The paper reports the crystal structure of novel salt of 4-aminobenzoic acid (Vitamin B10) with pyrazinoic acid.
Keywords: crystal structure, 4-aminobenzoic acid, pyrazinoic acid, salt, hydrogen bonding, melting point
Abstract
The title 1:1 salt, C7H8NO2 +·C5H3N2O2 − (systematic name: 4-carboxyanilinium pyrazine-2-carboxylate), was synthesized successfully by slow evaporation of a saturated solution from water–ethanol (1:1 v/v) mixture and characterized by X-ray diffraction (SCXRD, PXRD) and calorimetry (DSC). The crystal structure of the salt was solved and refined at 150 and 293 K. The salt crystallizes with one molecule of 4-aminobenzoic acid (PABA) and one molecule of pyrazinoic acid (POA) in the asymmetric unit. In the crystal, the PABA and POA molecules are associated via COOH⋯Narom heterosynthons, which are connected by N—H⋯O hydrogen bonds, creating zigzag chains. The chains are further linked by N—H⋯O hydrogen bonds and π–π stacking interactions along the b axis [centroid-to-centroid distances = 3.7377 (13) and 3.8034 (13) Å at 150 and 293 K, respectively] to form a layered three-dimensional structure.
Chemical context
4-Aminobenzoic acid (PABA) is known as vitamin B10 and is involved in the production of folic acid in bacteria (Chang & Hu, 1996 ▸; Akberova, 2002 ▸). It is used as an antibacterial (Richards et al., 1995 ▸), anti-inflammatory (Flindt-Hansen & Ebbesen, 1991 ▸), antioxidant (Sirota et al., 2017 ▸; Galbinur et al., 2009 ▸), anticoagulant (Stroeva et al., 1999 ▸; Drozd et al., 2000 ▸), or dermatologic agent (Rothman & Henningsen, 1947 ▸; Xavier et al., 2006 ▸; Hanson et al., 2006 ▸). Moreover, it is a building block used in the design of drug candidates and is frequently found as a structural moiety in drugs (Kluczyk et al., 2002 ▸). PABA has been the subject of many scientific investigations, due not only to its pharmaceutical and biological properties, but also its ability to form various multi-component solid forms. PABA is a simple organic molecule with two functional groups: amine and carboxyl. This makes it unique in its ability to form various hydrogen-bonded network structures (Athimoolam & Natarajan, 2007 ▸). Among all the multi-component crystals of PABA known to date, co-crystals and salts of PABA are especially numerous.
Today, the formation of either salts or co-crystals of APIs is one of the promising strategies to modify the solid-state properties of pharmaceutical compounds, such as solubility, bioavailability, stability, etc. (Shevchenko et al., 2012 ▸; Perumalla & Sun, 2013 ▸; Manin et al., 2018 ▸). The main difference between a salt and a co-crystal is in the position of a proton. A salt is formed if a proton is transferred from an acid to a base (Aakeröy et al., 2007 ▸). Childs et al. (2007 ▸) and Cruz-Cabeza (2012 ▸) have noticed a linear correlation between ΔpK a [pK a(base) – pK a(acid)] of the starting compounds and the probability of the formation of either a salt or a co-crystal. It is assumed that a salt is expected to be formed if ΔpK a > 3 (Childs et al., 2007 ▸) or ΔpK a > 4 (Cruz-Cabeza, 2012 ▸), whereas a co-crystal forms when ΔpK a < 0 (Childs et al., 2007 ▸) or ΔpK a < −1 (Cruz-Cabeza, 2012 ▸). In the intermediate ΔpK a range, the nature of multi-component crystal is difficult to predict – a so called ‘salt–co-crystal continuum’ (Childs et al., 2007 ▸; Hathwar et al., 2010 ▸). Several examples have been documented where both a salt and a co-crystal could be formed by the same components from the same solutions under different crystallization conditions (Fu et al., 2016 ▸; Losev & Boldyreva, 2018a ▸,b ▸). A co-crystal can also be converted into a salt in the solid state upon temperature variations (Grobelny et al., 2011 ▸).
The present study reports the synthesis and crystallization of a novel salt of 4-aminobenzoic acid with pyrazinoic acid (pyrazine-2-carboxylic acid, POA), [PABA-POA], which was characterized using single crystal and powder X-ray diffraction (SCXRD, PXRD) and different scanning calorimetry (DSC).
Elucidation of the multi-component crystal nature
4-Aminobenzoic acid is an ampholyte molecule with basic (–NH2) and acidic (–COOH) functional groups, and its pK a values are 2.46 and 4.62 (Avdeef, 2017 ▸) respectively. Pyrazinoic acid is a weak acid with a pK a of 2.9 (Zhang et al., 1999 ▸). According to the ΔpK a of PABA and POA, the two-component crystal is within the range of the ‘salt–co-crystal continuum’. Both a salt and a co-crystal can be expected to crystallize.
The crystal structure of the title compound was solved and refined at 150 K (Ia) and 293 K (Ib). The nature of the crystal form (salt/co-crystal) was identified from the structural characteristics, namely the C—N bond length of PABA and the C—O bond lengths of the carboxylic/carboxylate groups of PABA and POA at both temperatures to eliminate the possibility of salt–co-crystal transition. In a neutral pure PABA molecule, the length of the C—N bond between the N atom of the amine group and the C atom of the benzene ring is ca 1.37–1.4 Å. In the title compound, the protonation of the PABA amine group results in a significantly longer C—N bond [1.455 (5) Å at 150 K and 1.467 (3) Å at 293 K]. To define the deprotonation site, the C—O bond lengths of both PABA and POA were compared. In a neutral carboxylic group, C—O is longer than C=O by 0.08 Å, or more. Deprotonation of a –COOH group leads to a decrease in this difference to 0.03 Å or less (Childs et al., 2007 ▸; Chen et al., 2012 ▸). In the title compound, the difference d(C—O) is 0.104 (6) or 0.102 (8) Å for PABA and 0.007 (6) or 0.012 (6) Å for POA at 150 K and 293 K, respectively, indicating deprotonation of the POA –COOH group and the formation of a salt.
Structural commentary
The title compound crystallizes in the monoclinic non-centrosymmetric space group Pc with one molecule of each component per asymmetric unit (Fig. 1 ▸). The carboxyl planes of PABA and POA are slightly twisted from the aromatic ring planes [2.76 (16) and 8.4 (2)° for Ia; 2.89 (19) and 9.2 (3)° for Ib], which is a characteristic feature found in almost all known multi-component complexes of both compounds. No phase transitions occur in the temperature range between 293 and 150 K.
Figure 1.
The asymmetric unit of the title compound at 150 K, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. H atoms are shown as spheres of arbitrary radii.
Supramolecular features
In the crystal, the O1—H1⋯N3 hydrogen bond involving the carboxyl group of PABA and the pyridine one of POA forms an acid⋯pyridine heterosynthon (COOH⋯Narom, Tables 1 ▸ and 2 ▸). The neighboring two-component units are linked by N1—H1B⋯N2ii hydrogen bonds, forming a zigzag
(13) chain motif. Adjacent chains are linked to each other via N1—H1C⋯O4iii hydrogen bonds [
(7)’ chain motif] to form a 2D structure [Fig. 2 ▸(a)]. The crystal packing is stabilized by stacking of the parallel 2D structures along the b-axis direction through π–π interactions between neighboring benzene and pyrazine rings [Cg1⋯Cg2 = Cg3⋯Cg4 = 3.7377 (13) and 3.8034 (13) for Ia and Ib, respectively; Cg1 and Cg2 are centroids of the POA N2–C9 pyrazine ring, Cg3 and Cg4 are centroids of the PABA C2–C7 benzene ring], forming a 3D structure supported via N1—H1A⋯O3i hydrogen bonds [
(7)’’ chain motif] [Fig. 2 ▸(b)].
Table 1. Hydrogen-bond geometry (Å, °) for Ia .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯O3i | 0.89 (4) | 1.83 (4) | 2.707 (3) | 167 (3) |
| N1—H1B⋯N2ii | 0.79 (4) | 2.21 (4) | 2.907 (3) | 148 (4) |
| N1—H1C⋯O4iii | 0.87 (4) | 1.88 (4) | 2.732 (3) | 167 (4) |
| O1—H1⋯N3 | 0.80 (5) | 1.87 (6) | 2.670 (3) | 175 (5) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Table 2. Hydrogen-bond geometry (Å, °) for Ib .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯N3 | 0.82 | 1.87 | 2.677 (3) | 167 |
| N1—H1A⋯O3i | 0.89 | 1.85 | 2.716 (3) | 164 |
| N1—H1B⋯N2ii | 0.89 | 2.13 | 2.920 (3) | 148 |
| N1—H1C⋯O4iii | 0.89 | 1.87 | 2.732 (3) | 163 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 2.
(a) The formation of zigzag
(13) chains through O1—H1⋯N3 and N1—H1B⋯N2ii interactions joined by an N1—H1C⋯O4iii hydrogen bond [
(7)’ chain motif] to generate the two-dimensional structure. (b) Layered arrangements of the salt via N1—H1A⋯O3i interactions [
(7)’’ chain motif] and aromatic π–π stacking interactions (dotted black lines) to generate the three-dimensional structure. Symmetry codes are in Table 1 ▸.
Thermal analysis
The thermal behavior of the title compound was investigated by DSC techniques. The DSC curve [PABA+POA] is shown in Fig. 3 ▸. For a comparison, the DSC curves of the starting compounds are also plotted. PABA and POA show single endothermic peaks at 188.5 and 224.8°C, respectively. [PABA+POA] exhibits a sharp endothermic peak at 166.1°C. The melting temperature of the salt is ca 20 and 60°C lower than that of the starting compounds, suggesting the formation of a new crystalline phase. A single endothermic peak for the salt indicates that the solid state is homogeneous, and also suggests that there is no solvent in the crystal.
Figure 3.
DSC curves of PABA (black), POA (red) and [PABA+POA] (blue).
Database survey
A search of the Cambridge Structural Database (CSD version 5.39, May 2018 update; Groom et al., 2016 ▸) for organic multi-component crystals (salts/co-crystals, their polymorphs and solvates) gave 88 structures for PABA and only five structures for POA. Analysis of the PABA crystal structures showed that the two most typical hydrogen-bonded motifs for them are: the acid⋯pyridine (COOH⋯Narom) heterosynthon as in the title compound and the acid⋯acid (COOH⋯COOH) homosynthon between PABA molecules or PABA and conformer molecules with carboxylic functional group.
Synthesis and crystallization
A commercial sample of PABA (Merck, 99%) was co-crystallized with POA (Acros organics, 99%) by either liquid-assisted grinding, or by slow evaporation from solution under ambient conditions. Single crystals of [PABA+POA] were grown at room temperature by slow evaporation of a water–ethanol (1:1 v/v) solution in a 1:1 stoichiometric ratio. The powder sample of the title compound for DSC analysis was obtained by liquid-assisted grinding of the physical mixture in the presence of ethanol using a planetary micro mill. The ground material was characterized using PXRD to verify the formation of a new phase by comparing the diffraction pattern with the powder pattern calculated based on the single crystal X-ray diffraction data obtained in this work (Fig. 4 ▸).
Figure 4.
Comparison of the experimental PXRD patterns of [PABA+POA] prepared by liquid-assisted grinding (blue) of PABA (black) and POA (red) and calculated (green) using single-crystal X-ray diffraction data.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. The positions of all H atoms at 293 K were optimized geometrically and refined using a riding model, with the following assumptions and restraints: N—H = 0.89 Å, C—H = 0.93 Å and O—H = 0.82 Å with U iso(H) = 1.5U eq(O) for the hydroxyl groups, and 1.2U eq(C, N) otherwise. The positions of the H atoms at 150 K were refined freely in an isotropic approximation.
Table 3. Experimental details.
| 150 K | 293 K | |
|---|---|---|
| Crystal data | ||
| Chemical formula | C7H8NO2 +·C5H3N2O2 − | C7H8NO2 +·C5H3N2O2 − |
| M r | 261.24 | 261.24 |
| Crystal system, space group | Monoclinic, P c | Monoclinic, P c |
| a, b, c (Å) | 5.95842 (16), 3.73769 (10), 25.5943 (6) | 5.95233 (16), 3.80345 (11), 25.6879 (7) |
| β (°) | 95.362 (2) | 95.037 (2) |
| V (Å3) | 567.51 (3) | 579.31 (3) |
| Z | 2 | 2 |
| Radiation type | Mo Kα | Mo Kα |
| μ (mm−1) | 0.12 | 0.12 |
| Crystal size (mm) | 0.24 × 0.19 × 0.18 | 0.24 × 0.19 × 0.18 |
| Data collection | ||
| Diffractometer | Rigaku Oxford Diffraxction Xcalibur Ruby Gemini ultra | Rigaku Oxford Diffraction Xcalibur Ruby Gemini ultra |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) |
| T min, T max | 0.933, 1.000 | 0.822, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 9340, 3426, 3244 | 8036, 2981, 2746 |
| R int | 0.024 | 0.033 |
| (sin θ/λ)max (Å−1) | 0.727 | 0.694 |
| Refinement | ||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.044, 0.131, 1.13 | 0.049, 0.145, 1.11 |
| No. of reflections | 3426 | 2981 |
| No. of parameters | 216 | 174 |
| No. of restraints | 2 | 2 |
| H-atom treatment | All H-atom parameters refined | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.39, −0.28 | 0.29, −0.28 |
Supplementary Material
Crystal structure: contains datablock(s) Ia, Ib. DOI: 10.1107/S2056989018016663/rz5246sup1.cif
Structure factors: contains datablock(s) Ia. DOI: 10.1107/S2056989018016663/rz5246Iasup4.hkl
Structure factors: contains datablock(s) Ib. DOI: 10.1107/S2056989018016663/rz5246Ibsup5.hkl
Supporting information file. DOI: 10.1107/S2056989018016663/rz5246Iasup4.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
KD thanks Dr Alex Manin and Dr Denis Rychkov for their interest in this work and helpful discussions.
supplementary crystallographic information
4-Carboxyanilinium pyrazine-2-carboxylate (Ia). Crystal data
| C7H8NO2+·C5H3N2O2− | F(000) = 272 |
| Mr = 261.24 | Dx = 1.529 Mg m−3 |
| Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.95842 (16) Å | Cell parameters from 5674 reflections |
| b = 3.73769 (10) Å | θ = 3.2–30.9° |
| c = 25.5943 (6) Å | µ = 0.12 mm−1 |
| β = 95.362 (2)° | T = 150 K |
| V = 567.51 (3) Å3 | Block, light colourless |
| Z = 2 | 0.24 × 0.19 × 0.18 mm |
4-Carboxyanilinium pyrazine-2-carboxylate (Ia). Data collection
| Rigaku Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer | 3426 independent reflections |
| Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3244 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.024 |
| Detector resolution: 10.3457 pixels mm-1 | θmax = 31.1°, θmin = 3.2° |
| ω scans | h = −8→8 |
| Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −5→5 |
| Tmin = 0.933, Tmax = 1.000 | l = −36→36 |
| 9340 measured reflections |
4-Carboxyanilinium pyrazine-2-carboxylate (Ia). Refinement
| Refinement on F2 | 2 restraints |
| Least-squares matrix: full | Hydrogen site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.044 | All H-atom parameters refined |
| wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0925P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.13 | (Δ/σ)max = 0.001 |
| 3426 reflections | Δρmax = 0.39 e Å−3 |
| 216 parameters | Δρmin = −0.28 e Å−3 |
4-Carboxyanilinium pyrazine-2-carboxylate (Ia). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
4-Carboxyanilinium pyrazine-2-carboxylate (Ia). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O3 | 0.3138 (3) | 0.3939 (5) | 0.25476 (7) | 0.0243 (4) | |
| O4 | 0.6224 (3) | 0.5432 (6) | 0.30735 (7) | 0.0277 (4) | |
| O1 | 0.4407 (3) | 0.5831 (6) | 0.53444 (8) | 0.0294 (4) | |
| O2 | 0.7570 (4) | 0.7455 (6) | 0.50022 (7) | 0.0315 (5) | |
| N2 | 0.1012 (3) | 0.1876 (5) | 0.33842 (7) | 0.0188 (4) | |
| N1 | 0.9340 (3) | 1.2049 (5) | 0.74469 (7) | 0.0168 (3) | |
| N3 | 0.2855 (3) | 0.3515 (6) | 0.43916 (8) | 0.0216 (4) | |
| C8 | 0.4243 (4) | 0.4341 (6) | 0.29860 (8) | 0.0182 (4) | |
| C5 | 0.8626 (3) | 1.0835 (6) | 0.69173 (8) | 0.0158 (4) | |
| C9 | 0.3040 (4) | 0.3411 (6) | 0.34657 (8) | 0.0166 (4) | |
| C6 | 0.6482 (4) | 0.9450 (6) | 0.68152 (8) | 0.0183 (4) | |
| C1 | 0.6445 (4) | 0.7247 (6) | 0.53737 (9) | 0.0215 (4) | |
| C7 | 0.5784 (3) | 0.8259 (6) | 0.63124 (8) | 0.0186 (4) | |
| C2 | 0.7220 (4) | 0.8505 (6) | 0.59139 (8) | 0.0176 (4) | |
| C3 | 0.9376 (4) | 0.9931 (7) | 0.60225 (9) | 0.0200 (4) | |
| C12 | 0.3970 (4) | 0.4200 (6) | 0.39723 (8) | 0.0188 (4) | |
| C4 | 1.0095 (4) | 1.1100 (6) | 0.65252 (9) | 0.0187 (4) | |
| C10 | −0.0077 (4) | 0.1148 (6) | 0.38037 (9) | 0.0208 (4) | |
| C11 | 0.0822 (4) | 0.1982 (6) | 0.43081 (9) | 0.0210 (4) | |
| H7 | 0.437 (6) | 0.717 (10) | 0.6221 (13) | 0.021 (8)* | |
| H10 | −0.150 (8) | −0.003 (11) | 0.3727 (18) | 0.037 (10)* | |
| H4 | 1.156 (6) | 1.214 (9) | 0.6619 (14) | 0.020 (8)* | |
| H3 | 1.033 (6) | 1.003 (9) | 0.5770 (15) | 0.021 (8)* | |
| H12 | 0.550 (6) | 0.517 (9) | 0.4054 (14) | 0.020 (8)* | |
| H1A | 1.046 (7) | 1.362 (10) | 0.7450 (15) | 0.028 (9)* | |
| H11 | 0.005 (6) | 0.147 (10) | 0.4628 (15) | 0.027 (9)* | |
| H1B | 0.978 (7) | 1.037 (11) | 0.7611 (17) | 0.034 (10)* | |
| H6 | 0.553 (6) | 0.919 (9) | 0.7079 (14) | 0.020 (7)* | |
| H1C | 0.823 (7) | 1.291 (9) | 0.7600 (15) | 0.026 (8)* | |
| H1 | 0.399 (8) | 0.505 (14) | 0.506 (2) | 0.046 (12)* |
4-Carboxyanilinium pyrazine-2-carboxylate (Ia). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O3 | 0.0226 (8) | 0.0359 (9) | 0.0146 (7) | 0.0076 (7) | 0.0026 (6) | −0.0009 (7) |
| O4 | 0.0201 (8) | 0.0422 (10) | 0.0210 (8) | −0.0057 (7) | 0.0034 (6) | 0.0067 (7) |
| O1 | 0.0264 (9) | 0.0470 (11) | 0.0151 (8) | −0.0116 (8) | 0.0028 (6) | −0.0063 (8) |
| O2 | 0.0337 (10) | 0.0464 (11) | 0.0157 (8) | −0.0122 (9) | 0.0085 (7) | −0.0059 (7) |
| N2 | 0.0165 (8) | 0.0229 (9) | 0.0171 (8) | 0.0001 (7) | 0.0014 (6) | −0.0016 (7) |
| N1 | 0.0163 (8) | 0.0204 (8) | 0.0138 (8) | 0.0004 (7) | 0.0013 (6) | −0.0006 (6) |
| N3 | 0.0238 (10) | 0.0272 (9) | 0.0138 (8) | −0.0024 (7) | 0.0021 (7) | −0.0009 (7) |
| C8 | 0.0174 (9) | 0.0237 (10) | 0.0140 (9) | 0.0042 (8) | 0.0042 (7) | 0.0021 (7) |
| C5 | 0.0174 (9) | 0.0183 (9) | 0.0118 (8) | 0.0014 (7) | 0.0017 (7) | −0.0003 (7) |
| C9 | 0.0166 (9) | 0.0196 (9) | 0.0138 (9) | 0.0021 (7) | 0.0018 (7) | −0.0008 (7) |
| C6 | 0.0166 (9) | 0.0243 (10) | 0.0144 (9) | −0.0017 (7) | 0.0036 (7) | 0.0005 (7) |
| C1 | 0.0253 (11) | 0.0242 (10) | 0.0147 (9) | −0.0018 (8) | 0.0005 (8) | −0.0011 (8) |
| C7 | 0.0172 (9) | 0.0243 (10) | 0.0142 (8) | −0.0033 (8) | 0.0017 (7) | −0.0005 (7) |
| C2 | 0.0191 (9) | 0.0216 (10) | 0.0122 (8) | 0.0001 (7) | 0.0018 (7) | −0.0002 (7) |
| C3 | 0.0208 (10) | 0.0271 (10) | 0.0128 (9) | −0.0017 (8) | 0.0057 (7) | −0.0019 (8) |
| C12 | 0.0161 (9) | 0.0242 (10) | 0.0161 (9) | −0.0029 (8) | 0.0015 (7) | −0.0004 (8) |
| C4 | 0.0160 (9) | 0.0243 (10) | 0.0161 (9) | −0.0033 (7) | 0.0034 (7) | −0.0015 (7) |
| C10 | 0.0183 (9) | 0.0248 (10) | 0.0193 (10) | −0.0035 (8) | 0.0027 (7) | −0.0017 (8) |
| C11 | 0.0214 (10) | 0.0255 (10) | 0.0168 (10) | −0.0019 (8) | 0.0050 (8) | 0.0015 (8) |
4-Carboxyanilinium pyrazine-2-carboxylate (Ia). Geometric parameters (Å, º)
| O3—C8 | 1.256 (3) | C5—C4 | 1.395 (3) |
| O4—C8 | 1.249 (3) | C9—C12 | 1.393 (3) |
| O1—C1 | 1.320 (3) | C6—C7 | 1.388 (3) |
| O1—H1 | 0.80 (5) | C6—H6 | 0.93 (4) |
| O2—C1 | 1.216 (3) | C1—C2 | 1.492 (3) |
| N2—C9 | 1.336 (3) | C7—C2 | 1.394 (3) |
| N2—C10 | 1.334 (3) | C7—H7 | 0.95 (4) |
| N1—C5 | 1.455 (3) | C2—C3 | 1.394 (3) |
| N1—H1A | 0.89 (4) | C3—C4 | 1.388 (3) |
| N1—H1B | 0.79 (4) | C3—H3 | 0.90 (4) |
| N1—H1C | 0.87 (4) | C12—H12 | 0.99 (4) |
| N3—C12 | 1.338 (3) | C4—H4 | 0.97 (4) |
| N3—C11 | 1.340 (3) | C10—C11 | 1.386 (3) |
| C8—C9 | 1.519 (3) | C10—H10 | 0.96 (5) |
| C5—C6 | 1.380 (3) | C11—H11 | 0.99 (4) |
| C1—O1—H1 | 114 (4) | O2—C1—C2 | 124.0 (2) |
| C10—N2—C9 | 117.57 (18) | C6—C7—C2 | 120.38 (19) |
| C5—N1—H1A | 112 (2) | C6—C7—H7 | 123 (2) |
| C5—N1—H1B | 108 (3) | C2—C7—H7 | 116 (2) |
| C5—N1—H1C | 112 (2) | C7—C2—C1 | 119.9 (2) |
| H1A—N1—H1B | 108 (4) | C7—C2—C3 | 119.75 (19) |
| H1A—N1—H1C | 111 (3) | C3—C2—C1 | 120.30 (19) |
| H1B—N1—H1C | 107 (4) | C2—C3—H3 | 120 (2) |
| C12—N3—C11 | 117.6 (2) | C4—C3—C2 | 120.2 (2) |
| O3—C8—C9 | 116.57 (19) | C4—C3—H3 | 120 (2) |
| O4—C8—O3 | 127.4 (2) | N3—C12—C9 | 121.5 (2) |
| O4—C8—C9 | 116.05 (19) | N3—C12—H12 | 115 (2) |
| C6—C5—N1 | 118.57 (18) | C9—C12—H12 | 124 (2) |
| C6—C5—C4 | 121.47 (19) | C5—C4—H4 | 118 (2) |
| C4—C5—N1 | 119.95 (19) | C3—C4—C5 | 119.0 (2) |
| N2—C9—C8 | 117.39 (18) | C3—C4—H4 | 123 (2) |
| N2—C9—C12 | 120.8 (2) | N2—C10—C11 | 122.0 (2) |
| C12—C9—C8 | 121.83 (19) | N2—C10—H10 | 115 (3) |
| C5—C6—C7 | 119.17 (19) | C11—C10—H10 | 123 (3) |
| C5—C6—H6 | 121 (2) | N3—C11—C10 | 120.7 (2) |
| C7—C6—H6 | 119 (2) | N3—C11—H11 | 116 (2) |
| O1—C1—C2 | 112.5 (2) | C10—C11—H11 | 124 (2) |
| O2—C1—O1 | 123.6 (2) | ||
| O3—C8—C9—N2 | 7.2 (3) | C5—C6—C7—C2 | −0.9 (3) |
| O3—C8—C9—C12 | −171.1 (2) | C9—N2—C10—C11 | 0.9 (3) |
| O4—C8—C9—N2 | −172.9 (2) | C6—C5—C4—C3 | −0.2 (3) |
| O4—C8—C9—C12 | 8.7 (3) | C6—C7—C2—C1 | −179.4 (2) |
| O1—C1—C2—C7 | −2.9 (3) | C6—C7—C2—C3 | 0.5 (4) |
| O1—C1—C2—C3 | 177.2 (2) | C1—C2—C3—C4 | −180.0 (2) |
| O2—C1—C2—C7 | 178.0 (2) | C7—C2—C3—C4 | 0.1 (3) |
| O2—C1—C2—C3 | −1.9 (4) | C2—C3—C4—C5 | −0.2 (3) |
| N2—C9—C12—N3 | −1.3 (3) | C12—N3—C11—C10 | 0.0 (3) |
| N2—C10—C11—N3 | −1.1 (4) | C4—C5—C6—C7 | 0.7 (3) |
| N1—C5—C6—C7 | −179.6 (2) | C10—N2—C9—C8 | −178.14 (19) |
| N1—C5—C4—C3 | −179.9 (2) | C10—N2—C9—C12 | 0.2 (3) |
| C8—C9—C12—N3 | 177.0 (2) | C11—N3—C12—C9 | 1.1 (3) |
4-Carboxyanilinium pyrazine-2-carboxylate (Ia). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O3i | 0.89 (4) | 1.83 (4) | 2.707 (3) | 167 (3) |
| N1—H1B···N2ii | 0.79 (4) | 2.21 (4) | 2.907 (3) | 148 (4) |
| N1—H1C···O4iii | 0.87 (4) | 1.88 (4) | 2.732 (3) | 167 (4) |
| O1—H1···N3 | 0.80 (5) | 1.87 (6) | 2.670 (3) | 175 (5) |
Symmetry codes: (i) x+1, −y+2, z+1/2; (ii) x+1, −y+1, z+1/2; (iii) x, −y+2, z+1/2.
4-Carboxyanilinium pyrazine-2-carboxylate (Ib). Crystal data
| C7H8NO2+·C5H3N2O2− | F(000) = 272 |
| Mr = 261.24 | Dx = 1.498 Mg m−3 |
| Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.95233 (16) Å | Cell parameters from 4235 reflections |
| b = 3.80345 (11) Å | θ = 3.2–29.2° |
| c = 25.6879 (7) Å | µ = 0.12 mm−1 |
| β = 95.037 (2)° | T = 293 K |
| V = 579.31 (3) Å3 | Block, light colourless |
| Z = 2 | 0.24 × 0.19 × 0.18 mm |
4-Carboxyanilinium pyrazine-2-carboxylate (Ib). Data collection
| Rigaku Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer | 2981 independent reflections |
| Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2746 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.033 |
| Detector resolution: 10.3457 pixels mm-1 | θmax = 29.6°, θmin = 1.6° |
| ω scans | h = −7→8 |
| Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −5→5 |
| Tmin = 0.822, Tmax = 1.000 | l = −35→33 |
| 8036 measured reflections |
4-Carboxyanilinium pyrazine-2-carboxylate (Ib). Refinement
| Refinement on F2 | 2 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
| wR(F2) = 0.145 | w = 1/[σ2(Fo2) + (0.0973P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.11 | (Δ/σ)max = 0.001 |
| 2981 reflections | Δρmax = 0.29 e Å−3 |
| 174 parameters | Δρmin = −0.28 e Å−3 |
4-Carboxyanilinium pyrazine-2-carboxylate (Ib). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
4-Carboxyanilinium pyrazine-2-carboxylate (Ib). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O3 | 0.3114 (4) | 0.4159 (6) | 0.25493 (8) | 0.0428 (6) | |
| O4 | 0.6195 (4) | 0.5580 (8) | 0.30677 (9) | 0.0505 (6) | |
| O1 | 0.4431 (4) | 0.5870 (8) | 0.53404 (9) | 0.0547 (7) | |
| H1 | 0.415003 | 0.501947 | 0.504859 | 0.082* | |
| O2 | 0.7585 (5) | 0.7517 (8) | 0.50073 (10) | 0.0588 (7) | |
| N2 | 0.1020 (4) | 0.2017 (6) | 0.33869 (9) | 0.0328 (5) | |
| N1 | 0.9323 (4) | 1.1834 (6) | 0.74503 (8) | 0.0282 (5) | |
| H1A | 1.042185 | 1.341470 | 0.744245 | 0.034* | |
| H1B | 0.982136 | 0.999337 | 0.764065 | 0.034* | |
| H1C | 0.815616 | 1.279554 | 0.759180 | 0.034* | |
| N3 | 0.2877 (4) | 0.3635 (7) | 0.43878 (10) | 0.0383 (6) | |
| C8 | 0.4229 (4) | 0.4514 (8) | 0.29826 (10) | 0.0314 (6) | |
| C5 | 0.8611 (4) | 1.0681 (7) | 0.69163 (9) | 0.0262 (5) | |
| C9 | 0.3039 (4) | 0.3555 (7) | 0.34649 (10) | 0.0273 (5) | |
| C6 | 0.6491 (4) | 0.9282 (8) | 0.68141 (10) | 0.0312 (6) | |
| H6 | 0.552972 | 0.909327 | 0.707932 | 0.037* | |
| C1 | 0.6453 (5) | 0.7272 (9) | 0.53745 (10) | 0.0365 (6) | |
| C7 | 0.5796 (4) | 0.8159 (8) | 0.63147 (11) | 0.0319 (6) | |
| H7 | 0.436812 | 0.718844 | 0.624423 | 0.038* | |
| C2 | 0.7226 (4) | 0.8473 (8) | 0.59157 (10) | 0.0301 (5) | |
| C3 | 0.9362 (5) | 0.9920 (8) | 0.60255 (11) | 0.0356 (6) | |
| H3 | 1.032069 | 1.014408 | 0.576030 | 0.043* | |
| C12 | 0.3970 (5) | 0.4333 (8) | 0.39670 (11) | 0.0335 (6) | |
| H12 | 0.538987 | 0.536543 | 0.401120 | 0.040* | |
| C4 | 1.0070 (4) | 1.1027 (8) | 0.65257 (11) | 0.0330 (6) | |
| H4 | 1.149948 | 1.198795 | 0.659963 | 0.040* | |
| C10 | −0.0051 (5) | 0.1270 (8) | 0.38076 (13) | 0.0376 (6) | |
| H10 | −0.144761 | 0.016045 | 0.376452 | 0.045* | |
| C11 | 0.0861 (5) | 0.2102 (9) | 0.43080 (12) | 0.0390 (7) | |
| H11 | 0.005353 | 0.158345 | 0.459237 | 0.047* |
4-Carboxyanilinium pyrazine-2-carboxylate (Ib). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O3 | 0.0390 (12) | 0.0655 (15) | 0.0241 (10) | 0.0140 (10) | 0.0039 (8) | −0.0003 (9) |
| O4 | 0.0356 (12) | 0.0830 (18) | 0.0336 (12) | −0.0103 (11) | 0.0068 (9) | 0.0122 (11) |
| O1 | 0.0491 (13) | 0.0908 (18) | 0.0241 (10) | −0.0236 (13) | 0.0034 (9) | −0.0131 (11) |
| O2 | 0.0618 (16) | 0.0920 (19) | 0.0244 (10) | −0.0238 (15) | 0.0149 (10) | −0.0122 (12) |
| N2 | 0.0273 (10) | 0.0424 (12) | 0.0285 (11) | −0.0009 (9) | 0.0011 (8) | −0.0052 (9) |
| N1 | 0.0288 (10) | 0.0343 (11) | 0.0211 (10) | 0.0011 (8) | 0.0007 (7) | −0.0007 (8) |
| N3 | 0.0429 (14) | 0.0498 (14) | 0.0221 (11) | −0.0049 (10) | 0.0027 (9) | −0.0028 (10) |
| C8 | 0.0295 (12) | 0.0427 (14) | 0.0226 (12) | 0.0078 (10) | 0.0059 (9) | 0.0036 (10) |
| C5 | 0.0292 (12) | 0.0305 (13) | 0.0190 (11) | 0.0026 (9) | 0.0022 (9) | 0.0009 (9) |
| C9 | 0.0269 (12) | 0.0331 (12) | 0.0218 (11) | 0.0028 (9) | 0.0022 (9) | −0.0011 (9) |
| C6 | 0.0288 (12) | 0.0441 (15) | 0.0215 (12) | −0.0042 (10) | 0.0067 (9) | 0.0011 (10) |
| C1 | 0.0420 (15) | 0.0458 (15) | 0.0217 (12) | −0.0049 (12) | 0.0033 (11) | −0.0035 (11) |
| C7 | 0.0278 (12) | 0.0429 (14) | 0.0253 (12) | −0.0056 (11) | 0.0045 (10) | −0.0015 (10) |
| C2 | 0.0339 (13) | 0.0363 (14) | 0.0202 (11) | 0.0010 (10) | 0.0028 (9) | −0.0004 (9) |
| C3 | 0.0349 (14) | 0.0514 (16) | 0.0218 (12) | −0.0053 (11) | 0.0092 (10) | −0.0024 (11) |
| C12 | 0.0287 (12) | 0.0443 (16) | 0.0274 (13) | −0.0059 (11) | 0.0017 (10) | −0.0027 (11) |
| C4 | 0.0265 (12) | 0.0441 (15) | 0.0286 (13) | −0.0065 (10) | 0.0042 (9) | −0.0035 (11) |
| C10 | 0.0303 (13) | 0.0466 (16) | 0.0364 (15) | −0.0082 (12) | 0.0061 (10) | −0.0033 (12) |
| C11 | 0.0413 (16) | 0.0484 (16) | 0.0285 (14) | −0.0042 (12) | 0.0109 (11) | −0.0001 (11) |
4-Carboxyanilinium pyrazine-2-carboxylate (Ib). Geometric parameters (Å, º)
| O3—C8 | 1.252 (3) | C5—C4 | 1.390 (4) |
| O4—C8 | 1.240 (4) | C9—C12 | 1.390 (4) |
| O1—H1 | 0.8200 | C6—H6 | 0.9300 |
| O1—C1 | 1.313 (4) | C6—C7 | 1.380 (4) |
| O2—C1 | 1.210 (4) | C1—C2 | 1.497 (4) |
| N2—C9 | 1.336 (4) | C7—H7 | 0.9300 |
| N2—C10 | 1.332 (4) | C7—C2 | 1.394 (4) |
| N1—H1A | 0.8900 | C2—C3 | 1.391 (4) |
| N1—H1B | 0.8900 | C3—H3 | 0.9300 |
| N1—H1C | 0.8900 | C3—C4 | 1.382 (4) |
| N1—C5 | 1.467 (3) | C12—H12 | 0.9300 |
| N3—C12 | 1.336 (4) | C4—H4 | 0.9300 |
| N3—C11 | 1.334 (4) | C10—H10 | 0.9300 |
| C8—C9 | 1.524 (4) | C10—C11 | 1.388 (4) |
| C5—C6 | 1.374 (3) | C11—H11 | 0.9300 |
| C1—O1—H1 | 109.5 | O2—C1—C2 | 123.6 (3) |
| C10—N2—C9 | 117.4 (2) | C6—C7—H7 | 119.8 |
| H1A—N1—H1B | 109.5 | C6—C7—C2 | 120.3 (2) |
| H1A—N1—H1C | 109.5 | C2—C7—H7 | 119.8 |
| H1B—N1—H1C | 109.5 | C7—C2—C1 | 119.9 (2) |
| C5—N1—H1A | 109.5 | C3—C2—C1 | 120.6 (2) |
| C5—N1—H1B | 109.5 | C3—C2—C7 | 119.4 (2) |
| C5—N1—H1C | 109.5 | C2—C3—H3 | 119.8 |
| C11—N3—C12 | 117.3 (3) | C4—C3—C2 | 120.5 (2) |
| O3—C8—C9 | 116.7 (2) | C4—C3—H3 | 119.8 |
| O4—C8—O3 | 127.6 (3) | N3—C12—C9 | 121.7 (3) |
| O4—C8—C9 | 115.7 (2) | N3—C12—H12 | 119.1 |
| C6—C5—N1 | 118.7 (2) | C9—C12—H12 | 119.1 |
| C6—C5—C4 | 121.4 (2) | C5—C4—H4 | 120.5 |
| C4—C5—N1 | 120.0 (2) | C3—C4—C5 | 118.9 (2) |
| N2—C9—C8 | 117.3 (2) | C3—C4—H4 | 120.5 |
| N2—C9—C12 | 120.8 (2) | N2—C10—H10 | 119.1 |
| C12—C9—C8 | 121.8 (2) | N2—C10—C11 | 121.8 (3) |
| C5—C6—H6 | 120.2 | C11—C10—H10 | 119.1 |
| C5—C6—C7 | 119.5 (2) | N3—C11—C10 | 121.0 (3) |
| C7—C6—H6 | 120.2 | N3—C11—H11 | 119.5 |
| O1—C1—C2 | 113.0 (2) | C10—C11—H11 | 119.5 |
| O2—C1—O1 | 123.3 (3) | ||
| O3—C8—C9—N2 | 8.0 (4) | C5—C6—C7—C2 | −0.7 (4) |
| O3—C8—C9—C12 | −170.1 (3) | C9—N2—C10—C11 | 1.1 (5) |
| O4—C8—C9—N2 | −172.4 (3) | C6—C5—C4—C3 | −0.3 (4) |
| O4—C8—C9—C12 | 9.5 (4) | C6—C7—C2—C1 | −179.6 (3) |
| O1—C1—C2—C7 | −2.3 (4) | C6—C7—C2—C3 | 0.2 (4) |
| O1—C1—C2—C3 | 177.9 (3) | C1—C2—C3—C4 | 180.0 (3) |
| O2—C1—C2—C7 | 178.7 (3) | C7—C2—C3—C4 | 0.2 (4) |
| O2—C1—C2—C3 | −1.0 (5) | C2—C3—C4—C5 | −0.2 (4) |
| N2—C9—C12—N3 | −1.1 (5) | C12—N3—C11—C10 | 0.1 (5) |
| N2—C10—C11—N3 | −1.2 (5) | C4—C5—C6—C7 | 0.7 (4) |
| N1—C5—C6—C7 | −179.6 (3) | C10—N2—C9—C8 | −178.1 (2) |
| N1—C5—C4—C3 | 180.0 (3) | C10—N2—C9—C12 | 0.0 (4) |
| C8—C9—C12—N3 | 176.9 (3) | C11—N3—C12—C9 | 1.1 (5) |
4-Carboxyanilinium pyrazine-2-carboxylate (Ib). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···N3 | 0.82 | 1.87 | 2.677 (3) | 167 |
| N1—H1A···O3i | 0.89 | 1.85 | 2.716 (3) | 164 |
| N1—H1B···N2ii | 0.89 | 2.13 | 2.920 (3) | 148 |
| N1—H1C···O4iii | 0.89 | 1.87 | 2.732 (3) | 163 |
Symmetry codes: (i) x+1, −y+2, z+1/2; (ii) x+1, −y+1, z+1/2; (iii) x, −y+2, z+1/2.
Funding Statement
This work was funded by RFBR grant 17-33-50073 mol_nr.
References
- Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317–322. [DOI] [PubMed]
- Akberova, S. I. (2002). Biol. Bull. Russ. Acad. Sci. 29, 390–393.
- Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. C63, o283–o286. [DOI] [PubMed]
- Avdeef, A. (2017). Eur. J. Pharm. Sci. 110, 2–18. [DOI] [PubMed]
- Chang, T.-Y. & Hu, M.-L. (1996). J. Nutr. Biochem. 7, 408–413.
- Chen, J.-M., Wang, Z.-Z., Wu, C.-B., Li, S. & Lu, T.-B. (2012). CrystEngComm, 14, 6221–6229.
- Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. [DOI] [PubMed]
- Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Drozd, N. A., Makarov, V. T., Miftakhova, N. A., Kalugin, S. G., Stroeva, O. & Akberova, S. I. (2000). Eksp. Klin. Farmakol. 63, 40–44. [PubMed]
- Flindt-Hansen, H. & Ebbesen, P. (1991). Br. J. Dermatol. 125, 222–226. [DOI] [PubMed]
- Fu, X., Li, J., Wang, L., Wu, B., Xu, X., Deng, Z. & Zhang, H. (2016). RSC Adv. 6, 26474–26478.
- Galbinur, T., Obolensky, A., Berenshtein, E., Vinokur, V., Chowers, I., Chevion, M. & Banin, E. (2009). J. Ocul. Pharmacol. Ther. 25, 475–482. [DOI] [PubMed]
- Grobelny, P., Mukherjee, A. & Desiraju, G. R. (2011). CrystEngComm, 13, 4358–4364.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hanson, K. M., Gratton, E. & Bardeen, C. J. (2006). Free Radic. Biol. Med. 41, 1205–1212. [DOI] [PubMed]
- Hathwar, V. R., Pal, R. & Guru Row, T. N. (2010). Cryst. Growth Des. 10, 3306–3310.
- Kluczyk, A., Popek, T., Kiyota, T., de Macedo, P., Stefanowicz, P., Lazar, C. & Konishi, Y. (2002). Curr. Med. Chem. 9, 1871–1892. [DOI] [PubMed]
- Losev, E. & Boldyreva, E. (2018a). CrystEngComm, 20, 2299–2305.
- Losev, E. & Boldyreva, E. (2018b). Acta Cryst. C74, 177–185. [DOI] [PubMed]
- Manin, A. N., Voronin, A. P., Drozd, K. V., Churakov, A. V. & Perlovich, G. L. (2018). Acta Cryst. C74, 797–806. [DOI] [PubMed]
- Perumalla, S. R. & Sun, C. C. (2013). CrystEngComm, 15, 5756–5759.
- Richards, R. M. E., Xing, D. K. L. & King, T. P. (1995). J. Appl. Bacteriol. 78, 209–215. [DOI] [PubMed]
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rothman, S. & Henningsen, A. B. (1947). J. Invest. Dermatol. 9, 307–313. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shevchenko, A., Bimbo, L. M., Miroshnyk, I., Haarala, J., Jelínková, K., Syrjänen, K., van Veen, B., Kiesvaara, J., Santos, H. A. & Yliruusi, J. (2012). Int. J. Pharm. 436, 403–409. [DOI] [PubMed]
- Sirota, T. V., Lyamina, N. E. & Weisfeld, L. I. (2017). Biophysics 62, 691–695.
- Stroeva, O. G., Akberova, S. I., Drozd, N. N., Makarov, V. A., Miftakhova, N. T. & Kalugin, S. S. (1999). Izv. Akad. Nauk Ser. Biol. 26, 329–336. [PubMed]
- Xavier, S., Macdonald, S., Roth, J., Caunt, M., Akalu, A., Morais, D., Buckley, M. T., Liebes, L., Formenti, S. C. & Brooks, P. C. (2006). Int. J. Radiat. Oncol. Biol. Phys. 65, 517–527. [DOI] [PubMed]
- Zhang, Y., Scorpio, A., Nikaido, H. & Sun, Z. (1999). J. Bacteriol. 181, 2044–2049. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) Ia, Ib. DOI: 10.1107/S2056989018016663/rz5246sup1.cif
Structure factors: contains datablock(s) Ia. DOI: 10.1107/S2056989018016663/rz5246Iasup4.hkl
Structure factors: contains datablock(s) Ib. DOI: 10.1107/S2056989018016663/rz5246Ibsup5.hkl
Supporting information file. DOI: 10.1107/S2056989018016663/rz5246Iasup4.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report




