Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 16;74(Pt 12):1808–1814. doi: 10.1107/S205698901801592X

Crystal structure and Hirshfeld surface analysis of two (E)-N′-(para-substituted benzyl­idene) 4-chloro­benzene­sulfono­hydrazides

Akshatha R Salian a, Sabine Foro b, B Thimme Gowda a,c,*
PMCID: PMC6281117  PMID: 30574379

The crystal structures of (E)-4-chloro-N′-(4-chloro­benzyl­idene)benzene­sulfono­hydrazide and (E)-4-chloro-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide have been studied to investigate the effect of substituents on the structural parameters. The two-dimensional fingerprint plots of these two p-substituted compounds indicate that in the 4-chloro-substituted compound, the largest contribution to the Hirshfeld surface comes from the H⋯H contacts (26.6%), in contrast to the 34.8% contribution of the O⋯H/H⋯O contacts in the 4-nitro-substituted compound.

Keywords: crystal structure, hydrazones, N′-(aryl­idene)aryl­sulfono­hydrazides, hydrogen bonding, graph-set motif, Hirshfeld surface analysis, fingerprint plots

Abstract

Two (E)-N′-(p-substituted benzyl­idene)-4-chloro­benzene­sulfono­hydrazides, namely, (E)-4-chloro-N′-(4-chloro­benzyl­idene)benzene­sulfono­hydrazide, C13H10Cl2N2O2S, (I), and (E)-4-chloro-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide, C13H10ClN3O4S, (II), have been synthesized, characterized and their crystal structures studied to explore the effect of the nature of substituents on the structural parameters. Compound (II) crystallized with two independent mol­ecules [(IIA) and IIB)] in the asymmetric unit. In both compounds, the configuration around the C=N bond is E. The mol­ecules are twisted at the S atom with C—S—N—N torsion angles of −62.4 (2)° in (I), and −46.8 (2)° and 56.8 (2)° in the mol­ecules A and B of (II). The 4-chloro­phenyl­sulfonyl and 4-substituted benzyl­idene rings form dihedral angles of 81.0 (1)° in (I), 75.9 (1)° in (IIA) and 73.4 (1)° in (IIB). In the crystal of (I), mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C—Cl⋯π inter­actions, forming a three-dimensional structure. In the crystal of (II), mol­ecules are linked by C—H⋯π inter­actions and N—H⋯O hydrogen bonds, forming –ABAB– chains along the c-axis direction. The chains are linked via C—H⋯O and C—H⋯π inter­actions, forming layers parallel to the bc plane. Two-dimensional fingerprint plots show that the most significant contacts contributing to the Hirshfeld surface for (I) are H⋯H contacts (26.6%), followed by Cl⋯H/H⋯Cl (21.3%), O⋯H/H⋯O (15.5%) and Cl⋯C/C⋯Cl (10.7%), while for (II) the O⋯H/H⋯O contacts are dominant, with a contribution of 34.8%, followed by H⋯H (15.2%), C⋯H/H⋯C (14.0%) and Cl⋯H/H⋯Cl (10.0%) contacts.

Chemical context  

In the field of synthetic chemistry, hydrazones are frequently used as nucleophiles and electrophiles (Ogawa et al., 2004). They also play an important role in organic synthesis as one of the reaction inter­mediates due to their ring-closure reactions (Rollas & Küçükgüzel, 2007). Hydrazones have drawn considerable attention in the field of coordination chemistry (Weber et al., 2007). They also find various industrial applications (Reis et al., 2013) and exhibit a wide spectrum of biological activities (da Silva et al., 2011). Aryl­sulfonyl-hydrazones have shown anti­tumour activity in addition to their role as a versatile source of diazo compounds in many metal-catalysed and metal-free reactions (Hashemi, 2012). In a continuation of our efforts to explore the effect of site and nature of substituents on the crystal structures of 4-chloro-aryl­sulfono­hydrazide derivatives (Salian et al., 2018), we report herein the synthesis, characterization, crystal structures and Hirshfeld surface analysis of the title compounds, (I) and (II), and compare them with those of the recently reported structures of (E)-4-chloro-N′-(benzyl­idene) benzene­sulfono­hydrazide (III), (E)-4-chloro-N′-(2-methyl­benzyl­idene)benzene­sulfono­hydrazide (IV) and (E)-4-chloro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide (V) (Salian et al., 2018).graphic file with name e-74-01808-scheme1.jpg

Structural commentary  

Compound (I), crystallizes in the triclinic crystal system, space group P Inline graphic, with one mol­ecule in the asymmetric unit (Fig. 1), while compound (II) crystallizes in the monoclinic crystal system, space group P21/c, with two independent mol­ecules [(IIA) and (IIB)] in the asymmetric unit (Fig. 2). For both the compounds, the configuration about the C=N bond is E and the conformations of the N—H and C—H bonds in the hydrazone segments are syn to each other.

Figure 1.

Figure 1

Mol­ecular structure of (I), with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

Mol­ecular structure of (II), with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

The C=N bond lengths of 1.269 (3), 1.269 (3) and 1.269 (3) Å in (I), (IIA) and (IIB), and the N—N bond lengths of 1.388 (2) 1.397 (3) and 1.390 (2) Å in (I), (IIA) and (IIB), respectively, indicate the delocalization of the π-electron density over the hydrazone part of the mol­ecules. The other bond lengths are in close agreement with those of the parent compound (III), and the ortho-methyl (IV) and para-methyl (V) derivatives (Salian et al., 2018). Selected geometrical parameters of compounds (I)–(V) are compared in Table 1 (Salian et al., 2018).

Table 1. Comparison of selected geometrical parameters (Å, °) of compounds (I)–(V).

The dihedral angle is that between the aromatic rings. The equivalent bond lengths and torsion angles are given for (IIB).

Bond length (I) (II) Mol­ecule A (II) Mol­ecule B (III) (IV) (V)
C1—S1 1.763 (2) 1.754 (2) 1.760 (2) 1.752 (4) 1.751 (5) 1.761 (2)
S1—N1 1.631 (2) 1.645 (2) 1.641 (2) 1.644 (4) 1.645 (4) 1.625 (2)
N1—N2 1.388 (2) 1.397 (3) 1.390 (2) 1.394 (5) 1.407 (5) 1.393 (2)
N2—C7 1.269 (3) 1.269 (3) 1.269 (3) 1.258 (5) 1.272 (5) 1.273 (3)
C7—C8 1.463 (3) 1.465 (3) 1.462 (3) 1.473 (6) 1.461 (6) 1.458 (3)
Torsion angle            
C1—S1—N1—N2 −62.4 (2) −46.8 (2) 56.8 (2) −66.0 (3) −66.0 (3) −58.4 (2)
S1—N1—N2—C7 158.9 (2) 171.4 (2) −165.3 (2) 166.5 (3) 165.4 (3) 157.9 (2)
N1—N2—C7—C8 175.0 (2) −175.9 (2) 178.2 (2) 177.8 (4) 175.8 (4) 175.8 (2)
Dihedral angle 81.0 (1) 75.9 (1) 73.4 (1) 78.4 (2) 74.8 (2) 76.9 (1)

In the title compounds the mol­ecules are twisted at the S atom with C—S—N—N torsion angles of −62.4 (2)° in (I), and −46.8 (2) and 56.8 (2)° in (IIA) and (IIB), respectively. The respective S—N—N=C torsion angles of 158.9 (2)° in (I), and 171.4 (2) and −165.3 (2)° in (IIA) and (IIB), denote the non-planarity of the sulfono­hydrazide parts of the mol­ecules. However, the N—N—C—C torsion angles of 175.0 (2)° in (I), and −175.9 (2) and 178.2 (2)° in (IIA) and (IIB), indicate near coplanarity of the hydrazide units with the benzyl­idene rings. The dihedral angles between the 4-chloro-substituted phenyl­sulfonyl ring and 4-substituted benzyl­idene ring are 81.0 (1)° in (I), and 75.9 (1) and 73.4 (1°) in mol­ecules A and B of compound (II). In comparison, the corresponding values in compounds (III), (IV) and (V) are 78.4 (2), 74.8 (2) and 76.9 (1)°, respectively (see Table 1). In (II) the A and B mol­ecules are linked by a C—H⋯Cl inter­action (Table 3).

Table 3. Hydrogen-bond geometry (Å, °) for (II) .

Cg3 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.85 (2) 2.06 (2) 2.887 (3) 163 (2)
N4—H4N⋯O1ii 0.84 (2) 2.13 (2) 2.918 (2) 157 (2)
C10—H10⋯O7iii 0.93 2.58 3.465 (3) 159
C16—H16⋯O4iv 0.93 2.58 3.259 (3) 131
C25—H25⋯O5ii 0.93 2.45 3.340 (3) 161
C12—H12⋯Cg3 0.93 2.96 3.843 (2) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

The pattern of the hydrogen-bonding inter­actions in the crystal structures of (I) and (II) are different. In the crystal of (I), mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing Inline graphic(8) loops (Fig. 3, Table 2). The dimers are linked by C—Cl⋯π inter­actions, forming a three-dimensional arrangement (Fig. 3). This is very similar to the situation observed in the crystal of compound (V) [(E)- 4-chloro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide; Salian et al., 2018].

Figure 3.

Figure 3

Crystal packing of (I), viewed along the a axis, with hydrogen bonds (Table 2) shown as dashed lines and C—Cl⋯π inter­actions as blue arrows. C-bound H atoms have been omitted.

Table 2. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.07 (2) 2.903 (2) 178 (2)
C4—Cl1⋯Cg2ii 1.73 (1) 3.41 (1) 5.112 (2) 166 (1)
C11—Cl2⋯Cg1iii 1.74 (1) 3.65 (1) 5.372 (3) 171 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Replacement of the 4-chloro group in (I) by the 4-nitro group to produce compound (II) introduces C—H⋯O inter­actions, which stabilize the crystal packing (Table 3 and Figs. 4 and 5). The N—H⋯O hydrogen bond involving the sulfonyl O atom and the amino H atom of the hydrazide segment between the A and B mol­ecules results in the formation of –ABAB– chains propagating along the c-axis direction (Fig. 4). The chains are linked by C—H⋯O inter­actions involving O atoms O4 in (IIA) and O5 in (IIB) and O7 of the nitro group and the aromatic hydrogen atoms ortho to the Cl or NO2 group. The sulfonyl O atom of (IIB), i.e. O5, shows bifurcated hydrogen bonding, one with the amino H atom of the hydrazide segment and the other with one of the aromatic H atoms (H25), adjacent to the nitro group. These inter­actions link the chains, forming layers lying parallel to the bc plane (Table 3 and Fig. 5).

Figure 4.

Figure 4

A partial view along the a axis of the crystal packing of (II), with hydrogen bonds (Table 3) shown as dashed lines. H atoms not involved in these inter­actions have been omitted. Colour code: black A mol­ecules; red B mol­ecules.

Figure 5.

Figure 5

Crystal packing of (II), viewed along the b axis, with hydrogen bonds shown as dashed lines. H atoms not involved in these inter­actions have been omitted.

Hirshfeld surface analysis  

Hirshfeld surfaces and two-dimensional fingerprint plots were generated for the two substituted compounds (I) and (II) using CrystalExplorer (Turner et al., 2017) to visualize the inter­molecular inter­actions, to investigate the impact of each kind of inter­molecular contact on the crystal packing and to study the relative strengths of the different inter­actions in the two compounds. The mol­ecular Hirshfeld surfaces were generated using a standard (high) surface resolution. d i and d e are the contact distances from the Hirshfeld surface to the nearest atom inside and outside, respectively [Fig. 6(a) for (I) and Fig. 6(b) for (II)]. The strong hydrogen bonds appear as dark-red spots and weak inter­actions as light-red spots on the d norm surface (McKinnon et al., 2004; Spackman & Jayatilaka, 2009).

Figure 6.

Figure 6

(a) View of the Hirshfeld surface mapped over d norm for (I); (b) two views of the Hirshfeld surface mapped over d norm for (II).

Comparison of fingerprint plots for various atom–atom inter­actions show that the percentage contributions of these inter­actions to the Hirshfeld surfaces vary significantly from (I) to (II). The major contribution to the Hirshfeld surface in (I) is from H⋯H contacts (26.6%), followed by Cl⋯H/H⋯Cl (21.3%), O⋯H/H⋯O (15.5%), Cl⋯C/C⋯Cl (10.7%) and C⋯H/ H⋯C (9.1%) [Fig. 7(a)], while in (II), as a result of C—H⋯O inter­actions, O⋯H/H⋯O contacts are dominant and serve as the major contributors (34.8%) in the crystal packing, followed by H⋯H contacts (15.2%), C⋯H/ H⋯C (14.0%) and Cl⋯H/H⋯Cl (10.0%) [Fig. 7(b)]. The Cl⋯C/C⋯Cl contribution to the d norm surface is almost negligible (0.5%) in (II). However, C⋯C, H⋯N/N⋯H and C⋯O/O⋯C contacts make very similar contributions in the two compounds, their respective contributions being 4.7, 2.8, 3.0%, in (I) and 5.3, 3.6 and 4.1% in (II). Two pairs of symmetrical, long narrow spikes are present at d i + d e ∼2.2 Å for the O⋯H/H⋯O contacts in the fingerprint plots of (I) and (II) and these values are very close to the H⋯A distances for the N—H⋯O hydrogen bonds observed in the crystal structures (Tables 2 and 3). The contributions of the other weak inter­molecular contacts to the Hirshfeld surfaces are: Cl⋯N/N⋯Cl (1.0 and 1.5%), C⋯N/N⋯C (0.0 and 2.8%), O⋯O (0, 2.3%), N⋯N (0, 0.4%) in (I) and (II), respectively. The result of the qu­anti­tative analysis of all types of inter­molecular contacts present in (I) and (II) is summarized in Fig. 8.

Figure 7.

Figure 7

Two-dimensional fingerprint plots for (a) (I) and (b) (II). d i is the closest inter­nal distance from a given point on the Hirshfeld surface and d e is the closest external contact.

Figure 8.

Figure 8

Qu­anti­tative results of different inter­molecular inter­actions contributing to the Hirshfield surfaces of (I) and (II).

Database survey  

The structures reported in the literature similar to the title compounds include (E)-N′-(4-chloro­benzyl­idene)-p-toluene­sulfono­hydrazide 0.15-hydrate (Kia et al., 2009a ), (E)-N′-(4-chloro­benzyl­idene)-p-toluene­sulfono­hydrazide (Balaji et al., 2014), (E)-N′-(4-bromo­benzyl­idene)-p-toluene­sulfono­hydra­zide (Kia et al., 2009b ], (E)-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide (Hussain et al., 2017a ) and (E)-4-methyl-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide (Hussain et al., 2017b ). In all of these structures, inter­molecular N—H⋯O hydrogen bonds link neighbouring mol­ecules to form chains, which are linked by C—H⋯O hydrogen bonds. There are also inter­molecular ππ inter­actions present, which further stabil­ize the crystal structures.

Synthesis and crystallization  

Synthesis of 4-chloro­benzene­sulfono­hydrazide

4-Chloro­benzene­sulfono­hydrazide was synthesized by a recently reported procedure (Salian et al., 2018).

Synthesis of compounds (I) and (II)

A mixture of 4-chloro­benzene­sulfono­hydrazide (0.01 mol) and 4-chloro­benzaldehyde (0.01 mol) for (I), and 4-nitro­benzaldehyde (0.01 mol) for (II), in ethanol (30 ml) and two drops of glacial acetic acid were stirred for 4 h. The reaction mixtures were cooled to room temperature and concentrated by evaporating off the excess of solvent. The solid products obtained were washed with cold water, dried and recrystallized to constant melting points from ethanol to obtain the pure compounds. The purity of the compounds was checked by TLC.

Crystals of compounds (I) and (II), suitable for X-ray diffraction analysis, were obtained by slow evaporation of their DMF solutions at room temperature.

Both compounds were characterized by measuring their IR, 1H and 13C NMR spectra.

(E )-4-Chloro- N ′-(4-chloro­benzyl­idene)benzene­sulfono­hydrazide (I)

Colourless rod-shaped crystals; m.p. 432–433 K; IR (cm−1): 3180.6 (N—H asym. stretch), 1573.9 (C=N), 1327.0 (S=O asym. stretch) and 1166.9 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 7.32 (d, 1H, J = 8.4Hz, Ar-H), 7.51–7.56 (m, 4H, Ar-H), 7.87–7.89 (m, 2H, Ar-H), 7.92 (s, 1H), 11.50 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 128.38, 129.42, 130.73, 132.06, 134.96, 137.47, 138.39, 139.32, 145.66.

( E )-4-Chloro- N ′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide (II)

Yellow rod-shaped crystals; m.p. 414–415 K; IR (cm−1): 3093.8 (N—H asym. stretch), 1653.0 (C=N), 1392.6 (S=O asym. stretch) and 1153.4 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 7.0 (d, 1H, J = 8.80, Ar-H), 7.38 (d, 1H, J = 8.52, Ar-H), 7.63 (d, 1H, J = 8.36, Ar-H), 7.64 (s, 1H), 7.79 (d, 1H, J = 8.56, Ar-H), 7.80 (d, 2H, J = 8.28, Ar-H), 7.90 (s, 1H), 11.60 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 115.49, 124.47, 128.45, 129.63, 136.85, 137.87, 138.28, 147.97, 159.43.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. C-bound H atoms were positioned with idealized geometry and refined using a riding model: C—H = 0.93 Å with U iso(H) = 1.2U eq(C). The amino H atoms were located in difference-Fourier maps and refined with an N—H distance restraint of 0.86 (2) Å and U iso(H) = 1.2U eq(N). In (I), reflection 011 was masked by the beam stop and omitted from the refinement. In (II), atom O3 is disordered and was refined using a split model. The corresponding site-occupation factors were fixed at 0.55:0.45 and the corresponding N—O bond lengths in the disordered group were restrained to be equal. The U ij components of O3 and O3′ were restrained to be approximately isotropic.

Table 4. Experimental details.

  (I) (II)
Crystal data
Chemical formula C13H10Cl2N2O2S C13H10ClN3O4S
M r 329.19 339.75
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 5.9306 (6), 9.477 (1), 13.040 (2) 19.903 (1), 10.2517 (7), 15.064 (1)
α, β, γ (°) 98.822 (9), 96.046 (9), 92.416 (9) 90, 103.929 (7), 90
V3) 718.94 (15) 2983.3 (3)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.60 0.42
Crystal size (mm) 0.48 × 0.40 × 0.36 0.48 × 0.40 × 0.36
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.762, 0.814 0.825, 0.864
No. of measured, independent and observed [I > 2σ(I)] reflections 4153, 2626, 2321 19194, 5455, 4247
R int 0.016 0.025
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.102, 1.08 0.038, 0.101, 1.02
No. of reflections 2626 5455
No. of parameters 185 414
No. of restraints 1 15
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.35 0.43, −0.38

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698901801592X/su5458sup1.cif

e-74-01808-sup1.cif (919KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801592X/su5458Isup2.hkl

e-74-01808-Isup2.hkl (210.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901801592X/su5458IIsup3.hkl

e-74-01808-IIsup3.hkl (434KB, hkl)

CCDC references: 1578709, 1578704

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank SAIF Panjab University for extending the services of their NMR facility and Mangalore University for providing all the facilities required.

supplementary crystallographic information

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) . Crystal data

C13H10Cl2N2O2S Z = 2
Mr = 329.19 F(000) = 336
Triclinic, P1 Dx = 1.521 Mg m3
a = 5.9306 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.477 (1) Å Cell parameters from 2722 reflections
c = 13.040 (2) Å θ = 2.9–27.8°
α = 98.822 (9)° µ = 0.60 mm1
β = 96.046 (9)° T = 293 K
γ = 92.416 (9)° Rod, colourless
V = 718.94 (15) Å3 0.48 × 0.40 × 0.36 mm

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) . Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 2321 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.016
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −4→7
Tmin = 0.762, Tmax = 0.814 k = −11→11
4153 measured reflections l = −15→11
2626 independent reflections

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.3082P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.37 e Å3
2626 reflections Δρmin = −0.35 e Å3
185 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.025 (3)

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3867 (3) 0.1943 (2) 0.08046 (14) 0.0366 (4)
C2 0.6099 (3) 0.2317 (2) 0.12163 (17) 0.0481 (5)
H2 0.6853 0.3119 0.1052 0.058*
C3 0.7193 (4) 0.1486 (3) 0.18737 (19) 0.0556 (6)
H3 0.8683 0.1731 0.2166 0.067*
C4 0.6054 (4) 0.0289 (2) 0.20921 (17) 0.0526 (6)
C5 0.3850 (4) −0.0103 (2) 0.16683 (18) 0.0549 (6)
H5 0.3118 −0.0925 0.1813 0.066*
C6 0.2746 (4) 0.0736 (2) 0.10286 (16) 0.0450 (5)
H6 0.1248 0.0493 0.0747 0.054*
C7 0.1757 (3) 0.5784 (2) 0.22864 (16) 0.0423 (4)
H7 0.2965 0.6386 0.2185 0.051*
C8 0.0609 (3) 0.6140 (2) 0.32242 (16) 0.0427 (5)
C9 −0.1405 (4) 0.5433 (3) 0.33612 (18) 0.0542 (5)
H9 −0.2037 0.4681 0.2855 0.065*
C10 −0.2480 (4) 0.5832 (3) 0.4236 (2) 0.0618 (6)
H10 −0.3837 0.5356 0.4319 0.074*
C11 −0.1539 (4) 0.6935 (3) 0.49867 (18) 0.0575 (6)
C12 0.0449 (4) 0.7658 (3) 0.48740 (19) 0.0630 (6)
H12 0.1068 0.8410 0.5383 0.076*
C13 0.1518 (4) 0.7252 (3) 0.39922 (18) 0.0548 (6)
H13 0.2872 0.7734 0.3913 0.066*
N1 0.2346 (3) 0.45985 (18) 0.07324 (14) 0.0426 (4)
H1N 0.345 (3) 0.517 (2) 0.0743 (19) 0.051*
N2 0.1173 (3) 0.46871 (18) 0.16049 (13) 0.0414 (4)
O1 0.3856 (3) 0.33553 (16) −0.07638 (11) 0.0487 (4)
O2 0.0199 (2) 0.24297 (16) −0.03067 (12) 0.0492 (4)
Cl1 0.74291 (16) −0.07477 (8) 0.29214 (6) 0.0886 (3)
Cl2 −0.29271 (14) 0.74500 (11) 0.60842 (6) 0.0909 (3)
S1 0.24404 (8) 0.30435 (5) 0.00069 (4) 0.03746 (17)

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0347 (9) 0.0351 (9) 0.0370 (9) −0.0002 (7) 0.0035 (7) −0.0024 (8)
C2 0.0372 (10) 0.0498 (12) 0.0547 (12) −0.0056 (9) 0.0048 (9) 0.0032 (10)
C3 0.0394 (11) 0.0632 (15) 0.0580 (13) 0.0069 (10) −0.0054 (10) −0.0029 (11)
C4 0.0661 (14) 0.0415 (11) 0.0443 (11) 0.0170 (10) −0.0079 (10) −0.0060 (9)
C5 0.0682 (15) 0.0346 (11) 0.0581 (13) −0.0040 (10) −0.0038 (11) 0.0044 (9)
C6 0.0433 (11) 0.0377 (10) 0.0499 (11) −0.0066 (8) −0.0053 (9) 0.0033 (9)
C7 0.0429 (11) 0.0383 (10) 0.0459 (11) 0.0015 (8) 0.0056 (9) 0.0078 (9)
C8 0.0460 (11) 0.0406 (10) 0.0420 (11) 0.0083 (8) 0.0036 (9) 0.0068 (8)
C9 0.0571 (13) 0.0519 (13) 0.0501 (12) −0.0022 (10) 0.0100 (10) −0.0040 (10)
C10 0.0570 (14) 0.0708 (16) 0.0574 (14) 0.0003 (12) 0.0175 (11) 0.0030 (12)
C11 0.0581 (14) 0.0723 (16) 0.0416 (11) 0.0186 (12) 0.0071 (10) 0.0023 (11)
C12 0.0666 (16) 0.0666 (16) 0.0473 (13) 0.0053 (12) −0.0027 (11) −0.0117 (11)
C13 0.0522 (13) 0.0573 (13) 0.0512 (12) 0.0001 (10) 0.0031 (10) −0.0004 (10)
N1 0.0459 (9) 0.0357 (9) 0.0461 (9) −0.0045 (7) 0.0133 (8) 0.0032 (7)
N2 0.0426 (9) 0.0396 (9) 0.0438 (9) 0.0039 (7) 0.0110 (7) 0.0074 (7)
O1 0.0569 (9) 0.0475 (8) 0.0396 (7) −0.0107 (7) 0.0117 (6) 0.0005 (6)
O2 0.0413 (8) 0.0474 (8) 0.0559 (9) −0.0080 (6) −0.0055 (6) 0.0093 (7)
Cl1 0.1200 (7) 0.0595 (4) 0.0754 (5) 0.0290 (4) −0.0372 (4) 0.0025 (3)
Cl2 0.0868 (5) 0.1270 (7) 0.0546 (4) 0.0193 (5) 0.0230 (4) −0.0133 (4)
S1 0.0382 (3) 0.0352 (3) 0.0372 (3) −0.00503 (18) 0.00356 (19) 0.00245 (19)

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) . Geometric parameters (Å, º)

C1—C6 1.384 (3) C8—C9 1.386 (3)
C1—C2 1.385 (3) C9—C10 1.376 (3)
C1—S1 1.763 (2) C9—H9 0.9300
C2—C3 1.382 (3) C10—C11 1.373 (4)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.377 (4) C11—C12 1.371 (4)
C3—H3 0.9300 C11—Cl2 1.741 (2)
C4—C5 1.377 (3) C12—C13 1.382 (3)
C4—Cl1 1.734 (2) C12—H12 0.9300
C5—C6 1.374 (3) C13—H13 0.9300
C5—H5 0.9300 N1—N2 1.388 (2)
C6—H6 0.9300 N1—S1 1.6311 (17)
C7—N2 1.269 (3) N1—H1N 0.830 (16)
C7—C8 1.463 (3) O1—S1 1.4316 (14)
C7—H7 0.9300 O2—S1 1.4212 (15)
C8—C13 1.385 (3)
C6—C1—C2 120.77 (19) C10—C9—H9 119.6
C6—C1—S1 120.05 (15) C8—C9—H9 119.6
C2—C1—S1 119.18 (15) C11—C10—C9 119.6 (2)
C3—C2—C1 119.3 (2) C11—C10—H10 120.2
C3—C2—H2 120.4 C9—C10—H10 120.2
C1—C2—H2 120.4 C12—C11—C10 121.0 (2)
C4—C3—C2 119.3 (2) C12—C11—Cl2 119.5 (2)
C4—C3—H3 120.3 C10—C11—Cl2 119.4 (2)
C2—C3—H3 120.3 C11—C12—C13 119.0 (2)
C5—C4—C3 121.6 (2) C11—C12—H12 120.5
C5—C4—Cl1 119.19 (19) C13—C12—H12 120.5
C3—C4—Cl1 119.22 (18) C12—C13—C8 121.2 (2)
C6—C5—C4 119.2 (2) C12—C13—H13 119.4
C6—C5—H5 120.4 C8—C13—H13 119.4
C4—C5—H5 120.4 N2—N1—S1 118.76 (13)
C5—C6—C1 119.84 (19) N2—N1—H1N 118.8 (17)
C5—C6—H6 120.1 S1—N1—H1N 115.6 (17)
C1—C6—H6 120.1 C7—N2—N1 114.02 (16)
N2—C7—C8 122.74 (19) O2—S1—O1 119.93 (9)
N2—C7—H7 118.6 O2—S1—N1 109.69 (9)
C8—C7—H7 118.6 O1—S1—N1 102.85 (9)
C13—C8—C9 118.4 (2) O2—S1—C1 107.94 (9)
C13—C8—C7 119.19 (19) O1—S1—C1 109.14 (9)
C9—C8—C7 122.40 (19) N1—S1—C1 106.52 (9)
C10—C9—C8 120.8 (2)
C6—C1—C2—C3 −1.2 (3) C10—C11—C12—C13 −0.6 (4)
S1—C1—C2—C3 177.57 (16) Cl2—C11—C12—C13 −179.08 (19)
C1—C2—C3—C4 1.1 (3) C11—C12—C13—C8 0.4 (4)
C2—C3—C4—C5 0.2 (3) C9—C8—C13—C12 −0.3 (4)
C2—C3—C4—Cl1 −179.75 (17) C7—C8—C13—C12 177.7 (2)
C3—C4—C5—C6 −1.3 (4) C8—C7—N2—N1 175.01 (17)
Cl1—C4—C5—C6 178.64 (17) S1—N1—N2—C7 158.96 (15)
C4—C5—C6—C1 1.1 (3) N2—N1—S1—O2 54.13 (17)
C2—C1—C6—C5 0.1 (3) N2—N1—S1—O1 −177.17 (15)
S1—C1—C6—C5 −178.67 (17) N2—N1—S1—C1 −62.44 (17)
N2—C7—C8—C13 172.1 (2) C6—C1—S1—O2 −0.97 (19)
N2—C7—C8—C9 −10.0 (3) C2—C1—S1—O2 −179.78 (15)
C13—C8—C9—C10 0.3 (4) C6—C1—S1—O1 −132.84 (16)
C7—C8—C9—C10 −177.6 (2) C2—C1—S1—O1 48.35 (18)
C8—C9—C10—C11 −0.5 (4) C6—C1—S1—N1 116.77 (17)
C9—C10—C11—C12 0.7 (4) C2—C1—S1—N1 −62.04 (18)
C9—C10—C11—Cl2 179.13 (19)

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) . Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.83 (2) 2.07 (2) 2.903 (2) 178 (2)
C4—Cl1···Cg2ii 1.73 (1) 3.41 (1) 5.112 (2) 166 (1)
C11—Cl2···Cg1iii 1.74 (1) 3.65 (1) 5.372 (3) 171 (1)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y−1, z; (iii) −x, −y+1, −z+1.

(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) . Crystal data

C13H10ClN3O4S F(000) = 1392
Mr = 339.75 Dx = 1.513 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 19.903 (1) Å Cell parameters from 7054 reflections
b = 10.2517 (7) Å θ = 2.8–27.8°
c = 15.064 (1) Å µ = 0.42 mm1
β = 103.929 (7)° T = 293 K
V = 2983.3 (3) Å3 Rod, yellow
Z = 8 0.48 × 0.40 × 0.36 mm

(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) . Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 4247 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.025
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −23→23
Tmin = 0.825, Tmax = 0.864 k = −12→12
19194 measured reflections l = −18→18
5455 independent reflections

(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.8451P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101 (Δ/σ)max = 0.001
S = 1.02 Δρmax = 0.43 e Å3
5455 reflections Δρmin = −0.38 e Å3
414 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 restraints Extinction coefficient: 0.0034 (3)

(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.44715 (4) 0.44299 (7) 0.63321 (5) 0.0692 (2)
S1 0.41281 (3) 1.03308 (5) 0.53686 (4) 0.03843 (15)
O1 0.42255 (8) 1.04883 (15) 0.44626 (10) 0.0447 (4)
O2 0.44990 (8) 1.11288 (16) 0.60973 (11) 0.0529 (4)
O3 0.0285 (6) 0.5036 (8) 0.3381 (6) 0.081 (3) 0.55
O3' 0.0324 (8) 0.5149 (10) 0.3044 (7) 0.075 (3) 0.45
O4 −0.04648 (9) 0.6576 (2) 0.30599 (13) 0.0681 (5)
N1 0.33087 (10) 1.06413 (19) 0.53180 (14) 0.0449 (5)
H1N 0.3271 (13) 1.086 (2) 0.5849 (12) 0.054*
N2 0.28443 (9) 0.97344 (18) 0.48183 (12) 0.0426 (4)
N3 0.01310 (11) 0.6206 (2) 0.32944 (15) 0.0562 (5)
C1 0.42530 (10) 0.8671 (2) 0.56436 (14) 0.0367 (5)
C2 0.44115 (12) 0.8290 (2) 0.65534 (15) 0.0465 (6)
H2 0.4461 0.8912 0.7014 0.056*
C3 0.44953 (12) 0.6982 (3) 0.67705 (16) 0.0519 (6)
H3 0.4610 0.6714 0.7378 0.062*
C4 0.44062 (11) 0.6085 (2) 0.60760 (17) 0.0457 (6)
C5 0.42596 (13) 0.6447 (2) 0.51720 (17) 0.0534 (6)
H5 0.4209 0.5821 0.4714 0.064*
C6 0.41891 (13) 0.7760 (2) 0.49545 (15) 0.0484 (6)
H6 0.4099 0.8027 0.4347 0.058*
C7 0.22211 (11) 0.9867 (2) 0.48701 (16) 0.0438 (5)
H7 0.2100 1.0569 0.5192 0.053*
C8 0.16896 (11) 0.8929 (2) 0.44293 (15) 0.0406 (5)
C9 0.09969 (12) 0.9292 (2) 0.42131 (17) 0.0499 (6)
H9 0.0877 1.0142 0.4327 0.060*
C10 0.04837 (12) 0.8412 (2) 0.38318 (17) 0.0497 (6)
H10 0.0021 0.8661 0.3679 0.060*
C11 0.06736 (11) 0.7159 (2) 0.36837 (16) 0.0443 (5)
C12 0.13570 (12) 0.6763 (2) 0.38937 (18) 0.0508 (6)
H12 0.1472 0.5907 0.3787 0.061*
C13 0.18635 (12) 0.7649 (2) 0.42624 (17) 0.0476 (6)
H13 0.2326 0.7395 0.4402 0.057*
Cl2 0.11071 (4) 0.30845 (9) 0.53034 (6) 0.0814 (3)
S2 0.32436 (3) 0.34333 (5) 0.28991 (4) 0.04203 (16)
O5 0.28924 (9) 0.38026 (17) 0.19868 (11) 0.0542 (4)
O6 0.38459 (9) 0.41231 (17) 0.33703 (13) 0.0610 (5)
O7 0.10708 (11) −0.49600 (19) 0.13632 (16) 0.0778 (6)
O8 0.03109 (10) −0.3435 (2) 0.12357 (18) 0.0896 (7)
N4 0.34961 (10) 0.19182 (18) 0.28409 (13) 0.0413 (4)
H4N 0.3793 (11) 0.167 (2) 0.3306 (13) 0.050*
N5 0.29454 (9) 0.10878 (17) 0.24828 (12) 0.0386 (4)
N6 0.09076 (11) −0.3814 (2) 0.14089 (16) 0.0582 (6)
C14 0.26262 (11) 0.3420 (2) 0.35620 (15) 0.0388 (5)
C15 0.19424 (12) 0.3099 (2) 0.31583 (15) 0.0432 (5)
H15 0.1803 0.2948 0.2532 0.052*
C16 0.14730 (12) 0.3006 (2) 0.36964 (17) 0.0479 (6)
H16 0.1014 0.2790 0.3437 0.058*
C17 0.16929 (13) 0.3237 (2) 0.46229 (17) 0.0483 (6)
C18 0.23655 (13) 0.3573 (3) 0.50252 (16) 0.0534 (6)
H18 0.2500 0.3742 0.5650 0.064*
C19 0.28388 (12) 0.3655 (2) 0.44925 (16) 0.0489 (6)
H19 0.3298 0.3868 0.4757 0.059*
C20 0.30626 (12) −0.0126 (2) 0.25909 (15) 0.0413 (5)
H20 0.3503 −0.0419 0.2881 0.050*
C21 0.25043 (11) −0.1061 (2) 0.22580 (15) 0.0395 (5)
C22 0.18148 (12) −0.0665 (2) 0.20002 (18) 0.0496 (6)
H22 0.1707 0.0215 0.2026 0.060*
C23 0.12929 (12) −0.1552 (2) 0.17098 (18) 0.0511 (6)
H23 0.0834 −0.1283 0.1534 0.061*
C24 0.14638 (12) −0.2851 (2) 0.16848 (16) 0.0436 (5)
C25 0.21363 (12) −0.3280 (2) 0.19346 (17) 0.0498 (6)
H25 0.2238 −0.4163 0.1907 0.060*
C26 0.26565 (12) −0.2384 (2) 0.22262 (17) 0.0482 (6)
H26 0.3114 −0.2663 0.2404 0.058*

(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0651 (4) 0.0455 (4) 0.0853 (5) −0.0022 (3) −0.0048 (4) 0.0214 (3)
S1 0.0359 (3) 0.0367 (3) 0.0404 (3) −0.0048 (2) 0.0046 (2) −0.0003 (2)
O1 0.0414 (8) 0.0469 (9) 0.0454 (9) −0.0022 (7) 0.0096 (7) 0.0086 (7)
O2 0.0544 (10) 0.0450 (10) 0.0524 (10) −0.0110 (8) −0.0006 (8) −0.0087 (8)
O3 0.058 (3) 0.050 (3) 0.129 (7) −0.007 (2) 0.010 (5) −0.002 (4)
O3' 0.069 (4) 0.062 (4) 0.087 (5) −0.005 (4) 0.005 (4) −0.018 (4)
O4 0.0382 (10) 0.0845 (15) 0.0791 (13) −0.0053 (9) 0.0093 (9) −0.0026 (11)
N1 0.0406 (10) 0.0446 (11) 0.0488 (11) −0.0001 (9) 0.0094 (9) −0.0083 (9)
N2 0.0380 (10) 0.0443 (11) 0.0438 (10) −0.0011 (9) 0.0065 (8) −0.0028 (9)
N3 0.0421 (12) 0.0600 (15) 0.0649 (14) −0.0050 (11) 0.0102 (10) −0.0023 (12)
C1 0.0310 (10) 0.0404 (12) 0.0371 (11) −0.0048 (9) 0.0051 (8) 0.0017 (9)
C2 0.0483 (13) 0.0506 (14) 0.0360 (12) −0.0052 (11) 0.0014 (10) −0.0009 (10)
C3 0.0507 (14) 0.0594 (16) 0.0393 (13) −0.0033 (12) −0.0015 (11) 0.0136 (12)
C4 0.0367 (12) 0.0401 (13) 0.0557 (14) −0.0023 (10) 0.0021 (10) 0.0126 (11)
C5 0.0664 (16) 0.0405 (13) 0.0511 (14) −0.0042 (12) 0.0097 (12) −0.0031 (11)
C6 0.0650 (15) 0.0447 (14) 0.0337 (12) −0.0035 (12) 0.0085 (11) 0.0028 (10)
C7 0.0400 (12) 0.0392 (12) 0.0527 (14) 0.0061 (10) 0.0119 (10) 0.0010 (10)
C8 0.0355 (11) 0.0437 (13) 0.0434 (12) 0.0033 (10) 0.0113 (9) 0.0039 (10)
C9 0.0397 (12) 0.0435 (13) 0.0667 (16) 0.0103 (11) 0.0131 (11) −0.0002 (12)
C10 0.0324 (11) 0.0535 (15) 0.0614 (15) 0.0076 (11) 0.0081 (11) 0.0050 (12)
C11 0.0383 (12) 0.0475 (14) 0.0472 (13) −0.0010 (10) 0.0105 (10) 0.0034 (11)
C12 0.0419 (13) 0.0418 (13) 0.0677 (16) 0.0059 (11) 0.0113 (11) −0.0033 (12)
C13 0.0327 (11) 0.0481 (14) 0.0616 (15) 0.0079 (10) 0.0106 (10) 0.0033 (12)
Cl2 0.0824 (5) 0.0998 (6) 0.0759 (5) −0.0171 (5) 0.0459 (4) −0.0163 (4)
S2 0.0445 (3) 0.0341 (3) 0.0487 (3) −0.0011 (2) 0.0137 (2) 0.0007 (2)
O5 0.0642 (11) 0.0510 (10) 0.0514 (10) 0.0132 (9) 0.0218 (8) 0.0169 (8)
O6 0.0524 (10) 0.0512 (10) 0.0824 (13) −0.0141 (8) 0.0219 (9) −0.0147 (9)
O7 0.0715 (13) 0.0450 (11) 0.1165 (18) −0.0122 (10) 0.0217 (12) −0.0072 (11)
O8 0.0452 (11) 0.0735 (15) 0.143 (2) −0.0107 (10) 0.0096 (12) −0.0044 (14)
N4 0.0401 (10) 0.0353 (10) 0.0446 (11) 0.0022 (8) 0.0027 (8) −0.0006 (8)
N5 0.0395 (10) 0.0349 (10) 0.0397 (10) −0.0002 (8) 0.0064 (8) 0.0001 (8)
N6 0.0521 (13) 0.0532 (14) 0.0700 (15) −0.0095 (11) 0.0160 (11) −0.0011 (11)
C14 0.0439 (12) 0.0315 (11) 0.0407 (12) 0.0031 (9) 0.0094 (9) −0.0009 (9)
C15 0.0451 (13) 0.0432 (13) 0.0388 (12) 0.0024 (10) 0.0050 (10) −0.0056 (10)
C16 0.0425 (13) 0.0468 (14) 0.0533 (14) −0.0016 (11) 0.0093 (11) −0.0062 (11)
C17 0.0542 (14) 0.0443 (13) 0.0511 (14) −0.0032 (11) 0.0216 (11) −0.0061 (11)
C18 0.0642 (16) 0.0565 (16) 0.0388 (13) −0.0021 (13) 0.0110 (11) −0.0084 (11)
C19 0.0462 (13) 0.0501 (14) 0.0474 (14) −0.0060 (11) 0.0051 (11) −0.0078 (11)
C20 0.0411 (12) 0.0405 (13) 0.0419 (12) 0.0052 (10) 0.0092 (10) 0.0001 (10)
C21 0.0423 (12) 0.0346 (12) 0.0413 (12) 0.0043 (10) 0.0094 (10) 0.0013 (10)
C22 0.0452 (13) 0.0356 (12) 0.0669 (16) 0.0070 (10) 0.0112 (12) 0.0032 (11)
C23 0.0389 (12) 0.0443 (14) 0.0683 (16) 0.0054 (11) 0.0089 (11) 0.0055 (12)
C24 0.0441 (13) 0.0399 (13) 0.0486 (13) −0.0041 (10) 0.0149 (10) −0.0008 (10)
C25 0.0517 (14) 0.0334 (12) 0.0660 (16) 0.0041 (11) 0.0173 (12) −0.0051 (11)
C26 0.0404 (12) 0.0403 (13) 0.0631 (15) 0.0058 (10) 0.0107 (11) −0.0031 (11)

(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) . Geometric parameters (Å, º)

Cl1—C4 1.738 (2) Cl2—C17 1.735 (2)
S1—O2 1.4245 (16) S2—O6 1.4252 (17)
S1—O1 1.4331 (16) S2—O5 1.4346 (17)
S1—N1 1.6452 (19) S2—N4 1.6414 (19)
S1—C1 1.754 (2) S2—C14 1.760 (2)
O3—N3 1.237 (8) O7—N6 1.226 (3)
O3'—N3 1.239 (10) O8—N6 1.217 (3)
O4—N3 1.213 (3) N4—N5 1.390 (2)
N1—N2 1.397 (3) N4—H4N 0.839 (16)
N1—H1N 0.849 (16) N5—C20 1.269 (3)
N2—C7 1.269 (3) N6—C24 1.467 (3)
N3—C11 1.469 (3) C14—C19 1.384 (3)
C1—C6 1.379 (3) C14—C15 1.390 (3)
C1—C2 1.386 (3) C15—C16 1.380 (3)
C2—C3 1.381 (3) C15—H15 0.9300
C2—H2 0.9300 C16—C17 1.379 (3)
C3—C4 1.372 (4) C16—H16 0.9300
C3—H3 0.9300 C17—C18 1.374 (3)
C4—C5 1.373 (3) C18—C19 1.379 (3)
C5—C6 1.385 (3) C18—H18 0.9300
C5—H5 0.9300 C19—H19 0.9300
C6—H6 0.9300 C20—C21 1.462 (3)
C7—C8 1.465 (3) C20—H20 0.9300
C7—H7 0.9300 C21—C26 1.393 (3)
C8—C9 1.389 (3) C21—C22 1.394 (3)
C8—C13 1.396 (3) C22—C23 1.370 (3)
C9—C10 1.380 (3) C22—H22 0.9300
C9—H9 0.9300 C23—C24 1.377 (3)
C10—C11 1.372 (3) C23—H23 0.9300
C10—H10 0.9300 C24—C25 1.373 (3)
C11—C12 1.381 (3) C25—C26 1.375 (3)
C12—C13 1.371 (3) C25—H25 0.9300
C12—H12 0.9300 C26—H26 0.9300
C13—H13 0.9300
O2—S1—O1 120.35 (10) C8—C13—H13 119.8
O2—S1—N1 104.40 (10) O6—S2—O5 120.24 (11)
O1—S1—N1 107.10 (10) O6—S2—N4 105.33 (10)
O2—S1—C1 110.93 (10) O5—S2—N4 106.46 (10)
O1—S1—C1 106.87 (10) O6—S2—C14 109.87 (10)
N1—S1—C1 106.33 (10) O5—S2—C14 107.46 (10)
N2—N1—S1 114.59 (15) N4—S2—C14 106.70 (10)
N2—N1—H1N 118.9 (18) N5—N4—S2 112.16 (14)
S1—N1—H1N 108.5 (17) N5—N4—H4N 118.0 (17)
C7—N2—N1 115.17 (19) S2—N4—H4N 113.8 (17)
O4—N3—O3 122.2 (6) C20—N5—N4 116.56 (18)
O4—N3—O3' 122.5 (8) O8—N6—O7 123.5 (2)
O4—N3—C11 118.8 (2) O8—N6—C24 118.5 (2)
O3—N3—C11 117.5 (6) O7—N6—C24 118.0 (2)
O3'—N3—C11 116.8 (8) C19—C14—C15 120.8 (2)
C6—C1—C2 120.7 (2) C19—C14—S2 119.21 (17)
C6—C1—S1 119.78 (17) C15—C14—S2 119.83 (17)
C2—C1—S1 119.49 (17) C16—C15—C14 119.3 (2)
C3—C2—C1 119.6 (2) C16—C15—H15 120.3
C3—C2—H2 120.2 C14—C15—H15 120.3
C1—C2—H2 120.2 C17—C16—C15 119.2 (2)
C4—C3—C2 119.0 (2) C17—C16—H16 120.4
C4—C3—H3 120.5 C15—C16—H16 120.4
C2—C3—H3 120.5 C18—C17—C16 121.9 (2)
C3—C4—C5 122.2 (2) C18—C17—Cl2 118.95 (19)
C3—C4—Cl1 119.75 (19) C16—C17—Cl2 119.19 (19)
C5—C4—Cl1 118.1 (2) C17—C18—C19 119.2 (2)
C4—C5—C6 118.8 (2) C17—C18—H18 120.4
C4—C5—H5 120.6 C19—C18—H18 120.4
C6—C5—H5 120.6 C18—C19—C14 119.6 (2)
C1—C6—C5 119.6 (2) C18—C19—H19 120.2
C1—C6—H6 120.2 C14—C19—H19 120.2
C5—C6—H6 120.2 N5—C20—C21 119.9 (2)
N2—C7—C8 120.8 (2) N5—C20—H20 120.1
N2—C7—H7 119.6 C21—C20—H20 120.1
C8—C7—H7 119.6 C26—C21—C22 118.8 (2)
C9—C8—C13 119.0 (2) C26—C21—C20 119.8 (2)
C9—C8—C7 119.9 (2) C22—C21—C20 121.3 (2)
C13—C8—C7 121.0 (2) C23—C22—C21 121.0 (2)
C10—C9—C8 121.0 (2) C23—C22—H22 119.5
C10—C9—H9 119.5 C21—C22—H22 119.5
C8—C9—H9 119.5 C22—C23—C24 118.5 (2)
C11—C10—C9 118.3 (2) C22—C23—H23 120.8
C11—C10—H10 120.8 C24—C23—H23 120.8
C9—C10—H10 120.8 C25—C24—C23 122.3 (2)
C10—C11—C12 122.2 (2) C25—C24—N6 118.8 (2)
C10—C11—N3 118.8 (2) C23—C24—N6 118.9 (2)
C12—C11—N3 119.0 (2) C24—C25—C26 118.9 (2)
C13—C12—C11 119.0 (2) C24—C25—H25 120.6
C13—C12—H12 120.5 C26—C25—H25 120.6
C11—C12—H12 120.5 C25—C26—C21 120.6 (2)
C12—C13—C8 120.4 (2) C25—C26—H26 119.7
C12—C13—H13 119.8 C21—C26—H26 119.7
O2—S1—N1—N2 −164.14 (15) C7—C8—C13—C12 176.5 (2)
O1—S1—N1—N2 67.20 (18) O6—S2—N4—N5 173.52 (15)
C1—S1—N1—N2 −46.79 (18) O5—S2—N4—N5 −57.76 (17)
S1—N1—N2—C7 171.43 (17) C14—S2—N4—N5 56.77 (17)
O2—S1—C1—C6 −153.93 (18) S2—N4—N5—C20 −165.33 (16)
O1—S1—C1—C6 −21.0 (2) O6—S2—C14—C19 −19.8 (2)
N1—S1—C1—C6 93.2 (2) O5—S2—C14—C19 −152.28 (18)
O2—S1—C1—C2 26.4 (2) N4—S2—C14—C19 93.9 (2)
O1—S1—C1—C2 159.36 (17) O6—S2—C14—C15 163.92 (18)
N1—S1—C1—C2 −86.50 (19) O5—S2—C14—C15 31.5 (2)
C6—C1—C2—C3 −1.0 (3) N4—S2—C14—C15 −82.38 (19)
S1—C1—C2—C3 178.61 (18) C19—C14—C15—C16 −0.5 (3)
C1—C2—C3—C4 −1.2 (4) S2—C14—C15—C16 175.69 (17)
C2—C3—C4—C5 2.3 (4) C14—C15—C16—C17 0.2 (3)
C2—C3—C4—Cl1 −177.17 (18) C15—C16—C17—C18 0.8 (4)
C3—C4—C5—C6 −1.0 (4) C15—C16—C17—Cl2 −178.57 (18)
Cl1—C4—C5—C6 178.45 (19) C16—C17—C18—C19 −1.3 (4)
C2—C1—C6—C5 2.3 (4) Cl2—C17—C18—C19 178.0 (2)
S1—C1—C6—C5 −177.32 (19) C17—C18—C19—C14 1.0 (4)
C4—C5—C6—C1 −1.3 (4) C15—C14—C19—C18 −0.1 (4)
N1—N2—C7—C8 −175.87 (19) S2—C14—C19—C18 −176.29 (19)
N2—C7—C8—C9 −157.7 (2) N4—N5—C20—C21 178.17 (18)
N2—C7—C8—C13 25.5 (3) N5—C20—C21—C26 168.5 (2)
C13—C8—C9—C10 −0.5 (4) N5—C20—C21—C22 −13.9 (3)
C7—C8—C9—C10 −177.3 (2) C26—C21—C22—C23 −0.7 (4)
C8—C9—C10—C11 1.0 (4) C20—C21—C22—C23 −178.4 (2)
C9—C10—C11—C12 −0.7 (4) C21—C22—C23—C24 0.5 (4)
C9—C10—C11—N3 178.8 (2) C22—C23—C24—C25 −0.4 (4)
O4—N3—C11—C10 4.8 (3) C22—C23—C24—N6 177.7 (2)
O3—N3—C11—C10 −161.9 (5) O8—N6—C24—C25 176.1 (2)
O3'—N3—C11—C10 169.5 (6) O7—N6—C24—C25 −4.1 (4)
O4—N3—C11—C12 −175.6 (2) O8—N6—C24—C23 −2.1 (4)
O3—N3—C11—C12 17.7 (6) O7—N6—C24—C23 177.8 (2)
O3'—N3—C11—C12 −10.9 (6) C23—C24—C25—C26 0.5 (4)
C10—C11—C12—C13 0.0 (4) N6—C24—C25—C26 −177.6 (2)
N3—C11—C12—C13 −179.6 (2) C24—C25—C26—C21 −0.7 (4)
C11—C12—C13—C8 0.5 (4) C22—C21—C26—C25 0.8 (4)
C9—C8—C13—C12 −0.2 (4) C20—C21—C26—C25 178.5 (2)

(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) . Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C14–C19 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O5i 0.85 (2) 2.06 (2) 2.887 (3) 163 (2)
N4—H4N···O1ii 0.84 (2) 2.13 (2) 2.918 (2) 157 (2)
C10—H10···O7iii 0.93 2.58 3.465 (3) 159
C16—H16···O4iv 0.93 2.58 3.259 (3) 131
C25—H25···O5ii 0.93 2.45 3.340 (3) 161
C12—H12···Cg3 0.93 2.96 3.843 (2) 160

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y−1, z; (iii) −x, y+3/2, −z+1/2; (iv) −x, y−1/2, −z+1/2.

Funding Statement

This work was funded by Department of Science and Technology, Government of India grant DST-PURSE to Akshatha R. Salian. University Grants Commission, Government of India grant UGC-BSR one-time grant to faculty to B. Thimme Gowda.

References

  1. Balaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250–o1251. [DOI] [PMC free article] [PubMed]
  2. Hashemi, S. A. (2012). Tetrahedron Lett. 53, 5141–5143.
  3. Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017a). ACS Omega, 2, 420–431. [DOI] [PMC free article] [PubMed]
  4. Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017b). Sci. Rep. 7, 5832. [DOI] [PMC free article] [PubMed]
  5. Kia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o821–o822. [DOI] [PMC free article] [PubMed]
  6. Kia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o1119–o1120. [DOI] [PMC free article] [PubMed]
  7. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  8. Ogawa, C., Konishi, H., Sugiura, M. & Kobayashi, S. (2004). Org. Biomol. Chem. 2, 446–448. [DOI] [PubMed]
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.
  10. Reis, D. C., Despaigne, A. A. R., Da Silva, J. G., Silva, N. F., Vilela, C. F., Mendes, I. C., Takahashi, J. A. & Beraldo, H. (2013). Molecules, 18, 12645–12662. [DOI] [PMC free article] [PubMed]
  11. Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939. [DOI] [PMC free article] [PubMed]
  12. Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613–1618. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1–8.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. The University of Western Australia.
  19. Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698901801592X/su5458sup1.cif

e-74-01808-sup1.cif (919KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801592X/su5458Isup2.hkl

e-74-01808-Isup2.hkl (210.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901801592X/su5458IIsup3.hkl

e-74-01808-IIsup3.hkl (434KB, hkl)

CCDC references: 1578709, 1578704

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES