Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 22;74(Pt 12):1838–1841. doi: 10.1107/S2056989018016419

(μ-Methylenediphosphonato-κ4 O,O′:O′′,O′′′)bis[(ethyl­ene­diamine-κ2 N,N′)palladium(II)] tetra­hydrate

Viktoriya V Dyakonenko a,*, Alexandra N Kozachkova b, Natalia V Tsaryk b, Vasily I Pekhnyo b, Ruslan V Lavryk c
PMCID: PMC6281122  PMID: 30574384

The binuclear title mol­ecule exhibits point group symmetry 2, with the PdII atom in a square-planar coordination environment defined by two N atoms from ethyl­enedi­amine and two O atoms from methyl­enedi­phospho­nate ligands.

Keywords: crystal structure, ethyl­enedi­amine palladium, methyl­enedi­phospho­nate, anti­cancer agents

Abstract

The title compound, [Pd2(C2H8N2)2(CH2O6P2)]·4H2O, comprises of a binuclear mol­ecule (point group symmetry 2), with a twofold rotation axis running through the central C atom of the methyl­enedi­phospho­nate (MDP) anion. The PdII atom has a square-planar coordination environment defined by the N atoms of a bidentate ethyl­enedi­amine (en) ligand and two O atoms of the bridging MDP anion. In the crystal structure, metal complexes are arranged in layers parallel (001) and are sandwiched between layers containing disordered water mol­ecules of crystallization. Extensive intra­layer hydrogen bonds of the type N—H⋯O in the metal complex layer and O—H⋯O in the water layer, as well as O—H⋯O hydrogen bonds between the two types of layers, lead to the formation a three-dimensional network structure. The two lattice water mol­ecules are each equally disordered over two positions.

Chemical context  

Platinum drugs are some of the most important and clinically applied anti-cancer agents. Di­phospho­nic acids are therapeutic agents for treating osteoporosis and metastatic bone diseases. Therefore new complexes designed with a combin­ation of platinum group metals with di­phospho­nic acid (or derivatives thereof) as bone-targeting groups can improve the chemotherapeutic efficacy in the treatment of bone cancer and can reduce adverse effects. Methyl­enedi­phospho­nic acid (medronic acid, MDP, H4 L) is the smallest bis­phospho­nate, which accumulates on the sites of osteoid mineralization and can be used in combination with platinum metals to treat cancer and metastatic bone diseases. Platinum–bis­phospho­nate complexes, including bis­{ethyl­enedi­amine)­platinum(II)}medronate, as novel Pt-prodrugs in the local treatment of bone tumors have been reported (Wani et al., 2016; Iafisco et al., 2009; Palazzo et al., 2007; Iafisco & Margiotta, 2012; Margiotta et al., 2009). The preparation and structure determination of [Pt2(cis-di­amino­hexa­ne)2(methyl­enedi­phospho­n­ate)] was reported by Bau et al. (1988).graphic file with name e-74-01838-scheme1.jpg

In this work, we synthesized a new platinum metal complex, viz. [Pd2(C2H8N2)2(CH2O6P2)]·4H2O or [Pd2(en)2(MDP)]·4H2O, and report here its mol­ecular and crystal structures.

Structural commentary  

The binuclear [Pd2(en)2(MDP)] complex mol­ecule is uncharged and exhibits point group symmetry 2, with the twofold rotation axis passing through the central C atom of the MDP ligand (Fig. 1). The PdII atom has a square-planar environment defined by two nitro­gen atoms (N1 and N2) of the chelating en ligand and two oxygen atoms (O2 and O3) of the bis-bidentately coordinating MDP ligand that bridges two symmetry-related PdII atoms into the binuclear complex. The deviation of the Pd1 site from the least-squares plane involving the ligand atoms N1, N2, O2 and O3 is 0.06 Å. The Pd—N and Pd—O bond lengths are in typical ranges whereby the Pd—N bonds are about 0.02 Å shorter than the Pd—O bonds (Table 1). The O—Pd—O, N—Pd—N and O—Pd—N bond angles vary within 84.5 (2)°–93.3 (2)° (Table 1) and indicate a slight distortion from a square-planar coordination. In general, the structural features of the [Pd2(en)2(MDP)] complex are similar to those of the related complex [Pd2(en)2EDP] where EDP is 1-hy­droxy­ethane 1,1-di­phospho­nate or etidronate (Kozachkova et al., 2018).

Figure 1.

Figure 1

Mol­ecular structure of the title complex and surrounding water mol­ecules with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + Inline graphic, −y + Inline graphic, z.]

Table 1. Selected geometric parameters (Å, °).

Pd1—O1 2.033 (5) Pd1—N2 2.009 (6)
Pd1—O2i 2.046 (5) Pd1—N1 2.021 (5)
       
O1—Pd1—O2i 93.32 (19) N2—Pd1—N1 84.5 (2)
N2—Pd1—O2i 91.2 (2) N1—Pd1—O1 90.8 (2)

Symmetry code: (i) Inline graphic.

The Pd1—O1—P1—C3—P1i—O1i [symmetry code: (i) Inline graphic − x, Inline graphic − y, z] six-membered metallacycle adopts a chair conformation; the puckering parameters (Cremer & Pople, 1975; Zefirov et al., 1990) are S = 1.19, ψ = 16.52°, θ = 3.02°. The Pd1 and C3 atoms deviate by −0.95 and 0.82 Å, respectively, from the least-squares plane of the remaining atoms of this metallacycle with an s.u. of 0.01 Å. The Pd1—N1—C2—C1—N2 five-membered metallacycle involving the en ligand adopts an envelope conformation. The N1 atom deviates by 0.27 Å from the mean plane of the remaining atoms (the s.u. of this plane is 0.005 Å).

Supra­molecular features  

In the crystal, [Pd2(en)2(MDP)] mol­ecules are linked via (en)N1—H1A⋯O1ii (MDP) hydrogen bonds (Fig. 2, Table 2), forming chains parallel to [010]. Neighboring chains are connected to each other through (en)N2—H2A⋯O3iii (MDP) and (en)N1—H1B⋯O3iv (MDP) hydrogen bonds, forming layers parallel to (001). The disordered water mol­ecules O4 and O5 are located between these layers and are connected to each other by O—H⋯O hydrogen bonds (Table 2), forming a sandwich-type structure. The structural disorder of the water mol­ecules is probably caused by different possibilities of possible positions favourable for hydrogen bonding with neighbouring mol­ecules. Alternating layers containing [Pd2(en)2(MDP)] complexes and water mol­ecules are stacked along [001] and are linked to each other by a series of O—H⋯O hydrogen bonds (O5A—H5AB⋯O3 and O4B—H4BB⋯O3; Table 2).

Figure 2.

Figure 2

Crystal packing of the title compound in a view along [010] with hydrogen bonds shown as dashed lines.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3ii 0.89 2.07 2.932 (8) 163
N1—H1A⋯O1iii 0.89 2.21 3.006 (8) 149
N1—H1B⋯O3iv 0.89 2.06 2.906 (8) 159
O4A—H4AA⋯O5A 0.86 2.05 2.79 (3) 145
O5B—H5BA⋯O5B v 0.85 1.56 2.17 (4) 127
O5B—H5BA⋯O4B v 0.85 2.29 2.97 (3) 136
O5B—H5BB⋯O5B vi 0.85 1.97 2.73 (4) 148
O5B—H5BB⋯O4B vii 0.85 2.24 2.78 (2) 121
O5A—H5AA⋯O4A vii 0.85 1.98 2.786 (19) 158
O5A—H5AB⋯O3 0.85 1.83 2.675 (16) 176
O4B—H4BB⋯O3 0.85 1.93 2.761 (18) 165

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, update November 2017; Groom et al., 2016) for complexes containing the Pd(en) moiety yielded 226 hits with a mean Pd—N bond lengths of 2.028 Å. A search for Pd complexes with MPD as a ligand revealed only one entry (Kutsenko et al., 2014) with Pd—O bond lengths of 1.999 and 2.004 Å.

Synthesis and crystallization  

[Pd2(C2H8N2)2(CH2O6P2)]·4H2O was prepared as previously reported in the literature (Kozachkova et al., 2018). A solution of AgNO3 (0.4 mmol, 0.0679 g) in water (3 ml) was added to a suspension of [Pd(en)Cl2] (0.2 mmol, 0.0474 g) in water (6 ml) under constant stirring and heating at 333 K for 30 min. The resulting suspension was refrigerated to facilitate the precipitation of AgCl. The solid material was removed by suction filtration. MDP (0.1 mmol, 0.0176 g) was added to the filtrate, and the pH was adjusted to 6 by addition of KOH (0.1 mol l−1). The obtained slightly yellow solution was heated at 333 K for 20 min and then left to evaporate at room temperature. Yellow rectangular crystals of the title compound suitable for crystallographic studies were grown by slow evaporation of an aqueous solution at room temperature.

Compound [Pd2(en)2(MDP)]·4H2O: yield 86%. Analysis found: C, 11.5; H, 3.6; N, 10.9; P, 11.8; Pd, 40.8. Calculated for C5H26N4O6P2Pd2: C, 11.9; H, 3.9; N, 11.1; P, 12.3; Pd, 41.9%. The 31P-{H} NMR spectrum of an aqueous solutions of the synthesized compound exhibited a singlet with δP 35.0 ppm.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms of the metal complex were located from difference-Fourier syntheses. The H atom of the central CH2 bridge of the MDP ligand was refined freely, and the methyl­ene and NH2 hydrogen atoms of the en ligand were treated in the riding-model approximation with C—H = 0.97 Å (N—H = 0.89 Å) and U iso(H) = 1.2U eq(C,N). The two lattice water mol­ecules (O4 and O5) are each disordered over two positions and were refined with occupancies 0.5:0.5 each. Their hydrogen atoms were calculated, taking into account the direction of expected hydrogen bonds. The positions of these hydrogen atoms were fixed at the last steps of refinement with O—H = 0.85 Å, and with U iso(H) = 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula [Pd2(C2H8N2)2(CH2O6P2)]·4H2O
M r 577.04
Crystal system, space group Orthorhombic, F d d d
Temperature (K) 294
a, b, c (Å) 11.8871 (6), 12.5405 (6), 48.052 (2)
V3) 7163.2 (6)
Z 16
Radiation type Mo Kα
μ (mm−1) 2.24
Crystal size (mm) 0.6 × 0.4 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.418, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14597, 2065, 1746
R int 0.075
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.063, 0.175, 1.14
No. of reflections 2065
No. of parameters 126
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.69, −2.06

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016419/wm5473sup1.cif

e-74-01838-sup1.cif (487.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016419/wm5473Isup2.hkl

e-74-01838-Isup2.hkl (114.3KB, hkl)

CCDC reference: 1879750

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Pd2(C2H8N2)2(CH2O6P2)]·4H2O Dx = 2.140 Mg m3
Mr = 577.04 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fddd Cell parameters from 2899 reflections
a = 11.8871 (6) Å θ = 3.2–30.1°
b = 12.5405 (6) Å µ = 2.24 mm1
c = 48.052 (2) Å T = 294 K
V = 7163.2 (6) Å3 Block, colourless
Z = 16 0.6 × 0.4 × 0.2 mm
F(000) = 4576

Data collection

Rigaku Oxford Diffraction Xcalibur, Sapphire3 diffractometer 2065 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 1746 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.075
Detector resolution: 16.1827 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −15→8
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) k = −16→16
Tmin = 0.418, Tmax = 1.000 l = −58→62
14597 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0908P)2 + 141.6934P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.002
2065 reflections Δρmax = 1.69 e Å3
126 parameters Δρmin = −2.06 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pd1 0.37981 (4) 0.24678 (4) 0.61611 (2) 0.0284 (2)
P1 0.24784 (12) 0.37098 (12) 0.66205 (3) 0.0273 (4)
O1 0.2537 (4) 0.2699 (4) 0.64405 (11) 0.0346 (10)
O2 0.2468 (4) 0.4739 (4) 0.64479 (10) 0.0322 (10)
O3 0.1464 (4) 0.3667 (4) 0.68076 (9) 0.0362 (10)
N2 0.4951 (5) 0.2116 (5) 0.58694 (13) 0.0387 (13)
H2A 0.542935 0.265756 0.585250 0.046*
H2B 0.533949 0.154405 0.592230 0.046*
N1 0.2672 (5) 0.2073 (5) 0.58635 (12) 0.0355 (12)
H1A 0.235915 0.144735 0.590388 0.043*
H1B 0.212909 0.256180 0.585660 0.043*
C3 0.375000 0.375000 0.68243 (19) 0.0299 (17)
H3 0.373 (6) 0.437 (6) 0.6938 (17) 0.036*
C1 0.3239 (8) 0.2011 (11) 0.55937 (18) 0.073 (3)
H1C 0.293176 0.140753 0.549266 0.087*
H1D 0.305487 0.264816 0.548883 0.087*
C2 0.4418 (8) 0.1906 (13) 0.5599 (2) 0.089 (4)
H2C 0.473610 0.239097 0.546319 0.107*
H2D 0.461070 0.118672 0.554208 0.107*
O4A 0.1779 (11) 0.1374 (12) 0.7512 (3) 0.072 (4) 0.5
H4AA 0.162933 0.203516 0.754198 0.108* 0.5
H4AB 0.115953 0.105016 0.747549 0.108* 0.5
O5B 0.1617 (16) 0.5219 (16) 0.7487 (5) 0.108 (7) 0.5
H5BA 0.226607 0.542097 0.753922 0.163* 0.5
H5BB 0.118927 0.574297 0.752362 0.163* 0.5
O5A 0.1535 (13) 0.3512 (16) 0.7363 (3) 0.064 (4) 0.5
H5AA 0.084422 0.344140 0.740362 0.096* 0.5
H5AB 0.154092 0.358020 0.718632 0.096* 0.5
O4B 0.1903 (15) 0.2992 (16) 0.7344 (4) 0.069 (5) 0.5
H4BA 0.228698 0.242206 0.733009 0.104* 0.5
H4BB 0.164928 0.316206 0.718439 0.104* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0273 (3) 0.0295 (4) 0.0285 (4) 0.00014 (16) −0.00047 (18) −0.00197 (17)
P1 0.0229 (7) 0.0320 (8) 0.0270 (8) −0.0004 (5) 0.0012 (6) 0.0012 (6)
O1 0.028 (2) 0.041 (3) 0.035 (3) −0.0021 (18) 0.0028 (19) −0.005 (2)
O2 0.028 (2) 0.035 (2) 0.034 (2) 0.0019 (17) 0.0010 (18) 0.0029 (19)
O3 0.026 (2) 0.051 (3) 0.031 (2) 0.0004 (18) 0.0045 (18) −0.001 (2)
N2 0.032 (3) 0.047 (3) 0.036 (3) 0.000 (2) 0.002 (2) 0.000 (3)
N1 0.031 (3) 0.040 (3) 0.035 (3) −0.003 (2) −0.006 (2) −0.005 (2)
C3 0.028 (4) 0.036 (5) 0.025 (4) −0.001 (3) 0.000 0.000
C1 0.061 (6) 0.126 (10) 0.031 (4) 0.010 (6) −0.010 (4) −0.013 (5)
C2 0.047 (5) 0.176 (13) 0.045 (5) −0.020 (7) 0.009 (4) −0.028 (7)
O4A 0.058 (7) 0.081 (10) 0.077 (10) 0.006 (7) −0.006 (7) −0.007 (8)
O5B 0.074 (11) 0.117 (15) 0.134 (17) −0.013 (10) 0.010 (11) −0.061 (13)
O5A 0.046 (8) 0.114 (16) 0.032 (6) 0.000 (8) 0.002 (5) −0.002 (8)
O4B 0.064 (11) 0.097 (14) 0.047 (8) 0.001 (9) 0.009 (7) 0.002 (9)

Geometric parameters (Å, º)

Pd1—Pd1i 3.2180 (9) C3—H3 0.95 (8)
Pd1—Pd1ii 3.1715 (9) C3—H3i 0.95 (8)
Pd1—O1 2.033 (5) C1—H1C 0.9700
Pd1—O2i 2.046 (5) C1—H1D 0.9700
Pd1—N2 2.009 (6) C1—C2 1.408 (14)
Pd1—N1 2.021 (5) C2—H2C 0.9700
P1—O1 1.536 (5) C2—H2D 0.9700
P1—O2 1.534 (5) O4A—H4AA 0.8600
P1—O3 1.506 (4) O4A—H4AB 0.8590
P1—C3 1.802 (5) O4A—H4ABiii 0.56 (2)
N2—H2A 0.8900 O5B—H5BA 0.8503
N2—H2B 0.8900 O5B—H5BB 0.8504
N2—C2 1.468 (11) O5A—H5AA 0.8495
N1—H1A 0.8900 O5A—H5AB 0.8515
N1—H1B 0.8900 O4B—H4BA 0.8502
N1—C1 1.464 (11) O4B—H4BB 0.8500
Pd1ii—Pd1—Pd1i 164.246 (17) Pd1—N1—H1B 109.8
O1—Pd1—Pd1i 80.27 (14) H1A—N1—H1B 108.2
O1—Pd1—Pd1ii 87.69 (14) C1—N1—Pd1 109.6 (5)
O1—Pd1—O2i 93.32 (19) C1—N1—H1A 109.8
O2i—Pd1—Pd1i 81.11 (13) C1—N1—H1B 109.8
O2i—Pd1—Pd1ii 89.54 (13) P1—C3—P1i 114.2 (5)
N2—Pd1—Pd1i 104.11 (19) P1—C3—H3 108 (4)
N2—Pd1—Pd1ii 88.64 (19) P1—C3—H3i 108 (4)
N2—Pd1—O1 174.2 (2) P1i—C3—H3i 108 (4)
N2—Pd1—O2i 91.2 (2) P1i—C3—H3 108 (4)
N2—Pd1—N1 84.5 (2) H3—C3—H3i 110 (10)
N1—Pd1—Pd1ii 87.42 (18) N1—C1—H1C 108.2
N1—Pd1—Pd1i 102.77 (18) N1—C1—H1D 108.2
N1—Pd1—O1 90.8 (2) H1C—C1—H1D 107.3
N1—Pd1—O2i 174.8 (2) C2—C1—N1 116.5 (8)
O1—P1—C3 106.9 (2) C2—C1—H1C 108.2
O2—P1—O1 113.0 (3) C2—C1—H1D 108.2
O2—P1—C3 106.1 (2) N2—C2—H2C 108.4
O3—P1—O1 110.1 (3) N2—C2—H2D 108.4
O3—P1—O2 110.3 (3) C1—C2—N2 115.4 (8)
O3—P1—C3 110.4 (3) C1—C2—H2C 108.4
P1—O1—Pd1 121.6 (3) C1—C2—H2D 108.4
P1—O2—Pd1i 120.7 (3) H2C—C2—H2D 107.5
Pd1—N2—H2A 109.4 H4AA—O4A—H4AB 108.2
Pd1—N2—H2B 109.4 H4AA—O4A—H4ABiii 72.3
H2A—N2—H2B 108.0 H4AB—O4A—H4ABiii 38.4
C2—N2—Pd1 111.2 (5) H5BA—O5B—H5BB 104.5
C2—N2—H2A 109.4 H5AA—O5A—H5AB 104.4
C2—N2—H2B 109.4 H4BA—O4B—H4BB 109.4
Pd1—N1—H1A 109.8
Pd1—N2—C2—C1 1.3 (14) O3—P1—O1—Pd1 −179.9 (3)
Pd1—N1—C1—C2 18.4 (13) O3—P1—O2—Pd1i −177.9 (3)
O1—P1—O2—Pd1i −54.3 (4) O3—P1—C3—P1i 179.4 (2)
O1—P1—C3—P1i 59.7 (2) N1—C1—C2—N2 −13.4 (17)
O2—P1—O1—Pd1 56.3 (4) C3—P1—O1—Pd1 −60.0 (4)
O2—P1—C3—P1i −61.1 (2) C3—P1—O2—Pd1i 62.5 (4)

Symmetry codes: (i) −x+3/4, −y+3/4, z; (ii) x, −y+1/4, −z+5/4; (iii) −x+1/4, −y+1/4, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3iv 0.89 2.07 2.932 (8) 163
N1—H1A···O1ii 0.89 2.21 3.006 (8) 149
N1—H1B···O3v 0.89 2.06 2.906 (8) 159
O4A—H4AA···O5A 0.86 2.05 2.79 (3) 145
O5B—H5BA···O5Bvi 0.85 1.56 2.17 (4) 127
O5B—H5BA···O4Bvi 0.85 2.29 2.97 (3) 136
O5B—H5BB···O5Bvii 0.85 1.97 2.73 (4) 148
O5B—H5BB···O4Bviii 0.85 2.24 2.78 (2) 121
O5A—H5AA···O4Aviii 0.85 1.98 2.786 (19) 158
O5A—H5AB···O3 0.85 1.83 2.675 (16) 176
O4B—H4BB···O3 0.85 1.93 2.761 (18) 165

Symmetry codes: (ii) x, −y+1/4, −z+5/4; (iv) x+1/2, −y+3/4, −z+5/4; (v) −x+1/4, y, −z+5/4; (vi) −x+1/2, −y+1, −z+3/2; (vii) −x+1/4, −y+5/4, z; (viii) x−1/4, y+1/4, −z+3/2.

References

  1. Bau, R., Huang, S. K. S., Feng, J. & McKenna, C. E. (1988). J. Am. Chem. Soc. 110, 7546–7547.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Iafisco, M. & Margiotta, N. (2012). J. Inorg. Biochem. 117, 237–247. [DOI] [PubMed]
  6. Iafisco, M., Palazzo, B., Marchetti, M., Margiotta, N., Ostuni, R., Natile, G., Morpurgo, M., Gandin, V., Marzano, C. & Roveri, N. (2009). J. Mater. Chem. 19, 8385–8392.
  7. Kozachkova, O. M., Tsaryk, N. V., Pekhnyo, V. I., Trachevskyi, V. V., Rozhenko, A. B. & Dyakonenko, V. V. (2018). Inorg. Chim. Acta, 474, 96–103.
  8. Kutsenko, I. P., Kozachkova, A. N., Tsaryk, N. V., Pekhnyo, V. I. & Rusanova, J. A. (2014). Acta Cryst. E70, m291–m292. [DOI] [PMC free article] [PubMed]
  9. Margiotta, N., Ostuni, R., Gandin, V., Marzano, C., Piccinonna, S. & Natile, G. (2009). Dalton Trans. 48, 10904–10913. [DOI] [PubMed]
  10. Palazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C. L., Walsh, D., Mann, S. & Roveri, N. (2007). Adv. Funct. Mater. 17, 2180–2188.
  11. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Wani, W. A., Prashar, S., Shreaz, S. & Gómez-Ruiz, S. (2016). Coord. Chem. Rev. 312, 67–98.
  15. Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016419/wm5473sup1.cif

e-74-01838-sup1.cif (487.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016419/wm5473Isup2.hkl

e-74-01838-Isup2.hkl (114.3KB, hkl)

CCDC reference: 1879750

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES