 (19) 0.026 (2) −0.0064 (17) 0.010 (2) 0.0024 (16)
C49 0.031 (2) 0.0177 (18) 0.023 (2) −0.0028 (15) 0.0043 (19) −0.0026 (16)
C50 0.047 (3) 0.027 (2) 0.022 (2) −0.0032 (18) −0.001 (2) 0.0065 (17)
C51 0.030 (2) 0.033 (2) 0.026 (2) 0.0011 (17) −0.0052 (19) 0.0033 (18)
C52 0.029 (2) 0.028 (2) 0.029 (2) −0.0021 (16) 0.0013 (18) 0.0018 (17)

Pyromellitic acid dianhydride–fluoranthene (1/1) (II). Geometric parameters (Å, º)

C1—O3 1.193 (5) C27—O9 1.192 (4)
C1—O1 1.393 (5) C27—O7 1.397 (4)
C1—C2 1.481 (6) C27—C28 1.474 (5)
C2—C3 1.383 (5) C28—C29 1.384 (5)
C2—C9 1.384 (5) C28—C35 1.385 (5)
C3—C4 1.375 (5) C29—C30 1.385 (5)
C3—H3 0.95 C29—H29 0.95
C4—C7 1.380 (5) C30—C33 1.386 (5)
C4—C5 1.480 (5) C30—C31 1.479 (5)
C5—O6 1.188 (4) C31—O12 1.193 (4)
C5—O4 1.396 (4) C31—O10 1.396 (5)
C6—O5 1.188 (4) C32—O11 1.182 (4)
C6—O4 1.397 (4) C32—O10 1.400 (5)
C6—C7 1.474 (5) C32—C33 1.475 (5)
C7—C8 1.389 (5) C33—C34 1.376 (5)
C8—C9 1.385 (5) C34—C35 1.383 (5)
C8—H8 0.95 C34—H34 0.95
C9—C10 1.480 (5) C35—C36 1.485 (5)
C10—O2 1.186 (4) C36—O8 1.191 (4)
C10—O1 1.395 (5) C36—O7 1.380 (5)
C11—C19 1.390 (5) C37—C45 1.381 (5)
C11—C15 1.420 (5) C37—C41 1.421 (5)
C11—C12 1.475 (5) C37—C38 1.476 (5)
C12—C20 1.374 (5) C38—C46 1.368 (5)
C12—C13 1.411 (5) C38—C39 1.416 (5)
C13—C14 1.403 (5) C39—C49 1.386 (5)
C13—C23 1.405 (5) C39—C40 1.419 (5)
C14—C26 1.378 (5) C40—C52 1.365 (5)
C14—C15 1.466 (5) C40—C41 1.472 (5)
C15—C16 1.391 (5) C41—C42 1.385 (5)
C16—C17 1.388 (5) C42—C43 1.387 (5)
C16—H16 0.95 C42—H42 0.95
C17—C18 1.391 (5) C43—C44 1.384 (5)
C17—H17 0.95 C43—H43 0.95
C18—C19 1.381 (5) C44—C45 1.381 (5)
C18—H18 0.95 C44—H44 0.95
C19—H19 0.95 C45—H45 0.95
C20—C21 1.419 (6) C46—C47 1.422 (6)
C20—H20 0.95 C46—H46 0.95
C21—C22 1.368 (5) C47—C48 1.362 (5)
C21—H21 0.95 C47—H47 0.95
C22—C23 1.416 (5) C48—C49 1.424 (5)
C22—H22 0.95 C48—H48 0.95
C23—C24 1.407 (5) C49—C50 1.421 (5)
C24—C25 1.386 (6) C50—C51 1.374 (5)
C24—H24 0.95 C50—H50 0.95
C25—C26 1.417 (6) C51—C52 1.413 (6)
C25—H25 0.95 C51—H51 0.95
C26—H26 0.95 C52—H52 0.95
O3—C1—O1 121.1 (4) O9—C27—O7 121.0 (3)
O3—C1—C2 131.3 (4) O9—C27—C28 131.4 (4)
O1—C1—C2 107.6 (3) O7—C27—C28 107.6 (3)
C3—C2—C9 123.3 (4) C29—C28—C35 123.0 (3)
C3—C2—C1 129.4 (3) C29—C28—C27 129.4 (4)
C9—C2—C1 107.2 (3) C35—C28—C27 107.6 (3)
C4—C3—C2 114.1 (3) C28—C29—C30 113.9 (3)
C4—C3—H3 122.9 C28—C29—H29 123
C2—C3—H3 122.9 C30—C29—H29 123
C3—C4—C7 123.4 (3) C29—C30—C33 123.0 (4)
C3—C4—C5 129.0 (3) C29—C30—C31 129.1 (3)
C7—C4—C5 107.7 (3) C33—C30—C31 107.8 (3)
O6—C5—O4 121.4 (4) O12—C31—O10 121.0 (4)
O6—C5—C4 131.2 (4) O12—C31—C30 131.7 (4)
O4—C5—C4 107.5 (3) O10—C31—C30 107.3 (3)
O5—C6—O4 120.3 (4) O11—C32—O10 121.6 (4)
O5—C6—C7 132.1 (4) O11—C32—C33 131.0 (4)
O4—C6—C7 107.6 (3) O10—C32—C33 107.4 (3)
C4—C7—C8 122.4 (3) C34—C33—C30 122.7 (4)
C4—C7—C6 107.8 (3) C34—C33—C32 129.5 (4)
C8—C7—C6 129.8 (3) C30—C33—C32 107.7 (3)
C9—C8—C7 114.7 (3) C33—C34—C35 114.5 (3)
C9—C8—H8 122.7 C33—C34—H34 122.7
C7—C8—H8 122.7 C35—C34—H34 122.7
C2—C9—C8 122.1 (4) C34—C35—C28 122.8 (3)
C2—C9—C10 108.1 (3) C34—C35—C36 129.9 (3)
C8—C9—C10 129.8 (3) C28—C35—C36 107.3 (3)
O2—C10—O1 121.2 (4) O8—C36—O7 122.2 (4)
O2—C10—C9 131.8 (4) O8—C36—C35 130.1 (4)
O1—C10—C9 107.0 (3) O7—C36—C35 107.7 (3)
C1—O1—C10 110.0 (3) C36—O7—C27 109.8 (3)
C5—O4—C6 109.4 (3) C31—O10—C32 109.8 (3)
C19—C11—C15 120.5 (3) C45—C37—C41 120.5 (3)
C19—C11—C12 131.6 (4) C45—C37—C38 131.8 (3)
C15—C11—C12 107.9 (3) C41—C37—C38 107.7 (3)
C20—C12—C13 118.5 (4) C46—C38—C39 118.1 (4)
C20—C12—C11 135.5 (4) C46—C38—C37 135.3 (4)
C13—C12—C11 106.0 (3) C39—C38—C37 106.6 (3)
C14—C13—C23 124.5 (3) C49—C39—C38 124.6 (3)
C14—C13—C12 111.5 (3) C49—C39—C40 124.3 (3)
C23—C13—C12 124.0 (3) C38—C39—C40 111.1 (3)
C26—C14—C13 118.1 (4) C52—C40—C39 117.9 (3)
C26—C14—C15 135.4 (4) C52—C40—C41 136.0 (4)
C13—C14—C15 106.5 (3) C39—C40—C41 106.2 (3)
C16—C15—C11 120.0 (3) C42—C41—C37 120.0 (3)
C16—C15—C14 131.9 (4) C42—C41—C40 131.5 (3)
C11—C15—C14 108.1 (3) C37—C41—C40 108.5 (3)
C17—C16—C15 118.4 (4) C41—C42—C43 118.7 (3)
C17—C16—H16 120.8 C41—C42—H42 120.6
C15—C16—H16 120.8 C43—C42—H42 120.6
C16—C17—C18 121.5 (4) C44—C43—C42 120.9 (4)
C16—C17—H17 119.3 C44—C43—H43 119.6
C18—C17—H17 119.3 C42—C43—H43 119.6
C19—C18—C17 120.7 (4) C45—C44—C43 121.3 (4)
C19—C18—H18 119.6 C45—C44—H44 119.4
C17—C18—H18 119.6 C43—C44—H44 119.4
C18—C19—C11 118.8 (4) C37—C45—C44 118.6 (3)
C18—C19—H19 120.6 C37—C45—H45 120.7
C11—C19—H19 120.6 C44—C45—H45 120.7
C12—C20—C21 118.6 (4) C38—C46—C47 118.5 (4)
C12—C20—H20 120.7 C38—C46—H46 120.8
C21—C20—H20 120.7 C47—C46—H46 120.8
C22—C21—C20 122.7 (4) C48—C47—C46 122.8 (4)
C22—C21—H21 118.7 C48—C47—H47 118.6
C20—C21—H21 118.7 C46—C47—H47 118.6
C21—C22—C23 120.4 (4) C47—C48—C49 120.1 (4)
C21—C22—H22 119.8 C47—C48—H48 120
C23—C22—H22 119.8 C49—C48—H48 120
C13—C23—C24 116.1 (4) C39—C49—C50 116.3 (3)
C13—C23—C22 115.9 (3) C39—C49—C48 115.9 (4)
C24—C23—C22 128.0 (4) C50—C49—C48 127.8 (4)
C25—C24—C23 120.2 (4) C51—C50—C49 119.7 (4)
C25—C24—H24 119.9 C51—C50—H50 120.1
C23—C24—H24 119.9 C49—C50—H50 120.1
C24—C25—C26 122.2 (4) C50—C51—C52 122.6 (4)
C24—C25—H25 118.9 C50—C51—H51 118.7
C26—C25—H25 118.9 C52—C51—H51 118.7
C14—C26—C25 118.9 (4) C40—C52—C51 119.1 (4)
C14—C26—H26 120.6 C40—C52—H52 120.4
C25—C26—H26 120.6 C51—C52—H52 120.4
O3—C1—C2—C3 −0.5 (7) O9—C27—C28—C29 0.3 (6)
O1—C1—C2—C3 179.7 (3) O7—C27—C28—C29 −179.9 (3)
O3—C1—C2—C9 179.8 (4) O9—C27—C28—C35 −179.4 (4)
O1—C1—C2—C9 0.0 (4) O7—C27—C28—C35 0.4 (4)
C9—C2—C3—C4 −0.7 (5) C35—C28—C29—C30 0.1 (5)
C1—C2—C3—C4 179.7 (3) C27—C28—C29—C30 −179.6 (3)
C2—C3—C4—C7 0.2 (5) C28—C29—C30—C33 1.0 (5)
C2—C3—C4—C5 179.4 (3) C28—C29—C30—C31 −179.5 (3)
C3—C4—C5—O6 1.8 (7) C29—C30—C31—O12 0.0 (7)
C7—C4—C5—O6 −178.9 (4) C33—C30—C31—O12 179.5 (4)
C3—C4—C5—O4 −179.0 (3) C29—C30—C31—O10 −179.5 (3)
C7—C4—C5—O4 0.2 (4) C33—C30—C31—O10 0.0 (4)
C3—C4—C7—C8 0.2 (5) C29—C30—C33—C34 −1.6 (5)
C5—C4—C7—C8 −179.1 (3) C31—C30—C33—C34 178.8 (3)
C3—C4—C7—C6 179.2 (3) C29—C30—C33—C32 179.4 (3)
C5—C4—C7—C6 −0.1 (4) C31—C30—C33—C32 −0.2 (4)
O5—C6—C7—C4 179.2 (4) O11—C32—C33—C34 2.4 (7)
O4—C6—C7—C4 −0.1 (4) O10—C32—C33—C34 −178.6 (3)
O5—C6—C7—C8 −1.9 (7) O11—C32—C33—C30 −178.7 (4)
O4—C6—C7—C8 178.8 (3) O10—C32—C33—C30 0.3 (4)
C4—C7—C8—C9 −0.3 (5) C30—C33—C34—C35 1.0 (5)
C6—C7—C8—C9 −179.0 (3) C32—C33—C34—C35 179.7 (3)
C3—C2—C9—C8 0.7 (5) C33—C34—C35—C28 0.2 (5)
C1—C2—C9—C8 −179.6 (3) C33—C34—C35—C36 179.6 (3)
C3—C2—C9—C10 −179.0 (3) C29—C28—C35—C34 −0.7 (5)
C1—C2—C9—C10 0.7 (4) C27—C28—C35—C34 179.0 (3)
C7—C8—C9—C2 −0.2 (5) C29—C28—C35—C36 179.8 (3)
C7—C8—C9—C10 179.4 (3) C27—C28—C35—C36 −0.5 (4)
C2—C9—C10—O2 177.8 (4) C34—C35—C36—O8 2.1 (7)
C8—C9—C10—O2 −1.9 (6) C28—C35—C36—O8 −178.4 (4)
C2—C9—C10—O1 −1.2 (4) C34—C35—C36—O7 −179.1 (3)
C8—C9—C10—O1 179.2 (3) C28—C35—C36—O7 0.4 (4)
O3—C1—O1—C10 179.4 (3) O8—C36—O7—C27 178.7 (3)
C2—C1—O1—C10 −0.8 (4) C35—C36—O7—C27 −0.2 (4)
O2—C10—O1—C1 −177.9 (3) O9—C27—O7—C36 179.7 (3)
C9—C10—O1—C1 1.2 (4) C28—C27—O7—C36 −0.1 (4)
O6—C5—O4—C6 179.0 (3) O12—C31—O10—C32 −179.4 (3)
C4—C5—O4—C6 −0.3 (4) C30—C31—O10—C32 0.2 (4)
O5—C6—O4—C5 −179.1 (3) O11—C32—O10—C31 178.8 (3)
C7—C6—O4—C5 0.2 (4) C33—C32—O10—C31 −0.3 (4)
C19—C11—C12—C20 −3.0 (6) C45—C37—C38—C46 0.3 (7)
C15—C11—C12—C20 177.4 (4) C41—C37—C38—C46 −179.6 (4)
C19—C11—C12—C13 178.7 (3) C45—C37—C38—C39 −179.9 (3)
C15—C11—C12—C13 −0.8 (4) C41—C37—C38—C39 0.2 (4)
C20—C12—C13—C14 −178.2 (3) C46—C38—C39—C49 −1.4 (5)
C11—C12—C13—C14 0.4 (4) C37—C38—C39—C49 178.8 (3)
C20—C12—C13—C23 0.4 (5) C46—C38—C39—C40 179.7 (3)
C11—C12—C13—C23 179.0 (3) C37—C38—C39—C40 −0.1 (4)
C23—C13—C14—C26 1.5 (5) C49—C39—C40—C52 −0.1 (5)
C12—C13—C14—C26 −179.9 (3) C38—C39—C40—C52 178.8 (3)
C23—C13—C14—C15 −178.4 (3) C49—C39—C40—C41 −178.9 (3)
C12—C13—C14—C15 0.2 (4) C38—C39—C40—C41 0.0 (4)
C19—C11—C15—C16 1.1 (5) C45—C37—C41—C42 −0.5 (5)
C12—C11—C15—C16 −179.3 (3) C38—C37—C41—C42 179.5 (3)
C19—C11—C15—C14 −178.7 (3) C45—C37—C41—C40 179.9 (3)
C12—C11—C15—C14 0.9 (4) C38—C37—C41—C40 −0.1 (4)
C26—C14—C15—C16 −0.3 (7) C52—C40—C41—C42 2.1 (7)
C13—C14—C15—C16 179.6 (4) C39—C40—C41—C42 −179.5 (3)
C26—C14—C15—C11 179.4 (4) C52—C40—C41—C37 −178.3 (4)
C13—C14—C15—C11 −0.7 (4) C39—C40—C41—C37 0.1 (4)
C11—C15—C16—C17 −0.5 (5) C37—C41—C42—C43 0.7 (5)
C14—C15—C16—C17 179.2 (3) C40—C41—C42—C43 −179.8 (3)
C15—C16—C17—C18 −0.3 (5) C41—C42—C43—C44 −0.3 (5)
C16—C17—C18—C19 0.6 (5) C42—C43—C44—C45 −0.4 (5)
C17—C18—C19—C11 0.1 (5) C41—C37—C45—C44 −0.2 (5)
C15—C11—C19—C18 −0.9 (5) C38—C37—C45—C44 179.9 (3)
C12—C11—C19—C18 179.6 (3) C43—C44—C45—C37 0.6 (5)
C13—C12—C20—C21 0.0 (5) C39—C38—C46—C47 1.2 (5)
C11—C12—C20—C21 −178.1 (3) C37—C38—C46—C47 −179.0 (3)
C12—C20—C21—C22 −0.4 (5) C38—C46—C47—C48 −0.4 (5)
C20—C21—C22—C23 0.5 (5) C46—C47—C48—C49 −0.4 (5)
C14—C13—C23—C24 −1.1 (5) C38—C39—C49—C50 −178.6 (3)
C12—C13—C23—C24 −179.5 (3) C40—C39—C49—C50 0.2 (5)
C14—C13—C23—C22 178.1 (3) C38—C39—C49—C48 0.6 (5)
C12—C13—C23—C22 −0.3 (5) C40—C39—C49—C48 179.4 (3)
C21—C22—C23—C13 −0.2 (5) C47—C48—C49—C39 0.3 (5)
C21—C22—C23—C24 179.0 (3) C47—C48—C49—C50 179.4 (3)
C13—C23—C24—C25 0.7 (5) C39—C49—C50—C51 0.4 (5)
C22—C23—C24—C25 −178.5 (3) C48—C49—C50—C51 −178.7 (3)
C23—C24—C25—C26 −0.7 (6) C49—C50—C51—C52 −1.0 (6)
C13—C14—C26—C25 −1.4 (5) C39—C40—C52—C51 −0.5 (5)
C15—C14—C26—C25 178.5 (4) C41—C40—C52—C51 177.8 (4)
C24—C25—C26—C14 1.1 (6) C50—C51—C52—C40 1.0 (5)

Pyromellitic acid dianhydride–fluoranthene (1/1) (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O2i 0.95 2.67 3.373 (5) 132
C16—H16···O8 0.95 2.59 3.444 (5) 150
C17—H17···O3ii 0.95 2.65 3.576 (5) 166
C18—H18···O1ii 0.95 2.67 3.332 (5) 127
C22—H22···O4iii 0.95 2.59 3.481 (5) 155
C25—H25···O11iii 0.95 2.55 3.347 (5) 142
C29—H29···O12iv 0.95 2.71 3.370 (5) 127
C42—H42···O6 0.95 2.49 3.413 (5) 165
C43—H43···O11iii 0.95 2.58 3.293 (5) 132
C44—H44···O10iii 0.95 2.52 3.428 (5) 160
C45—H45···O12iv 0.95 2.57 3.429 (5) 150
C46—H46···O9v 0.95 2.64 3.256 (5) 123
C48—H48···O9vi 0.95 2.55 3.473 (5) 164
C50—H50···O7vi 0.95 2.5 3.420 (5) 164
C52—H52···O6 0.95 2.62 3.525 (5) 159

Symmetry codes: (i) −x+3/2, y, z−1/2; (ii) x, y−1, z−1; (iii) x, y, z+1; (iv) −x+2, −y+1, z+1/2; (v) −x+2, −y+1, z−1/2; (vi) x, y+1, z−1.

Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III). Crystal data

C10H2O6·C15H12 Z = 2
Mr = 410.36 F(000) = 424
Triclinic, P1 Dx = 1.518 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1012 (8) Å Cell parameters from 4805 reflections
b = 9.5674 (12) Å θ = 3.5–28.2°
c = 13.6147 (16) Å µ = 0.11 mm1
α = 99.109 (4)° T = 173 K
β = 99.941 (4)° Needle, red
γ = 92.219 (4)° 0.19 × 0.06 × 0.05 mm
V = 897.53 (19) Å3

Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III). Data collection

Bruker D8 Venture Photon CCD area detector diffractometer 2159 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.075
ω scans θmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −8→8
Tmin = 0.9, Tmax = 0.95 k = −11→11
20202 measured reflections l = −16→16
3280 independent reflections

Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III). Refinement

Refinement on F2 0 constraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073 H-atom parameters constrained
wR(F2) = 0.223 w = 1/[σ2(Fo2) + (0.1395P)2 + 0.5023P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.028
3280 reflections Δρmax = 0.67 e Å3
281 parameters Δρmin = −0.28 e Å3
0 restraints

Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III). Special details

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.5511 (4) 0.7888 (3) 0.1593 (2) 0.0168 (7)
C12 0.6280 (4) 0.6829 (3) 0.2138 (2) 0.0186 (7)
C13 0.6688 (5) 0.5463 (3) 0.1648 (2) 0.0238 (8)
H13 0.645706 0.525778 0.093003 0.029*
C14 0.7394 (5) 0.4460 (3) 0.2181 (3) 0.0267 (8)
H14 0.764739 0.356517 0.183297 0.032*
C15 0.7760 (5) 0.4733 (4) 0.3256 (3) 0.0293 (8)
H15 0.823867 0.401744 0.362338 0.035*
C16 0.7426 (5) 0.6011 (4) 0.3757 (3) 0.0255 (8)
H16 0.769232 0.618668 0.447533 0.031*
C17 0.6678 (4) 0.7105 (3) 0.3225 (2) 0.0193 (7)
C18 0.6349 (4) 0.8429 (3) 0.3731 (2) 0.0213 (7)
H18 0.663705 0.86158 0.444956 0.026*
C19 0.5610 (4) 0.9481 (3) 0.3215 (2) 0.0170 (7)
C20 0.5291 (5) 1.0846 (3) 0.3738 (3) 0.0258 (8)
H20 0.561001 1.104084 0.445555 0.031*
C21 0.4535 (5) 1.1878 (4) 0.3228 (3) 0.0279 (8)
H21 0.434305 1.277953 0.358915 0.033*
C22 0.4041 (5) 1.1596 (3) 0.2159 (3) 0.0270 (8)
H22 0.34882 1.230449 0.180651 0.032*
C23 0.4348 (5) 1.0322 (3) 0.1632 (2) 0.0220 (7)
H23 0.402008 1.016283 0.091479 0.026*
C24 0.5155 (4) 0.9210 (3) 0.2130 (2) 0.0173 (7)
C25 0.5090 (5) 0.7591 (4) 0.0452 (2) 0.0279 (8)
H25A 0.61712 0.714047 0.020221 0.042*
H25B 0.489642 0.848319 0.019345 0.042*
H25C 0.392889 0.695435 0.022068 0.042*
O1 0.0077 (3) 1.1492 (2) 0.41401 (18) 0.0317 (6)
O2 −0.0687 (3) 1.1373 (2) 0.24510 (17) 0.0277 (6)
O3 −0.1253 (3) 1.0619 (3) 0.07623 (18) 0.0333 (7)
O4 0.2767 (4) 0.5551 (3) 0.42121 (19) 0.0380 (7)
O5 0.2349 (3) 0.4790 (2) 0.25220 (18) 0.0313 (6)
O6 0.1745 (4) 0.4690 (3) 0.08289 (19) 0.0383 (7)
C1 −0.0022 (5) 1.0820 (3) 0.3321 (2) 0.0233 (8)
C2 0.0472 (4) 0.9353 (3) 0.2990 (2) 0.0189 (7)
C3 0.1180 (4) 0.8363 (3) 0.3567 (2) 0.0202 (7)
H3 0.140718 0.85421 0.428537 0.024*
C4 0.1534 (4) 0.7083 (3) 0.3013 (2) 0.0198 (7)
C5 0.2282 (5) 0.5797 (4) 0.3378 (3) 0.0274 (8)
C6 0.1740 (5) 0.5354 (4) 0.1647 (3) 0.0267 (8)
C7 0.1187 (4) 0.6823 (3) 0.1960 (2) 0.0204 (7)
C8 0.0455 (4) 0.7800 (3) 0.1375 (2) 0.0196 (7)
H8 0.020749 0.761353 0.065698 0.023*
C9 0.0114 (4) 0.9083 (3) 0.1936 (2) 0.0180 (7)
C10 −0.0672 (5) 1.0373 (3) 0.1585 (2) 0.0236 (8)

Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0162 (16) 0.0139 (15) 0.0196 (16) −0.0028 (12) 0.0030 (12) 0.0017 (12)
C12 0.0155 (16) 0.0157 (16) 0.0255 (17) −0.0010 (12) 0.0053 (13) 0.0052 (13)
C13 0.0258 (18) 0.0182 (17) 0.0272 (18) 0.0042 (14) 0.0053 (14) 0.0017 (14)
C14 0.0250 (19) 0.0147 (16) 0.041 (2) 0.0021 (14) 0.0061 (15) 0.0058 (15)
C15 0.0249 (19) 0.0211 (18) 0.046 (2) 0.0026 (14) 0.0057 (16) 0.0178 (16)
C16 0.0244 (18) 0.0283 (19) 0.0266 (18) 0.0021 (15) 0.0042 (14) 0.0137 (15)
C17 0.0153 (16) 0.0209 (17) 0.0241 (17) 0.0007 (13) 0.0078 (13) 0.0063 (13)
C18 0.0172 (17) 0.0283 (18) 0.0187 (16) 0.0007 (14) 0.0041 (13) 0.0038 (14)
C19 0.0134 (15) 0.0162 (16) 0.0215 (16) 0.0007 (12) 0.0047 (12) 0.0017 (12)
C20 0.0194 (17) 0.0196 (17) 0.0364 (19) −0.0005 (14) 0.0107 (14) −0.0069 (14)
C21 0.0229 (18) 0.0176 (17) 0.042 (2) 0.0039 (14) 0.0111 (15) −0.0051 (15)
C22 0.0240 (18) 0.0195 (17) 0.038 (2) 0.0031 (14) 0.0062 (15) 0.0046 (15)
C23 0.0222 (17) 0.0198 (17) 0.0247 (17) 0.0056 (14) 0.0018 (13) 0.0072 (14)
C24 0.0149 (16) 0.0191 (16) 0.0195 (16) −0.0012 (13) 0.0055 (12) 0.0061 (13)
C25 0.037 (2) 0.0235 (17) 0.0230 (18) 0.0082 (15) 0.0052 (15) 0.0019 (14)
O1 0.0327 (14) 0.0253 (13) 0.0343 (15) 0.0050 (11) 0.0070 (11) −0.0055 (11)
O2 0.0291 (13) 0.0181 (12) 0.0371 (14) 0.0093 (10) 0.0068 (10) 0.0055 (10)
O3 0.0345 (15) 0.0393 (15) 0.0312 (14) 0.0162 (12) 0.0072 (11) 0.0169 (11)
O4 0.0389 (16) 0.0406 (15) 0.0427 (16) 0.0136 (12) 0.0101 (12) 0.0261 (13)
O5 0.0303 (14) 0.0202 (12) 0.0455 (15) 0.0106 (10) 0.0081 (11) 0.0083 (11)
O6 0.0379 (15) 0.0294 (14) 0.0431 (16) 0.0119 (12) 0.0058 (12) −0.0082 (12)
C1 0.0192 (17) 0.0209 (17) 0.0307 (19) 0.0013 (14) 0.0068 (14) 0.0048 (15)
C2 0.0131 (16) 0.0224 (17) 0.0222 (17) 0.0022 (13) 0.0043 (12) 0.0050 (13)
C3 0.0164 (16) 0.0248 (17) 0.0200 (16) 0.0025 (13) 0.0027 (12) 0.0057 (13)
C4 0.0168 (16) 0.0191 (16) 0.0250 (17) 0.0020 (13) 0.0051 (13) 0.0069 (13)
C5 0.0216 (18) 0.0253 (18) 0.038 (2) 0.0055 (14) 0.0085 (15) 0.0107 (16)
C6 0.0221 (18) 0.0216 (18) 0.037 (2) 0.0080 (14) 0.0069 (15) 0.0038 (16)
C7 0.0113 (15) 0.0194 (16) 0.0285 (18) −0.0004 (12) 0.0028 (13) −0.0003 (13)
C8 0.0165 (16) 0.0207 (17) 0.0211 (16) 0.0010 (13) 0.0031 (12) 0.0025 (13)
C9 0.0132 (15) 0.0208 (17) 0.0220 (16) 0.0039 (13) 0.0046 (12) 0.0077 (13)
C10 0.0233 (18) 0.0220 (18) 0.0277 (18) 0.0074 (14) 0.0079 (14) 0.0065 (15)

Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III). Geometric parameters (Å, º)

C11—C24 1.411 (4) C23—H23 0.95
C11—C12 1.420 (4) C25—H25A 0.98
C11—C25 1.509 (4) C25—H25B 0.98
C12—C13 1.434 (4) C25—H25C 0.98
C12—C17 1.437 (4) O1—C1 1.186 (4)
C13—C14 1.353 (4) O2—C1 1.389 (4)
C13—H13 0.95 O2—C10 1.398 (4)
C14—C15 1.422 (5) O3—C10 1.188 (4)
C14—H14 0.95 O4—C5 1.191 (4)
C15—C16 1.353 (5) O5—C6 1.393 (4)
C15—H15 0.95 O5—C5 1.399 (4)
C16—C17 1.432 (4) O6—C6 1.193 (4)
C16—H16 0.95 C1—C2 1.479 (4)
C17—C18 1.392 (4) C2—C3 1.380 (4)
C18—C19 1.386 (4) C2—C9 1.394 (4)
C18—H18 0.95 C3—C4 1.389 (4)
C19—C20 1.432 (4) C3—H3 0.95
C19—C24 1.435 (4) C4—C7 1.392 (4)
C20—C21 1.369 (5) C4—C5 1.482 (4)
C20—H20 0.95 C6—C7 1.491 (4)
C21—C22 1.417 (5) C7—C8 1.382 (4)
C21—H21 0.95 C8—C9 1.392 (4)
C22—C23 1.358 (4) C8—H8 0.95
C22—H22 0.95 C9—C10 1.486 (4)
C23—C24 1.437 (4)
C24—C11—C12 119.3 (3) C11—C24—C23 122.5 (3)
C24—C11—C25 120.9 (3) C19—C24—C23 117.6 (3)
C12—C11—C25 119.8 (3) C11—C25—H25A 109.5
C11—C12—C13 122.6 (3) C11—C25—H25B 109.5
C11—C12—C17 120.0 (3) H25A—C25—H25B 109.5
C13—C12—C17 117.3 (3) C11—C25—H25C 109.5
C14—C13—C12 121.8 (3) H25A—C25—H25C 109.5
C14—C13—H13 119.1 H25B—C25—H25C 109.5
C12—C13—H13 119.1 C1—O2—C10 110.9 (2)
C13—C14—C15 120.6 (3) C6—O5—C5 110.2 (2)
C13—C14—H14 119.7 O1—C1—O2 121.9 (3)
C15—C14—H14 119.7 O1—C1—C2 131.2 (3)
C16—C15—C14 120.1 (3) O2—C1—C2 106.9 (3)
C16—C15—H15 120 C3—C2—C9 122.7 (3)
C14—C15—H15 120 C3—C2—C1 129.2 (3)
C15—C16—C17 121.3 (3) C9—C2—C1 108.1 (3)
C15—C16—H16 119.4 C2—C3—C4 114.6 (3)
C17—C16—H16 119.4 C2—C3—H3 122.7
C18—C17—C16 121.8 (3) C4—C3—H3 122.7
C18—C17—C12 119.3 (3) C3—C4—C7 122.4 (3)
C16—C17—C12 118.9 (3) C3—C4—C5 129.1 (3)
C19—C18—C17 121.7 (3) C7—C4—C5 108.4 (3)
C19—C18—H18 119.2 O4—C5—O5 121.8 (3)
C17—C18—H18 119.2 O4—C5—C4 131.3 (3)
C18—C19—C20 121.5 (3) O5—C5—C4 106.9 (3)
C18—C19—C24 119.8 (3) O6—C6—O5 121.4 (3)
C20—C19—C24 118.7 (3) O6—C6—C7 130.9 (3)
C21—C20—C19 121.4 (3) O5—C6—C7 107.7 (3)
C21—C20—H20 119.3 C8—C7—C4 123.4 (3)
C19—C20—H20 119.3 C8—C7—C6 129.8 (3)
C20—C21—C22 119.7 (3) C4—C7—C6 106.7 (3)
C20—C21—H21 120.1 C7—C8—C9 113.8 (3)
C22—C21—H21 120.1 C7—C8—H8 123.1
C23—C22—C21 120.7 (3) C9—C8—H8 123.1
C23—C22—H22 119.7 C8—C9—C2 123.0 (3)
C21—C22—H22 119.7 C8—C9—C10 129.7 (3)
C22—C23—C24 121.8 (3) C2—C9—C10 107.3 (3)
C22—C23—H23 119.1 O3—C10—O2 121.5 (3)
C24—C23—H23 119.1 O3—C10—C9 131.7 (3)
C11—C24—C19 119.9 (3) O2—C10—C9 106.8 (3)
C24—C11—C12—C13 −179.8 (3) O2—C1—C2—C3 −179.6 (3)
C25—C11—C12—C13 0.1 (5) O1—C1—C2—C9 −179.0 (3)
C24—C11—C12—C17 0.3 (4) O2—C1—C2—C9 0.8 (3)
C25—C11—C12—C17 −179.8 (3) C9—C2—C3—C4 0.9 (5)
C11—C12—C13—C14 −179.0 (3) C1—C2—C3—C4 −178.6 (3)
C17—C12—C13—C14 0.9 (5) C2—C3—C4—C7 −0.4 (5)
C12—C13—C14—C15 −0.1 (5) C2—C3—C4—C5 −179.8 (3)
C13—C14—C15—C16 −0.9 (5) C6—O5—C5—O4 −178.9 (3)
C14—C15—C16—C17 0.9 (5) C6—O5—C5—C4 1.3 (4)
C15—C16—C17—C18 −179.3 (3) C3—C4—C5—O4 −0.7 (6)
C15—C16—C17—C12 0.0 (5) C7—C4—C5—O4 179.8 (4)
C11—C12—C17—C18 −1.7 (4) C3—C4—C5—O5 179.1 (3)
C13—C12—C17—C18 178.4 (3) C7—C4—C5—O5 −0.4 (4)
C11—C12—C17—C16 179.0 (3) C5—O5—C6—O6 177.4 (3)
C13—C12—C17—C16 −0.9 (4) C5—O5—C6—C7 −1.6 (4)
C16—C17—C18—C19 −179.5 (3) C3—C4—C7—C8 −0.4 (5)
C12—C17—C18—C19 1.3 (5) C5—C4—C7—C8 179.1 (3)
C17—C18—C19—C20 −179.4 (3) C3—C4—C7—C6 179.9 (3)
C17—C18—C19—C24 0.5 (5) C5—C4—C7—C6 −0.5 (3)
C18—C19—C20—C21 −179.0 (3) O6—C6—C7—C8 2.8 (6)
C24—C19—C20—C21 1.1 (5) O5—C6—C7—C8 −178.3 (3)
C19—C20—C21—C22 0.5 (5) O6—C6—C7—C4 −177.6 (4)
C20—C21—C22—C23 −1.5 (5) O5—C6—C7—C4 1.3 (4)
C21—C22—C23—C24 0.8 (5) C4—C7—C8—C9 0.7 (5)
C12—C11—C24—C19 1.4 (4) C6—C7—C8—C9 −179.7 (3)
C25—C11—C24—C19 −178.5 (3) C7—C8—C9—C2 −0.2 (4)
C12—C11—C24—C23 −178.9 (3) C7—C8—C9—C10 −179.5 (3)
C25—C11—C24—C23 1.3 (5) C3—C2—C9—C8 −0.6 (5)
C18—C19—C24—C11 −1.8 (4) C1—C2—C9—C8 179.0 (3)
C20—C19—C24—C11 178.0 (3) C3—C2—C9—C10 178.8 (3)
C18—C19—C24—C23 178.4 (3) C1—C2—C9—C10 −1.7 (3)
C20—C19—C24—C23 −1.7 (4) C1—O2—C10—O3 177.3 (3)
C22—C23—C24—C11 −179.0 (3) C1—O2—C10—C9 −1.4 (3)
C22—C23—C24—C19 0.8 (5) C8—C9—C10—O3 2.7 (6)
C10—O2—C1—O1 −179.7 (3) C2—C9—C10—O3 −176.6 (4)
C10—O2—C1—C2 0.4 (3) C8—C9—C10—O2 −178.8 (3)
O1—C1—C2—C3 0.5 (6) C2—C9—C10—O2 1.9 (3)

Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.95 2.55 3.376 (4) 145
C14—H14···O2ii 0.95 2.63 3.347 (4) 133
C16—H16···O4iii 0.95 2.68 3.365 (4) 130
C22—H22···O5iv 0.95 2.64 3.323 (4) 130

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z.

Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV). Crystal data

C17H12O3·0.5C10H2O6 F(000) = 772
Mr = 373.32 Dx = 1.484 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2311 reflections
a = 9.1949 (7) Å θ = 2.3–26.6°
b = 17.9751 (14) Å µ = 0.11 mm1
c = 10.9716 (10) Å T = 173 K
β = 112.829 (2)° Plate, red
V = 1671.3 (2) Å3 0.55 × 0.1 × 0.06 mm
Z = 4

Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV). Data collection

Bruker D8 Venture Photon CCD area detector diffractometer 2731 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
ω scans θmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −12→12
Tmin = 0.9, Tmax = 0.95 k = −23→21
13071 measured reflections l = −14→14
4035 independent reflections

Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV). Refinement

Refinement on F2 0 constraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.0752P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4035 reflections Δρmax = 0.30 e Å3
254 parameters Δρmin = −0.26 e Å3
0 restraints

Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV). Special details

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.63812 (17) 0.54682 (8) 0.55902 (15) 0.0264 (3)
H1 0.728631 0.57749 0.597638 0.032*
C2 0.49342 (18) 0.57369 (8) 0.47345 (15) 0.0251 (3)
C3 0.44815 (19) 0.65055 (9) 0.42556 (16) 0.0306 (4)
C4 0.22896 (19) 0.57678 (9) 0.33296 (15) 0.0302 (4)
C5 0.36097 (17) 0.52887 (8) 0.41673 (14) 0.0243 (3)
O1 0.28769 (13) 0.64923 (6) 0.34113 (11) 0.0342 (3)
O2 0.52155 (15) 0.70646 (6) 0.44651 (13) 0.0415 (3)
O3 0.09445 (13) 0.56283 (7) 0.26877 (12) 0.0417 (3)
C11 0.55637 (17) 0.42627 (8) 0.88576 (14) 0.0238 (3)
C12 0.60955 (18) 0.35455 (9) 0.94068 (15) 0.0296 (4)
H12 0.539628 0.313325 0.913622 0.035*
C13 0.75932 (19) 0.34440 (9) 1.03144 (16) 0.0342 (4)
H13 0.791473 0.29626 1.067614 0.041*
C14 0.86796 (19) 0.40408 (10) 1.07291 (16) 0.0357 (4)
H14 0.971959 0.395898 1.136131 0.043*
C15 0.82309 (18) 0.47274 (10) 1.02220 (15) 0.0322 (4)
H15 0.896493 0.512595 1.050527 0.039*
C16 0.66755 (17) 0.48668 (8) 0.92684 (14) 0.0251 (3)
C17 0.62178 (18) 0.55718 (8) 0.87435 (15) 0.0278 (3)
H17 0.696566 0.596523 0.901315 0.033*
C18 0.46992 (17) 0.57207 (8) 0.78354 (14) 0.0248 (3)
C19 0.4253 (2) 0.64542 (9) 0.73299 (16) 0.0319 (4)
H19 0.500385 0.684592 0.760919 0.038*
C20 0.2764 (2) 0.65969 (9) 0.64539 (16) 0.0339 (4)
H20 0.248288 0.708695 0.612195 0.041*
C21 0.1630 (2) 0.60214 (9) 0.60322 (16) 0.0323 (4)
H21 0.059209 0.612936 0.542045 0.039*
C22 0.20050 (17) 0.53167 (9) 0.64893 (15) 0.0271 (3)
H22 0.122112 0.493954 0.619804 0.032*
C23 0.35631 (16) 0.51312 (8) 0.74042 (14) 0.0223 (3)
C24 0.40167 (16) 0.44101 (8) 0.79185 (14) 0.0230 (3)
C25 0.28407 (17) 0.38021 (8) 0.74148 (15) 0.0250 (3)
C26 0.18246 (19) 0.27453 (9) 0.81897 (17) 0.0346 (4)
C27 0.0880 (2) 0.26785 (10) 0.9011 (2) 0.0451 (5)
H27A 0.023888 0.222539 0.8766 0.068*
H27B 0.018793 0.311258 0.886488 0.068*
H27C 0.158797 0.265338 0.99463 0.068*
O4 0.21058 (13) 0.36619 (6) 0.62747 (11) 0.0335 (3)
O5 0.26000 (12) 0.34368 (6) 0.84255 (11) 0.0313 (3)
O6 0.20212 (17) 0.22943 (7) 0.74753 (14) 0.0532 (4)

Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0272 (8) 0.0265 (8) 0.0271 (8) −0.0014 (6) 0.0121 (6) −0.0029 (6)
C2 0.0308 (8) 0.0239 (8) 0.0242 (7) 0.0019 (6) 0.0145 (6) −0.0001 (6)
C3 0.0382 (9) 0.0265 (9) 0.0318 (8) 0.0056 (7) 0.0185 (7) 0.0034 (7)
C4 0.0342 (9) 0.0329 (9) 0.0239 (8) 0.0073 (7) 0.0116 (7) 0.0017 (7)
C5 0.0256 (8) 0.0275 (8) 0.0213 (7) 0.0036 (6) 0.0108 (6) 0.0006 (6)
O1 0.0379 (7) 0.0295 (6) 0.0346 (6) 0.0106 (5) 0.0136 (5) 0.0061 (5)
O2 0.0503 (7) 0.0221 (6) 0.0567 (8) 0.0005 (5) 0.0259 (6) 0.0035 (5)
O3 0.0299 (6) 0.0495 (8) 0.0363 (7) 0.0073 (6) 0.0027 (5) 0.0015 (6)
C11 0.0262 (8) 0.0277 (8) 0.0206 (7) 0.0000 (6) 0.0125 (6) −0.0014 (6)
C12 0.0322 (8) 0.0274 (9) 0.0297 (8) 0.0015 (7) 0.0127 (7) 0.0026 (6)
C13 0.0383 (9) 0.0332 (9) 0.0318 (9) 0.0100 (8) 0.0144 (7) 0.0045 (7)
C14 0.0275 (8) 0.0492 (11) 0.0265 (8) 0.0072 (8) 0.0061 (7) −0.0015 (7)
C15 0.0258 (8) 0.0411 (10) 0.0284 (8) −0.0051 (7) 0.0091 (7) −0.0076 (7)
C16 0.0264 (8) 0.0289 (8) 0.0223 (7) −0.0021 (6) 0.0119 (6) −0.0040 (6)
C17 0.0288 (8) 0.0273 (9) 0.0290 (8) −0.0079 (7) 0.0132 (7) −0.0058 (6)
C18 0.0313 (8) 0.0230 (8) 0.0242 (7) −0.0002 (6) 0.0156 (6) −0.0032 (6)
C19 0.0414 (9) 0.0232 (8) 0.0372 (9) −0.0030 (7) 0.0218 (8) −0.0019 (7)
C20 0.0465 (10) 0.0250 (8) 0.0367 (9) 0.0085 (8) 0.0232 (8) 0.0056 (7)
C21 0.0346 (9) 0.0344 (9) 0.0289 (8) 0.0098 (7) 0.0134 (7) 0.0014 (7)
C22 0.0266 (8) 0.0275 (8) 0.0276 (8) 0.0017 (6) 0.0112 (6) −0.0021 (6)
C23 0.0256 (7) 0.0240 (8) 0.0204 (7) 0.0013 (6) 0.0123 (6) −0.0012 (6)
C24 0.0242 (7) 0.0243 (8) 0.0228 (7) −0.0019 (6) 0.0118 (6) −0.0022 (6)
C25 0.0241 (7) 0.0227 (8) 0.0289 (8) 0.0002 (6) 0.0110 (6) −0.0003 (6)
C26 0.0334 (9) 0.0278 (9) 0.0362 (9) −0.0067 (7) 0.0065 (7) 0.0033 (7)
C27 0.0367 (10) 0.0422 (10) 0.0581 (12) −0.0048 (8) 0.0203 (9) 0.0160 (9)
O4 0.0363 (6) 0.0304 (6) 0.0289 (6) −0.0059 (5) 0.0072 (5) −0.0030 (5)
O5 0.0362 (6) 0.0282 (6) 0.0317 (6) −0.0117 (5) 0.0158 (5) −0.0025 (5)
O6 0.0713 (10) 0.0330 (7) 0.0551 (9) −0.0128 (7) 0.0244 (8) −0.0085 (6)

Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV). Geometric parameters (Å, º)

C1—C2 1.384 (2) C17—C18 1.391 (2)
C1—C5i 1.386 (2) C17—H17 0.95
C1—H1 0.95 C18—C19 1.428 (2)
C2—C5 1.390 (2) C18—C23 1.433 (2)
C2—C3 1.479 (2) C19—C20 1.357 (2)
C3—O2 1.1824 (19) C19—H19 0.95
C3—O1 1.4054 (19) C20—C21 1.413 (2)
C4—O3 1.1885 (19) C20—H20 0.95
C4—O1 1.399 (2) C21—C22 1.357 (2)
C4—C5 1.481 (2) C21—H21 0.95
C11—C24 1.420 (2) C22—C23 1.434 (2)
C11—C12 1.427 (2) C22—H22 0.95
C11—C16 1.439 (2) C23—C24 1.411 (2)
C12—C13 1.363 (2) C24—C25 1.485 (2)
C12—H12 0.95 C25—O4 1.1954 (18)
C13—C14 1.415 (2) C25—O5 1.3786 (18)
C13—H13 0.95 C26—O6 1.189 (2)
C14—C15 1.351 (2) C26—O5 1.4061 (19)
C14—H14 0.95 C26—C27 1.479 (2)
C15—C16 1.429 (2) C27—H27A 0.98
C15—H15 0.95 C27—H27B 0.98
C16—C17 1.388 (2) C27—H27C 0.98
C2—C1—C5i 113.92 (14) C18—C17—H17 119
C2—C1—H1 123 C17—C18—C19 120.89 (14)
C5i—C1—H1 123 C17—C18—C23 119.65 (13)
C1—C2—C5 123.11 (14) C19—C18—C23 119.45 (14)
C1—C2—C3 129.11 (15) C20—C19—C18 120.57 (15)
C5—C2—C3 107.78 (13) C20—C19—H19 119.7
O2—C3—O1 121.11 (14) C18—C19—H19 119.7
O2—C3—C2 131.61 (16) C19—C20—C21 120.45 (15)
O1—C3—C2 107.28 (13) C19—C20—H20 119.8
O3—C4—O1 121.42 (14) C21—C20—H20 119.8
O3—C4—C5 131.21 (16) C22—C21—C20 120.88 (15)
O1—C4—C5 107.36 (13) C22—C21—H21 119.6
C1i—C5—C2 122.97 (14) C20—C21—H21 119.6
C1i—C5—C4 129.23 (14) C21—C22—C23 121.16 (15)
C2—C5—C4 107.80 (14) C21—C22—H22 119.4
C4—O1—C3 109.78 (11) C23—C22—H22 119.4
C24—C11—C12 123.88 (14) C24—C23—C18 118.87 (13)
C24—C11—C16 118.45 (13) C24—C23—C22 123.63 (13)
C12—C11—C16 117.66 (13) C18—C23—C22 117.48 (13)
C13—C12—C11 120.88 (15) C23—C24—C11 121.26 (13)
C13—C12—H12 119.6 C23—C24—C25 117.89 (13)
C11—C12—H12 119.6 C11—C24—C25 120.82 (13)
C12—C13—C14 121.36 (15) O4—C25—O5 122.63 (14)
C12—C13—H13 119.3 O4—C25—C24 125.38 (14)
C14—C13—H13 119.3 O5—C25—C24 111.86 (12)
C15—C14—C13 119.70 (15) O6—C26—O5 121.88 (16)
C15—C14—H14 120.1 O6—C26—C27 128.43 (16)
C13—C14—H14 120.1 O5—C26—C27 109.59 (15)
C14—C15—C16 121.38 (15) C26—C27—H27A 109.5
C14—C15—H15 119.3 C26—C27—H27B 109.5
C16—C15—H15 119.3 H27A—C27—H27B 109.5
C17—C16—C15 121.34 (14) C26—C27—H27C 109.5
C17—C16—C11 119.67 (13) H27A—C27—H27C 109.5
C15—C16—C11 118.99 (14) H27B—C27—H27C 109.5
C16—C17—C18 122.10 (14) C25—O5—C26 120.09 (12)
C16—C17—H17 119
C5i—C1—C2—C5 −0.1 (2) C11—C16—C17—C18 0.8 (2)
C5i—C1—C2—C3 179.81 (14) C16—C17—C18—C19 178.85 (14)
C1—C2—C3—O2 0.7 (3) C16—C17—C18—C23 −0.9 (2)
C5—C2—C3—O2 −179.41 (17) C17—C18—C19—C20 −179.35 (15)
C1—C2—C3—O1 −179.62 (14) C23—C18—C19—C20 0.4 (2)
C5—C2—C3—O1 0.30 (16) C18—C19—C20—C21 0.3 (2)
C1—C2—C5—C1i 0.1 (3) C19—C20—C21—C22 −0.2 (2)
C3—C2—C5—C1i −179.82 (13) C20—C21—C22—C23 −0.5 (2)
C1—C2—C5—C4 179.33 (14) C17—C18—C23—C24 0.2 (2)
C3—C2—C5—C4 −0.59 (16) C19—C18—C23—C24 −179.56 (13)
O3—C4—C5—C1i 1.0 (3) C17—C18—C23—C22 178.68 (13)
O1—C4—C5—C1i 179.84 (15) C19—C18—C23—C22 −1.0 (2)
O3—C4—C5—C2 −178.20 (17) C21—C22—C23—C24 179.59 (14)
O1—C4—C5—C2 0.68 (16) C21—C22—C23—C18 1.1 (2)
O3—C4—O1—C3 178.52 (15) C18—C23—C24—C11 0.6 (2)
C5—C4—O1—C3 −0.50 (15) C22—C23—C24—C11 −177.83 (13)
O2—C3—O1—C4 179.89 (15) C18—C23—C24—C25 −177.47 (12)
C2—C3—O1—C4 0.14 (16) C22—C23—C24—C25 4.1 (2)
C24—C11—C12—C13 −179.39 (14) C12—C11—C24—C23 −179.58 (13)
C16—C11—C12—C13 1.7 (2) C16—C11—C24—C23 −0.7 (2)
C11—C12—C13—C14 −1.0 (2) C12—C11—C24—C25 −1.6 (2)
C12—C13—C14—C15 0.2 (2) C16—C11—C24—C25 177.35 (13)
C13—C14—C15—C16 −0.1 (2) C23—C24—C25—O4 50.9 (2)
C14—C15—C16—C17 −179.71 (15) C11—C24—C25—O4 −127.22 (17)
C14—C15—C16—C11 0.8 (2) C23—C24—C25—O5 −125.00 (14)
C24—C11—C16—C17 0.0 (2) C11—C24—C25—O5 56.92 (17)
C12—C11—C16—C17 178.95 (13) O4—C25—O5—C26 18.8 (2)
C24—C11—C16—C15 179.41 (13) C24—C25—O5—C26 −165.19 (13)
C12—C11—C16—C15 −1.6 (2) O6—C26—O5—C25 37.5 (2)
C15—C16—C17—C18 −178.63 (14) C27—C26—O5—C25 −146.03 (14)

Symmetry code: (i) −x+1, −y+1, −z+1.

Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O2ii 0.95 2.65 3.351 (2) 131
C15—H15···O3iii 0.95 2.55 3.306 (2) 137
C21—H21···O4iv 0.95 2.48 3.433 (2) 176

Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) x+1, y, z+1; (iv) −x, −y+1, −z+1.

Funding Statement

This work was funded by University of the Witwatersrand, Johannesburg grants Friedel Sellschop Grant and postdoctoral fellowship. National Research Foundation grant 78572.

References

  1. Aakeröy, C. B. & Beatty, A. M. (2001). Aust. J. Chem. 54, 409–421.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Boeyens, J. C. A. & Herbstein, F. H. (1965). J. Phys. Chem. 69, 2160–2176.
  4. Boeyens, J. C. A. & Levendis, D. C. (1986). J. Chem. Phys. 84, 3986–3992.
  5. Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bugarovskaya, I. V., Vozzhennikov, V. M., Krasavin, V. P. & Kotov, B. V. (1982). Cryst. Struct. Commun. 11, 501–504.
  7. Bulgarovskaya, I. V., Belsky, V. K. & Vozzhennikov, V. M. (1987a). Acta Cryst. C43, 768–770.
  8. Bulgarovskaya, I. V., Zavodnik, V. E., Bel’skii, V. K. & Vozzhennikov, V. M. (1989). Kristallografiya, 34, 345–352.
  9. Bulgarovskaya, I. V., Zavodnik, V. E. & Vozzhennikov, V. M. (1987b). Acta Cryst. C43, 766–768.
  10. Chen, P. Y., Zhang, L., Zhu, S. G., Cheng, G. B. & Li, N. R. (2017). J. Mol. Struct. 1128, 629–635.
  11. Dzyabchenko, A. V., Bulgarovskaya, I. V. & Zavodnik, V. E. (1994). Kristallografiya, 39, 434–438.
  12. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Herbstein, F. H. (2005). Crystalline Molecular Complexes and Compounds: Structures and Principles. Oxford University Press.
  15. Herbstein, F. H., Marsh, R. E. & Samson, S. (1994). Acta Cryst. B50, 174–181. [DOI] [PubMed]
  16. Hill, T., Levendis, D. C. & Lemmerer, A. (2018a). Acta Cryst. E74, 113–118. [DOI] [PMC free article] [PubMed]
  17. Hill, T., Levendis, D. C. & Lemmerer, A. (2018b). J. Mol. Struct. 1168, 28–38.
  18. Isaac, R., Goetz, K. P., Roberts, D., Jurchescu, O. D. & McNeil, L. E. (2018). AIP ADVANCES 8, 025117-1–6.
  19. Karl, N., Binder, W., Kollat, P. & Stezowski, J. J. (1982b). Acta Cryst. B38, 2919–2921.
  20. Karl, N., Ketterer, W. & Stezowski, J. J. (1982a). Acta Cryst. B38, 2917–2919.
  21. Kato, K., Hagi, S., Hinoshita, M., Shikoh, E. & Teki, Y. (2017). Phys. Chem. Chem. Phys. 19, 18845–18853. [DOI] [PubMed]
  22. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  23. Kurebayashi, H., Haino, T., Usui, S. & Fukazawa, Y. (2001). Tetrahedron, 57, 8667–8674.
  24. Le Bars-Combe, M., Chion, B. & Lajzérowicz-Bonneteau, J. (1979). Acta Cryst. B35, 913–920.
  25. Le Bars-Combe, M. & Lajzérowicz-Bonneteau, J. (1981). Acta Cryst. B37, 1707–1712.
  26. Macfarlane, R. M. & Ushioda, S. (1977). J. Chem. Phys. 67, 3214–3220.
  27. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  28. Paul, M., Chakraborty, S. & Desiraju, G. R. (2018). J. Am. Chem. Soc. 140, 2309–2315. [DOI] [PubMed]
  29. Robertson, B. E. & Stezowski, J. J. (1978). Acta Cryst. B34, 3005–3011.
  30. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  31. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  32. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  33. Stezowski, J. J., Stigler, R.-D. & Karl, N. (1986). J. Chem. Phys. 84, 5162–5170.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, IV, shelx. DOI: 10.1107/S2056989018015645/eb2013sup1.cif

e-74-01772-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015645/eb2013Isup2.hkl

e-74-01772-Isup2.hkl (79.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018015645/eb2013IIsup3.hkl

e-74-01772-IIsup3.hkl (554.9KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018015645/eb2013IIIsup4.hkl

e-74-01772-IIIsup4.hkl (261.8KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989018015645/eb2013IVsup5.hkl

e-74-01772-IVsup5.hkl (321.7KB, hkl)

Fingerprint plots for all five compounds mentioned in the text. DOI: 10.1107/S2056989018015645/eb2013sup6.pdf

e-74-01772-sup6.pdf (1.3MB, pdf)

CCDC references: 1877153, 1877152, 1877151, 1877150

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES