Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 22;74(Pt 12):1857–1861. doi: 10.1107/S205698901801647X

Crystal structure, DFT calculations and Hirshfeld surface analysis of 3-(4-methyl­phen­yl)-6-nitro-1H-indazole

Ali Ben-Yahia a, Youness El Bakri a,b,*, Chin-Hung Lai c, El Mokhtar Essassi a, Joel T Mague d
PMCID: PMC6281119  PMID: 30574388

The asymmetric unit of the title compound consist of two independent mol­ecules. In the crystal, N–H⋯O and C—H⋯O hydrogen bonds form zigzag chains along the b-axis direction. Additional C—H⋯O hydrogen bonds link the chains into layers parallel to (10Inline graphic). These are connected by slipped π-stacking and C—H⋯π(ring) inter­actions.

Keywords: crystal structure, indazole, hydrogen bonds, π-stacking

Abstract

The asymmetric unit of the title compound, C14H11N3O3, consists of two independent mol­ecules having very similar conformations in which the indazole moieties are planar. The independent mol­ecules are distinguished by small differences in the rotational orientations of the nitro groups. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form zigzag chains along the b-axis direction. Additional C—H⋯O hydrogen bonds link the chains into layers parallel to (10Inline graphic). These are connected by slipped π-stacking and C—H⋯π(ring) inter­actions.

Chemical context  

Indazoles are an important class of heterocyclic compounds having a wide range of biological and pharmaceutical applications. There is enormous potential in the synthesis of novel heterocyclic systems to be used as building blocks for the next generation of pharmaceuticals as anti-bacterial, anti-depressant and anti-inflammatory agents. Fused aromatic 1H and 2H-indazoles are well recognized for their anti-hypertensive and anti-cancer properties while other indazole derivatives are a versatile class of compounds that have found use in biology, catalysis and medicinal chemistry (Schmidt et al., 2008). Although rare in nature (Liu et al., 2004; Ali et al., 2008), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), anti­arrhythmic and analgesic activities (Mosti et al., 2000) and anti­tumor activity and anti­hypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). As a continuation of our studies of indazole derivatives (Mohamed Abdelahi et al., 2017a ,b ,c ), we report the synthesis and structure of the title compound, (I).graphic file with name e-74-01857-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) consists of two independent mol­ecules differing only slightly in conformation (Fig. 1, Table 1). The largest difference is in the twist of the nitro group as indicated by the torsion angles O2—N3—C3—C2 and O5—N6—C17—C16 which are −1.1 (9) and 4.0 (9)°, respectively. In the mol­ecule containing N1, the indazole portion is planar to within 0.045 (6) Å (r.m.s. deviation = 0.007 Å) and the C8–C13 ring is inclined to this plane by 30.8 (3)°. In the mol­ecule containing N4, the indazole portion is planar to within 0.036 (5) Å (r.m.s. deviation = 0.007 Å) and the C22–C27 ring is inclined to this plane by 31.6 (3)°.

Figure 1.

Figure 1

The asymmetric unit of (I) with the labelling scheme and 50% probability ellipsoids.

Supra­molecular features  

In the crystal of (I), alternating N2—H2A⋯O5 and N4—H4A⋯O2 hydrogen bonds coupled with C16—H16⋯O1 hydrogen bonds form zigzag chains extending along the b-axis direction (Table 1 and Fig. 2). These chains are connected into layers parallel to (10Inline graphic) by C4—H4⋯O1 hydrogen bonds (Table 1 and Fig. 3). The layers bound to one another by a combination of slipped π-stacking inter­actions between the C1–C6 and N1/N2/C1/C6/C7 rings [centroid–centroid distance = 3.699 (4) Å, dihedral angle = 2.4 (4)°] and between the N4/N5/C21/C20/C15 and C15–C20 rings [centroid–centroid distance= 3.636 (4) Å, dihedral angle = 2.6 (4)°]. These are reinforced by the C—H⋯π(ring) inter­actions (C10—H10⋯Cg3, C13—H13⋯Cg7, C23—H23⋯Cg7 and C26—H26⋯Cg3; Table 1 and Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.90 2.11 3.005 (9) 173
C2—H2⋯O4i 0.95 2.41 3.201 (10) 140
C4—H4⋯O6ii 0.95 2.60 3.329 (9) 134
N4—H4A⋯O2iii 0.91 2.15 3.043 (9) 168
C16—H16⋯O1iii 0.95 2.39 3.171 (10) 139
C18—H18⋯O3iv 0.95 2.61 3.340 (10) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

Detail of one zigzag chain in (I) viewed along the a-axis direction. N—H⋯O and C—H⋯O hydrogen bonds are shown, respectively, by blue and black dashed lines.

Figure 3.

Figure 3

Plan view of the layer structure of (I) seen along the c-axis direction. Portions of one chain extend horizontally with the intra­chain hydrogen bonds depicted as in Fig. 2. The C—H⋯O hydrogen bonds connecting the chains into layers are depicted by purple dashed lines.

Figure 4.

Figure 4

Elevation view of the layer structure of (I) projected on (401). π-stacking and C—H⋯π(ring) inter­actions are shown, respectively, by orange and green dashed lines. Hydrogen bonds are depicted as in Fig. 2.

Database survey  

A search of the Cambridge Structural Database (Version 5.39; Groom et al., 2016) found 70 structures of indazoles not containing a substituent on the secondary nitro­gen atom and not ligands in metal complexes. Of these, only seven are nitro derivatives. These are 3,7-di­nitro­indazole (Cabildo et al., 2011), two determinations of 7-nitro­indazole (Ooms et al., 2000; Sopková-de Oliveira Santos et al., 2000), 7-nitro-1H-indazol-3-ol (Claramunt et al., 2009), 3-(4-methyl­phen­yl)-6-nitro-1H-indazole (Liu et al., 2014) and 5-nitro-3-thio­morpholino-1H-indazole and 5-nitro-3-(4-methyl­piper­az­ino)-1H-indazole (Gzella & Wrzeciono, 2001). The structures of the nitro derivatives are fairly similar to that in the present work in that the indazole moieties are essentially planar with the nitro groups twisted out the plane by 3–6°. In the 4-methyl­phenyl derivative, the phenyl ring is inclined to the plane of the indazole moiety by 12.94 (8)°.

DFT calculations and Hirshfeld surface analysis  

DFT calculations  

The structure of the title compound in the gas phase was optimized by means of density functional theory. The DFT calculation was performed by the hybrid B3LYP method, which is based on the idea of Becke and considers a mixture of the exact (HF) and DFT exchange utilizing the B3 functional together with the LYP correlation functional (Becke, 1993; Lee et al., 1988; Miehlich et al., 1989). The B3LYP calculation was performed in conjunction with a triple-x basis set which was designed for the DFT optimization [designated as TZVP (DFT orbital); Godbout et al., 1992]. After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of the imaginary frequency is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were carried out with the Gaussian16 program (Frisch et al., 2016).

Hirshfeld surface calculations  

Both the definition of a mol­ecule in a condensed phase and the recognition of distinct entities in mol­ecular liquids and crystals are fundamental concepts in chemistry. Based on Hirshfeld’s partitioning scheme, a method to divide the electron distribution in a crystalline phase into mol­ecular fragments was proposed (Spackman & Byrom, 1997; McKinnon et al., 2004; Spackman & Jayatilaka, 2009). This partitioned the crystal into regions where the electron distribution of a sum of spherical atoms for the mol­ecule dominates over the corresponding sum of the crystal. Because it derived from Hirshfeld’s stockholder partitioning, the mol­ecular surface is named the Hirshfeld surface. In this study, the Hirshfeld surface analysis of the title compound was performed using the CrystalExplorer program (Turner et al., 2017).

theoretical comparison of the title compound  

The results of the B3LYP geometry optimization of (I) are depicted in Fig. 5 and a comparative study of the gas-phase structure and the solid-phase one for (I) was performed, with the results summarized in Table 2 together with a previous geometrical study on 1H-indazole itself (Hathaway et al., 1998). The discrepancy between our B3LYP result and the previous MP2(fc) calculations may be due to the substitutent effects of both the NO2 and meth­oxy­phenyl groups (Hathaway et al., 1998).

Figure 5.

Figure 5

The B3LYP-optimized geometries (Å,°) of (I).

Table 2. The B3LYP-optimized and the X-ray structural parameters (Å, °) for (I).

  B3LYP X-ray 1H-indazolea
N1—N2 1.357 1.358 (8) 1.349
N1—C7 1.328 1.323 (9) 1.337
N2—C1 1.365 1.363 (10) 1.367
C1—C2 1.394 1.378 (11) 1.406
C1—C6 1.417 1.404 (10) 1.422
C2—C3 1.328 1.368 (9) 1.389
C3—C4 1.408 1.410 (11) 1.419
C4—C5 1.380 1.370 (10) 1.388
C5—C6 1.405 1.420 (10) 1.412
C6—C7 1.439 1.438 (10) 1.424
C7—N1—N2 107.1 106.8 (7) 105.5

Note: (a) MP2(fc)/6–311G** calculated values (Hathaway et al., 1998).

Hirshfeld analysis of the title compound  

The standard resolution mol­ecular Hirshfeld surface (d norm) of the title compound is shown in Fig. 6 and is transparent so the mol­ecular moiety can be visualized in a similar orientation for all of the structures around which they were calculated. The 3D d norm surface can be used to identify very close inter­molecular inter­actions with d norm being negative (positive) when inter­molecular contacts are shorter (longer) than the sum of the van der Waals radii. The d norm value is mapped onto the Hirshfeld surface by red, white or blue colours. The red regions represent closer contacts with a negative d norm while the blue regions represent longer contacts with a positive d norm and the white regions represent contacts equal to the van der Waals separation with d norm equal to zero. As depicted in Fig. 6, the major inter­actions in the title compound are the inter­molecular H⋯O and H⋯N hydrogen bonds.

Figure 6.

Figure 6

The d norm Hirshfeld surface of (I) (red: negative, white: zero, blue: positive; scale: −0.4664–1.4050 a.u.).

The 2D fingerprint plots highlight particular atom-pair contacts and enable the separation of contributions from different inter­action types that overlap in the full fingerprint. Using the standard 0.6–2.6 Å view with the d e and d i distance scales displayed on the graph axes, the 2D fingerprint plot for the title compound is shown in Fig. 7(a). Including the recip­rocal contacts, the contribution of the O⋯H contacts (15.7%) for the title compound is larger than that of the N⋯H contacts (4.6%) [Fig. 7(b) and 7(c)].

Figure 7.

Figure 7

Two-dimensional fingerprint plots of (I): (a) full, (b) resolved into H⋯O contacts; (c) resolved into H⋯N contacts.

Synthesis and crystallization  

6-Nitro-3-(4-meth­oxy­phen­yl)-1 H -indazole (I):

To a solution of 6-nitro­indazole (0.1 g) dissolved in 1.5 mL of a mixture of 1,4-dioxane/EtOH (3/1, v/v) in a microwave tube with a stir bar were added p-meth­oxy­phenyl­boronic acid (1.5 equiv.), a solution of caesium carbonate (1.3 equiv.) dissolved in 0.5 mL of H2O and Pd(PPh3)4 (0.1 equiv.) under argon. The reaction vessel was sealed with a silicone septum and was subjected to microwave irradiation at 413 K with stirring. The reaction mixture was then allowed to cool to room temperature, diluted with ethyl acetate (15 mL) and water (10 mL) and extracted (3 times). The combined organic layer was dried over MgSO4 and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (EtOAc/Ether) to give the desired final product. Yield: 74%. Orange solid, m.p. 503–505 K. 1H NMR (400 MHz, DMSO-d6) δ 13.74 (s, 1H), 8.46 (d, J = 1.5 Hz, 1H), 8.24 (d, J = 9.0 Hz, 1H), 7.96 (dd, J = 1.5, 9.0 Hz, 1H), 7.92 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 3.82 (3H, s). 13C NMR (100 MHz, DMSO-d6) δ 159.8, 146.1, 144.2, 140.7, 128.7, 125.3, 123.3, 122.4, 115.5, 114.9, 107.8, 55.6. HRMS (ESI) m/z calculated for C14H11N3O3 [M + H]+: 270.0834, found 270.0780.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.98 Å) while those attached to nitro­gen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with U iso(H) = 1.2–1.5U eq(C,N).

Table 3. Experimental details.

Crystal data
Chemical formula C14H11N3O3
M r 269.26
Crystal system, space group Monoclinic, P c
Temperature (K) 180
a, b, c (Å) 14.1447 (14), 11.8380 (12), 7.4252 (8)
β (°) 96.681 (7)
V3) 1234.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.18 × 0.02 × 0.02
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.70, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 25051, 6667, 2803
R int 0.111
(sin θ/λ)max−1) 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.064, 0.158, 0.94
No. of reflections 6667
No. of parameters 363
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.32
Absolute structure Flack x determined using 891 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.6 (10)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901801647X/ff2156sup1.cif

e-74-01857-sup1.cif (764.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801647X/ff2156Isup2.hkl

e-74-01857-Isup2.hkl (529.7KB, hkl)

Supporting information file. DOI: 10.1107/S205698901801647X/ff2156Isup3.cdx

Supporting information file. DOI: 10.1107/S205698901801647X/ff2156Isup4.cml

CCDC reference: 1879920

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C14H11N3O3 F(000) = 560
Mr = 269.26 Dx = 1.448 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
a = 14.1447 (14) Å Cell parameters from 1994 reflections
b = 11.8380 (12) Å θ = 3.4–24.8°
c = 7.4252 (8) Å µ = 0.11 mm1
β = 96.681 (7)° T = 180 K
V = 1234.9 (2) Å3 Needle, orange
Z = 4 0.18 × 0.02 × 0.02 mm

Data collection

Bruker SMART APEX diffractometer 6667 independent reflections
Radiation source: fine-focus sealed tube 2803 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.111
Detector resolution: 8.333 pixels mm-1 θmax = 30.5°, θmin = 1.7°
ω–φ scans h = −20→19
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −16→16
Tmin = 0.70, Tmax = 0.75 l = −10→10
25051 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064 H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0622P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max < 0.001
6667 reflections Δρmax = 0.46 e Å3
363 parameters Δρmin = −0.32 e Å3
2 restraints Absolute structure: Flack x determined using 891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.6 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4650 (5) 0.7694 (5) 0.4740 (8) 0.0490 (17)
O2 0.5455 (5) 0.6197 (5) 0.5579 (8) 0.0492 (19)
O3 −0.2022 (4) 0.3751 (4) −0.0943 (6) 0.0305 (14)
N1 0.2293 (4) 0.2766 (6) 0.2357 (7) 0.0253 (17)
H2A 0.3518 0.2443 0.3613 0.030*
N2 0.3179 (4) 0.3039 (6) 0.3141 (7) 0.0248 (15)
N3 0.4744 (5) 0.6668 (7) 0.4797 (9) 0.0311 (16)
C1 0.3319 (5) 0.4178 (7) 0.3224 (9) 0.0237 (18)
C2 0.4084 (5) 0.4805 (7) 0.3985 (9) 0.0259 (19)
H2 0.4654 0.4459 0.4523 0.031*
C3 0.3978 (6) 0.5954 (7) 0.3925 (9) 0.0231 (17)
C4 0.3146 (6) 0.6497 (6) 0.3121 (9) 0.0234 (18)
H4 0.3106 0.7298 0.3115 0.028*
C5 0.2396 (5) 0.5862 (6) 0.2349 (9) 0.0221 (18)
H5 0.1834 0.6216 0.1790 0.026*
C6 0.2473 (5) 0.4667 (7) 0.2400 (8) 0.0180 (17)
C7 0.1848 (6) 0.3728 (6) 0.1920 (9) 0.019 (2)
C8 0.0853 (6) 0.3749 (7) 0.1091 (9) 0.021 (2)
C9 0.0491 (4) 0.4629 (5) −0.0003 (8) 0.0244 (14)
H9 0.0904 0.5223 −0.0269 0.029*
C10 −0.0468 (4) 0.4668 (5) −0.0732 (9) 0.0260 (14)
H10 −0.0702 0.5277 −0.1490 0.031*
C11 −0.1067 (6) 0.3808 (6) −0.0330 (9) 0.0205 (19)
C12 −0.0721 (4) 0.2916 (5) 0.0784 (8) 0.0281 (15)
H12 −0.1135 0.2324 0.1054 0.034*
C13 0.0229 (4) 0.2896 (5) 0.1498 (8) 0.0248 (14)
H13 0.0459 0.2293 0.2274 0.030*
C14 −0.2404 (5) 0.4616 (6) −0.2163 (10) 0.0406 (18)
H14A −0.2092 0.4586 −0.3273 0.061*
H14B −0.2291 0.5356 −0.1586 0.061*
H14C −0.3090 0.4499 −0.2464 0.061*
O4 0.5210 (5) −0.2692 (5) 0.0879 (8) 0.0461 (16)
O5 0.4437 (4) −0.1201 (5) −0.0121 (8) 0.0434 (18)
O6 1.1756 (4) 0.1266 (4) 0.7138 (6) 0.0322 (14)
N4 0.6648 (4) 0.1951 (6) 0.2571 (7) 0.0262 (15)
H4A 0.6277 0.2544 0.2145 0.031*
N5 0.7533 (4) 0.2231 (6) 0.3387 (7) 0.0252 (17)
N6 0.5133 (5) −0.1670 (8) 0.0758 (8) 0.0323 (17)
C15 0.6528 (5) 0.0827 (6) 0.2389 (9) 0.0195 (16)
C16 0.5754 (5) 0.0192 (6) 0.1567 (9) 0.0234 (18)
H16 0.5186 0.0528 0.0999 0.028*
C17 0.5892 (6) −0.0958 (7) 0.1658 (9) 0.0236 (17)
C18 0.6700 (6) −0.1506 (7) 0.2516 (10) 0.0273 (19)
H18 0.6730 −0.2307 0.2574 0.033*
C19 0.7451 (6) −0.0852 (6) 0.3273 (9) 0.0239 (18)
H19 0.8013 −0.1198 0.3848 0.029*
C20 0.7376 (5) 0.0320 (7) 0.3184 (8) 0.0185 (17)
C21 0.7974 (6) 0.1252 (6) 0.3794 (9) 0.021 (2)
C22 0.8960 (6) 0.1244 (6) 0.4662 (9) 0.019 (2)
C23 0.9577 (5) 0.0380 (5) 0.4298 (9) 0.0273 (14)
H23 0.9348 −0.0213 0.3501 0.033*
C24 1.0518 (5) 0.0361 (5) 0.5068 (8) 0.0284 (15)
H24 1.0929 −0.0232 0.4787 0.034*
C25 1.0852 (6) 0.1210 (7) 0.6245 (9) 0.024 (2)
C26 1.0248 (4) 0.2077 (5) 0.6667 (8) 0.0267 (15)
H26 1.0479 0.2652 0.7496 0.032*
C27 0.9311 (4) 0.2099 (5) 0.5878 (8) 0.0261 (14)
H27 0.8903 0.2695 0.6159 0.031*
C28 1.2406 (5) 0.0424 (7) 0.6675 (11) 0.0450 (19)
H28A 1.2483 0.0484 0.5384 0.067*
H28B 1.2159 −0.0326 0.6926 0.067*
H28C 1.3024 0.0535 0.7398 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.049 (4) 0.028 (5) 0.067 (4) −0.012 (4) −0.006 (3) −0.007 (3)
O2 0.035 (4) 0.038 (4) 0.067 (4) −0.006 (3) −0.023 (3) −0.001 (3)
O3 0.024 (3) 0.030 (3) 0.036 (3) −0.001 (2) −0.005 (2) 0.004 (2)
N1 0.016 (3) 0.026 (5) 0.032 (3) 0.000 (3) −0.002 (3) 0.001 (3)
N2 0.027 (4) 0.012 (3) 0.033 (3) −0.001 (3) −0.004 (3) 0.004 (3)
N3 0.032 (4) 0.026 (4) 0.036 (4) −0.012 (4) 0.006 (3) −0.003 (4)
C1 0.023 (4) 0.024 (5) 0.024 (4) 0.001 (4) 0.003 (3) 0.002 (3)
C2 0.018 (4) 0.034 (6) 0.025 (4) 0.007 (4) 0.001 (3) 0.007 (3)
C3 0.022 (4) 0.019 (4) 0.028 (4) −0.009 (4) 0.000 (3) 0.000 (3)
C4 0.025 (4) 0.015 (4) 0.030 (4) 0.002 (4) −0.001 (3) 0.001 (3)
C5 0.019 (4) 0.024 (5) 0.023 (4) 0.000 (4) 0.000 (3) −0.001 (3)
C6 0.016 (4) 0.018 (4) 0.020 (3) 0.001 (4) 0.002 (3) 0.000 (3)
C7 0.019 (5) 0.021 (6) 0.016 (4) 0.000 (3) 0.001 (4) 0.002 (3)
C8 0.019 (5) 0.026 (6) 0.017 (4) 0.003 (3) 0.002 (4) 0.000 (3)
C9 0.026 (3) 0.025 (3) 0.024 (3) −0.005 (3) 0.006 (3) 0.003 (3)
C10 0.024 (4) 0.024 (3) 0.029 (3) −0.001 (3) −0.003 (3) 0.000 (3)
C11 0.020 (5) 0.019 (5) 0.023 (4) −0.001 (3) 0.003 (3) −0.003 (3)
C12 0.031 (4) 0.023 (4) 0.029 (3) −0.004 (3) −0.004 (3) 0.004 (3)
C13 0.029 (4) 0.023 (3) 0.021 (3) 0.000 (3) −0.002 (3) 0.003 (3)
C14 0.035 (4) 0.042 (4) 0.041 (4) 0.000 (3) −0.012 (3) 0.014 (4)
O4 0.042 (4) 0.028 (5) 0.067 (4) −0.010 (4) −0.001 (3) −0.005 (3)
O5 0.029 (4) 0.045 (5) 0.053 (4) −0.004 (3) −0.009 (3) 0.001 (3)
O6 0.023 (3) 0.030 (3) 0.041 (3) −0.001 (2) −0.008 (2) −0.004 (2)
N4 0.020 (4) 0.024 (4) 0.034 (3) 0.007 (3) −0.003 (3) 0.001 (3)
N5 0.026 (4) 0.021 (4) 0.027 (3) −0.005 (3) −0.001 (3) −0.001 (3)
N6 0.027 (4) 0.037 (5) 0.032 (4) −0.010 (4) 0.003 (3) −0.004 (3)
C15 0.016 (4) 0.020 (5) 0.023 (3) 0.001 (4) 0.003 (3) −0.005 (3)
C16 0.026 (4) 0.020 (5) 0.024 (4) −0.005 (4) 0.001 (3) −0.004 (3)
C17 0.022 (4) 0.028 (5) 0.021 (3) −0.009 (4) 0.004 (3) −0.010 (3)
C18 0.033 (5) 0.022 (4) 0.029 (4) −0.006 (4) 0.013 (4) −0.002 (4)
C19 0.027 (5) 0.019 (4) 0.026 (4) 0.004 (4) 0.004 (3) 0.005 (3)
C20 0.024 (4) 0.017 (4) 0.015 (3) 0.003 (4) 0.002 (3) 0.000 (3)
C21 0.026 (6) 0.014 (6) 0.023 (4) −0.001 (4) 0.002 (4) 0.002 (3)
C22 0.022 (5) 0.013 (5) 0.022 (4) −0.002 (3) 0.002 (4) −0.002 (3)
C23 0.027 (4) 0.026 (4) 0.028 (3) −0.002 (3) 0.001 (3) −0.003 (3)
C24 0.027 (4) 0.032 (4) 0.027 (3) 0.003 (3) 0.007 (3) −0.002 (3)
C25 0.021 (5) 0.032 (6) 0.018 (4) −0.003 (4) −0.005 (4) 0.001 (3)
C26 0.032 (4) 0.030 (4) 0.018 (3) −0.010 (3) 0.002 (3) −0.002 (3)
C27 0.030 (4) 0.020 (3) 0.029 (3) 0.000 (3) 0.005 (3) −0.001 (3)
C28 0.024 (4) 0.054 (5) 0.054 (5) 0.004 (3) −0.005 (3) −0.010 (4)

Geometric parameters (Å, º)

O1—N3 1.222 (8) O4—N6 1.217 (9)
O2—N3 1.233 (9) O5—N6 1.248 (8)
O3—C11 1.377 (9) O6—C25 1.372 (9)
O3—C14 1.431 (7) O6—C28 1.425 (8)
N1—C7 1.323 (9) N4—C15 1.346 (10)
N1—N2 1.358 (8) N4—N5 1.367 (8)
N2—C1 1.363 (10) N4—H4A 0.9100
N2—H2A 0.9007 N5—C21 1.334 (9)
N3—C3 1.465 (10) N6—C17 1.463 (10)
C1—C2 1.378 (11) C15—C16 1.407 (10)
C1—C6 1.404 (10) C15—C20 1.408 (10)
C2—C3 1.368 (9) C16—C17 1.375 (10)
C2—H2 0.9500 C16—H16 0.9500
C3—C4 1.410 (11) C17—C18 1.401 (12)
C4—C5 1.370 (10) C18—C19 1.380 (11)
C4—H4 0.9500 C18—H18 0.9500
C5—C6 1.420 (10) C19—C20 1.393 (10)
C5—H5 0.9500 C19—H19 0.9500
C6—C7 1.438 (10) C20—C21 1.431 (10)
C7—C8 1.470 (11) C21—C22 1.467 (12)
C8—C9 1.381 (9) C22—C23 1.392 (9)
C8—C13 1.398 (9) C22—C27 1.407 (9)
C9—C10 1.402 (8) C23—C24 1.385 (8)
C9—H9 0.9500 C23—H23 0.9500
C10—C11 1.378 (9) C24—C25 1.379 (9)
C10—H10 0.9500 C24—H24 0.9500
C11—C12 1.395 (9) C25—C26 1.394 (9)
C12—C13 1.385 (8) C26—C27 1.385 (7)
C12—H12 0.9500 C26—H26 0.9500
C13—H13 0.9500 C27—H27 0.9500
C14—H14A 0.9800 C28—H28A 0.9800
C14—H14B 0.9800 C28—H28B 0.9800
C14—H14C 0.9800 C28—H28C 0.9800
C11—O3—C14 117.2 (5) C25—O6—C28 116.2 (6)
C7—N1—N2 106.8 (7) C15—N4—N5 112.5 (6)
N1—N2—C1 112.1 (6) C15—N4—H4A 131.8
N1—N2—H2A 113.8 N5—N4—H4A 115.3
C1—N2—H2A 133.6 C21—N5—N4 105.7 (7)
O1—N3—O2 123.0 (9) O4—N6—O5 122.7 (9)
O1—N3—C3 119.1 (8) O4—N6—C17 119.0 (8)
O2—N3—C3 117.9 (8) O5—N6—C17 118.3 (8)
N2—C1—C2 130.9 (7) N4—C15—C16 130.9 (7)
N2—C1—C6 106.0 (7) N4—C15—C20 106.7 (6)
C2—C1—C6 123.0 (7) C16—C15—C20 122.4 (7)
C3—C2—C1 116.3 (8) C17—C16—C15 114.1 (8)
C3—C2—H2 121.8 C17—C16—H16 122.9
C1—C2—H2 121.8 C15—C16—H16 122.9
C2—C3—C4 123.4 (8) C16—C17—C18 125.7 (8)
C2—C3—N3 119.0 (8) C16—C17—N6 117.1 (8)
C4—C3—N3 117.5 (7) C18—C17—N6 117.2 (8)
C5—C4—C3 119.6 (7) C19—C18—C17 118.3 (7)
C5—C4—H4 120.2 C19—C18—H18 120.8
C3—C4—H4 120.2 C17—C18—H18 120.8
C4—C5—C6 118.8 (8) C18—C19—C20 119.2 (8)
C4—C5—H5 120.6 C18—C19—H19 120.4
C6—C5—H5 120.6 C20—C19—H19 120.4
C1—C6—C5 118.8 (8) C19—C20—C15 120.1 (8)
C1—C6—C7 104.9 (7) C19—C20—C21 135.6 (7)
C5—C6—C7 136.1 (7) C15—C20—C21 104.3 (7)
N1—C7—C6 110.1 (7) N5—C21—C20 110.8 (7)
N1—C7—C8 121.5 (7) N5—C21—C22 120.0 (7)
C6—C7—C8 128.4 (7) C20—C21—C22 129.1 (7)
C9—C8—C13 118.1 (7) C23—C22—C27 118.1 (7)
C9—C8—C7 122.0 (7) C23—C22—C21 120.3 (6)
C13—C8—C7 119.7 (7) C27—C22—C21 121.6 (6)
C8—C9—C10 121.8 (6) C24—C23—C22 121.7 (6)
C8—C9—H9 119.1 C24—C23—H23 119.2
C10—C9—H9 119.1 C22—C23—H23 119.2
C11—C10—C9 118.9 (6) C25—C24—C23 119.5 (6)
C11—C10—H10 120.6 C25—C24—H24 120.3
C9—C10—H10 120.6 C23—C24—H24 120.3
O3—C11—C10 124.7 (6) O6—C25—C24 125.0 (7)
O3—C11—C12 115.0 (6) O6—C25—C26 114.7 (7)
C10—C11—C12 120.4 (7) C24—C25—C26 120.3 (7)
C13—C12—C11 119.9 (6) C27—C26—C25 120.0 (6)
C13—C12—H12 120.1 C27—C26—H26 120.0
C11—C12—H12 120.1 C25—C26—H26 120.0
C12—C13—C8 120.9 (6) C26—C27—C22 120.4 (6)
C12—C13—H13 119.6 C26—C27—H27 119.8
C8—C13—H13 119.6 C22—C27—H27 119.8
O3—C14—H14A 109.5 O6—C28—H28A 109.5
O3—C14—H14B 109.5 O6—C28—H28B 109.5
H14A—C14—H14B 109.5 H28A—C28—H28B 109.5
O3—C14—H14C 109.5 O6—C28—H28C 109.5
H14A—C14—H14C 109.5 H28A—C28—H28C 109.5
H14B—C14—H14C 109.5 H28B—C28—H28C 109.5
C7—N1—N2—C1 0.1 (7) C15—N4—N5—C21 −2.4 (7)
N1—N2—C1—C2 176.2 (7) N5—N4—C15—C16 −176.9 (6)
N1—N2—C1—C6 −1.4 (7) N5—N4—C15—C20 1.9 (7)
N2—C1—C2—C3 −176.4 (7) N4—C15—C16—C17 −179.6 (6)
C6—C1—C2—C3 0.9 (10) C20—C15—C16—C17 1.8 (9)
C1—C2—C3—C4 −0.7 (10) C15—C16—C17—C18 1.8 (10)
C1—C2—C3—N3 176.7 (6) C15—C16—C17—N6 −177.3 (5)
O1—N3—C3—C2 179.9 (7) O4—N6—C17—C16 −176.7 (7)
O2—N3—C3—C2 −1.1 (9) O5—N6—C17—C16 4.0 (9)
O1—N3—C3—C4 −2.5 (9) O4—N6—C17—C18 4.2 (9)
O2—N3—C3—C4 176.5 (6) O5—N6—C17—C18 −175.1 (6)
C2—C3—C4—C5 −0.1 (10) C16—C17—C18—C19 −3.2 (11)
N3—C3—C4—C5 −177.6 (6) N6—C17—C18—C19 175.8 (6)
C3—C4—C5—C6 0.8 (10) C17—C18—C19—C20 0.9 (10)
N2—C1—C6—C5 177.6 (6) C18—C19—C20—C15 2.4 (10)
C2—C1—C6—C5 −0.2 (10) C18—C19—C20—C21 179.5 (7)
N2—C1—C6—C7 2.0 (6) N4—C15—C20—C19 177.2 (6)
C2—C1—C6—C7 −175.8 (6) C16—C15—C20—C19 −3.9 (10)
C4—C5—C6—C1 −0.6 (9) N4—C15—C20—C21 −0.7 (6)
C4—C5—C6—C7 173.2 (6) C16—C15—C20—C21 178.2 (5)
N2—N1—C7—C6 1.3 (7) N4—N5—C21—C20 1.8 (7)
N2—N1—C7—C8 −177.9 (6) N4—N5—C21—C22 178.7 (6)
C1—C6—C7—N1 −2.1 (7) C19—C20—C21—N5 −178.2 (7)
C5—C6—C7—N1 −176.5 (7) C15—C20—C21—N5 −0.7 (7)
C1—C6—C7—C8 177.0 (6) C19—C20—C21—C22 5.3 (12)
C5—C6—C7—C8 2.6 (11) C15—C20—C21—C22 −177.2 (7)
N1—C7—C8—C9 −153.8 (7) N5—C21—C22—C23 −147.3 (7)
C6—C7—C8—C9 27.2 (10) C20—C21—C22—C23 28.9 (10)
N1—C7—C8—C13 30.2 (9) N5—C21—C22—C27 32.7 (10)
C6—C7—C8—C13 −148.8 (7) C20—C21—C22—C27 −151.0 (7)
C13—C8—C9—C10 −1.4 (9) C27—C22—C23—C24 −1.4 (10)
C7—C8—C9—C10 −177.4 (6) C21—C22—C23—C24 178.7 (6)
C8—C9—C10—C11 0.5 (9) C22—C23—C24—C25 0.9 (9)
C14—O3—C11—C10 3.6 (9) C28—O6—C25—C24 5.4 (9)
C14—O3—C11—C12 −177.0 (6) C28—O6—C25—C26 −177.1 (6)
C9—C10—C11—O3 179.4 (6) C23—C24—C25—O6 177.7 (6)
C9—C10—C11—C12 0.0 (9) C23—C24—C25—C26 0.4 (10)
O3—C11—C12—C13 −179.2 (6) O6—C25—C26—C27 −178.7 (5)
C10—C11—C12—C13 0.2 (9) C24—C25—C26—C27 −1.1 (9)
C11—C12—C13—C8 −1.1 (9) C25—C26—C27—C22 0.6 (8)
C9—C8—C13—C12 1.7 (9) C23—C22—C27—C26 0.6 (9)
C7—C8—C13—C12 177.8 (6) C21—C22—C27—C26 −179.5 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O5i 0.90 2.11 3.005 (9) 173
C2—H2···O4i 0.95 2.41 3.201 (10) 140
C4—H4···O6ii 0.95 2.60 3.329 (9) 134
N4—H4A···O2iii 0.91 2.15 3.043 (9) 168
C16—H16···O1iii 0.95 2.39 3.171 (10) 139
C18—H18···O3iv 0.95 2.61 3.340 (10) 134

Symmetry codes: (i) x, −y, z+1/2; (ii) x−1, −y+1, z−1/2; (iii) x, −y+1, z−1/2; (iv) x+1, −y, z+1/2.

Funding Statement

This work was funded by Tulane University grant . RUDN University Program 5–100 grant .

References

  1. Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. [DOI] [PubMed]
  2. Ali, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111–1112. [DOI] [PubMed]
  3. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  4. Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. [DOI] [PubMed]
  5. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  6. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Cabildo, P., Claramunt, R. M., López, C., García, M. A., Pérez-Torralba, M., Pinilla, E., Torres, M. R., Alkorta, I. & Elguero, J. (2011). J. Mol. Struct. 985, 75–81.
  8. Claramunt, R. M., Sanz, D., López, C., Pinilla, E., Torres, M. R., Elguero, J., Nioche, P. & Raman, C. S. (2009). Helv. Chim. Acta, 92, 1952–1962.
  9. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E. Jr, Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian16, Revision A. 03. Gaussian, Inc., Wallingford CT.
  10. Godbout, N., Salahub, D. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560–571.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Gzella, A. & Wrzeciono, U. (2001). Acta Cryst. C57, 1189–1191. [DOI] [PubMed]
  13. Hathaway, B. A., Day, G., Lewis, M. & Glaser, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2713–2720.
  14. Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. [DOI] [PubMed]
  15. Liu, Z., Wang, L., Tan, H., Zhou, S., Fu, T., Xia, Y., Zhang, Y. & Wang, J. (2014). Chem. Commun. 50, 5061–5063. [DOI] [PubMed]
  16. Liu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454–455. [DOI] [PubMed]
  17. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  18. Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206.
  19. Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170637.
  20. Mohamed Abdelahi, M. M., El Bakri, Y., Minnih, M. S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170660.
  21. Mohamed Abdelahi, M. M., El Bakri, Y., Minnih, M. S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017c). IUCrData, 2, x170652.
  22. Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963–972. [DOI] [PubMed]
  23. Ooms, F., Norberg, B., Isin, E. M., Castagnoli, N., Van der Schyf, C. J. & Wouters, J. (2000). Acta Cryst. C56, e474–e475.
  24. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  25. Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220. [DOI] [PubMed]
  26. Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073–4095.
  27. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Sopková-de Oliveira Santos, J., Collot, V. & Rault, S. (2000). Acta Cryst. C56, 1503–1504. [DOI] [PubMed]
  31. Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220.
  32. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  33. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901801647X/ff2156sup1.cif

e-74-01857-sup1.cif (764.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801647X/ff2156Isup2.hkl

e-74-01857-Isup2.hkl (529.7KB, hkl)

Supporting information file. DOI: 10.1107/S205698901801647X/ff2156Isup3.cdx

Supporting information file. DOI: 10.1107/S205698901801647X/ff2156Isup4.cml

CCDC reference: 1879920

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES