Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 13;74(Pt 12):1783–1789. doi: 10.1107/S2056989018015864

Four 1-aryl-1H-pyrazole-3,4-di­carboxyl­ate derivatives: synthesis, mol­ecular conformation and hydrogen bonding

Asma a, Balakrishna Kalluraya a, Hemmige S Yathirajan b,*, Ravindranath S Rathore c, Christopher Glidewell d
PMCID: PMC6281123  PMID: 30574374

1-Phenyl-1H-pyrazole-3,4-di­carb­oxy­lic acid and 1-(4-meth­oxy­phen­yl)-1H-pyrazole-3,4-dicarbohydrazide form complex hydrogen-bonded framework structures each containing multiple hydrogen-bond types, but dimethyl 1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate and dimethyl 1-(4-methyl­phen­yl)-1H-pyrazole-3,4-di­carboxyl­ate form simple cyclic dimers containing only C—H⋯O hydrogen bonds.

Keywords: synthesis; 1,3-dipolar addition; crystal structure; mol­ecular conformation; disorder; hydrogen bonding; supra­molecular assembly

Abstract

Four 1-aryl-1H-pyrazole-3,4-di­carboxyl­ate derivatives, one acid, two esters and a dicarbohydrazide have been synthesized starting from 3-aryl sydnones, and structurally characterized. There is an intra­molecular O—H⋯O hydrogen bond in 1-phenyl-1H-pyrazole-3,4-di­carb­oxy­lic acid, C11H8N2O4, (I), and the mol­ecules are linked into a three-dimensional framework structure by a combination of O—H⋯O, O—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds. In each of the two esters dimethyl 1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate, C13H12N2O4, (II), and dimethyl 1-(4-methyl­phen­yl)-1H-pyrazole-3,4-di­carboxyl­ate, C14H14N2O4, (III), C—H⋯O hydrogen bonds lead to the formation of cyclic centrosymmetric dimers: in (III), one of the meth­oxy­carbonyl groups is disordered over two sets of atomic sites having occupancies 0.71 (2) and 0.29 (2). An intra­molecular N—H⋯O hydrogen bond is present in the structure of 1-(4-meth­oxy­phen­yl)-1H-pyrazole-3,4-dicarbohydrazide, C12H14N6O3, (IV), and the mol­ecules are linked into a three-dimensional framework structure by a combination of N—H⋯O, N—H⋯N, N—H⋯π(arene) and C—H⋯O hydrogen bonds. Comparisons are made with the structures of a number of related compounds.

Chemical context  

Pyrazole derivatives have been shown to exhibit a wide range of biological activities including analgesic (Girisha et al., 2010), anti­convulsant (Owen et al., 1958), anti­microbial (Satheesha & Kalluraya, 2007; Asma et al., 2018), anti­tumour (Park et al., 2005), and insecticidal and larvicidal activity (Yang et al., 2018). Pyrazole carb­oxy­lic acids and their derivatives are versatile precursors for the synthesis of numerous substituted analogues (Asma et al., 2018; Devi et al., 2018) and, with these considerations in mind, we have now synthesized a series of new pyrazole carboxyl­ate derivatives as inter­mediates for the synthesis of new pharmacologically active products. Here we report the syntheses, and the mol­ecular and supra­molecular structures of four such compounds, namely 1-phenyl-1H-pyrazole-3,4-di­carb­oxy­lic acid (I), dimethyl 1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate (II), dimethyl 1-(4-methyl­phen­yl)-1H-pyrazole-3,4-di­carboxyl­ate (III) and 1-(4-meth­oxy­phen­yl)-1H-pyrazole-3,4-dicarbohydrazide (IV) (Figs. 1–4 ).graphic file with name e-74-01783-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The mol­ecular structure of compound (III) showing the atom-labelling scheme. The major disorder component, occupancy 0.71 (2), is drawn using full lines and the minor component, occupancy 0.29 (2), is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4.

Figure 4

The mol­ecular structure of compound (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The products (II) and (III) and the inter­mediate ester (B) (Fig. 5) used in the formation of compound (IV) were all prepared using the 1,3-dipolar addition reaction between dimethyl acetyl­enedi­carboxyl­ate and the 3-aryl­syndones [3-aryl-1,2,3-oxa­diazol-3-ium-5-olates] (A), with loss of carbon dioxide in entropy-driven reactions (Huisgen et al., 1962) (Fig. 5). Hydrolysis of the ester (II) gave the di­carb­oxy­lic acid (I), while hydrazinolysis of the ester (B) gave the dicarbohyrazide (IV). The sydnone precursors (A) were all prepared from the corresponding anilines via the substituted N-aryl-N-nitro­soglycines (Greco et al., 1962; Fun et al., 2010).

Figure 5.

Figure 5

The synthetic routes to compounds (I)–(IV).

Structural commentary  

The bond distances in compounds (I)–(IV) show no unexpected values: all are typical of their types (Allen et al., 1987). However, the mol­ecular conformations show some inter­esting features. In each of (I) and (IV), the two carb­oxy substituents on the pyrazole ring are nearly coplanar with this ring, as shown by the leading torsional angles (Table 1): this is almost certainly a consequence of the presence on an intra­molecular O—H⋯O in (I) and an intra­molecular N—H⋯O hydrogen bond in (IV) (Table 2). In compounds (I) and (III), where such intra­molecular inter­actions are not possible, the carboxyl groups at C3 are by no means coplanar with the pyrazole ring (Table 1), and in compound (III) the 3-meth­oxy­carbonyl substituent is disordered over two sets of atomic sites having occupancies 0.71 (2) and 0.29 (2) in the crystal selected for data collection: the orientations of the two disorder components are related to one another by a rotation about the C3—C31 bond of approximately 23° (Table 1). It may be noted here that the ketonic O atom O31 acts as a hydrogen-bond acceptor in each of (I) and (IV), but not in (II) and (III) (Table 2), and the disorder in (III) may be associated with this.

Table 1. Selected torsional and dihedral angles (°).

φ1 represents the dihedral angle between the planes of the aryl and pyrazole rings and φ2 represents the dihedral angle between the planes (C3,C31,O31A,O32A) and (C3,C31,O31B,O32B)

  (I) (II) (III) (IV)
C4—C3—C31—O31 −178.0 (2) 44.8 (3)   −12.5 (4)
C4—C3—C31—O32 2.1 (4) −135.9 (2)    
C4—C3—C31—O31A     −129.1 (9)  
C4—C3—C31—O31B     −96.6 (9)  
C4—C3—C31—O32A     57.5 (6)  
C4—C3—C31—O32B     71.6 (8)  
C4—C3—C31—N31       168.4 (2)
C3—C4—C41—O41 −2.5 (4) −168.5 (2) 176.5 (2) −169.0 (2)
C3—C4—C41—O42 178.0 (2) 12.8 (3) −3.0 (3)  
C3—C4—C41—N41       9.8 (4)
φ1 29.38 (8) 24.38 (12) 2.78 (12) 5.82 (13)
φ2     22.7 (5)  

Table 2. Hydrogen bonds and short inter­molecular contacts (Å, °).

Cg1 represents the centroid of the C11–C16 ring.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) O32—H32⋯O41 1.00 (3) 1.54 (3) 3.546 (2) 178 (2)
  O42—H42⋯O31i 0.88 (3) 1.80 (3) 2.660 (2) 168 (3)
  O42—H42⋯N2i 0.88 (3) 2.56 (3) 3.063 (3) 117 (2)
  C14—H14⋯O31ii 0.93 2.53 3.456 (3) 177
  C12—H12⋯Cg1iii 0.93 2.86 3.685 (3) 148
  C15—H15⋯Cg1iv 0.93 2.92 3.755 (3) 151
(II) C5—H5⋯O41v 0.93 2.41 3.331 (3) 170
(III) C5—H5⋯O41vi 0.93 2.33 3.249 (3) 168
  C12—H12⋯O41vi 0.93 2.43 3.352 (3) 173
(IV) N31—H31⋯O31vii 0.88 (2) 2.04 (2) 2.851 (3) 153 (2)
  N32—H32A⋯O14viii 0.97 (3) 2.58 (3) 3.256 (3) 127 (2)
  N32—H32B⋯N42vii 1.00 (2) 2.34 (3) 3.317 (3) 165 (2)
  N41—H41⋯O31 0.95 (3) 1.78 (3) 2.714 (3) 166 (2)
  N42—H42A⋯O41ix 0.95 (3) 2.21 (3) 3.120 (3) 162 (2)
  N42—H42BCg1x 0.83 (3) 2.85 (3) 3.442 (3) 130 (2)
  C5—H5⋯O41v 0.93 2.40 3.314 (3) 166
  C12—H12⋯O41v 0.93 2.44 3.354 (3) 168

Symmetry codes: (i) x, 1 + y, z; (ii) x, Inline graphic − y, −Inline graphic + z; (iii) Inline graphic − x, Inline graphic + y, z; (iv) 1 − x, −Inline graphic + y, Inline graphic − z; (v) 1 − x, 1 − y, 1 − z; (vi) −x, 1 − y, 1 − z; (vii) Inline graphic + x, Inline graphic − y, Inline graphic + z; (viii) −Inline graphic + x, Inline graphic − y, −Inline graphic + z; (ix) 1 − x, 1 − y, −z; (x) −1 + x, y, −1 + z.

In each of (I) and (II), the planes of the aryl and pyrazole rings make much larger dihedral angles than these planes do in (II) and (IV) (Table 1). This may be associated with the cooperative effect in (III) and (IV) of the C—H⋯O hydrogen bonds involving atoms C5 and C12 as donors (Table 2), whereas no such cooperation is found in the structures of (I) and (II).

Supra­molecular features  

The supra­molecular assembly of compound (I) to form a three-dimensional framework structure depends upon four types of hydrogen bonds (Table 2), and the framework formation can readily be analysed in terms of one-dimensional sub-structures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). A combination of O—H⋯O and O—H⋯N hydrogen bonds, the latter rather weak, links mol­ecules related by translation into a C(6)C(7)[Inline graphic(5)] (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) chain of rings running parallel to the [010] direction (Fig. 6). In the second sub-structure, mol­ecules related by the c-glide plane at y = 0.25 are linked by a C—H⋯O hydrogen bond to form a simple C(10) chain running parallel to the [001] direction, and the combination of these two chain motifs generates an almost planar sheet lying parallel to (100) in the domain Inline graphic < x < Inline graphic (Fig. 6). Finally, two weak C—H⋯π(arene) hydrogen bonds link this sheet to the adjacent sheets in the domains 0 < x < Inline graphic and Inline graphic < x < Inline graphic, and in this way all of the (100) sheets are linked to form a three-dimensional framework structure.

Figure 6.

Figure 6

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded sheet parallel to (100). Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms but not involved in the motifs shown have been omitted.

By contrast, the supra­molecular assembly in the ester (II) is extremely simple, with inversion-related pairs of mol­ecules linked by C—H⋯O hydrogen bonds (Table 2) to form a centrosymmetric Inline graphic(10) dimer (Fig. 7). A similar, but more complex centrosymmetric dimer is formed by the ester (III), where the same Inline graphic(10) motif as found in (II) is present, along with two flanking Inline graphic(7) rings within an outer Inline graphic(16) ring (Fig. 8). In neither (II) nor (III) are there any direction-specific inter­actions between adjacent dimers.

Figure 7.

Figure 7

Part of the crystal structure of compound (II) showing the formation of a hydrogen-bonded Inline graphic(10) dimer. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

Figure 8.

Figure 8

Part of the crystal structure of compound (III) showing the formation of a hydrogen-bonded dimer containing Inline graphic(7), Inline graphic(10) and Inline graphic(16) ring motifs. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (−x, 1 − y, 1 − z).

The supra­molecular assembly in the hydrazide (IV) is the most complex of those reported here. A three-dimensional framework structure is built from four types of hydrogen bonds: N—H⋯O, N—H⋯N, N—H⋯π(arene) and C—H⋯O (Table 2). As for (I), the assembly is readily analysed in terms of simpler substructures. The hydrogen bond involving atom H42A links an inversion-related pair of mol­ecules into an Inline graphic(10) dimer centred at (Inline graphic, Inline graphic, 0), and this finite, zero-dimensional sub-structure can be regarded as the basic building block of the overall structure, which can then be analysed in terms of the ways in which these dimers are linked together. The hydrogen bonds involving the atoms H31 and H32B directly link the reference dimer centred at (Inline graphic, Inline graphic, 0) to four similar dimers, centred at (0, 0, −Inline graphic), (0, 1, −Inline graphic), (1, 0, Inline graphic) and (1, 1, Inline graphic), so forming a sheet lying parallel to (10Inline graphic) (Fig. 9), which is reinforced by the N—H⋯π hydrogen bond (Table 2). The final sub-structure in the assembly of (IV) is one-dimensional: two C—H⋯O hydrogen bonds link the basic Inline graphic(10) dimers into a chain of rings running parallel to the [001] direction. Within this chain, two types of centrosymmetric Inline graphic(10) ring can be identified, one containing N—H⋯O hydrogen bonds and the other containing C—H⋯O hydrogen bonds, along with Inline graphic(7) rings (Fig. 10).

Figure 9.

Figure 9

Part of the crystal structure of compound (IV) showing the formation of a hydrogen-bonded sheet lying parallel to (10Inline graphic) and built from N—H⋯O, N—H⋯N and N—H⋯π(arene) hydrogen bonds. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Figure 10.

Figure 10

Part of the crystal structure of compound (IV) showing the formation of a hydrogen-bonded chain of rings parallel to [001] and built from N—H⋯O and C—H⋯O hydrogen bonds. Hydrogen bonds are shown as broken lines and, for the sake of clarity, the H atoms bonded to C atoms but not involved in the motifs shown have been omitted.

Database survey  

It is of inter­est to compare briefly the structures of compounds (I)–(IV) reported here with those of some related compounds. In dimethyl 1-(3-chloro-4-meth­yl)-1H-pyrazole-3,4-di­carb­oxyl­ate, which differs from (III) only in the presence of the additional 3-chloro substituent, there are again two C—H⋯O hydrogen bonds in the structure, involving exactly the same pair of C—H bonds as in (III), but here the mol­ecules are linked into a C(5)C(8)[Inline graphic(7)] chain of rings, rather than into cyclic dimers (Thamotharan et al., 2003). The esters dimethyl 5-(4-chloro­phen­yl)-1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate (Li et al., 2014) and dimethyl 5-(4-bromo­phen­yl)-1-phenyl-1H-pyrazole-3,4-di­carboxyl­ate (Alizadeh et al., 2010), which carry an additional substituent in the pyrazole ring, are isostructural, and the mol­ecules are linked by C—H⋯O hydrogen bonds to form simple chains.

The structures of several esters derived from 1-substituted-1H-pyrazole-3,5-di­carb­oxy­lic acids have been reported, including dimethyl 1-(2-cyano­benz­yl)-1H-pyrazole-3,5-di­carboxyl­ate (Xiao & Zhao, 2009), dimethyl 1-(4-cyano­benz­yl)-1H-pyrazole-3,5-di­carboxyl­ate (Yao et al., 2009) and dimethyl 1-cyano­methyl-1H-pyrazole-3,5-di­carboxyl­ate (Qu, 2009). There are no significant inter­molecular inter­actions in either of the benzyl derivatives, but the inversion-related pairs of mol­ecules of the 1-cyano­methyl compound are linked by C—H⋯O hydrogen bonds to form centrosymmetric Inline graphic(10) dimers.

In each of 1-benzyl-3-phenyl-1H-pyrazole-5-carb­oxy­lic acid (Tang et al., 2007) and 1-cyclo­hexyl-5-(4-meth­oxy­phen­yl)-1H-pyrazole-4-carb­oxy­lic acid (Fun et al., 2011), inversion-related pairs of mol­ecules are linked by O—H⋯O hydrogen bonds to form centrosymmetric Inline graphic(8) dimers. For the simpler analogue 3-phenyl-1H-pyrazole-5-carb­oxy­lic acid, the structure was described (Zhang et al., 2007) as consisting of chains built from O—H⋯O and N—H⋯N hydrogen bonds, which were then linked into sheets by C—H⋯O hydrogen bonds. However, scrutiny of the atomic coordinates shows that the structure contains no C—H⋯O hydrogen bonds, and that the combin­ation of one O—H⋯O hydrogen bond and one N—H⋯N hydrogen bond generates sheets lying parallel to (100) and containing alternating Inline graphic(8) and Inline graphic(28) rings (Fig. 11).

Figure 11.

Figure 11

Part of the crystal structure of 3-phenyl-1H-pyrazole-5-carb­oxy­lic acid showing the formation of a sheet of Inline graphic(8) and Inline graphic(28) rings lying parallel to (100): hydrogen bonds are shown as dashed lines. The original atomic coordinates (Zhang et al., 2007) have been used and, for the sake of clarity, the H atoms bonded to C atoms have all been omitted.

Finally, we note that structures have been reported for each of the precursor sydnones employed here (Fig. 5), for X = H (Hope, 1978), X = Me (Wang et al., 1984) and X = MeO (Fun et al., 2010) although, when X = H, there are no atomic coordinates deposited in the Cambridge Structural Database (Groom et al., 2016).

Synthesis and crystallization  

The precursor sydnones (A) (Fig. 5) were prepared from the corresponding anilines (Greco et al., 1962; Wang et al., 1984; Fun et al., 2010). For the synthesis of the esters (II) and (III), a mixture of the sydnone of type (A) having X = H for (II) or X = CH3 for (III), (1 mmol) and dimethyl acetyl­enedi­carboxyl­ate (1 mmol) in dry p-xylene (10 ml) was heated under reflux for 1 h. The mixtures were then cooled to ambient temperature, the solvent was removed under reduced pressure and the resulting solid products were recrystallized from ethanol. (II): yield 95%, m.p. 373 K. IR (ATR, cm−1) 1712 (C=O), 1582 (C=N). NMR (CDCl3) δ(1H) 3.81 (s, 3H, O—CH3), 4.08 (s, 3H, O—CH3), 7.31 (m, 1H, H14), 7.40 (d, J = 7.5 Hz, 2H, H13 & H15), 7.81 (d, J = 7.5 Hz, 2H, H12 & H16), 9.28 (s, 1H, H5). Analysis found C 60.2, H 4.7, N 10.8%, C13H12N2O4 requires C 60.0, H 4.6, N 10.8%. (III): yield 93%, m.p. 371 K. IR (ATR, cm−1) 1732 (C=O), 1532 (C=N). NMR (CDCl3) δ(1H) 2.21 (s, 3H, C—CH3), 3.82 (s, 3H, O—CH3), 4.10 (s, 3H, O—CH3), 7.48 (d, J = 7.6 Hz, 2H, H13 & H15), 7.88 (d, J = 7.6 Hz, 2H, H12 & H16), 8.94 (s, 1H, H5). Analysis found C 61.4, H 5.2, N 10.4%, C14H14N2O4 requires C 61.3, H 5.1, N 10.2%.

For the synthesis of the acid (I), the ester (II) (1 mmol) and solid sodium hydroxide (2 mmol) were dissolved in a water–ethanol mixture (water:ethanol 80:20 v/v, 50 ml). This mixture was heated under reflux for 2h, cooled to ambient temperature and then acidified to pH 2 using dilute aqueous hydro­chloric acid. The resulting solid product was collected by filtration, washed with water and then recrystallized from ethanol. (I): yield 71%, m.p. 508–509 K. IR (ATR, cm−1) 3427 (O—H), 1717 (C=O), 1542 (C=N). NMR (CDCl3) δ(1H) 7.41 (m, 1H, H14), 7.53 (d, J = 7.6 Hz, 2H, H13 & H15), 7.93 (d, J = 7.6 Hz, 2H, H12 & H16), ?.10 (s, 1H, H5). LC–MS m/z 230.9. Analysis found C 57.1, H 3.6, N 12.2%, C11H8N2O4 requires C 56.9, H 3.5, N 12.1%. For the synthesis of the hydrazide (IV), the inter­mediate ester (B) (Fig. 5) was prepared in exactly the same fashion of the esters (II) and (III), yield 90%, m.p. 458 K. A mixture of ester (B) (1 mmol) and hydrazine hydrate (99% aqueous solution, 10 mmol) in ethanol (10 ml) was heated under reflux for 2 h. The mixture was cooled to ambient temperature and the resulting solid product was collected by filtration and then recrystallized from ethanol. (IV): yield 75%, m.p. 502 K. IR (ATR, cm−1) 3354 (N—H), 3308 (N—H), 1650 (C=O), 1562 (C=N). NMR (DMSO-d 6) δ(1H) 3.67 (br, 6H, N-H), 3.82 (s, 3H, O-CH3), 6.98 (d, J = 7.7 Hz, 2H, H13 & H15), 7.69 (d, J = 7.7 Hz, 2H, H12 & H16), 8.91 (s, 1H, H5). LC-MS m/z 290.3. Analysis found C 49.5, H 4.8, N 28.8%, C12H14N6O3 requires C 49.6, H 4.9, N 29.0%. Crystals of compounds (I)–(IV) suitable for single-crystal X-ray diffraction were selected directly from the purified samples.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. One low-angle reflection, (001) in compound (III), which had been attenuated by the beam stop was removed from the data set. All H atoms were located in difference maps. The H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealized position with C—H distances 0.93 Å (aryl and pyrazole) or 0.96 Å (CH3) and with U iso(H) = kU eq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to O or N atoms, the atomic coordinates were refined with U iso(H) = 1.5U eq(O) or 1.2U eq(N), leading to the O—H and N—H distances shown in Table 2. It was apparent that one of the ester substituents in compound (III) was disordered over two sets of atomic sites. For the minor disorder component, the bonded distances and the 1,2 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.005 and 0.01 Å, respectively. In addition, the anisotropic displacement parameters for the corresponding pairs of atoms in the two disorder components were constrained to be the same, and the two disordered carboxyl­ate fragments were constrained to be planar. Subject to these conditions, the occupancies of the two sets of sites refined to 0.71 (2) and 0.29 (2).

Table 3. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C11H8N2O4 C13H12N2O4 C14H14N2O4 C12H14N6O3
M r 232.19 260.25 274.27 290.29
Crystal system, space group Orthorhombic, P b c a Monoclinic, P21/n Triclinic, P Inline graphic Monoclinic, P21/n
Temperature (K) 296 296 296 296
a, b, c (Å) 13.164 (2), 7.4692 (9), 21.173 (3) 5.9000 (4), 14.5273 (12), 14.8726 (12) 7.6546 (5), 8.0959 (5), 11.3065 (6) 7.6030 (6), 22.6605 (19), 7.6751 (7)
α, β, γ (°) 90, 90, 90 90, 98.867 (3), 90 78.988 (3), 85.527 (3), 87.548 (4) 90, 102.284 (3), 90
V3) 2081.8 (6) 1259.51 (17) 685.40 (7) 1292.05 (19)
Z 8 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.12 0.10 0.10 0.11
Crystal size (mm) 0.16 × 0.14 × 0.11 0.17 × 0.14 × 0.13 0.16 × 0.15 × 0.12 0.14 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a ) Multi-scan (SADABS; Sheldrick, 2008a ) Multi-scan (SADABS; Sheldrick, 2008a ) Multi-scan (SADABS; Sheldrick, 2008a )
T min, T max 0.931, 0.987 0.960, 0.987 0.955, 0.988 0.929, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 31526, 2218, 1304 21653, 2704, 1624 12818, 2526, 1777 20456, 2521, 1722
R int 0.063 0.046 0.030 0.053
(sin θ/λ)max−1) 0.634 0.635 0.605 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.122, 1.03 0.042, 0.129, 1.04 0.044, 0.128, 1.05 0.046, 0.108, 1.05
No. of reflections 2218 2704 2526 2521
No. of parameters 161 175 196 210
No. of restraints 0 0 7 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.16 0.19, −0.18 0.24, −0.24 0.20, −0.21

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008b ), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III, IV. DOI: 10.1107/S2056989018015864/zl2741sup1.cif

e-74-01783-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015864/zl2741Isup2.hkl

e-74-01783-Isup2.hkl (178.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018015864/zl2741IIsup3.hkl

e-74-01783-IIsup3.hkl (216.4KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018015864/zl2741IIIsup4.hkl

e-74-01783-IIIsup4.hkl (202.2KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989018015864/zl2741IVsup5.hkl

e-74-01783-IVsup5.hkl (201.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018015864/zl2741Isup6.cml

Supporting information file. DOI: 10.1107/S2056989018015864/zl2741IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989018015864/zl2741IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989018015864/zl2741IVsup9.cml

CCDC references: 1877912, 1877911, 1877910, 1877909

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BK thanks Mangalore University for research facilities.

supplementary crystallographic information

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) . Crystal data

C11H8N2O4 Dx = 1.482 Mg m3
Mr = 232.19 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 2218 reflections
a = 13.164 (2) Å θ = 2.5–26.8°
b = 7.4692 (9) Å µ = 0.12 mm1
c = 21.173 (3) Å T = 296 K
V = 2081.8 (6) Å3 Block, colourless
Z = 8 0.16 × 0.14 × 0.11 mm
F(000) = 960

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) . Data collection

Bruker Kappa APEXII CCD diffractometer 2218 independent reflections
Radiation source: fine focus sealed tube 1304 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
φ and ω scans θmax = 26.8°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −16→16
Tmin = 0.931, Tmax = 0.987 k = −9→9
31526 measured reflections l = −26→26

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.043P)2 + 0.9866P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.19 e Å3
2218 reflections Δρmin = −0.16 e Å3
161 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0015 (3)

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.37444 (14) 0.5732 (2) 0.38946 (7) 0.0382 (4)
N2 0.37411 (13) 0.4662 (2) 0.44062 (7) 0.0361 (4)
C3 0.37378 (16) 0.5767 (2) 0.48951 (9) 0.0318 (4)
C4 0.37462 (16) 0.7576 (2) 0.46953 (10) 0.0341 (5)
C5 0.37519 (17) 0.7475 (3) 0.40517 (10) 0.0416 (5)
H5 0.3760 0.8437 0.3773 0.050*
C11 0.37392 (17) 0.4958 (3) 0.32759 (9) 0.0415 (5)
C12 0.3296 (2) 0.5877 (4) 0.27889 (11) 0.0572 (7)
H12 0.2988 0.6978 0.2863 0.069*
C13 0.3311 (2) 0.5164 (4) 0.21895 (11) 0.0691 (8)
H13 0.3017 0.5787 0.1856 0.083*
C14 0.3756 (2) 0.3540 (5) 0.20857 (13) 0.0718 (9)
H14 0.3771 0.3063 0.1680 0.086*
C15 0.4181 (2) 0.2612 (4) 0.25766 (13) 0.0665 (8)
H15 0.4474 0.1499 0.2503 0.080*
C16 0.41776 (19) 0.3311 (3) 0.31810 (12) 0.0548 (7)
H16 0.4465 0.2682 0.3515 0.066*
C31 0.37166 (17) 0.4926 (3) 0.55265 (9) 0.0377 (5)
O31 0.37408 (14) 0.33081 (19) 0.55896 (7) 0.0540 (5)
O32 0.36707 (14) 0.5958 (2) 0.60230 (7) 0.0524 (5)
H32 0.3671 (19) 0.724 (4) 0.5880 (13) 0.079*
C41 0.37522 (17) 0.9202 (3) 0.50785 (11) 0.0412 (5)
O41 0.37173 (14) 0.91999 (19) 0.56526 (8) 0.0578 (5)
O42 0.37916 (14) 1.06752 (19) 0.47441 (8) 0.0528 (5)
H42 0.375 (2) 1.164 (4) 0.4979 (13) 0.079*

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0500 (11) 0.0337 (9) 0.0309 (9) 0.0033 (9) −0.0029 (8) −0.0027 (7)
N2 0.0487 (11) 0.0296 (9) 0.0301 (9) 0.0015 (8) −0.0021 (9) −0.0017 (7)
C3 0.0375 (11) 0.0287 (9) 0.0293 (10) 0.0002 (9) −0.0010 (9) −0.0059 (8)
C4 0.0404 (12) 0.0279 (10) 0.0340 (12) 0.0011 (10) 0.0015 (11) −0.0031 (8)
C5 0.0562 (14) 0.0302 (11) 0.0383 (12) 0.0037 (10) −0.0012 (12) 0.0011 (9)
C11 0.0487 (14) 0.0483 (12) 0.0276 (11) −0.0013 (12) −0.0019 (10) −0.0099 (10)
C12 0.0711 (18) 0.0649 (16) 0.0356 (13) 0.0016 (14) −0.0049 (12) −0.0026 (12)
C13 0.083 (2) 0.092 (2) 0.0323 (14) −0.0064 (18) −0.0068 (13) −0.0047 (14)
C14 0.074 (2) 0.107 (2) 0.0348 (14) −0.0165 (19) 0.0040 (15) −0.0250 (15)
C15 0.0658 (18) 0.0745 (18) 0.0591 (18) 0.0048 (16) 0.0012 (15) −0.0330 (15)
C16 0.0606 (16) 0.0594 (16) 0.0445 (14) 0.0108 (13) −0.0067 (13) −0.0193 (12)
C31 0.0493 (13) 0.0329 (11) 0.0309 (11) −0.0019 (10) 0.0021 (11) −0.0031 (9)
O31 0.0923 (13) 0.0305 (8) 0.0392 (9) 0.0023 (9) 0.0035 (9) 0.0028 (7)
O32 0.0871 (13) 0.0404 (9) 0.0296 (8) −0.0052 (9) 0.0042 (8) −0.0071 (7)
C41 0.0431 (13) 0.0297 (11) 0.0507 (14) −0.0011 (10) 0.0061 (11) −0.0054 (10)
O41 0.0945 (14) 0.0358 (9) 0.0432 (10) −0.0070 (9) 0.0135 (9) −0.0126 (7)
O42 0.0783 (13) 0.0255 (8) 0.0547 (11) 0.0011 (8) 0.0056 (9) −0.0049 (7)

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) . Geometric parameters (Å, º)

N1—C5 1.344 (2) C13—C14 1.365 (4)
N1—N2 1.346 (2) C13—H13 0.9300
N1—C11 1.432 (2) C14—C15 1.369 (4)
N2—C3 1.324 (2) C14—H14 0.9300
C3—C4 1.416 (3) C15—C16 1.382 (3)
C3—C31 1.477 (3) C15—H15 0.9300
C4—C5 1.365 (3) C16—H16 0.9300
C4—C41 1.461 (3) C31—O31 1.216 (2)
C5—H5 0.9300 C31—O32 1.305 (2)
C11—C12 1.369 (3) O32—H32 1.00 (3)
C11—C16 1.374 (3) C41—O41 1.216 (3)
C12—C13 1.377 (3) C41—O42 1.309 (2)
C12—H12 0.9300 O42—H42 0.88 (3)
C5—N1—N2 112.07 (16) C14—C13—H13 120.1
C5—N1—C11 128.16 (18) C12—C13—H13 120.1
N2—N1—C11 119.77 (17) C13—C14—C15 120.2 (2)
C3—N2—N1 105.03 (15) C13—C14—H14 119.9
N2—C3—C4 111.17 (17) C15—C14—H14 119.9
N2—C3—C31 116.28 (16) C14—C15—C16 120.7 (3)
C4—C3—C31 132.55 (17) C14—C15—H15 119.7
C5—C4—C3 104.21 (16) C16—C15—H15 119.7
C5—C4—C41 126.91 (18) C11—C16—C15 118.4 (2)
C3—C4—C41 128.87 (19) C11—C16—H16 120.8
N1—C5—C4 107.50 (18) C15—C16—H16 120.8
N1—C5—H5 126.2 O31—C31—O32 119.95 (19)
C4—C5—H5 126.2 O31—C31—C3 121.43 (18)
C12—C11—C16 121.2 (2) O32—C31—C3 118.62 (17)
C12—C11—N1 119.2 (2) C31—O32—H32 108.6 (15)
C16—C11—N1 119.6 (2) O41—C41—O42 122.89 (19)
C11—C12—C13 119.6 (3) O41—C41—C4 123.62 (19)
C11—C12—H12 120.2 O42—C41—C4 113.48 (19)
C13—C12—H12 120.2 C41—O42—H42 112.5 (18)
C14—C13—C12 119.9 (3)
C5—N1—N2—C3 0.5 (2) C16—C11—C12—C13 −1.6 (4)
C11—N1—N2—C3 −179.43 (19) N1—C11—C12—C13 178.4 (2)
N1—N2—C3—C4 −0.4 (2) C11—C12—C13—C14 0.6 (4)
N1—N2—C3—C31 179.03 (18) C12—C13—C14—C15 0.6 (4)
N2—C3—C4—C5 0.2 (3) C13—C14—C15—C16 −0.9 (4)
C31—C3—C4—C5 −179.2 (2) C12—C11—C16—C15 1.3 (4)
N2—C3—C4—C41 −179.6 (2) N1—C11—C16—C15 −178.7 (2)
C31—C3—C4—C41 1.1 (4) C14—C15—C16—C11 −0.1 (4)
N2—N1—C5—C4 −0.4 (3) N2—C3—C31—O31 2.7 (3)
C11—N1—C5—C4 179.5 (2) C4—C3—C31—O31 −178.0 (2)
C3—C4—C5—N1 0.2 (3) N2—C3—C31—O32 −177.2 (2)
C41—C4—C5—N1 179.9 (2) C4—C3—C31—O32 2.1 (4)
C5—N1—C11—C12 −29.3 (4) C5—C4—C41—O41 177.8 (2)
N2—N1—C11—C12 150.6 (2) C3—C4—C41—O41 −2.5 (4)
C5—N1—C11—C16 150.6 (2) C5—C4—C41—O42 −1.7 (3)
N2—N1—C11—C16 −29.4 (3) C3—C4—C41—O42 178.0 (2)

1-Phenyl-1H-pyrazole-3,4-dicarboxylic acid (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O32—H32···O41 1.00 (3) 1.54 (3) 2.546 (2) 178 (2)
O42—H42···O31i 0.88 (3) 1.80 (3) 2.660 (2) 168 (3)
O42—H42···N2i 0.88 (3) 2.56 (3) 3.063 (2) 117 (2)
C14—H14···O31ii 0.93 2.53 3.456 (3) 177
C12—H12···Cg1iii 0.93 2.86 3.685 (3) 148
C15—H15···Cg1iv 0.93 2.92 3.755 (3) 151

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z−1/2; (iii) −x+1/2, y+1/2, z; (iv) −x+1, y+1/2, −z+1/2.

Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) . Crystal data

C13H12N2O4 F(000) = 544
Mr = 260.25 Dx = 1.372 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.9000 (4) Å Cell parameters from 2704 reflections
b = 14.5273 (12) Å θ = 2.8–26.8°
c = 14.8726 (12) Å µ = 0.10 mm1
β = 98.867 (3)° T = 296 K
V = 1259.51 (17) Å3 Block, orange
Z = 4 0.17 × 0.14 × 0.13 mm

Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) . Data collection

Bruker Kappa APEXII CCD diffractometer 2704 independent reflections
Radiation source: fine focus sealed tube 1624 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
φ and ω scans θmax = 26.8°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −6→7
Tmin = 0.960, Tmax = 0.987 k = −18→18
21653 measured reflections l = −18→18

Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.3996P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.19 e Å3
2704 reflections Δρmin = −0.18 e Å3
175 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.014 (2)

Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.5660 (3) 0.34915 (11) 0.69867 (11) 0.0412 (4)
N2 0.4302 (3) 0.27659 (11) 0.71300 (11) 0.0437 (4)
C3 0.2695 (3) 0.27445 (13) 0.64031 (13) 0.0410 (5)
C4 0.3003 (3) 0.34570 (14) 0.57864 (13) 0.0416 (5)
C5 0.4919 (3) 0.39140 (14) 0.61917 (13) 0.0438 (5)
H5 0.5587 0.4424 0.5959 0.053*
C11 0.7563 (3) 0.37397 (13) 0.76566 (13) 0.0414 (5)
C12 0.9342 (3) 0.42372 (15) 0.73977 (15) 0.0490 (5)
H12 0.9325 0.4396 0.6791 0.059*
C13 1.1146 (4) 0.44954 (17) 0.80489 (17) 0.0617 (6)
H13 1.2344 0.4838 0.7880 0.074*
C14 1.1201 (4) 0.42556 (18) 0.89396 (18) 0.0683 (7)
H14 1.2442 0.4423 0.9373 0.082*
C15 0.9413 (4) 0.3766 (2) 0.91897 (17) 0.0738 (8)
H15 0.9443 0.3608 0.9797 0.089*
C16 0.7567 (4) 0.35049 (16) 0.85540 (15) 0.0588 (6)
H16 0.6353 0.3177 0.8728 0.071*
C31 0.0986 (4) 0.19862 (14) 0.62958 (15) 0.0461 (5)
O31 0.0528 (3) 0.15354 (14) 0.56252 (12) 0.0900 (7)
O32 0.0058 (3) 0.18661 (10) 0.70371 (10) 0.0596 (4)
C32 −0.1630 (4) 0.11423 (17) 0.70126 (19) 0.0701 (7)
H32A −0.2925 0.1283 0.6559 0.105*
H32B −0.2120 0.1094 0.7597 0.105*
H32C −0.0966 0.0569 0.6866 0.105*
C41 0.1559 (3) 0.37509 (14) 0.49430 (14) 0.0453 (5)
O41 0.2172 (3) 0.42800 (13) 0.44075 (11) 0.0740 (5)
O42 −0.0501 (2) 0.33820 (12) 0.48518 (10) 0.0614 (5)
C42 −0.2056 (4) 0.3587 (2) 0.40269 (17) 0.0704 (7)
H42A −0.2395 0.4233 0.4004 0.106*
H42B −0.3449 0.3244 0.4020 0.106*
H42C −0.1355 0.3419 0.3509 0.106*

Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0431 (9) 0.0388 (9) 0.0406 (10) −0.0017 (7) 0.0024 (7) 0.0039 (7)
N2 0.0470 (9) 0.0380 (9) 0.0449 (10) −0.0039 (7) 0.0027 (8) 0.0052 (7)
C3 0.0437 (11) 0.0410 (11) 0.0379 (11) −0.0009 (9) 0.0049 (9) −0.0003 (9)
C4 0.0433 (11) 0.0430 (11) 0.0382 (11) 0.0000 (9) 0.0055 (9) 0.0021 (9)
C5 0.0456 (11) 0.0450 (11) 0.0407 (11) −0.0029 (9) 0.0065 (9) 0.0057 (9)
C11 0.0408 (10) 0.0389 (11) 0.0425 (12) 0.0041 (9) −0.0002 (9) −0.0004 (9)
C12 0.0407 (11) 0.0571 (13) 0.0493 (12) 0.0034 (10) 0.0069 (10) −0.0016 (10)
C13 0.0429 (12) 0.0712 (16) 0.0695 (17) −0.0039 (11) 0.0043 (12) −0.0028 (13)
C14 0.0550 (14) 0.0788 (18) 0.0641 (17) −0.0031 (13) −0.0130 (12) −0.0067 (14)
C15 0.0765 (17) 0.091 (2) 0.0477 (15) −0.0081 (15) −0.0110 (13) 0.0077 (13)
C16 0.0609 (14) 0.0625 (15) 0.0500 (14) −0.0100 (11) −0.0010 (11) 0.0084 (11)
C31 0.0522 (12) 0.0398 (11) 0.0445 (12) −0.0027 (9) 0.0018 (10) −0.0008 (9)
O31 0.1229 (16) 0.0839 (13) 0.0665 (12) −0.0478 (12) 0.0247 (11) −0.0260 (10)
O32 0.0649 (10) 0.0556 (9) 0.0613 (10) −0.0205 (8) 0.0191 (8) −0.0043 (8)
C32 0.0586 (14) 0.0551 (15) 0.100 (2) −0.0169 (11) 0.0222 (14) 0.0029 (14)
C41 0.0473 (11) 0.0485 (12) 0.0398 (11) −0.0036 (10) 0.0057 (9) 0.0000 (9)
O41 0.0718 (11) 0.0869 (13) 0.0584 (10) −0.0226 (9) −0.0054 (8) 0.0310 (9)
O42 0.0476 (9) 0.0812 (11) 0.0519 (10) −0.0100 (8) −0.0034 (7) 0.0123 (8)
C42 0.0536 (14) 0.0910 (19) 0.0593 (16) 0.0017 (13) −0.0144 (12) 0.0035 (13)

Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) . Geometric parameters (Å, º)

N1—C5 1.344 (2) C14—H14 0.9300
N1—N2 1.360 (2) C15—C16 1.381 (3)
N1—C11 1.428 (2) C15—H15 0.9300
N2—C3 1.324 (2) C16—H16 0.9300
C3—C4 1.413 (3) C31—O31 1.189 (2)
C3—C31 1.485 (3) C31—O32 1.316 (2)
C4—C5 1.368 (3) O32—C32 1.445 (3)
C4—C41 1.467 (3) C32—H32A 0.9600
C5—H5 0.9300 C32—H32B 0.9600
C11—C16 1.377 (3) C32—H32C 0.9600
C11—C12 1.377 (3) C41—O41 1.202 (2)
C12—C13 1.376 (3) C41—O42 1.316 (2)
C12—H12 0.9300 O42—C42 1.445 (3)
C13—C14 1.365 (3) C42—H42A 0.9600
C13—H13 0.9300 C42—H42B 0.9600
C14—C15 1.370 (4) C42—H42C 0.9600
C5—N1—N2 111.86 (15) C14—C15—H15 119.5
C5—N1—C11 127.77 (16) C16—C15—H15 119.5
N2—N1—C11 120.34 (15) C11—C16—C15 118.6 (2)
C3—N2—N1 104.78 (15) C11—C16—H16 120.7
N2—C3—C4 111.42 (17) C15—C16—H16 120.7
N2—C3—C31 119.60 (17) O31—C31—O32 124.04 (19)
C4—C3—C31 128.80 (18) O31—C31—C3 124.1 (2)
C5—C4—C3 104.46 (17) O32—C31—C3 111.82 (17)
C5—C4—C41 124.54 (18) C31—O32—C32 116.71 (18)
C3—C4—C41 130.71 (18) O32—C32—H32A 109.5
N1—C5—C4 107.48 (17) O32—C32—H32B 109.5
N1—C5—H5 126.3 H32A—C32—H32B 109.5
C4—C5—H5 126.3 O32—C32—H32C 109.5
C16—C11—C12 120.88 (19) H32A—C32—H32C 109.5
C16—C11—N1 119.82 (18) H32B—C32—H32C 109.5
C12—C11—N1 119.27 (18) O41—C41—O42 124.03 (19)
C13—C12—C11 119.1 (2) O41—C41—C4 123.92 (19)
C13—C12—H12 120.5 O42—C41—C4 112.03 (17)
C11—C12—H12 120.5 C41—O42—C42 117.33 (18)
C14—C13—C12 120.9 (2) O42—C42—H42A 109.5
C14—C13—H13 119.5 O42—C42—H42B 109.5
C12—C13—H13 119.5 H42A—C42—H42B 109.5
C13—C14—C15 119.4 (2) O42—C42—H42C 109.5
C13—C14—H14 120.3 H42A—C42—H42C 109.5
C15—C14—H14 120.3 H42B—C42—H42C 109.5
C14—C15—C16 121.0 (2)
C5—N1—N2—C3 0.1 (2) C11—C12—C13—C14 0.8 (3)
C11—N1—N2—C3 178.19 (16) C12—C13—C14—C15 −1.3 (4)
N1—N2—C3—C4 −0.1 (2) C13—C14—C15—C16 0.6 (4)
N1—N2—C3—C31 175.56 (16) C12—C11—C16—C15 −1.0 (3)
N2—C3—C4—C5 0.0 (2) N1—C11—C16—C15 −179.0 (2)
C31—C3—C4—C5 −175.11 (19) C14—C15—C16—C11 0.5 (4)
N2—C3—C4—C41 −173.87 (19) N2—C3—C31—O31 −130.0 (2)
C31—C3—C4—C41 11.0 (3) C4—C3—C31—O31 44.8 (3)
N2—N1—C5—C4 −0.1 (2) N2—C3—C31—O32 49.3 (2)
C11—N1—C5—C4 −177.99 (17) C4—C3—C31—O32 −135.9 (2)
C3—C4—C5—N1 0.0 (2) O31—C31—O32—C32 −0.6 (3)
C41—C4—C5—N1 174.43 (18) C3—C31—O32—C32 −179.80 (17)
C5—N1—C11—C16 153.3 (2) C5—C4—C41—O41 18.7 (3)
N2—N1—C11—C16 −24.4 (3) C3—C4—C41—O41 −168.5 (2)
C5—N1—C11—C12 −24.7 (3) C5—C4—C41—O42 −160.01 (19)
N2—N1—C11—C12 157.57 (17) C3—C4—C41—O42 12.8 (3)
C16—C11—C12—C13 0.3 (3) O41—C41—O42—C42 4.0 (3)
N1—C11—C12—C13 178.35 (18) C4—C41—O42—C42 −177.34 (18)

Dimethyl 1-phenyl-1H-pyrazole-3,4-dicarboxylate (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O41i 0.93 2.41 3.331 (3) 170

Symmetry code: (i) −x+1, −y+1, −z+1.

Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) . Crystal data

C14H14N2O4 Z = 2
Mr = 274.27 F(000) = 288
Triclinic, P1 Dx = 1.329 Mg m3
a = 7.6546 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.0959 (5) Å Cell parameters from 2526 reflections
c = 11.3065 (6) Å θ = 2.6–25.5°
α = 78.988 (3)° µ = 0.10 mm1
β = 85.527 (3)° T = 296 K
γ = 87.548 (4)° Block, brown
V = 685.40 (7) Å3 0.16 × 0.15 × 0.12 mm

Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) . Data collection

Bruker Kappa APEXII CCD diffractometer 2526 independent reflections
Radiation source: fine focus sealed tube 1777 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −9→9
Tmin = 0.955, Tmax = 0.988 k = −9→9
12818 measured reflections l = −13→13

Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2439P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.24 e Å3
2526 reflections Δρmin = −0.24 e Å3
196 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraints Extinction coefficient: 0.024 (4)

Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.3938 (2) 0.7228 (2) 0.38159 (13) 0.0446 (4)
N2 0.4458 (2) 0.7773 (2) 0.26297 (14) 0.0477 (4)
C3 0.3163 (2) 0.7413 (3) 0.20267 (16) 0.0426 (5)
C4 0.1791 (2) 0.6623 (2) 0.28127 (16) 0.0428 (5)
C5 0.2362 (3) 0.6525 (3) 0.39480 (17) 0.0464 (5)
H5 0.1765 0.6057 0.4675 0.056*
C11 0.5036 (3) 0.7482 (3) 0.47287 (17) 0.0446 (5)
C12 0.4529 (3) 0.6979 (3) 0.59269 (19) 0.0634 (7)
H12 0.3468 0.6450 0.6157 0.076*
C13 0.5596 (3) 0.7261 (3) 0.6790 (2) 0.0663 (7)
H13 0.5240 0.6911 0.7602 0.080*
C14 0.7168 (3) 0.8041 (3) 0.6491 (2) 0.0567 (6)
C15 0.7647 (3) 0.8500 (4) 0.5289 (2) 0.0758 (8)
H15 0.8717 0.9011 0.5059 0.091*
C16 0.6612 (3) 0.8238 (3) 0.4403 (2) 0.0686 (7)
H16 0.6979 0.8572 0.3592 0.082*
C141 0.8328 (4) 0.8354 (3) 0.7436 (2) 0.0797 (8)
H14A 0.7677 0.8190 0.8208 0.119*
H14B 0.8726 0.9489 0.7233 0.119*
H14C 0.9319 0.7584 0.7470 0.119*
C31A 0.3342 (3) 0.7907 (3) 0.06874 (18) 0.0505 (5) 0.71 (2)
O31A 0.4587 (11) 0.7554 (17) 0.0048 (5) 0.093 (3) 0.71 (2)
O32A 0.2044 (10) 0.8936 (9) 0.0288 (6) 0.0542 (14) 0.71 (2)
C32A 0.2113 (19) 0.9575 (17) −0.0998 (7) 0.0653 (16) 0.71 (2)
H32A 0.2195 0.8650 −0.1421 0.098* 0.71 (2)
H32B 0.3121 1.0261 −0.1233 0.098* 0.71 (2)
H32C 0.1070 1.0239 −0.1196 0.098* 0.71 (2)
C31B 0.3342 (3) 0.7907 (3) 0.06874 (18) 0.0505 (5) 0.29 (2)
O31B 0.413 (2) 0.6979 (19) 0.0113 (14) 0.093 (3) 0.29 (2)
O32B 0.233 (2) 0.9199 (19) 0.0250 (15) 0.0542 (14) 0.29 (2)
C32B 0.234 (5) 0.966 (4) −0.1050 (17) 0.0653 (16) 0.29 (2)
H32D 0.1476 0.9035 −0.1334 0.098* 0.29 (2)
H32E 0.3479 0.9404 −0.1404 0.098* 0.29 (2)
H32F 0.2080 1.0842 −0.1275 0.098* 0.29 (2)
C41 0.0150 (3) 0.5929 (3) 0.25809 (17) 0.0456 (5)
O41 −0.0860 (2) 0.5221 (2) 0.33564 (14) 0.0756 (6)
O42 −0.01086 (18) 0.61505 (19) 0.14123 (12) 0.0550 (4)
C42 −0.1738 (3) 0.5551 (3) 0.1112 (2) 0.0679 (7)
H42A −0.2701 0.6035 0.1538 0.102*
H42B −0.1748 0.4346 0.1339 0.102*
H42C −0.1847 0.5873 0.0258 0.102*

Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0440 (9) 0.0561 (11) 0.0331 (8) −0.0093 (8) −0.0050 (7) −0.0041 (7)
N2 0.0458 (10) 0.0613 (11) 0.0345 (9) −0.0105 (8) −0.0028 (7) −0.0030 (8)
C3 0.0397 (11) 0.0511 (12) 0.0369 (10) −0.0032 (9) −0.0047 (8) −0.0067 (9)
C4 0.0407 (10) 0.0505 (12) 0.0372 (10) −0.0050 (9) −0.0045 (8) −0.0063 (9)
C5 0.0436 (11) 0.0567 (13) 0.0373 (10) −0.0110 (10) −0.0009 (8) −0.0036 (9)
C11 0.0449 (11) 0.0505 (12) 0.0390 (11) −0.0044 (9) −0.0084 (8) −0.0073 (9)
C12 0.0539 (13) 0.0937 (19) 0.0424 (12) −0.0174 (12) −0.0051 (10) −0.0085 (12)
C13 0.0673 (16) 0.0924 (19) 0.0403 (12) −0.0055 (14) −0.0108 (11) −0.0117 (12)
C14 0.0644 (15) 0.0543 (13) 0.0555 (14) 0.0014 (11) −0.0219 (11) −0.0142 (10)
C15 0.0671 (16) 0.097 (2) 0.0649 (16) −0.0367 (14) −0.0163 (12) −0.0063 (14)
C16 0.0661 (15) 0.0951 (19) 0.0441 (12) −0.0334 (14) −0.0082 (11) −0.0035 (12)
C141 0.092 (2) 0.0787 (19) 0.0782 (18) 0.0009 (15) −0.0441 (15) −0.0260 (14)
C31A 0.0409 (11) 0.0727 (15) 0.0380 (11) −0.0064 (11) −0.0031 (9) −0.0093 (10)
O31A 0.070 (3) 0.159 (6) 0.0434 (12) 0.035 (4) 0.0031 (17) −0.010 (2)
O32A 0.054 (2) 0.062 (2) 0.0395 (9) −0.008 (2) 0.0009 (13) 0.0060 (12)
C32A 0.075 (4) 0.0739 (19) 0.0406 (14) −0.017 (3) −0.0089 (17) 0.0103 (13)
C31B 0.0409 (11) 0.0727 (15) 0.0380 (11) −0.0064 (11) −0.0031 (9) −0.0093 (10)
O31B 0.070 (3) 0.159 (6) 0.0434 (12) 0.035 (4) 0.0031 (17) −0.010 (2)
O32B 0.054 (2) 0.062 (2) 0.0395 (9) −0.008 (2) 0.0009 (13) 0.0060 (12)
C32B 0.075 (4) 0.0739 (19) 0.0406 (14) −0.017 (3) −0.0089 (17) 0.0103 (13)
C41 0.0421 (11) 0.0557 (13) 0.0387 (11) −0.0047 (10) −0.0025 (9) −0.0077 (9)
O41 0.0581 (10) 0.1211 (15) 0.0449 (9) −0.0394 (10) 0.0017 (7) −0.0031 (9)
O42 0.0519 (9) 0.0729 (10) 0.0403 (8) −0.0177 (7) −0.0088 (6) −0.0048 (7)
C42 0.0550 (14) 0.0942 (19) 0.0590 (14) −0.0187 (13) −0.0173 (11) −0.0169 (13)

Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) . Geometric parameters (Å, º)

N1—C5 1.341 (2) C141—H14A 0.9600
N1—N2 1.363 (2) C141—H14B 0.9600
N1—C11 1.430 (2) C141—H14C 0.9600
N2—C3 1.319 (2) C31A—O31A 1.209 (4)
C3—C4 1.413 (3) C31A—O32A 1.319 (3)
C3—C31A 1.487 (3) O32A—C32A 1.446 (3)
C4—C5 1.375 (3) C32A—H32A 0.9600
C4—C41 1.459 (3) C32A—H32B 0.9600
C5—H5 0.9300 C32A—H32C 0.9600
C11—C12 1.368 (3) O32B—C32B 1.445 (5)
C11—C16 1.369 (3) C32B—H32D 0.9600
C12—C13 1.378 (3) C32B—H32E 0.9600
C12—H12 0.9300 C32B—H32F 0.9600
C13—C14 1.372 (3) C41—O41 1.198 (2)
C13—H13 0.9300 C41—O42 1.328 (2)
C14—C15 1.363 (3) O42—C42 1.445 (2)
C14—C141 1.505 (3) C42—H42A 0.9600
C15—C16 1.377 (3) C42—H42B 0.9600
C15—H15 0.9300 C42—H42C 0.9600
C16—H16 0.9300
C5—N1—N2 111.67 (15) C14—C141—H14B 109.5
C5—N1—C11 128.79 (16) H14A—C141—H14B 109.5
N2—N1—C11 119.52 (15) C14—C141—H14C 109.5
C3—N2—N1 105.05 (15) H14A—C141—H14C 109.5
N2—C3—C4 111.50 (16) H14B—C141—H14C 109.5
N2—C3—C31A 117.41 (17) O31A—C31A—O32A 123.5 (3)
C4—C3—C31A 131.07 (17) O31A—C31A—C3 125.0 (3)
C5—C4—C3 104.27 (16) O32A—C31A—C3 111.1 (3)
C5—C4—C41 123.78 (17) C31A—O32A—C32A 116.5 (3)
C3—C4—C41 131.86 (17) O32A—C32A—H32A 109.5
N1—C5—C4 107.50 (17) O32A—C32A—H32B 109.5
N1—C5—H5 126.2 H32A—C32A—H32B 109.5
C4—C5—H5 126.2 O32A—C32A—H32C 109.5
C12—C11—C16 119.48 (19) H32A—C32A—H32C 109.5
C12—C11—N1 120.75 (18) H32B—C32A—H32C 109.5
C16—C11—N1 119.77 (18) O32B—C32B—H32D 109.5
C11—C12—C13 119.7 (2) O32B—C32B—H32E 109.5
C11—C12—H12 120.1 H32D—C32B—H32E 109.5
C13—C12—H12 120.1 O32B—C32B—H32F 109.5
C14—C13—C12 122.1 (2) H32D—C32B—H32F 109.5
C14—C13—H13 119.0 H32E—C32B—H32F 109.5
C12—C13—H13 119.0 O41—C41—O42 123.08 (18)
C15—C14—C13 116.7 (2) O41—C41—C4 123.97 (18)
C15—C14—C141 121.4 (2) O42—C41—C4 112.95 (17)
C13—C14—C141 121.9 (2) C41—O42—C42 116.23 (16)
C14—C15—C16 122.7 (2) O42—C42—H42A 109.5
C14—C15—H15 118.6 O42—C42—H42B 109.5
C16—C15—H15 118.6 H42A—C42—H42B 109.5
C11—C16—C15 119.3 (2) O42—C42—H42C 109.5
C11—C16—H16 120.4 H42A—C42—H42C 109.5
C15—C16—H16 120.4 H42B—C42—H42C 109.5
C14—C141—H14A 109.5
C5—N1—N2—C3 0.7 (2) C12—C13—C14—C15 −1.3 (4)
C11—N1—N2—C3 −177.91 (17) C12—C13—C14—C141 179.7 (2)
N1—N2—C3—C4 −0.2 (2) C13—C14—C15—C16 1.3 (4)
N1—N2—C3—C31A 178.57 (18) C141—C14—C15—C16 −179.7 (3)
N2—C3—C4—C5 −0.3 (2) C12—C11—C16—C15 −0.9 (4)
C31A—C3—C4—C5 −178.9 (2) N1—C11—C16—C15 179.1 (2)
N2—C3—C4—C41 −176.7 (2) C14—C15—C16—C11 −0.2 (4)
C31A—C3—C4—C41 4.7 (4) N2—C3—C31A—O31A 52.4 (9)
N2—N1—C5—C4 −0.9 (2) C4—C3—C31A—O31A −129.1 (9)
C11—N1—C5—C4 177.57 (18) N2—C3—C31A—O32A −121.0 (5)
C3—C4—C5—N1 0.7 (2) C4—C3—C31A—O32A 57.5 (6)
C41—C4—C5—N1 177.50 (18) O31A—C31A—O32A—C32A 3.6 (10)
C5—N1—C11—C12 0.3 (3) C3—C31A—O32A—C32A 177.1 (8)
N2—N1—C11—C12 178.6 (2) C5—C4—C41—O41 0.6 (3)
C5—N1—C11—C16 −179.7 (2) C3—C4—C41—O41 176.5 (2)
N2—N1—C11—C16 −1.4 (3) C5—C4—C41—O42 −178.86 (19)
C16—C11—C12—C13 0.9 (4) C3—C4—C41—O42 −3.0 (3)
N1—C11—C12—C13 −179.0 (2) O41—C41—O42—C42 2.7 (3)
C11—C12—C13—C14 0.2 (4) C4—C41—O42—C42 −177.82 (18)

Dimethyl 1-(4-methylphenyl)-1H-pyrazole-3,4-dicarboxylate (III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O41i 0.93 2.33 3.249 (3) 168
C12—H12···O41i 0.93 2.43 3.352 (3) 173

Symmetry code: (i) −x, −y+1, −z+1.

1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) . Crystal data

C12H14N6O3 F(000) = 608
Mr = 290.29 Dx = 1.492 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.6030 (6) Å Cell parameters from 2521 reflections
b = 22.6605 (19) Å θ = 2.9–26.1°
c = 7.6751 (7) Å µ = 0.11 mm1
β = 102.284 (3)° T = 296 K
V = 1292.05 (19) Å3 Block, colourless
Z = 4 0.14 × 0.13 × 0.11 mm

1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) . Data collection

Bruker Kappa APEXII CCD diffractometer 2521 independent reflections
Radiation source: fine focus sealed tube 1722 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
φ and ω scans θmax = 26.1°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −9→9
Tmin = 0.929, Tmax = 0.988 k = −27→27
20456 measured reflections l = −9→9

1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.027P)2 + 1.1086P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.20 e Å3
2521 reflections Δρmin = −0.21 e Å3
210 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0045 (9)

1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7660 (2) 0.36969 (8) 0.6437 (2) 0.0283 (4)
N2 0.7948 (2) 0.32224 (8) 0.5473 (2) 0.0314 (5)
C3 0.7018 (3) 0.33229 (9) 0.3822 (3) 0.0275 (5)
C4 0.6115 (3) 0.38765 (9) 0.3717 (3) 0.0280 (5)
C5 0.6564 (3) 0.40941 (10) 0.5433 (3) 0.0298 (5)
H5 0.6181 0.4450 0.5828 0.036*
C11 0.8572 (3) 0.37355 (9) 0.8268 (3) 0.0276 (5)
C12 0.8449 (3) 0.42341 (10) 0.9244 (3) 0.0344 (6)
H12 0.7747 0.4550 0.8727 0.041*
C13 0.9380 (3) 0.42666 (11) 1.1013 (3) 0.0365 (6)
H13 0.9289 0.4603 1.1681 0.044*
C14 1.0436 (3) 0.38002 (10) 1.1778 (3) 0.0317 (5)
C15 1.0555 (3) 0.33004 (10) 1.0777 (3) 0.0368 (6)
H15 1.1270 0.2986 1.1285 0.044*
C16 0.9622 (3) 0.32644 (10) 0.9034 (3) 0.0352 (6)
H16 0.9696 0.2925 0.8372 0.042*
O14 1.1404 (2) 0.37883 (8) 1.3504 (2) 0.0444 (5)
C141 1.1307 (4) 0.42931 (12) 1.4580 (3) 0.0493 (7)
H14A 1.1762 0.4631 1.4063 0.074*
H14B 1.2016 0.4227 1.5757 0.074*
H14C 1.0077 0.4362 1.4647 0.074*
C31 0.7103 (3) 0.28637 (9) 0.2463 (3) 0.0295 (5)
O31 0.6069 (2) 0.28624 (7) 0.0961 (2) 0.0414 (5)
N31 0.8329 (3) 0.24513 (8) 0.2954 (3) 0.0356 (5)
H31 0.911 (3) 0.2477 (11) 0.397 (3) 0.043*
N32 0.8637 (3) 0.19995 (10) 0.1787 (3) 0.0520 (6)
H32A 0.782 (4) 0.2047 (12) 0.064 (4) 0.062*
H32B 0.841 (4) 0.1612 (13) 0.232 (4) 0.062*
C41 0.5024 (3) 0.42229 (10) 0.2236 (3) 0.0301 (5)
O41 0.4610 (2) 0.47395 (7) 0.2471 (2) 0.0456 (5)
N41 0.4562 (3) 0.39535 (9) 0.0672 (2) 0.0358 (5)
H41 0.500 (3) 0.3563 (12) 0.058 (3) 0.043*
N42 0.3537 (3) 0.42254 (10) −0.0869 (3) 0.0435 (6)
H42A 0.412 (4) 0.4577 (13) −0.110 (3) 0.052*
H42B 0.262 (4) 0.4361 (13) −0.060 (4) 0.052*

1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0298 (10) 0.0300 (10) 0.0239 (10) 0.0028 (8) 0.0031 (8) −0.0014 (8)
N2 0.0341 (11) 0.0310 (10) 0.0265 (11) 0.0033 (8) 0.0006 (9) −0.0032 (8)
C3 0.0260 (12) 0.0287 (11) 0.0264 (12) −0.0016 (9) 0.0022 (10) 0.0004 (9)
C4 0.0274 (12) 0.0288 (11) 0.0266 (12) −0.0023 (9) 0.0027 (10) 0.0022 (9)
C5 0.0289 (12) 0.0277 (11) 0.0317 (13) 0.0018 (10) 0.0040 (10) 0.0021 (10)
C11 0.0265 (12) 0.0319 (12) 0.0238 (12) −0.0003 (9) 0.0040 (10) 0.0010 (9)
C12 0.0356 (14) 0.0342 (13) 0.0306 (13) 0.0061 (11) 0.0006 (11) 0.0018 (10)
C13 0.0401 (14) 0.0369 (13) 0.0316 (14) 0.0014 (11) 0.0055 (11) −0.0053 (11)
C14 0.0286 (13) 0.0412 (13) 0.0235 (12) −0.0034 (10) 0.0010 (10) 0.0028 (10)
C15 0.0371 (14) 0.0356 (13) 0.0337 (14) 0.0078 (11) −0.0011 (11) 0.0040 (11)
C16 0.0387 (14) 0.0325 (12) 0.0325 (13) 0.0055 (11) 0.0035 (11) −0.0036 (10)
O14 0.0503 (11) 0.0495 (11) 0.0273 (9) 0.0030 (9) −0.0051 (8) −0.0007 (8)
C141 0.0546 (18) 0.0587 (18) 0.0313 (14) −0.0021 (14) 0.0016 (13) −0.0058 (13)
C31 0.0289 (13) 0.0281 (12) 0.0296 (13) −0.0025 (10) 0.0018 (10) 0.0001 (10)
O31 0.0433 (10) 0.0387 (10) 0.0340 (10) 0.0029 (8) −0.0103 (8) −0.0066 (7)
N31 0.0417 (12) 0.0299 (10) 0.0309 (11) 0.0056 (9) −0.0018 (9) −0.0036 (9)
N32 0.0701 (17) 0.0366 (13) 0.0440 (14) 0.0127 (12) 0.0003 (12) −0.0093 (11)
C41 0.0297 (12) 0.0311 (12) 0.0288 (13) 0.0003 (10) 0.0050 (10) 0.0024 (10)
O41 0.0640 (12) 0.0331 (9) 0.0364 (10) 0.0141 (8) 0.0030 (9) 0.0014 (8)
N41 0.0391 (12) 0.0367 (11) 0.0274 (11) 0.0063 (9) −0.0022 (9) 0.0022 (9)
N42 0.0436 (14) 0.0509 (14) 0.0314 (12) 0.0039 (11) −0.0019 (10) 0.0086 (10)

1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) . Geometric parameters (Å, º)

N1—N2 1.349 (2) C15—H15 0.9300
N1—C5 1.351 (3) C16—H16 0.9300
N1—C11 1.431 (3) O14—C141 1.422 (3)
N2—C3 1.333 (3) C141—H14A 0.9600
C3—C4 1.424 (3) C141—H14B 0.9600
C3—C31 1.485 (3) C141—H14C 0.9600
C4—C5 1.380 (3) C31—O31 1.249 (3)
C4—C41 1.482 (3) C31—N31 1.317 (3)
C5—H5 0.9300 N31—N32 1.412 (3)
C11—C12 1.369 (3) N31—H31 0.87 (3)
C11—C16 1.387 (3) N32—H32A 0.97 (3)
C12—C13 1.394 (3) N32—H32B 1.00 (3)
C12—H12 0.9300 C41—O41 1.236 (3)
C13—C14 1.381 (3) C41—N41 1.325 (3)
C13—H13 0.9300 N41—N42 1.412 (3)
C14—O14 1.371 (3) N41—H41 0.95 (3)
C14—C15 1.382 (3) N42—H42A 0.95 (3)
C15—C16 1.377 (3) N42—H42B 0.83 (3)
N2—N1—C5 111.78 (17) C15—C16—C11 119.8 (2)
N2—N1—C11 119.05 (17) C15—C16—H16 120.1
C5—N1—C11 129.07 (18) C11—C16—H16 120.1
C3—N2—N1 105.65 (17) C14—O14—C141 117.50 (19)
N2—C3—C4 110.88 (19) O14—C141—H14A 109.5
N2—C3—C31 117.06 (19) O14—C141—H14B 109.5
C4—C3—C31 132.06 (19) H14A—C141—H14B 109.5
C5—C4—C3 104.01 (18) O14—C141—H14C 109.5
C5—C4—C41 121.8 (2) H14A—C141—H14C 109.5
C3—C4—C41 134.0 (2) H14B—C141—H14C 109.5
N1—C5—C4 107.67 (19) O31—C31—N31 122.0 (2)
N1—C5—H5 126.2 O31—C31—C3 122.5 (2)
C4—C5—H5 126.2 N31—C31—C3 115.47 (19)
C12—C11—C16 120.2 (2) C31—N31—N32 122.4 (2)
C12—C11—N1 120.81 (19) C31—N31—H31 120.9 (17)
C16—C11—N1 118.97 (19) N32—N31—H31 116.0 (17)
C11—C12—C13 119.8 (2) N31—N32—H32A 109.5 (17)
C11—C12—H12 120.1 N31—N32—H32B 108.1 (16)
C13—C12—H12 120.1 H32A—N32—H32B 110 (2)
C14—C13—C12 120.2 (2) O41—C41—N41 122.8 (2)
C14—C13—H13 119.9 O41—C41—C4 120.6 (2)
C12—C13—H13 119.9 N41—C41—C4 116.59 (19)
O14—C14—C13 124.7 (2) C41—N41—N42 123.4 (2)
O14—C14—C15 115.8 (2) C41—N41—H41 118.0 (15)
C13—C14—C15 119.5 (2) N42—N41—H41 118.6 (15)
C16—C15—C14 120.5 (2) N41—N42—H42A 109.1 (16)
C16—C15—H15 119.7 N41—N42—H42B 107 (2)
C14—C15—H15 119.7 H42A—N42—H42B 101 (3)
C5—N1—N2—C3 0.2 (2) C12—C13—C14—C15 −0.3 (3)
C11—N1—N2—C3 −176.56 (18) O14—C14—C15—C16 179.4 (2)
N1—N2—C3—C4 0.2 (2) C13—C14—C15—C16 −0.4 (4)
N1—N2—C3—C31 179.81 (18) C14—C15—C16—C11 0.8 (4)
N2—C3—C4—C5 −0.6 (2) C12—C11—C16—C15 −0.5 (3)
C31—C3—C4—C5 179.9 (2) N1—C11—C16—C15 178.0 (2)
N2—C3—C4—C41 175.1 (2) C13—C14—O14—C141 0.1 (3)
C31—C3—C4—C41 −4.4 (4) C15—C14—O14—C141 −179.6 (2)
N2—N1—C5—C4 −0.6 (2) N2—C3—C31—O31 168.0 (2)
C11—N1—C5—C4 175.8 (2) C4—C3—C31—O31 −12.5 (4)
C3—C4—C5—N1 0.7 (2) N2—C3—C31—N31 −11.1 (3)
C41—C4—C5—N1 −175.66 (19) C4—C3—C31—N31 168.4 (2)
N2—N1—C11—C12 173.8 (2) O31—C31—N31—N32 3.9 (4)
C5—N1—C11—C12 −2.3 (3) C3—C31—N31—N32 −177.0 (2)
N2—N1—C11—C16 −4.7 (3) C5—C4—C41—O41 6.1 (3)
C5—N1—C11—C16 179.2 (2) C3—C4—C41—O41 −169.0 (2)
C16—C11—C12—C13 −0.2 (3) C5—C4—C41—N41 −175.2 (2)
N1—C11—C12—C13 −178.6 (2) C3—C4—C41—N41 9.8 (4)
C11—C12—C13—C14 0.6 (4) O41—C41—N41—N42 −0.8 (4)
C12—C13—C14—O14 180.0 (2) C4—C41—N41—N42 −179.5 (2)

1-(4-Methoxyphenyl)-1H-pyrazole-3,4-dicarbohydrazide (IV) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N31—H31···O31i 0.88 (2) 2.04 (2) 2.851 (3) 153 (2)
N32—H32A···O14ii 0.97 (3) 2.58 (3) 3.256 (3) 127 (2)
N32—H32B···N42i 1.00 (2) 2.34 (3) 3.317 (3) 165 (2)
N41—H41···O31 0.95 (3) 1.78 (3) 2.714 (3) 166 (2)
N42—H42A···O41iii 0.95 (3) 2.21 (3) 3.120 (3) 162 (2)
N42—H42B···Cg1iv 0.83 (3) 2.85 (3) 3.442 (3) 130 (2)
C5—H5···O41v 0.93 2.40 3.314 (3) 166
C12—H12···O41v 0.93 2.44 3.354 (3) 168

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−3/2; (iii) −x+1, −y+1, −z; (iv) x−1, y, z−1; (v) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by University Grants Commission grants UGC-MANF-SRF Fellowship and UGC-BSR Faculty Fellowship.

References

  1. Alizadeh, A., Firuzyar, T. & Zhu, L.-G. (2010). Tetrahedron, 66, 9835–9839.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Asma, Kalluraya, B., Manju, N., Adhikari, A. V., Chandra & Mahendra, M. (2018). Indian J. Heterocycl. Chem. 28, 335–345.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Devi, N., Shankar, R. & Singh, V. (2018). J. Heterocycl. Chem. 55, 373–390.
  7. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  8. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  9. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  10. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  11. Fun, H.-K., Goh, J. H., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o3252. [DOI] [PMC free article] [PubMed]
  12. Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3513. [DOI] [PMC free article] [PubMed]
  13. Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644. [DOI] [PubMed]
  14. Greco, C. V., Nyberg, W. H. & Cheng, C. C. (1962). J. Med. Chem. 5, 861–865. [DOI] [PubMed]
  15. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Hope, H. (1978). Acta Cryst. A34, S20.
  18. Huisgen, R., Grashey, R., Gotthardt, H. & Schmidt, R. (1962). Angew. Chem. Int. Ed. Engl. 1, 48–49.
  19. Li, D. Y., Mao, Y. F., Chen, H. J., Chen, G. B. & Liu, P. N. (2014). Org. Lett. 16, 3476–3479. [DOI] [PubMed]
  20. Owen, J. E., Swanson, E. E. & Meyers, D. B. (1958). J. Am. Pharm. Assoc. (Sci. ed.), 47, 70–72. [DOI] [PubMed]
  21. Park, H.-J., Lee, K., Park, S.-J., Ahn, B., Lee, J.-C., Cho, H. Y. & Lee, K.-I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312. [DOI] [PubMed]
  22. Qu, Z.-R. (2009). Acta Cryst. E65, o1646. [DOI] [PMC free article] [PubMed]
  23. Satheesha, R. N. & Kalluraya, B. (2007). Indian J. Chem. Sect. B, 46, 375–378.
  24. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  25. Sheldrick, G. M. (2008b). Acta Cryst A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  28. Tang, Z., Ding, X.-L., Dong, W.-L. & Zhao, B.-X. (2007). Acta Cryst. E63, o3473.
  29. Thamotharan, S., Parthasarathi, V., Sanyal, R., Badami Bharati, V. & Linden, A. (2003). Acta Cryst. E59, o44–o45.
  30. Wang, Y., Lee, P. L. & Yeh, M.-H. (1984). Acta Cryst. C40, 1226–1228.
  31. Xiao, J. & Zhao, H. (2009). Acta Cryst. E65, o1175. [DOI] [PMC free article] [PubMed]
  32. Yang, R., Xu, T., Fan, J., Zhang, Q., Ding, M., Huang, M., Deng, L., Lu, Y. & Guo, Y. (2018). Ind. Crops Prod. 117, 50–57.
  33. Yao, J.-Y., Xiao, J. & Zhao, H. (2009). Acta Cryst. E65, o1158. [DOI] [PMC free article] [PubMed]
  34. Zhang, X.-Y., Liu, W., Tang, W. & Lai, Y.-B. (2007). Acta Cryst. E63, o3764.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III, IV. DOI: 10.1107/S2056989018015864/zl2741sup1.cif

e-74-01783-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015864/zl2741Isup2.hkl

e-74-01783-Isup2.hkl (178.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018015864/zl2741IIsup3.hkl

e-74-01783-IIsup3.hkl (216.4KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018015864/zl2741IIIsup4.hkl

e-74-01783-IIIsup4.hkl (202.2KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989018015864/zl2741IVsup5.hkl

e-74-01783-IVsup5.hkl (201.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018015864/zl2741Isup6.cml

Supporting information file. DOI: 10.1107/S2056989018015864/zl2741IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989018015864/zl2741IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989018015864/zl2741IVsup9.cml

CCDC references: 1877912, 1877911, 1877910, 1877909

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES