Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 30;74(Pt 12):1903–1907. doi: 10.1107/S2056989018016791

Structures of the hydrate and dihydrate forms of the DNA-binding radioprotector methyl­pro­amine

Jonathan Michael White a,*, Samuel Charles Brydon a, Thomas Fellowes a
PMCID: PMC6281125  PMID: 30574398

The dihydrate and hydrate forms of the DNA-binding bis-benzimidazole radioprotector methyl­pro­amine are reported. These are the first single-crystal structures of bis-benzimidazoles related to Hoechst 33342 to be reported.

Keywords: crystal structure, hydrates, hydrogen bonding, tautomerism

Abstract

Methyl pro­amine {N,N,3-trimethyl-4-[6-(4-methyl­piperazin-1-yl)-1H,3′H-[2,5′-bibenzo[d]imidazol]-2′-yl]aniline}, C28H35N7O2, crystallized as both a dihydrate, C28H31N7·2H2O, and monohydrate, C28H31N7·H2O, form from water in the presence of β-cyclo­dextrin, in the P21/c and P21/n space groups, respectively. The two structures adopt different conformations and tautomeric forms as a result of the differing crystal packing as dictated by hydrogen-bonding inter­actions. The dihydrate crystallizes as a three-dimensional hydrogen-bonded network, while the monohydrate crystallizes as a two-dimensional hydrogen-bonded network.

Chemical context  

Methyl­pro­amine (1) is a bibenzimidazole derivative which binds in the minor groove of DNA in adenine-thymine-rich regions of four or more consecutive AT pairs (Martin et al., 2004) and is related to the Hoechst family of DNA-binding bibenzimidazoles (Pjura et al., 1987). Although the structure of methyl­pro­amine with the DNA dodeca­mer d(CGCGAATTCGCG)2 has been determined and reported by us, the structure of the free ligand has not yet been published as it is very difficult to obtain good quality crystals for these types of compounds. In order to examine the conformational and tautomeric differences between the uncomplexed ligand and that which is bound to DNA, the structures of both the dihydrate (1)·2H2O and the monohydrate (1)·H2O, which were grown from water in the presence of β-cyclo­dextrin, are reported.graphic file with name e-74-01903-scheme1.jpg

Structural commentary  

Displacement ellipsoid plots for (1)·2H2O and (1)·H2O are presented in Figs. 1 and 2, respectively. The two structures represent two different conformations of (1); (1)·2H2O exists in an extended conformation as determined by the C9—C10—C14—N4 torsion angle which is 173.54 (14)° with an N1⋯N6 distance of 17.251 (2) Å while (1)·H2O adopts a crescent shape with a C9—C10—C14—N4 torsion angle of −19.8 (2)° and an N1⋯N6 distance of 16.859 (2) Å. In addition, they represent different tautomeric forms of (1); (1)·2H2O can be described as the N2, N4 tautomer whereas (1)·H2O exists in the crystal as the N2, N5 tautomer as defined by the numbering scheme used in Figs. 1 and 2. The tautomeric form adopted in each case is implied not only by the N—H hydrogen atoms, which were located in difference maps and refined satisfactorily without restraint, but also by the C—N bond distances of the two benzimidazole moieties within the structures (Tables 1 and 2). The tautomeric form assigned in each case is also supported by the inter­molecular hydrogen bonds that these N—H groups participate in. It is the inter­molecular hydrogen-bonded inter­actions involving these N—H groups which no doubt play a major role in which tautomer is adopted in each case in the solid state.

Figure 1.

Figure 1

Displacement ellipsoid plot of the asymmetric unit for dihydrate (1)·2H2O.

Figure 2.

Figure 2

Displacement ellipsoid plot of the asymmetric unit for hydrate (1)·H2O.

Table 1. Selected geometric parameters (Å, °) for (1)·2H2O .

C1—C7 1.4698 (18) C10—C14 1.4701 (19)
C4—N1 1.3923 (18) C14—N4 1.3708 (18)
C7—N2 1.3695 (17) C14—N5 1.3215 (18)
C7—N3 1.3325 (18) C17—N6 1.4321 (19)
       
C4—N1—C27 118.18 (13) C17—N6—C24 114.80 (13)
C4—N1—C26 118.60 (13) C17—N6—C21 113.32 (12)
C27—N1—C26 112.78 (13) C24—N6—C21 109.48 (12)
       
C2—C1—C7—N3 −30.0 (2) C9—C10—C14—N4 173.54 (14)
C6—C1—C7—N3 147.26 (15) C3—C4—N1—C27 1.2 (2)
C2—C1—C7—N2 155.44 (14) C5—C4—N1—C26 40.9 (2)
C6—C1—C7—N2 −27.3 (2) C16—C17—N6—C24 −170.61 (14)
C9—C10—C14—N5 −5.7 (2) C16—C17—N6—C21 62.58 (19)

Table 2. Selected geometric parameters (Å, °) for (1)·H2O .

C1—C7 1.468 (2) C10—C14 1.464 (2)
C4—N1 1.374 (2) C14—N4 1.3286 (19)
C7—N2 1.3344 (19) C14—N5 1.3691 (19)
C7—N3 1.3687 (19) C17—N6 1.4190 (19)
       
C4—N1—C27 120.55 (15) C17—N6—C21 117.43 (13)
C4—N1—C26 119.35 (15) C17—N6—C24 115.25 (13)
C27—N1—C26 119.08 (14) C21—N6—C24 109.98 (13)
       
C2—C1—C7—N2 −23.6 (2) C9—C10—C14—N5 161.50 (14)
C2—C1—C7—N3 154.23 (14) C16—C17—N6—C21 3.4 (2)
C9—C10—C14—N4 −19.8 (2) C18—C17—N6—C24 −48.47 (19)

In both structures the ortho-methyl substituent in ring A lies on the opposite side of the structure to the N—H hydrogen atom of benzimidazole ring B, this is very likely for steric reasons; the dihedral angles between the two rings as defined by C2—C1—C7—N3 in (1)·2H2O and by C2—C1—C7—N2 in (1)·H2O, which are −30.0 (2) and −23.6 (2)°, respectively, reflect a balance between electronic effects which prefer coplanarity between the two aromatic rings and steric effects whereby the ortho-methyl group would be unreasonably close to the benzimidazole nitro­gen of ring B. The dihedral angles between the two benzimidazole rings (rings B and C) are −5.7 (2) and −19.8 (2)°, respectively.

The geometry of the para-di­methyl­amino substituent on ring A differs between the two structures; the mean C—N1—C angles are 116.4 and 119.7°, respectively, for (1)·2H2O and (1)·H2O, suggesting that the former is more pyramidalized, consistent with this are the significant differences in the C4—N1 bond distances which are 1.3923 (18) and 1.374 (2) Å for (1)·2H2O and (1)·H2O, respectively.

It is inter­esting to compare the conformation of (1) in these two structures with that adopted by (1) when bound in the minor groove of the palindromic DNA dodeca­mer [d(CGCGAATTCGCG)2; Martin et al., 2004]. The ligand must adopt the 2-H, 4-H tautomeric form with a crescent shape similar to that adopted by (1)·H2O so that it can direct the necessary N—H hydrogen-bond donors into the minor groove, in addition the ortho-methyl substituent on ring A must be facing away from the crescent. A superposition of the two structures with that of (1) bound to DNA is shown in Fig. 3.

Figure 3.

Figure 3

Overlay for the structures of A; (1)·2H2O and B; (1)·H2O with DNA-bound (1). In the LH-structure the DNA-bond ligand is indicated by capped sticks, while in the RH structure it is ball and stick.

Supra­molecular features  

The structure of the dihydrate (1)·2H2O is characterized by the presence of a centrosymmetric water tetra­mer which provides a template around which the structure is built. This tetra­mer appears to be a common motif formed in crystalline hydrates with over 3689 examples of structures containing this motif in the Cambridge Structural Database [Version 1.23 update 5.39 (August 2018); Groom et al., 2016]. The water tetra­mer is bridged across opposite diagonals by two mol­ecules of (1) by a combination of N—H⋯O and O—H⋯N hydrogen bonds involving the two benzimidazole groups (Fig. 4 and Table 3), the remaining O—H hydrogens form O—H⋯N hydrogen bonds to two further centrosymmetrically related mol­ecules of (1) via the tertiary piperazine nitro­gen N7 (Fig. 5 and Table 3). This cluster of four mol­ecules of (1) and the water tetra­mer is then extensively cross-linked by N—H⋯N hydrogen bonds between the remaining benzimidazole groups (Figs. 6 and 7 and Table 3).

Figure 4.

Figure 4

The water tetra­mer with diagonally hydrogen-bonded mol­ecules of (1).

Table 3. Hydrogen-bond geometry (Å, °) for (1)·2H2O .

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23B⋯N2i 0.99 2.65 3.542 (2) 149
O1—H1A⋯O2ii 0.91 (3) 1.98 (3) 2.8665 (17) 164 (2)
O1—H1B⋯N7iii 0.94 (3) 1.91 (3) 2.8482 (18) 170 (3)
N2—H2⋯O2ii 0.856 (18) 1.944 (18) 2.7797 (15) 165.0 (17)
O2—H2A⋯N5 0.86 (2) 1.91 (2) 2.7685 (16) 175 (2)
O2—H2B⋯O1 0.90 (3) 1.86 (3) 2.7537 (18) 168 (3)
N4—H4A⋯N3iv 0.870 (19) 2.072 (19) 2.9411 (16) 176.7 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 5.

Figure 5

The water tetra­mer with additional hydrogen-bonded inter­actions with (1).

Figure 6.

Figure 6

The cross-linking N—H⋯N hydrogen bonds between benzimidazole moieties mol­ecules of (1).

Figure 7.

Figure 7

Three-dimensional hydrogen-bonded network in (1)·2H2O.

The structure of the hydrate (1)·H2O is also characterized by extensive hydrogen-bonding inter­actions, both directly between the benzimidazole moieties of (1), and via the water mol­ecule. The water mol­ecule participates in two O—H⋯N hydrogen bonds as donor and one N—H⋯O hydrogen bond as acceptor to form a cluster of three mol­ecules of (1) (Fig. 8 and Table 4). This cluster is then further hydrogen bonded via N—H⋯N inter­actions between the remaining benzimidazole-based hydrogen-bond donors and acceptors (Fig. 9 and Table 4), to form two-dimensional hydrogen-bonded sheets lying in the (101) plane (Fig. 10).

Figure 8.

Figure 8

Hydrogen bonding between (1) and the water mol­ecule in (1)·H2O.

Table 4. Hydrogen-bond geometry (Å, °) for (1)·H2O .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N7i 0.93 (4) 1.93 (4) 2.858 (2) 177 (3)
O1—H1B⋯N4ii 0.95 (3) 1.94 (3) 2.8905 (18) 177 (2)
N3—H3A⋯O1 0.93 (2) 1.82 (2) 2.7338 (17) 170 (2)
N5—H5A⋯N2iii 0.89 (2) 2.15 (2) 3.0199 (18) 167.2 (18)
O1—H1A⋯N7i 0.93 (4) 1.93 (4) 2.858 (2) 177 (3)
O1—H1B⋯N4ii 0.95 (3) 1.94 (3) 2.8905 (18) 177 (2)
N3—H3A⋯O1 0.93 (2) 1.82 (2) 2.7338 (17) 170 (2)
N5—H5A⋯N2iii 0.89 (2) 2.15 (2) 3.0199 (18) 167.2 (18)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 9.

Figure 9

Direct N—H⋯N hydrogen bonds between benzimidazole moieties of (1)·H2O.

Figure 10.

Figure 10

Two-dimensional hydrogen-bonded network in (1)·H2O.

Database survey  

A search of the CSD (version 1.23; Groom et al., 2016) for structures related to (1) uncovered no hits.

Synthesis and crystallization  

The synthesis of methyl­pro­amine (1) has been previously reported (Martin et al., 2004) but previous attempts to obtain crystals of the free ligand of suitable quality for X-ray analysis were not successful. In this study, crystals were serendipidously obtained during an attempt to obtain crystals of (1) complexed to β-cyclo­dextrin. Thus a solution of (1) (6.8mg) in 1 ml of water saturated with β-cyclo­dextrin was left in a vapour diffusion tank with acetone allowed to diffuse into the solution. It is worth noting that (1) has very low solubility in water in the absence of β-cyclo­dextrin. After 12 h, brown plates of (1) as its dihydrate developed, which were then harvested for X-ray analysis. The resulting solution when left to evaporate over a period of several months gave further needle-like crystals in a viscous matrix of β-cyclo­dextrin that were shown to be the monohydrate (1)·H2O.

Refinement  

Crystal data, data collection and structure refinement details for (1)·2H2O and (1)·H2O are summarized in Table 5. In both structures, carbon-bound H atoms were placed in calculated positions and refined using a riding model, with methyl C—H = 0.96 Å and aromatic C—H = 0.93 Å and U iso(H) =1.5U eq(C) for methyl and 1.2U eq(C) for aromatic C—H. Hydrogen atoms attached to N and O were located in difference maps and allowed to refine with isotropic displacement parameters. In the structure of (1)·H2O there are solvent-accessible voids of 154 Å3 per unit cell; however, there was no significant difference electron density associated with these voids. The largest difference electron density of 0.5 e Å3 was associated with the piperazine group. Application of the SQUEEZE procedure (Spek, 2015) found eight electrons associated with the voids.

Table 5. Experimental details.

  (1)·2H2O (1)·H2O
Crystal data
Chemical formula C28H31N7·2H2O C28H31N7·H2O
M r 501.63 483.61
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 130 100
a, b, c (Å) 8.7190 (3), 12.0891 (3), 24.6794 (7) 9.8750 (1), 22.6561 (3), 11.7917 (1)
β (°) 90.806 (3) 101.188 (1)
V3) 2601.07 (13) 2588.01 (5)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.67 0.63
Crystal size (mm) 0.41 × 0.19 × 0.04 0.29 × 0.16 × 0.07
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015) Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.911, 1.000 0.724, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15892, 5318, 4425 33621, 5468, 4622
R int 0.033 0.072
(sin θ/λ)max−1) 0.629 0.635
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.119, 1.03 0.050, 0.144, 1.08
No. of reflections 5318 5468
No. of parameters 362 345
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.24 0.51, −0.31

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), CrystalMaker (Palmer 2014), Mercury, (Macrae et al. 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1_dihydrate, 1_hydrate. DOI: 10.1107/S2056989018016791/sj5567sup1.cif

e-74-01903-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) 1_dihydrate. DOI: 10.1107/S2056989018016791/sj55671_dihydratesup2.hkl

Structure factors: contains datablock(s) 1_hydrate. DOI: 10.1107/S2056989018016791/sj55671_hydratesup3.hkl

Supporting information file. DOI: 10.1107/S2056989018016791/sj55671_dihydratesup4.cml

Supporting information file. DOI: 10.1107/S2056989018016791/sj55671_hydratesup5.cml

CCDC references: 1881120, 1881119

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) . Crystal data

C28H31N7·2H2O F(000) = 1072
Mr = 501.63 Dx = 1.281 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 8.7190 (3) Å Cell parameters from 4889 reflections
b = 12.0891 (3) Å θ = 3.6–75.0°
c = 24.6794 (7) Å µ = 0.67 mm1
β = 90.806 (3)° T = 130 K
V = 2601.07 (13) Å3 PLATE, brown
Z = 4 0.41 × 0.19 × 0.04 mm

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) . Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer 5318 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source 4425 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.033
Detector resolution: 10.2273 pixels mm-1 θmax = 75.8°, θmin = 3.6°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) k = −15→14
Tmin = 0.911, Tmax = 1.000 l = −16→30
15892 measured reflections

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.7255P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
5318 reflections Δρmax = 0.21 e Å3
362 parameters Δρmin = −0.24 e Å3

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.69302 (17) 0.17764 (11) 0.65874 (5) 0.0243 (3)
C2 0.79427 (17) 0.11850 (12) 0.69258 (6) 0.0258 (3)
C3 0.81413 (17) 0.00556 (12) 0.68405 (6) 0.0277 (3)
H3 0.881999 −0.033944 0.707464 0.033*
C4 0.73832 (17) −0.05232 (12) 0.64241 (6) 0.0270 (3)
C5 0.64357 (18) 0.00932 (12) 0.60713 (6) 0.0287 (3)
H5 0.594461 −0.026113 0.577227 0.034*
C6 0.62141 (17) 0.12092 (12) 0.61563 (6) 0.0268 (3)
H6 0.555661 0.160674 0.591572 0.032*
C7 0.65276 (17) 0.29433 (11) 0.66734 (5) 0.0242 (3)
C8 0.56121 (17) 0.46080 (11) 0.64655 (5) 0.0244 (3)
C9 0.49737 (18) 0.55453 (11) 0.62294 (5) 0.0257 (3)
H9 0.479766 0.559215 0.584935 0.031*
C10 0.46019 (17) 0.64149 (11) 0.65739 (6) 0.0253 (3)
C11 0.48861 (18) 0.63285 (12) 0.71361 (6) 0.0281 (3)
H11 0.464455 0.693767 0.736265 0.034*
C12 0.55047 (19) 0.53861 (12) 0.73678 (5) 0.0287 (3)
H12 0.566304 0.533360 0.774861 0.034*
C13 0.58903 (17) 0.45133 (11) 0.70256 (5) 0.0249 (3)
C14 0.38673 (17) 0.74118 (11) 0.63489 (5) 0.0248 (3)
C15 0.27354 (17) 0.90514 (12) 0.63245 (6) 0.0253 (3)
C16 0.21044 (18) 1.00914 (12) 0.64186 (6) 0.0272 (3)
H16 0.196434 1.035778 0.677671 0.033*
C17 0.16846 (17) 1.07293 (12) 0.59683 (6) 0.0287 (3)
C18 0.1847 (2) 1.02899 (13) 0.54424 (6) 0.0330 (3)
H18 0.153195 1.072271 0.513946 0.040*
C19 0.2453 (2) 0.92474 (13) 0.53543 (6) 0.0318 (3)
H19 0.254261 0.896344 0.499724 0.038*
C20 0.29259 (18) 0.86253 (12) 0.58001 (6) 0.0266 (3)
C21 0.2269 (2) 1.25553 (12) 0.63172 (7) 0.0340 (3)
H21A 0.314059 1.266312 0.607004 0.041*
H21B 0.266620 1.219978 0.665212 0.041*
C22 0.1582 (2) 1.36723 (13) 0.64567 (7) 0.0378 (4)
H22A 0.075915 1.357214 0.672463 0.045*
H22B 0.238348 1.415039 0.662181 0.045*
C23 −0.0209 (2) 1.34796 (14) 0.57307 (9) 0.0430 (4)
H23A −0.065811 1.383431 0.540348 0.052*
H23B −0.104284 1.336053 0.599265 0.052*
C24 0.0488 (2) 1.23730 (13) 0.55780 (8) 0.0390 (4)
H24A −0.030972 1.189565 0.541029 0.047*
H24B 0.130560 1.248921 0.530945 0.047*
C25 0.88799 (19) 0.17115 (13) 0.73735 (6) 0.0322 (3)
H25A 0.832606 0.165570 0.771519 0.048*
H25B 0.905626 0.249222 0.728749 0.048*
H25C 0.986732 0.132916 0.740906 0.048*
C26 0.7615 (2) −0.21319 (13) 0.58283 (7) 0.0370 (4)
H26A 0.686373 −0.176899 0.558870 0.056*
H26B 0.739873 −0.292682 0.584254 0.056*
H26C 0.864900 −0.201421 0.568883 0.056*
C27 0.8446 (2) −0.22581 (13) 0.67654 (7) 0.0398 (4)
H27A 0.953129 −0.208560 0.671010 0.060*
H27B 0.828282 −0.305536 0.672196 0.060*
H27C 0.815422 −0.203391 0.713128 0.060*
C28 0.0293 (2) 1.52855 (14) 0.61022 (9) 0.0481 (5)
H28A 0.109769 1.577017 0.624928 0.072*
H28B −0.051069 1.519072 0.637206 0.072*
H28C −0.015043 1.561809 0.577347 0.072*
N1 0.75161 (17) −0.16655 (10) 0.63700 (5) 0.0326 (3)
N2 0.60315 (15) 0.35974 (10) 0.62531 (5) 0.0247 (3)
N3 0.64741 (15) 0.34701 (10) 0.71470 (5) 0.0258 (3)
N4 0.33347 (15) 0.82541 (9) 0.66670 (5) 0.0252 (3)
N5 0.36288 (15) 0.75965 (10) 0.58267 (5) 0.0276 (3)
N6 0.11305 (15) 1.18284 (10) 0.60580 (5) 0.0304 (3)
N7 0.09523 (16) 1.42065 (11) 0.59706 (6) 0.0340 (3)
O1 0.71569 (15) 0.55306 (10) 0.49523 (5) 0.0367 (3)
O2 0.43370 (15) 0.65458 (9) 0.48653 (4) 0.0320 (2)
H1A 0.685 (3) 0.481 (2) 0.4987 (10) 0.064 (7)*
H1B 0.768 (4) 0.559 (3) 0.4623 (13) 0.088 (10)*
H2 0.5989 (19) 0.3436 (14) 0.5915 (7) 0.024 (4)*
H2A 0.413 (3) 0.691 (2) 0.5155 (9) 0.049 (6)*
H2B 0.532 (3) 0.631 (2) 0.4886 (11) 0.079 (9)*
H4A 0.339 (2) 0.8289 (15) 0.7019 (8) 0.029 (4)*

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0348 (7) 0.0171 (6) 0.0212 (6) 0.0013 (5) 0.0027 (5) 0.0007 (5)
C2 0.0335 (7) 0.0217 (7) 0.0222 (6) −0.0003 (6) 0.0013 (5) 0.0005 (5)
C3 0.0346 (7) 0.0222 (7) 0.0262 (7) 0.0041 (6) −0.0018 (6) 0.0027 (5)
C4 0.0350 (7) 0.0191 (7) 0.0269 (7) 0.0020 (5) 0.0028 (6) 0.0002 (5)
C5 0.0392 (8) 0.0214 (7) 0.0256 (7) 0.0006 (6) −0.0029 (6) −0.0029 (5)
C6 0.0367 (7) 0.0211 (7) 0.0226 (6) 0.0037 (6) −0.0010 (5) 0.0005 (5)
C7 0.0345 (7) 0.0182 (6) 0.0199 (6) 0.0004 (5) 0.0013 (5) 0.0017 (5)
C8 0.0369 (7) 0.0177 (6) 0.0186 (6) −0.0003 (5) 0.0027 (5) −0.0012 (5)
C9 0.0418 (8) 0.0188 (6) 0.0163 (6) 0.0023 (6) 0.0001 (5) 0.0002 (5)
C10 0.0382 (7) 0.0169 (6) 0.0207 (6) 0.0011 (5) −0.0001 (5) −0.0002 (5)
C11 0.0459 (8) 0.0182 (6) 0.0201 (7) 0.0032 (6) 0.0001 (6) −0.0030 (5)
C12 0.0477 (8) 0.0227 (7) 0.0156 (6) 0.0038 (6) 0.0000 (6) −0.0002 (5)
C13 0.0390 (7) 0.0171 (6) 0.0186 (6) 0.0010 (5) 0.0003 (5) 0.0018 (5)
C14 0.0389 (7) 0.0174 (6) 0.0181 (6) 0.0006 (5) 0.0004 (5) −0.0016 (5)
C15 0.0350 (7) 0.0190 (6) 0.0219 (7) 0.0001 (5) −0.0005 (5) 0.0015 (5)
C16 0.0379 (7) 0.0194 (6) 0.0243 (7) 0.0014 (6) 0.0019 (5) −0.0011 (5)
C17 0.0333 (7) 0.0193 (7) 0.0335 (8) 0.0008 (6) −0.0003 (6) 0.0014 (6)
C18 0.0475 (9) 0.0232 (7) 0.0282 (7) 0.0007 (6) −0.0072 (6) 0.0053 (6)
C19 0.0495 (9) 0.0242 (7) 0.0216 (7) 0.0020 (6) −0.0041 (6) −0.0009 (5)
C20 0.0392 (8) 0.0189 (6) 0.0217 (7) 0.0002 (6) −0.0011 (6) −0.0002 (5)
C21 0.0434 (9) 0.0213 (7) 0.0369 (8) 0.0041 (6) −0.0054 (7) −0.0022 (6)
C22 0.0536 (10) 0.0219 (7) 0.0381 (9) 0.0051 (7) 0.0041 (7) −0.0010 (6)
C23 0.0373 (8) 0.0280 (8) 0.0634 (12) 0.0063 (7) −0.0037 (8) 0.0076 (8)
C24 0.0429 (9) 0.0237 (7) 0.0498 (10) 0.0025 (7) −0.0131 (7) 0.0034 (7)
C25 0.0402 (8) 0.0264 (7) 0.0297 (8) 0.0028 (6) −0.0055 (6) −0.0016 (6)
C26 0.0538 (10) 0.0215 (7) 0.0358 (8) 0.0046 (7) 0.0007 (7) −0.0045 (6)
C27 0.0573 (10) 0.0217 (7) 0.0403 (9) 0.0090 (7) −0.0062 (8) 0.0018 (6)
C28 0.0591 (11) 0.0256 (8) 0.0598 (12) 0.0146 (8) 0.0114 (9) 0.0020 (8)
N1 0.0474 (8) 0.0185 (6) 0.0318 (7) 0.0049 (5) −0.0021 (6) −0.0010 (5)
N2 0.0410 (7) 0.0173 (5) 0.0158 (6) 0.0035 (5) 0.0012 (5) −0.0006 (4)
N3 0.0420 (7) 0.0171 (5) 0.0184 (5) 0.0017 (5) 0.0010 (5) 0.0012 (4)
N4 0.0411 (7) 0.0170 (5) 0.0175 (6) 0.0026 (5) 0.0007 (5) −0.0003 (4)
N5 0.0446 (7) 0.0185 (6) 0.0198 (6) 0.0031 (5) −0.0013 (5) −0.0006 (4)
N6 0.0355 (6) 0.0193 (6) 0.0362 (7) 0.0027 (5) −0.0012 (5) 0.0027 (5)
N7 0.0397 (7) 0.0197 (6) 0.0429 (8) 0.0059 (5) 0.0069 (6) 0.0029 (5)
O1 0.0456 (6) 0.0286 (6) 0.0360 (6) 0.0002 (5) 0.0037 (5) −0.0011 (5)
O2 0.0499 (7) 0.0276 (5) 0.0186 (5) 0.0081 (5) −0.0014 (4) −0.0036 (4)

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) . Geometric parameters (Å, º)

C1—C2 1.403 (2) C19—H19 0.9500
C1—C6 1.405 (2) C20—N5 1.3877 (19)
C1—C7 1.4698 (18) C21—N6 1.466 (2)
C2—C3 1.393 (2) C21—C22 1.519 (2)
C2—C25 1.506 (2) C21—H21A 0.9900
C3—C4 1.401 (2) C21—H21B 0.9900
C3—H3 0.9500 C22—N7 1.463 (2)
C4—N1 1.3923 (18) C22—H22A 0.9900
C4—C5 1.406 (2) C22—H22B 0.9900
C5—C6 1.379 (2) C23—N7 1.460 (2)
C5—H5 0.9500 C23—C24 1.519 (2)
C6—H6 0.9500 C23—H23A 0.9900
C7—N2 1.3695 (17) C23—H23B 0.9900
C7—N3 1.3325 (18) C24—N6 1.460 (2)
C8—N2 1.3808 (17) C24—H24A 0.9900
C8—C9 1.3871 (19) C24—H24B 0.9900
C8—C13 1.4047 (19) C25—H25A 0.9800
C9—C10 1.3931 (19) C25—H25B 0.9800
C9—H9 0.9500 C25—H25C 0.9800
C10—C11 1.410 (2) C26—N1 1.455 (2)
C10—C14 1.4701 (19) C26—H26A 0.9800
C11—C12 1.381 (2) C26—H26B 0.9800
C11—H11 0.9500 C26—H26C 0.9800
C12—C13 1.3957 (19) C27—N1 1.449 (2)
C12—H12 0.9500 C27—H27A 0.9800
C13—N3 1.3910 (18) C27—H27B 0.9800
C14—N4 1.3708 (18) C27—H27C 0.9800
C14—N5 1.3215 (18) C28—N7 1.464 (2)
C15—N4 1.3799 (18) C28—H28A 0.9800
C15—C16 1.393 (2) C28—H28B 0.9800
C15—C20 1.4051 (19) C28—H28C 0.9800
C16—C17 1.397 (2) N2—H2 0.856 (18)
C16—H16 0.9500 N4—H4A 0.870 (19)
C17—C18 1.412 (2) O1—H1A 0.91 (3)
C17—N6 1.4321 (19) O1—H1B 0.94 (3)
C18—C19 1.385 (2) O2—H2A 0.86 (2)
C18—H18 0.9500 O2—H2B 0.90 (3)
C19—C20 1.390 (2)
C2—C1—C6 118.14 (12) C22—C21—H21B 109.3
C2—C1—C7 123.56 (13) H21A—C21—H21B 108.0
C6—C1—C7 118.25 (13) N7—C22—C21 110.56 (14)
C3—C2—C1 119.22 (13) N7—C22—H22A 109.5
C3—C2—C25 117.25 (13) C21—C22—H22A 109.5
C1—C2—C25 123.50 (13) N7—C22—H22B 109.5
C2—C3—C4 122.83 (13) C21—C22—H22B 109.5
C2—C3—H3 118.6 H22A—C22—H22B 108.1
C4—C3—H3 118.6 N7—C23—C24 110.66 (14)
N1—C4—C3 121.77 (13) N7—C23—H23A 109.5
N1—C4—C5 121.03 (13) C24—C23—H23A 109.5
C3—C4—C5 117.17 (13) N7—C23—H23B 109.5
C6—C5—C4 120.44 (13) C24—C23—H23B 109.5
C6—C5—H5 119.8 H23A—C23—H23B 108.1
C4—C5—H5 119.8 N6—C24—C23 110.25 (15)
C5—C6—C1 122.07 (13) N6—C24—H24A 109.6
C5—C6—H6 119.0 C23—C24—H24A 109.6
C1—C6—H6 119.0 N6—C24—H24B 109.6
N3—C7—N2 111.95 (12) C23—C24—H24B 109.6
N3—C7—C1 126.63 (12) H24A—C24—H24B 108.1
N2—C7—C1 121.22 (12) C2—C25—H25A 109.5
N2—C8—C9 132.08 (13) C2—C25—H25B 109.5
N2—C8—C13 104.98 (12) H25A—C25—H25B 109.5
C9—C8—C13 122.86 (12) C2—C25—H25C 109.5
C8—C9—C10 117.10 (12) H25A—C25—H25C 109.5
C8—C9—H9 121.4 H25B—C25—H25C 109.5
C10—C9—H9 121.4 N1—C26—H26A 109.5
C9—C10—C11 120.36 (13) N1—C26—H26B 109.5
C9—C10—C14 119.47 (12) H26A—C26—H26B 109.5
C11—C10—C14 120.14 (12) N1—C26—H26C 109.5
C12—C11—C10 122.06 (13) H26A—C26—H26C 109.5
C12—C11—H11 119.0 H26B—C26—H26C 109.5
C10—C11—H11 119.0 N1—C27—H27A 109.5
C11—C12—C13 117.98 (13) N1—C27—H27B 109.5
C11—C12—H12 121.0 H27A—C27—H27B 109.5
C13—C12—H12 121.0 N1—C27—H27C 109.5
N3—C13—C12 130.21 (13) H27A—C27—H27C 109.5
N3—C13—C8 110.09 (12) H27B—C27—H27C 109.5
C12—C13—C8 119.61 (13) N7—C28—H28A 109.5
N5—C14—N4 112.53 (12) N7—C28—H28B 109.5
N5—C14—C10 124.66 (13) H28A—C28—H28B 109.5
N4—C14—C10 122.81 (12) N7—C28—H28C 109.5
N4—C15—C16 132.48 (13) H28A—C28—H28C 109.5
N4—C15—C20 105.04 (12) H28B—C28—H28C 109.5
C16—C15—C20 122.44 (13) C4—N1—C27 118.18 (13)
C15—C16—C17 117.71 (13) C4—N1—C26 118.60 (13)
C15—C16—H16 121.1 C27—N1—C26 112.78 (13)
C17—C16—H16 121.1 C7—N2—C8 107.81 (11)
C16—C17—C18 119.68 (13) C7—N2—H2 127.9 (12)
C16—C17—N6 118.32 (13) C8—N2—H2 124.2 (12)
C18—C17—N6 121.99 (13) C7—N3—C13 105.17 (11)
C19—C18—C17 122.03 (14) C14—N4—C15 107.25 (12)
C19—C18—H18 119.0 C14—N4—H4A 126.4 (12)
C17—C18—H18 119.0 C15—N4—H4A 126.3 (12)
C18—C19—C20 118.53 (14) C14—N5—C20 105.13 (12)
C18—C19—H19 120.7 C17—N6—C24 114.80 (13)
C20—C19—H19 120.7 C17—N6—C21 113.32 (12)
N5—C20—C19 130.40 (13) C24—N6—C21 109.48 (12)
N5—C20—C15 110.05 (12) C23—N7—C22 108.50 (13)
C19—C20—C15 119.54 (13) C23—N7—C28 110.72 (14)
N6—C21—C22 111.44 (14) C22—N7—C28 110.83 (14)
N6—C21—H21A 109.3 H1A—O1—H1B 108 (2)
C22—C21—H21A 109.3 H2A—O2—H2B 109 (2)
N6—C21—H21B 109.3
C6—C1—C2—C3 −3.2 (2) C18—C19—C20—N5 −176.53 (16)
C7—C1—C2—C3 174.06 (13) C18—C19—C20—C15 2.0 (2)
C6—C1—C2—C25 174.91 (14) N4—C15—C20—N5 −0.20 (17)
C7—C1—C2—C25 −7.8 (2) C16—C15—C20—N5 177.83 (14)
C1—C2—C3—C4 0.8 (2) N4—C15—C20—C19 −178.99 (14)
C25—C2—C3—C4 −177.47 (14) C16—C15—C20—C19 −1.0 (2)
C2—C3—C4—N1 −175.39 (14) N6—C21—C22—N7 −57.69 (19)
C2—C3—C4—C5 2.5 (2) N7—C23—C24—N6 60.2 (2)
N1—C4—C5—C6 174.59 (14) C3—C4—N1—C27 1.2 (2)
C3—C4—C5—C6 −3.3 (2) C5—C4—N1—C27 −176.68 (15)
C4—C5—C6—C1 0.9 (2) C3—C4—N1—C26 −141.25 (15)
C2—C1—C6—C5 2.4 (2) C5—C4—N1—C26 40.9 (2)
C7—C1—C6—C5 −175.00 (14) N3—C7—N2—C8 −0.72 (17)
C2—C1—C7—N3 −30.0 (2) C1—C7—N2—C8 174.58 (13)
C6—C1—C7—N3 147.26 (15) C9—C8—N2—C7 −176.60 (16)
C2—C1—C7—N2 155.44 (14) C13—C8—N2—C7 0.18 (16)
C6—C1—C7—N2 −27.3 (2) N2—C7—N3—C13 0.92 (17)
N2—C8—C9—C10 176.15 (15) C1—C7—N3—C13 −174.06 (14)
C13—C8—C9—C10 −0.1 (2) C12—C13—N3—C7 175.75 (16)
C8—C9—C10—C11 0.5 (2) C8—C13—N3—C7 −0.79 (17)
C8—C9—C10—C14 −177.65 (13) N5—C14—N4—C15 −1.25 (18)
C9—C10—C11—C12 −1.4 (2) C10—C14—N4—C15 179.45 (13)
C14—C10—C11—C12 176.79 (15) C16—C15—N4—C14 −176.92 (16)
C10—C11—C12—C13 1.7 (2) C20—C15—N4—C14 0.83 (16)
C11—C12—C13—N3 −177.60 (15) N4—C14—N5—C20 1.09 (17)
C11—C12—C13—C8 −1.3 (2) C10—C14—N5—C20 −179.62 (14)
N2—C8—C13—N3 0.38 (17) C19—C20—N5—C14 178.09 (17)
C9—C8—C13—N3 177.53 (14) C15—C20—N5—C14 −0.53 (17)
N2—C8—C13—C12 −176.59 (14) C16—C17—N6—C24 −170.61 (14)
C9—C8—C13—C12 0.6 (2) C18—C17—N6—C24 10.8 (2)
C9—C10—C14—N5 −5.7 (2) C16—C17—N6—C21 62.58 (19)
C11—C10—C14—N5 176.15 (15) C18—C17—N6—C21 −115.97 (17)
C9—C10—C14—N4 173.54 (14) C23—C24—N6—C17 174.17 (14)
C11—C10—C14—N4 −4.6 (2) C23—C24—N6—C21 −57.08 (18)
N4—C15—C16—C17 176.01 (15) C22—C21—N6—C17 −174.13 (13)
C20—C15—C16—C17 −1.4 (2) C22—C21—N6—C24 56.31 (18)
C15—C16—C17—C18 2.7 (2) C24—C23—N7—C22 −59.96 (19)
C15—C16—C17—N6 −175.89 (13) C24—C23—N7—C28 178.21 (15)
C16—C17—C18—C19 −1.7 (2) C21—C22—N7—C23 58.40 (18)
N6—C17—C18—C19 176.81 (15) C21—C22—N7—C28 −179.83 (15)
C17—C18—C19—C20 −0.7 (3)

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C23—H23B···N2i 0.99 2.65 3.542 (2) 149
O1—H1A···O2ii 0.91 (3) 1.98 (3) 2.8665 (17) 164 (2)
O1—H1B···N7iii 0.94 (3) 1.91 (3) 2.8482 (18) 170 (3)
N2—H2···O2ii 0.856 (18) 1.944 (18) 2.7797 (15) 165.0 (17)
O2—H2A···N5 0.86 (2) 1.91 (2) 2.7685 (16) 175 (2)
O2—H2B···O1 0.90 (3) 1.86 (3) 2.7537 (18) 168 (3)
N4—H4A···N3iv 0.870 (19) 2.072 (19) 2.9411 (16) 176.7 (17)

Symmetry codes: (i) x−1, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x+1, y+1/2, −z+3/2.

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) . Crystal data

C28H31N7·H2O F(000) = 1032
Mr = 483.61 Dx = 1.241 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 9.8750 (1) Å Cell parameters from 12480 reflections
b = 22.6561 (3) Å θ = 4.3–77.4°
c = 11.7917 (1) Å µ = 0.63 mm1
β = 101.188 (1)° T = 100 K
V = 2588.01 (5) Å3 ROD, brown
Z = 4 0.29 × 0.16 × 0.07 mm

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 5468 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 4622 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.072
ω scans θmax = 78.2°, θmin = 3.9°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) h = −12→12
Tmin = 0.724, Tmax = 1.000 k = −13→28
33621 measured reflections l = −14→14

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.8256P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
5468 reflections Δρmax = 0.51 e Å3
345 parameters Δρmin = −0.31 e Å3

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.01456 (15) 0.36648 (7) 0.26721 (12) 0.0241 (3)
C2 0.00764 (15) 0.41121 (7) 0.18284 (13) 0.0248 (3)
C3 −0.11128 (16) 0.44501 (7) 0.15471 (13) 0.0271 (3)
H3 −0.114786 0.474253 0.098861 0.032*
C4 −0.22698 (16) 0.43717 (7) 0.20671 (13) 0.0281 (3)
C5 −0.22147 (16) 0.39030 (8) 0.28626 (14) 0.0301 (3)
H5 −0.297515 0.382171 0.319436 0.036*
C6 −0.10332 (16) 0.35642 (7) 0.31502 (13) 0.0273 (3)
H6 −0.101718 0.325855 0.367918 0.033*
C7 0.14024 (15) 0.33245 (7) 0.31155 (12) 0.0229 (3)
C8 0.34140 (15) 0.29191 (7) 0.33857 (12) 0.0228 (3)
C9 0.47236 (15) 0.27141 (7) 0.33039 (13) 0.0241 (3)
H9 0.508496 0.277953 0.264282 0.029*
C10 0.54734 (15) 0.24077 (7) 0.42464 (12) 0.0234 (3)
C11 0.49178 (15) 0.23108 (7) 0.52482 (12) 0.0236 (3)
H11 0.544475 0.210978 0.586806 0.028*
C12 0.36138 (15) 0.25057 (7) 0.53357 (12) 0.0241 (3)
H12 0.324416 0.243352 0.599015 0.029*
C13 0.28837 (15) 0.28160 (6) 0.43910 (13) 0.0228 (3)
C14 0.68280 (15) 0.21645 (6) 0.41738 (12) 0.0223 (3)
C15 0.85786 (15) 0.18224 (6) 0.35357 (13) 0.0228 (3)
C16 0.95061 (15) 0.16217 (7) 0.28615 (13) 0.0252 (3)
H16 0.929305 0.164904 0.205961 0.030*
C17 1.07574 (15) 0.13799 (6) 0.34208 (13) 0.0244 (3)
C18 1.10692 (15) 0.13588 (7) 0.46444 (13) 0.0263 (3)
H18 1.191352 0.120358 0.500963 0.032*
C19 1.01680 (16) 0.15595 (7) 0.53104 (13) 0.0266 (3)
H19 1.039331 0.154514 0.611317 0.032*
C20 0.89077 (15) 0.17849 (6) 0.47443 (13) 0.0231 (3)
C21 1.13723 (19) 0.11372 (9) 0.15611 (15) 0.0368 (4)
H21A 1.145758 0.153897 0.129953 0.044*
H21B 1.042476 0.101140 0.129598 0.044*
C22 1.2334 (2) 0.07369 (9) 0.10524 (16) 0.0392 (4)
H22A 1.219614 0.033188 0.127120 0.047*
H22B 1.210701 0.076123 0.021566 0.047*
C23 1.41019 (19) 0.08795 (8) 0.27129 (15) 0.0361 (4)
H23A 1.505209 0.100072 0.298135 0.043*
H23B 1.400472 0.047877 0.297564 0.043*
C24 1.31556 (17) 0.12828 (8) 0.32169 (15) 0.0329 (4)
H24A 1.337798 0.126002 0.405395 0.039*
H24B 1.329549 0.168699 0.299402 0.039*
C25 0.12476 (17) 0.42521 (7) 0.12195 (15) 0.0314 (3)
H25A 0.134451 0.393832 0.069391 0.047*
H25B 0.208865 0.429238 0.177969 0.047*
H25C 0.105481 0.461455 0.079748 0.047*
C26 −0.3390 (2) 0.52112 (8) 0.09748 (18) 0.0413 (4)
H26A −0.265556 0.547916 0.127881 0.062*
H26B −0.425557 0.541683 0.085972 0.062*
H26C −0.324627 0.505577 0.024996 0.062*
C27 −0.45043 (19) 0.47056 (10) 0.24402 (18) 0.0435 (5)
H27A −0.493893 0.432503 0.234141 0.065*
H27B −0.517460 0.500604 0.216914 0.065*
H27C −0.412649 0.476904 0.324428 0.065*
C28 1.4660 (2) 0.04941 (9) 0.09566 (18) 0.0452 (5)
H28A 1.452215 0.009836 0.120255 0.068*
H28B 1.560756 0.060461 0.121696 0.068*
H28C 1.443296 0.051435 0.012819 0.068*
N1 −0.34070 (14) 0.47306 (7) 0.17847 (13) 0.0347 (3)
N2 0.24614 (13) 0.32318 (6) 0.25861 (11) 0.0239 (3)
N3 0.16059 (13) 0.30763 (6) 0.41935 (11) 0.0236 (3)
N4 0.72636 (13) 0.20628 (6) 0.31942 (11) 0.0244 (3)
N5 0.77794 (13) 0.20066 (6) 0.51316 (11) 0.0231 (3)
N6 1.17078 (13) 0.11179 (6) 0.28103 (11) 0.0268 (3)
N7 1.37733 (15) 0.08964 (6) 0.14459 (12) 0.0324 (3)
O1 0.03124 (13) 0.30826 (6) 0.60438 (10) 0.0343 (3)
H1A −0.016 (4) 0.3420 (17) 0.618 (3) 0.091 (11)*
H1B 0.097 (3) 0.3046 (11) 0.675 (2) 0.051 (7)*
H3A 0.107 (2) 0.3088 (9) 0.476 (2) 0.039 (6)*
H5A 0.765 (2) 0.1996 (9) 0.585 (2) 0.031 (5)*

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0212 (7) 0.0309 (7) 0.0192 (7) 0.0020 (6) 0.0016 (5) −0.0043 (5)
C2 0.0229 (7) 0.0282 (7) 0.0219 (7) 0.0014 (6) 0.0013 (5) −0.0035 (5)
C3 0.0256 (7) 0.0285 (7) 0.0254 (7) 0.0015 (6) 0.0006 (6) −0.0019 (6)
C4 0.0221 (7) 0.0341 (8) 0.0262 (7) 0.0037 (6) −0.0001 (6) −0.0059 (6)
C5 0.0221 (7) 0.0427 (9) 0.0251 (7) 0.0027 (6) 0.0041 (6) −0.0043 (6)
C6 0.0225 (7) 0.0362 (8) 0.0225 (7) 0.0016 (6) 0.0029 (6) 0.0003 (6)
C7 0.0207 (7) 0.0295 (7) 0.0183 (6) 0.0013 (5) 0.0034 (5) −0.0011 (5)
C8 0.0207 (7) 0.0302 (7) 0.0172 (6) 0.0014 (5) 0.0025 (5) 0.0001 (5)
C9 0.0215 (7) 0.0324 (7) 0.0188 (7) 0.0011 (6) 0.0053 (5) 0.0016 (6)
C10 0.0205 (7) 0.0285 (7) 0.0212 (7) −0.0004 (5) 0.0043 (5) 0.0002 (5)
C11 0.0226 (7) 0.0293 (7) 0.0182 (7) 0.0014 (6) 0.0018 (5) 0.0016 (5)
C12 0.0239 (7) 0.0307 (7) 0.0183 (7) 0.0001 (6) 0.0058 (5) −0.0003 (5)
C13 0.0195 (7) 0.0292 (7) 0.0200 (7) 0.0011 (5) 0.0042 (5) −0.0009 (5)
C14 0.0200 (7) 0.0274 (7) 0.0191 (7) 0.0005 (5) 0.0028 (5) 0.0011 (5)
C15 0.0201 (7) 0.0271 (7) 0.0212 (7) −0.0002 (5) 0.0036 (5) 0.0020 (5)
C16 0.0242 (7) 0.0331 (8) 0.0187 (7) 0.0017 (6) 0.0054 (5) 0.0017 (6)
C17 0.0226 (7) 0.0272 (7) 0.0242 (7) −0.0002 (5) 0.0068 (6) 0.0002 (5)
C18 0.0210 (7) 0.0325 (8) 0.0244 (7) 0.0025 (6) 0.0017 (6) −0.0007 (6)
C19 0.0238 (7) 0.0348 (8) 0.0202 (7) 0.0022 (6) 0.0016 (6) −0.0012 (6)
C20 0.0201 (7) 0.0278 (7) 0.0215 (7) 0.0003 (5) 0.0046 (5) −0.0005 (5)
C21 0.0329 (9) 0.0517 (10) 0.0268 (8) 0.0055 (7) 0.0081 (7) 0.0003 (7)
C22 0.0394 (10) 0.0496 (10) 0.0305 (9) 0.0007 (8) 0.0117 (7) −0.0062 (7)
C23 0.0316 (8) 0.0454 (10) 0.0329 (9) 0.0093 (7) 0.0104 (7) 0.0043 (7)
C24 0.0257 (8) 0.0432 (9) 0.0309 (8) 0.0016 (7) 0.0082 (6) −0.0037 (7)
C25 0.0295 (8) 0.0323 (8) 0.0335 (8) 0.0039 (6) 0.0088 (6) 0.0062 (6)
C26 0.0326 (9) 0.0393 (9) 0.0503 (11) 0.0119 (7) 0.0040 (8) 0.0043 (8)
C27 0.0297 (9) 0.0549 (11) 0.0465 (11) 0.0148 (8) 0.0086 (8) −0.0015 (9)
C28 0.0525 (11) 0.0468 (10) 0.0426 (10) 0.0168 (9) 0.0246 (9) 0.0038 (8)
N1 0.0253 (7) 0.0422 (8) 0.0356 (8) 0.0100 (6) 0.0036 (6) −0.0001 (6)
N2 0.0209 (6) 0.0323 (6) 0.0181 (6) 0.0041 (5) 0.0031 (4) 0.0015 (5)
N3 0.0203 (6) 0.0325 (6) 0.0186 (6) 0.0036 (5) 0.0055 (5) −0.0002 (5)
N4 0.0210 (6) 0.0328 (6) 0.0194 (6) 0.0029 (5) 0.0038 (5) 0.0026 (5)
N5 0.0192 (6) 0.0324 (6) 0.0175 (6) 0.0023 (5) 0.0027 (5) 0.0002 (5)
N6 0.0228 (6) 0.0338 (7) 0.0245 (6) 0.0012 (5) 0.0063 (5) −0.0025 (5)
N7 0.0331 (7) 0.0363 (7) 0.0312 (7) 0.0081 (6) 0.0152 (6) 0.0017 (6)
O1 0.0325 (6) 0.0502 (7) 0.0213 (6) 0.0055 (5) 0.0077 (5) 0.0010 (5)

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) . Geometric parameters (Å, º)

C1—C6 1.407 (2) C19—C20 1.390 (2)
C1—C2 1.412 (2) C19—H19 0.9300
C1—C7 1.468 (2) C20—N5 1.3783 (19)
C2—C3 1.387 (2) C21—N6 1.446 (2)
C2—C25 1.509 (2) C21—C22 1.518 (2)
C3—C4 1.409 (2) C21—H21A 0.9700
C3—H3 0.9300 C21—H21B 0.9700
C4—N1 1.374 (2) C22—N7 1.453 (2)
C4—C5 1.411 (2) C22—H22A 0.9700
C5—C6 1.383 (2) C22—H22B 0.9700
C5—H5 0.9300 C23—N7 1.467 (2)
C6—H6 0.9300 C23—C24 1.509 (2)
C7—N2 1.3344 (19) C23—H23A 0.9700
C7—N3 1.3687 (19) C23—H23B 0.9700
C8—N2 1.3899 (19) C24—N6 1.465 (2)
C8—C9 1.395 (2) C24—H24A 0.9700
C8—C13 1.405 (2) C24—H24B 0.9700
C9—C10 1.395 (2) C25—H25A 0.9600
C9—H9 0.9300 C25—H25B 0.9600
C10—C11 1.413 (2) C25—H25C 0.9600
C10—C14 1.464 (2) C26—N1 1.451 (2)
C11—C12 1.384 (2) C26—H26A 0.9600
C11—H11 0.9300 C26—H26B 0.9600
C12—C13 1.394 (2) C26—H26C 0.9600
C12—H12 0.9300 C27—N1 1.449 (2)
C13—N3 1.3712 (19) C27—H27A 0.9600
C14—N4 1.3286 (19) C27—H27B 0.9600
C14—N5 1.3691 (19) C27—H27C 0.9600
C15—N4 1.3936 (19) C28—N7 1.458 (2)
C15—C16 1.400 (2) C28—H28A 0.9600
C15—C20 1.402 (2) C28—H28B 0.9600
C16—C17 1.395 (2) C28—H28C 0.9600
C16—H16 0.9300 N3—H3A 0.93 (2)
C17—C18 1.417 (2) N5—H5A 0.89 (2)
C17—N6 1.4190 (19) O1—H1A 0.93 (4)
C18—C19 1.374 (2) O1—H1B 0.95 (3)
C18—H18 0.9300
C6—C1—C2 117.89 (14) N6—C21—H21B 109.6
C6—C1—C7 118.69 (14) C22—C21—H21B 109.6
C2—C1—C7 123.34 (13) H21A—C21—H21B 108.1
C3—C2—C1 119.18 (14) N7—C22—C21 111.93 (15)
C3—C2—C25 117.50 (14) N7—C22—H22A 109.2
C1—C2—C25 123.31 (13) C21—C22—H22A 109.2
C2—C3—C4 123.14 (15) N7—C22—H22B 109.2
C2—C3—H3 118.4 C21—C22—H22B 109.2
C4—C3—H3 118.4 H22A—C22—H22B 107.9
N1—C4—C3 120.91 (15) N7—C23—C24 110.73 (14)
N1—C4—C5 122.05 (15) N7—C23—H23A 109.5
C3—C4—C5 117.02 (14) C24—C23—H23A 109.5
C6—C5—C4 120.18 (15) N7—C23—H23B 109.5
C6—C5—H5 119.9 C24—C23—H23B 109.5
C4—C5—H5 119.9 H23A—C23—H23B 108.1
C5—C6—C1 122.42 (15) N6—C24—C23 110.86 (14)
C5—C6—H6 118.8 N6—C24—H24A 109.5
C1—C6—H6 118.8 C23—C24—H24A 109.5
N2—C7—N3 112.50 (13) N6—C24—H24B 109.5
N2—C7—C1 126.94 (13) C23—C24—H24B 109.5
N3—C7—C1 120.53 (13) H24A—C24—H24B 108.1
N2—C8—C9 129.60 (13) C2—C25—H25A 109.5
N2—C8—C13 110.06 (12) C2—C25—H25B 109.5
C9—C8—C13 120.34 (13) H25A—C25—H25B 109.5
C10—C9—C8 117.80 (13) C2—C25—H25C 109.5
C10—C9—H9 121.1 H25A—C25—H25C 109.5
C8—C9—H9 121.1 H25B—C25—H25C 109.5
C9—C10—C11 120.75 (13) N1—C26—H26A 109.5
C9—C10—C14 119.36 (13) N1—C26—H26B 109.5
C11—C10—C14 119.85 (13) H26A—C26—H26B 109.5
C12—C11—C10 122.05 (13) N1—C26—H26C 109.5
C12—C11—H11 119.0 H26A—C26—H26C 109.5
C10—C11—H11 119.0 H26B—C26—H26C 109.5
C11—C12—C13 116.47 (13) N1—C27—H27A 109.5
C11—C12—H12 121.8 N1—C27—H27B 109.5
C13—C12—H12 121.8 H27A—C27—H27B 109.5
N3—C13—C12 131.98 (14) N1—C27—H27C 109.5
N3—C13—C8 105.46 (12) H27A—C27—H27C 109.5
C12—C13—C8 122.57 (13) H27B—C27—H27C 109.5
N4—C14—N5 112.69 (13) N7—C28—H28A 109.5
N4—C14—C10 124.72 (13) N7—C28—H28B 109.5
N5—C14—C10 122.58 (13) H28A—C28—H28B 109.5
N4—C15—C16 129.68 (13) N7—C28—H28C 109.5
N4—C15—C20 109.67 (13) H28A—C28—H28C 109.5
C16—C15—C20 120.64 (13) H28B—C28—H28C 109.5
C17—C16—C15 118.43 (14) C4—N1—C27 120.55 (15)
C17—C16—H16 120.8 C4—N1—C26 119.35 (15)
C15—C16—H16 120.8 C27—N1—C26 119.08 (14)
C16—C17—C18 119.50 (14) C7—N2—C8 104.57 (12)
C16—C17—N6 122.47 (13) C7—N3—C13 107.39 (12)
C18—C17—N6 117.92 (13) C7—N3—H3A 130.9 (14)
C19—C18—C17 122.29 (14) C13—N3—H3A 121.5 (14)
C19—C18—H18 118.9 C14—N4—C15 104.91 (12)
C17—C18—H18 118.9 C14—N5—C20 106.94 (12)
C18—C19—C20 117.78 (14) C14—N5—H5A 126.4 (13)
C18—C19—H19 121.1 C20—N5—H5A 126.0 (13)
C20—C19—H19 121.1 C17—N6—C21 117.43 (13)
N5—C20—C19 132.90 (14) C17—N6—C24 115.25 (13)
N5—C20—C15 105.78 (12) C21—N6—C24 109.98 (13)
C19—C20—C15 121.32 (14) C22—N7—C28 110.09 (16)
N6—C21—C22 110.31 (15) C22—N7—C23 109.16 (14)
N6—C21—H21A 109.6 C28—N7—C23 110.83 (14)
C22—C21—H21A 109.6 H1A—O1—H1B 102 (3)
C6—C1—C2—C3 3.1 (2) C18—C19—C20—N5 178.45 (16)
C7—C1—C2—C3 −173.56 (13) C18—C19—C20—C15 −1.8 (2)
C6—C1—C2—C25 −177.96 (14) N4—C15—C20—N5 −0.14 (16)
C7—C1—C2—C25 5.4 (2) C16—C15—C20—N5 −178.90 (14)
C1—C2—C3—C4 0.2 (2) N4—C15—C20—C19 −179.98 (14)
C25—C2—C3—C4 −178.84 (14) C16—C15—C20—C19 1.3 (2)
C2—C3—C4—N1 177.91 (14) N6—C21—C22—N7 −57.8 (2)
C2—C3—C4—C5 −3.5 (2) N7—C23—C24—N6 58.11 (19)
N1—C4—C5—C6 −177.94 (15) C3—C4—N1—C27 −170.86 (16)
C3—C4—C5—C6 3.5 (2) C5—C4—N1—C27 10.6 (2)
C4—C5—C6—C1 −0.3 (2) C3—C4—N1—C26 −2.5 (2)
C2—C1—C6—C5 −3.1 (2) C5—C4—N1—C26 178.98 (16)
C7—C1—C6—C5 173.73 (14) N3—C7—N2—C8 −1.61 (17)
C6—C1—C7—N2 159.76 (15) C1—C7—N2—C8 176.41 (14)
C2—C1—C7—N2 −23.6 (2) C9—C8—N2—C7 −178.69 (15)
C6—C1—C7—N3 −22.4 (2) C13—C8—N2—C7 1.39 (17)
C2—C1—C7—N3 154.23 (14) N2—C7—N3—C13 1.24 (17)
N2—C8—C9—C10 −179.95 (15) C1—C7—N3—C13 −176.92 (13)
C13—C8—C9—C10 0.0 (2) C12—C13—N3—C7 179.70 (16)
C8—C9—C10—C11 −0.1 (2) C8—C13—N3—C7 −0.30 (16)
C8—C9—C10—C14 177.48 (13) N5—C14—N4—C15 0.15 (17)
C9—C10—C11—C12 0.9 (2) C10—C14—N4—C15 −178.70 (14)
C14—C10—C11—C12 −176.70 (14) C16—C15—N4—C14 178.62 (16)
C10—C11—C12—C13 −1.4 (2) C20—C15—N4—C14 0.00 (16)
C11—C12—C13—N3 −178.69 (15) N4—C14—N5—C20 −0.24 (17)
C11—C12—C13—C8 1.3 (2) C10—C14—N5—C20 178.64 (13)
N2—C8—C13—N3 −0.68 (17) C19—C20—N5—C14 −179.96 (16)
C9—C8—C13—N3 179.39 (13) C15—C20—N5—C14 0.22 (16)
N2—C8—C13—C12 179.32 (14) C16—C17—N6—C21 3.4 (2)
C9—C8—C13—C12 −0.6 (2) C18—C17—N6—C21 179.43 (15)
C9—C10—C14—N4 −19.8 (2) C16—C17—N6—C24 135.47 (16)
C11—C10—C14—N4 157.83 (15) C18—C17—N6—C24 −48.47 (19)
C9—C10—C14—N5 161.50 (14) C22—C21—N6—C17 −168.74 (14)
C11—C10—C14—N5 −20.9 (2) C22—C21—N6—C24 56.83 (19)
N4—C15—C16—C17 −177.97 (14) C23—C24—N6—C17 166.65 (13)
C20—C15—C16—C17 0.5 (2) C23—C24—N6—C21 −57.84 (18)
C15—C16—C17—C18 −1.7 (2) C21—C22—N7—C28 178.82 (15)
C15—C16—C17—N6 174.29 (14) C21—C22—N7—C23 56.96 (19)
C16—C17—C18—C19 1.2 (2) C24—C23—N7—C22 −56.93 (19)
N6—C17—C18—C19 −174.97 (15) C24—C23—N7—C28 −178.34 (16)
C17—C18—C19—C20 0.5 (2)

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N7i 0.93 (4) 1.93 (4) 2.858 (2) 177 (3)
O1—H1B···N4ii 0.95 (3) 1.94 (3) 2.8905 (18) 177 (2)
N3—H3A···O1 0.93 (2) 1.82 (2) 2.7338 (17) 170 (2)
N5—H5A···N2iii 0.89 (2) 2.15 (2) 3.0199 (18) 167.2 (18)
O1—H1A···N7i 0.93 (4) 1.93 (4) 2.858 (2) 177 (3)
O1—H1B···N4ii 0.95 (3) 1.94 (3) 2.8905 (18) 177 (2)
N3—H3A···O1 0.93 (2) 1.82 (2) 2.7338 (17) 170 (2)
N5—H5A···N2iii 0.89 (2) 2.15 (2) 3.0199 (18) 167.2 (18)

Symmetry codes: (i) x−3/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z+1/2.

Funding Statement

This work was funded by Sirtex Medical grant .

References

  1. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  2. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  3. Martin, R. F., Broadhurst, S., Reum, M. E., Squire, C. J., Clark, G. R., Lobachevsky, P. N., White, J. M., Clark, C., Sy, D., Spotheim-Maurizot, M. & Kelly, D. P. (2004). Cancer Res. 64, 1067–1070. [DOI] [PubMed]
  4. Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.
  5. Pjura, P. E., Grzeskowiak, G. & Dickerson, R. E. (1987). J. Mol. Biol. 197, 257–271. [DOI] [PubMed]
  6. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  9. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1_dihydrate, 1_hydrate. DOI: 10.1107/S2056989018016791/sj5567sup1.cif

e-74-01903-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) 1_dihydrate. DOI: 10.1107/S2056989018016791/sj55671_dihydratesup2.hkl

Structure factors: contains datablock(s) 1_hydrate. DOI: 10.1107/S2056989018016791/sj55671_hydratesup3.hkl

Supporting information file. DOI: 10.1107/S2056989018016791/sj55671_dihydratesup4.cml

Supporting information file. DOI: 10.1107/S2056989018016791/sj55671_hydratesup5.cml

CCDC references: 1881120, 1881119

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES