Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 6;74(Pt 12):1700–1704. doi: 10.1107/S2056989018015359

Crystal structure and Hirshfeld surface analysis of (succinato-κO)[N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine-κ5 O,N,N′,O′,O′′]nickel(II) tetra­hydrate

Sevgi Kansiz a, Necmi Dege a, Yildiray Topcu b, Yusuf Atalay c, Snizhana V Gaidai d,*
PMCID: PMC6281127  PMID: 30574359

One O atom of the succinate anion and three O atoms and two N atoms from a tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine ligand coordinate to the NiII cation to form the complex which has a distorted octa­hedral geometry.

Keywords: crystal structure, nickel(II) complex, succinic acid, Hirshfeld surface

Abstract

In the title compound, [Ni(C10H24N2O4)(C4H4O4)]·4H2O, the NiII cation is octa­hedrally coordinated by one O atom of the succinate anion and three O atoms and two N atoms from an N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine mol­ecule. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture. Hirshfeld surface analyses and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (63.3%) and H⋯O/O⋯H (34.5%) inter­actions.

Chemical context  

Aliphatic di­carb­oxy­lic acid ligands have been utilized consistently in the synthesis of a diverse range of metal complexes. The metal-ion geometries of coordination compounds can easily be identified. Transition metal atoms can be bridged by aliphatic or aromatic di­carboxyl­ate ligands to produce chains, layers and frameworks (Pavlishchuk et al., 2011; Cheng et al., 2013; Şen et al., 2017). In addition, many transition and heavy metal cations play an important role in biological processes in the formation of many vitamins and drug components. An important element for biological systems is nickel. Nickel complexes have biological applications as a result of their anti­epileptic, anti­microbial, anti­bacterial and anti­cancer activities (Bombicz et al., 2001). Nickel complexes with succinic acid [chemical formula (CH2)2(CO2H)2] are examples containing a di­carb­oxy­lic acid. The carboxyl O atoms ligate to transition metals and thus the succinic acid can bridge between nickel metal centres to form one-, two- and three-dimensional structures as polymeric chains, layers and frameworks, respectively. We describe herein the synthesis and structural features of a new NiII complex, namely (succinato-κO)[N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­ene­di­amine-κ5 O,N,N′,O′,O′′]nickel(II) tetra­hydrate. In addition, to understand the inter­molecular inter­actions in the crystal structure, Hirshfeld surface analysis was performed.

Structural commentary  

The mol­ecular structure of the asymmetric unit of the title compound is illustrated in Fig. 1. The NiII ion is octa­hedrally coordinated by three O atoms and two N atoms of N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine mol­ecule and one O atom of the succinate anion. The Ni1—O4, Ni1—O5 and Ni1—N1 bond lengths are 2.0172 (16), 2.114 (2) and 2.145 (2) Å, respectively (Table 1). The C—O bond lengths in the deprotonated carb­oxy­lic groups differ noticeably [C1—O1 = 1.250 (3) Å and C4—O4 = 1.263 (3) Å], which is typical for monodentately coordinated carboxyl­ates (Gumienna-Kontecka et al., 2007; Pavlishchuk et al., 2010; Penkova et al., 2010). In the same way, the C5—O6, C7—O5 and C12—O7 bonds [1.431 (3), 1.440 (3) and 1.434 (3) Å, respectively] show single-bond character. The C10—N1 and C11—N1 bond lengths are similar [1.490 (3) and 1.497 (3) Å, respectively], while the C6—N2 and C9—N2 bonds are also not significantly different [1.500 (3) and 1.484 (4) Å, respectively]. An intra­molecular C14—H14B⋯O4 hydrogen bond occurs while the complex mol­ecule and water mol­ecules are linked by O—H⋯O hydrogen bonds (O9—H9C⋯O8, O9—H9D⋯O10, O10—H10D⋯O11, O11—H11C⋯O12, O11—H11D⋯O3; Fig. 1 and Table 2).graphic file with name e-74-01700-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

Table 1. Selected geometric parameters (Å, °).

Ni1—O4 2.0172 (16) Ni1—O5 2.114 (2)
Ni1—O6 2.0622 (18) Ni1—N1 2.145 (2)
Ni1—N2 2.069 (2) O4—C4 1.263 (3)
Ni1—O7 2.0768 (17) O1—C1 1.250 (3)
       
O4—Ni1—N2 165.11 (9) O4—Ni1—N1 108.35 (8)
O6—Ni1—O7 174.18 (7) N2—Ni1—N1 85.82 (9)
O6—Ni1—O5 95.59 (8) O5—Ni1—N1 162.10 (8)
       
Ni1—O4—C4—O3 29.5 (4) Ni1—N1—C10—C9 36.8 (3)
Ni1—O4—C4—C3 −147.4 (2) Ni1—O7—C12—C11 56.1 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.86 1.76 2.585 (3) 158
O6—H6⋯O3 0.87 2.03 2.581 (2) 121
O7—H7⋯O1i 0.87 1.80 2.603 (3) 152
O8—H8⋯O2ii 0.82 1.87 2.687 (3) 175
O9—H9C⋯O8 0.85 1.98 2.803 (4) 162
O9—H9D⋯O10 0.85 1.94 2.767 (6) 164
O10—H10C⋯O11iii 0.85 2.09 2.892 (5) 156
O10—H10D⋯O11 0.85 2.10 2.913 (5) 160
O11—H11C⋯O12 0.85 1.99 2.836 (4) 178
O11—H11D⋯O3 0.85 2.02 2.865 (4) 172
O12—H12C⋯O1iv 0.82 (4) 2.38 (5) 2.915 (4) 124 (5)
C6—H6A⋯O10v 0.97 2.57 3.458 (5) 152
C14—H14B⋯O4 0.97 2.39 3.313 (4) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Supra­molecular features  

The crystal packing of the title compound (Fig. 2) features inter­molecular hydrogen bonds (O5—H5⋯O2i, O7—H7⋯O1i, O8—H8⋯O2ii, O10—H10C⋯O11iii, O12—H12C⋯O1iv and C6—H6A⋯O10v; symmetry codes as in Table 2), which connect the mol­ecules into a three-dimensional supra­molecular architecture. All four O atoms of the water mol­ecules are involved in intra or inter­molecular hydrogen bonds.

Figure 2.

Figure 2

A view of the crystal packing of the title compound along the c axis. Dashed lines denote the intra­molecular and inter­molecular hydrogen bonds.

Database survey  

A search of the Cambridge Structural database (CSD, version 5.39, update May 2018; Groom et al., 2016) revealed that there are several precendents for catena-{[[N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine-κ2 N 1,N 2]nickel(II)]-μ-succinato-κO 4} tetra­hydrate, including the structures of hexa­aqua­nickel(II) bis­{aqua[N-(2-{bis­[(carb­oxy)meth­yl]amino}­eth­yl)gly­cinato]nickel(II)} dihydrate (NELMUO; Belošević et al., 2013), hexa­aqua­nickel(II) (μ2-tri­ethyl­ene­tetra-amine­hexa­acetato)­diaqua­dinickel(II) dihydrate (UCAWEB; Shi et al., 2006) and sodium aqua­{hydrogen 2,2′,2′′,2′′′-[ethane-1,2-diylbis(nitrilo)]tetra­acetato}­nickel(II) trihydrate (WAPHAY; Crouse et al., 2012). In addition, tetra­aqua­bis­(isonicotinamide-κN 1)nickel(II) bis­(4-formyl­benzo­ate) dihydrate (HUCLAT; Hökelek et al., 2009), trans-tetra­aqua­bis­(isonicotinamide)­nickel(II) bis­(3-hy­droxy­benzo­ate) tetra­hydrate (GANZAY; Zaman et al., 2012) and tetra­aqua­bis­(isonicotinamide)­nickel(II) thio­phene-2,5-di­carboxylate dihydrate (NETQIO; Liu et al., 2012) have been reported. In these three complexes, the Ni—N bond lengths vary from 1.999 to 2.118 Å. In the title complex, the Ni—N bond lengths [2.145 (2) and 2.069 (2) Å] fall within these limits.

Hirshfeld surface analysis  

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure and two-dimensional fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017). The mol­ecular Hirshfeld surfaces were performed using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.7407 (red) to 1.6068 (blue) a.u. The red spots on the surface indicate the inter­molecular contacts involved in the hydrogen bonds. The red spots identified in Figs. 3 and 4 correspond to the near-type H⋯O contacts resulting from O—H⋯O and C—H⋯O hydrogen bonds (Table 2).

Figure 3.

Figure 3

The Hirshfeld surfaces of the title compound mapped over d norm, d i and d e.

Figure 4.

Figure 4

Hirshfeld surface mapped over d norm to visualize the inter­molecular inter­actions.

Fig. 5 shows the two-dimensional fingerprint plot for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6 represents the O⋯H/H⋯O contacts (34.5%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, d e + d i = 1.7 Å, and has two symmetrical points at the top, bottom left and right. These data are characteristic of O—H⋯O and C—H⋯O hydrogen bonds (Table 2). The top plot shown in Fig. 6 shows the two-dimensional fingerprint of the (d i, d e) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to d i = d e = 1.0 Å, which indicates the presence of the H⋯H contacts (63.3% contribution). The graph for C⋯H/H⋯C represents the contacts ((1.4% contribution) between the carbon atoms inside the Hirshfeld surface and the hydrogen atoms outside it and vice versa. It has two symmetrical wings on the left and right sides.

Figure 5.

Figure 5

The fingerprint plot for all inter­actions.

Figure 6.

Figure 6

Two-dimensional fingerprint plots with a d norm view of the H⋯H (63.3%), O⋯H/H⋯O (34.5%), C⋯H/H⋯C (1.4%) and O⋯O (0.8%) contacts in the title compound.

In the view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.308 to 0.257 a.u. using the STO-3G basis set at the Hartree–Fock level of theory, Fig. 7, the C—H⋯O and O—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

Figure 7.

Figure 7

Hirshfeld surface plotted over electrostatic potential energy.

Synthesis and crystallization  

A solution of NaOH (50 mmol, 2.0 g) was added to an aqueous solution of succinic acid (25 mmol, 3 g) under stirring. A solution of NiCl2·6H2O (25 mmol, 6.14 g) in methanol was added. The mixture was heated at 353 K for one h and then the blue mixture was filtered and left to dry at room temperature. The product (0.88 mmol, 0.20 g) was dissolved in ethanol and added to a ethanol solution of N,N,N′,N′-tetra­kis­(2-hy­droxy­eth­yl)ethyl­enedi­amine (1.75 mmol, 0.41 g). The mixture was heated at 353 K for one h under stirring and the resulting suspension was filtered. It was allowed to crystallize for four weeks at room temperature. Blue prismatic crystals suitable for X-ray diffraction analysis were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were geometrically positioned with C—H distances of 0.93–0.97 Å. and refined as riding, with U iso(H) = 1.2U eq(C). N-bound H atoms were located in difference-Fourier maps and refined isotropically. The water H atoms were located in a difference map and were refined subject to a DFIX restraint of O—H = 0.85 Å. The O12—H12C bond length was refined with a DFIX restraint of 0.84 (4) Å. The H atoms bonded to other O atoms (O5, O6, O7 and O8) were located in a difference map and refined freely.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C10H24N2O4)(C4H4O4)]·4H2O
M r 483.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.1369 (6), 10.8182 (5), 19.7771 (12)
β (°) 90.172 (5)
V3) 2168.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.64 × 0.53 × 0.42
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.605, 0.735
No. of measured, independent and observed [I > 2σ(I)] reflections 11333, 4472, 3581
R int 0.050
(sin θ/λ)max−1) 0.628
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.113, 1.06
No. of reflections 4472
No. of parameters 283
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.43

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018015359/xu5943sup1.cif

e-74-01700-sup1.cif (370.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015359/xu5943Isup2.hkl

e-74-01700-Isup2.hkl (356.3KB, hkl)

CCDC reference: 1564209

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

[Ni(C10H24N2O4)(C4H4O4)]·4H2O F(000) = 1032
Mr = 483.16 Dx = 1.480 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.1369 (6) Å Cell parameters from 18670 reflections
b = 10.8182 (5) Å θ = 1.9–27.7°
c = 19.7771 (12) Å µ = 0.96 mm1
β = 90.172 (5)° T = 296 K
V = 2168.8 (2) Å3 Prism, blue
Z = 4 0.64 × 0.53 × 0.42 mm

Data collection

Stoe IPDS 2 diffractometer 4472 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3581 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.050
rotation method scans θmax = 26.5°, θmin = 2.1°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −11→12
Tmin = 0.605, Tmax = 0.735 k = −13→13
11333 measured reflections l = −24→24

Refinement

Refinement on F2 14 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0617P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.003
4472 reflections Δρmax = 0.53 e Å3
283 parameters Δρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.78305 (3) 0.48644 (3) 0.27834 (2) 0.03216 (11)
O6 0.71228 (19) 0.64974 (17) 0.23851 (8) 0.0399 (4)
O7 0.83482 (18) 0.31821 (16) 0.32148 (8) 0.0389 (4)
O4 0.7758 (2) 0.55541 (16) 0.37302 (8) 0.0402 (4)
O5 0.98373 (19) 0.53962 (19) 0.27746 (9) 0.0441 (4)
O1 1.0038 (2) 0.6832 (2) 0.57591 (9) 0.0506 (5)
O3 0.7525 (2) 0.75762 (18) 0.35312 (9) 0.0492 (5)
O2 0.8782 (2) 0.5373 (2) 0.62081 (10) 0.0505 (5)
O8 0.3602 (2) 0.5662 (2) 0.36159 (13) 0.0616 (6)
H8 0.289310 0.530698 0.365865 0.092*
N1 0.6030 (2) 0.3883 (2) 0.25904 (10) 0.0386 (5)
N2 0.8286 (2) 0.4497 (2) 0.17844 (10) 0.0399 (5)
O11 0.6745 (3) 0.9685 (3) 0.43095 (17) 0.0797 (8)
H11C 0.743874 1.002983 0.446171 0.120*
H11D 0.695813 0.910368 0.404223 0.120*
C1 0.9109 (3) 0.6073 (2) 0.57295 (12) 0.0406 (6)
C4 0.7866 (3) 0.6676 (2) 0.38981 (12) 0.0394 (6)
O12 0.9026 (3) 1.0865 (3) 0.48350 (16) 0.0815 (8)
C11 0.6166 (3) 0.2652 (2) 0.29282 (14) 0.0443 (6)
H11A 0.644685 0.204241 0.259896 0.053*
H11B 0.531595 0.239664 0.310360 0.053*
C10 0.6021 (3) 0.3719 (3) 0.18425 (14) 0.0497 (7)
H10A 0.566366 0.445588 0.163106 0.060*
H10B 0.545229 0.302940 0.172542 0.060*
C12 0.7148 (3) 0.2705 (2) 0.34949 (14) 0.0440 (6)
H12A 0.683244 0.324126 0.385255 0.053*
H12B 0.729239 0.188620 0.368117 0.053*
C6 0.8042 (3) 0.5651 (3) 0.13822 (13) 0.0471 (7)
H6A 0.722563 0.556087 0.113029 0.057*
H6B 0.875128 0.575787 0.105906 0.057*
C5 0.7955 (3) 0.6798 (3) 0.18258 (13) 0.0466 (6)
H5A 0.882565 0.703352 0.198508 0.056*
H5B 0.758527 0.748288 0.157150 0.056*
C9 0.7392 (3) 0.3480 (3) 0.15738 (14) 0.0503 (7)
H9A 0.771937 0.269966 0.174776 0.060*
H9B 0.736540 0.342881 0.108427 0.060*
O10 0.5320 (4) 0.8538 (4) 0.54221 (19) 0.1024 (10)
H10C 0.461361 0.887695 0.555905 0.154*
H10D 0.555241 0.886225 0.504954 0.154*
C8 0.9674 (3) 0.4115 (3) 0.17774 (13) 0.0481 (7)
H8A 0.998072 0.406052 0.131423 0.058*
H8B 0.975995 0.330382 0.198239 0.058*
C13 0.4778 (3) 0.4508 (3) 0.27750 (14) 0.0471 (6)
H13A 0.404622 0.399473 0.262823 0.057*
H13B 0.472178 0.528317 0.253025 0.057*
C3 0.8508 (4) 0.6932 (3) 0.45697 (14) 0.0549 (8)
H3A 0.944899 0.702764 0.450027 0.066*
H3B 0.817365 0.771168 0.474064 0.066*
C14 0.4626 (3) 0.4768 (3) 0.35170 (17) 0.0541 (7)
H14A 0.440785 0.401067 0.375403 0.065*
H14B 0.545096 0.508051 0.369923 0.065*
C2 0.8295 (3) 0.5965 (3) 0.50927 (13) 0.0526 (7)
H2A 0.847406 0.516578 0.489003 0.063*
H2B 0.737092 0.597494 0.521824 0.063*
C7 1.0510 (3) 0.5040 (3) 0.21648 (15) 0.0497 (7)
H7A 1.135643 0.467410 0.227709 0.060*
H7B 1.066719 0.576359 0.188659 0.060*
O9 0.4560 (5) 0.6270 (4) 0.49044 (17) 0.1286 (14)
H6 0.691139 0.719062 0.257744 0.193*
H7 0.897531 0.295947 0.348879 0.193*
H5 1.041734 0.531317 0.309305 0.193*
H9C 0.418851 0.624575 0.451870 0.193*
H9D 0.466146 0.701837 0.502467 0.193*
H12C 0.872 (6) 1.154 (3) 0.474 (3) 0.16 (3)*
H12D 0.980 (4) 1.105 (5) 0.497 (5) 0.31 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.03494 (19) 0.03014 (17) 0.03141 (16) −0.00050 (13) 0.00031 (11) 0.00160 (11)
O6 0.0440 (11) 0.0373 (9) 0.0383 (8) 0.0033 (8) 0.0026 (8) 0.0053 (7)
O7 0.0389 (10) 0.0347 (9) 0.0430 (9) −0.0009 (8) −0.0022 (7) 0.0043 (7)
O4 0.0511 (12) 0.0348 (9) 0.0347 (8) −0.0036 (8) 0.0008 (8) −0.0006 (7)
O5 0.0371 (10) 0.0524 (11) 0.0426 (9) −0.0040 (9) 0.0011 (8) 0.0039 (8)
O1 0.0493 (12) 0.0560 (12) 0.0465 (10) −0.0098 (10) −0.0097 (9) 0.0051 (9)
O3 0.0676 (14) 0.0370 (10) 0.0430 (10) 0.0029 (10) −0.0090 (9) 0.0004 (7)
O2 0.0459 (12) 0.0616 (12) 0.0440 (10) −0.0027 (10) −0.0038 (9) 0.0104 (9)
O8 0.0498 (13) 0.0501 (12) 0.0850 (15) 0.0042 (11) 0.0207 (12) 0.0023 (11)
N1 0.0355 (12) 0.0367 (11) 0.0436 (11) −0.0007 (9) −0.0011 (9) 0.0018 (9)
N2 0.0431 (13) 0.0413 (12) 0.0353 (10) 0.0015 (10) 0.0025 (9) 0.0001 (8)
O11 0.078 (2) 0.0564 (15) 0.105 (2) 0.0042 (14) −0.0075 (16) −0.0150 (14)
C1 0.0422 (15) 0.0420 (13) 0.0377 (12) 0.0054 (12) −0.0007 (11) −0.0029 (10)
C4 0.0412 (15) 0.0406 (13) 0.0365 (12) −0.0024 (12) 0.0000 (10) −0.0012 (10)
O12 0.084 (2) 0.0730 (19) 0.0877 (19) −0.0127 (17) −0.0047 (16) 0.0158 (15)
C11 0.0403 (15) 0.0357 (13) 0.0569 (15) −0.0048 (12) −0.0007 (12) 0.0024 (11)
C10 0.0470 (17) 0.0567 (17) 0.0454 (14) −0.0053 (14) −0.0102 (12) −0.0041 (12)
C12 0.0466 (17) 0.0352 (13) 0.0502 (14) −0.0007 (12) 0.0006 (12) 0.0089 (10)
C6 0.0526 (18) 0.0538 (16) 0.0349 (12) 0.0035 (14) 0.0035 (12) 0.0078 (11)
C5 0.0525 (17) 0.0430 (14) 0.0443 (13) 0.0039 (13) 0.0047 (12) 0.0128 (11)
C9 0.0567 (19) 0.0506 (16) 0.0435 (14) −0.0023 (14) −0.0016 (13) −0.0111 (12)
O10 0.092 (3) 0.099 (3) 0.116 (3) −0.004 (2) 0.0061 (19) −0.003 (2)
C8 0.0487 (17) 0.0528 (16) 0.0428 (13) 0.0102 (14) 0.0098 (12) 0.0016 (12)
C13 0.0362 (15) 0.0455 (15) 0.0595 (16) 0.0018 (12) −0.0024 (12) 0.0058 (12)
C3 0.078 (2) 0.0388 (14) 0.0481 (15) −0.0040 (15) −0.0195 (15) −0.0021 (11)
C14 0.0411 (16) 0.0563 (17) 0.0649 (18) 0.0046 (14) 0.0074 (14) 0.0001 (14)
C2 0.0541 (19) 0.0646 (19) 0.0392 (13) −0.0101 (15) −0.0058 (12) 0.0018 (12)
C7 0.0404 (15) 0.0591 (18) 0.0498 (15) 0.0021 (14) 0.0105 (12) 0.0077 (13)
O9 0.180 (4) 0.106 (3) 0.100 (2) −0.014 (3) −0.013 (2) −0.017 (2)

Geometric parameters (Å, º)

Ni1—O4 2.0172 (16) C11—H11B 0.9700
Ni1—O6 2.0622 (18) C10—C9 1.512 (4)
Ni1—N2 2.069 (2) C10—H10A 0.9700
Ni1—O7 2.0768 (17) C10—H10B 0.9700
Ni1—O5 2.114 (2) C12—H12A 0.9700
Ni1—N1 2.145 (2) C12—H12B 0.9700
O6—C5 1.431 (3) C6—C5 1.522 (4)
O6—H6 0.8680 C6—H6A 0.9700
O7—C12 1.434 (3) C6—H6B 0.9700
O7—H7 0.8681 C5—H5A 0.9700
O4—C4 1.263 (3) C5—H5B 0.9700
O5—C7 1.440 (3) C9—H9A 0.9700
O5—H5 0.8650 C9—H9B 0.9700
O1—C1 1.250 (3) O10—H10C 0.8500
O3—C4 1.262 (3) O10—H10D 0.8501
O2—C1 1.257 (3) C8—C7 1.518 (4)
O8—C14 1.433 (4) C8—H8A 0.9700
O8—H8 0.8200 C8—H8B 0.9700
N1—C13 1.485 (4) C13—C14 1.502 (4)
N1—C10 1.490 (3) C13—H13A 0.9700
N1—C11 1.497 (3) C13—H13B 0.9700
N2—C8 1.467 (4) C3—C2 1.488 (4)
N2—C9 1.484 (4) C3—H3A 0.9700
N2—C6 1.500 (3) C3—H3B 0.9700
O11—H11C 0.8500 C14—H14A 0.9700
O11—H11D 0.8500 C14—H14B 0.9700
C1—C2 1.508 (4) C2—H2A 0.9700
C4—C3 1.503 (4) C2—H2B 0.9700
O12—H12C 0.816 (10) C7—H7A 0.9700
O12—H12D 0.851 (9) C7—H7B 0.9700
C11—C12 1.498 (4) O9—H9C 0.8500
C11—H11A 0.9700 O9—H9D 0.8500
O4—Ni1—O6 91.38 (7) C11—C12—H12A 110.4
O4—Ni1—N2 165.11 (9) O7—C12—H12B 110.4
O6—Ni1—N2 83.00 (8) C11—C12—H12B 110.4
O4—Ni1—O7 87.29 (7) H12A—C12—H12B 108.6
O6—Ni1—O7 174.18 (7) N2—C6—C5 112.5 (2)
N2—Ni1—O7 99.62 (8) N2—C6—H6A 109.1
O4—Ni1—O5 86.84 (8) C5—C6—H6A 109.1
O6—Ni1—O5 95.59 (8) N2—C6—H6B 109.1
N2—Ni1—O5 80.03 (8) C5—C6—H6B 109.1
O7—Ni1—O5 90.00 (7) H6A—C6—H6B 107.8
O4—Ni1—N1 108.35 (8) O6—C5—C6 107.2 (2)
O6—Ni1—N1 93.50 (8) O6—C5—H5A 110.3
N2—Ni1—N1 85.82 (9) C6—C5—H5A 110.3
O7—Ni1—N1 81.56 (8) O6—C5—H5B 110.3
O5—Ni1—N1 162.10 (8) C6—C5—H5B 110.3
C5—O6—Ni1 106.55 (15) H5A—C5—H5B 108.5
C5—O6—H6 106.8 N2—C9—C10 109.6 (2)
Ni1—O6—H6 131.2 N2—C9—H9A 109.7
C12—O7—Ni1 105.11 (15) C10—C9—H9A 109.7
C12—O7—H7 106.2 N2—C9—H9B 109.7
Ni1—O7—H7 133.1 C10—C9—H9B 109.7
C4—O4—Ni1 126.59 (16) H9A—C9—H9B 108.2
C7—O5—Ni1 113.10 (17) H10C—O10—H10D 109.5
C7—O5—H5 105.0 N2—C8—C7 110.1 (2)
Ni1—O5—H5 128.2 N2—C8—H8A 109.6
C14—O8—H8 109.5 C7—C8—H8A 109.6
C13—N1—C10 107.2 (2) N2—C8—H8B 109.6
C13—N1—C11 111.9 (2) C7—C8—H8B 109.6
C10—N1—C11 109.7 (2) H8A—C8—H8B 108.2
C13—N1—Ni1 117.32 (17) N1—C13—C14 114.5 (2)
C10—N1—Ni1 103.81 (17) N1—C13—H13A 108.6
C11—N1—Ni1 106.49 (16) C14—C13—H13A 108.6
C8—N2—C9 111.9 (2) N1—C13—H13B 108.6
C8—N2—C6 112.7 (2) C14—C13—H13B 108.6
C9—N2—C6 111.6 (2) H13A—C13—H13B 107.6
C8—N2—Ni1 106.26 (15) C2—C3—C4 114.9 (2)
C9—N2—Ni1 105.82 (16) C2—C3—H3A 108.5
C6—N2—Ni1 108.03 (16) C4—C3—H3A 108.5
H11C—O11—H11D 109.5 C2—C3—H3B 108.5
O1—C1—O2 124.1 (2) C4—C3—H3B 108.5
O1—C1—C2 120.0 (2) H3A—C3—H3B 107.5
O2—C1—C2 116.0 (3) O8—C14—C13 109.6 (3)
O3—C4—O4 124.6 (2) O8—C14—H14A 109.7
O3—C4—C3 118.8 (2) C13—C14—H14A 109.7
O4—C4—C3 116.5 (2) O8—C14—H14B 109.7
H12C—O12—H12D 101.8 (15) C13—C14—H14B 109.7
N1—C11—C12 111.1 (2) H14A—C14—H14B 108.2
N1—C11—H11A 109.4 C3—C2—C1 116.5 (3)
C12—C11—H11A 109.4 C3—C2—H2A 108.2
N1—C11—H11B 109.4 C1—C2—H2A 108.2
C12—C11—H11B 109.4 C3—C2—H2B 108.2
H11A—C11—H11B 108.0 C1—C2—H2B 108.2
N1—C10—C9 111.5 (2) H2A—C2—H2B 107.3
N1—C10—H10A 109.3 O5—C7—C8 109.5 (2)
C9—C10—H10A 109.3 O5—C7—H7A 109.8
N1—C10—H10B 109.3 C8—C7—H7A 109.8
C9—C10—H10B 109.3 O5—C7—H7B 109.8
H10A—C10—H10B 108.0 C8—C7—H7B 109.8
O7—C12—C11 106.7 (2) H7A—C7—H7B 108.2
O7—C12—H12A 110.4 H9C—O9—H9D 109.5
Ni1—O4—C4—O3 29.5 (4) Ni1—N2—C9—C10 42.5 (3)
Ni1—O4—C4—C3 −147.4 (2) N1—C10—C9—N2 −55.8 (3)
C13—N1—C11—C12 −105.5 (3) C9—N2—C8—C7 −165.1 (2)
C10—N1—C11—C12 135.7 (3) C6—N2—C8—C7 68.1 (3)
Ni1—N1—C11—C12 23.9 (3) Ni1—N2—C8—C7 −50.0 (2)
C13—N1—C10—C9 161.6 (2) C10—N1—C13—C14 −179.1 (3)
C11—N1—C10—C9 −76.7 (3) C11—N1—C13—C14 60.6 (3)
Ni1—N1—C10—C9 36.8 (3) Ni1—N1—C13—C14 −62.9 (3)
Ni1—O7—C12—C11 56.1 (2) O3—C4—C3—C2 151.7 (3)
N1—C11—C12—O7 −54.5 (3) O4—C4—C3—C2 −31.2 (4)
C8—N2—C6—C5 −99.8 (3) N1—C13—C14—O8 163.5 (2)
C9—N2—C6—C5 133.2 (3) C4—C3—C2—C1 169.7 (3)
Ni1—N2—C6—C5 17.3 (3) O1—C1—C2—C3 −10.1 (4)
Ni1—O6—C5—C6 50.5 (2) O2—C1—C2—C3 169.4 (3)
N2—C6—C5—O6 −45.8 (3) Ni1—O5—C7—C8 −13.7 (3)
C8—N2—C9—C10 157.8 (2) N2—C8—C7—O5 42.3 (3)
C6—N2—C9—C10 −74.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5···O2i 0.86 1.76 2.585 (3) 158
O6—H6···O3 0.87 2.03 2.581 (2) 121
O7—H7···O1i 0.87 1.80 2.603 (3) 152
O8—H8···O2ii 0.82 1.87 2.687 (3) 175
O9—H9C···O8 0.85 1.98 2.803 (4) 162
O9—H9D···O10 0.85 1.94 2.767 (6) 164
O10—H10C···O11iii 0.85 2.09 2.892 (5) 156
O10—H10D···O11 0.85 2.10 2.913 (5) 160
O11—H11C···O12 0.85 1.99 2.836 (4) 178
O11—H11D···O3 0.85 2.02 2.865 (4) 172
O12—H12C···O1iv 0.82 (4) 2.38 (5) 2.915 (4) 124 (5)
C6—H6A···O10v 0.97 2.57 3.458 (5) 152
C14—H14B···O4 0.97 2.39 3.313 (4) 158

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1; (v) x, −y+3/2, z−1/2.

References

  1. Belošević, S., Ćendić, M., Meetsma, A. & Matović, Z. D. (2013). Polyhedron, 50, 473–480.
  2. Bombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229–235.
  3. Cheng, P., Lin, W., Tseng, F., Kao, C., Chang, T., Senthil Raja, D., Liu, W. & Lin, C. (2013). Dalton Trans. 42, 2765–2772. [DOI] [PubMed]
  4. Crouse, H., Potoma, J., Nejrabi, F., Snyder, D. L., Chohan, B. S. & Basu, S. (2012). Dalton Trans. 41, 2720–2731. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.
  8. Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1130–m1131. [DOI] [PMC free article] [PubMed]
  9. Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019–1026.
  10. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. 2011, 4826–4836.
  11. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.
  12. Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.
  13. Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Shi, W., Dai, Y., Zhao, B., Song, H.-B., Wang, H.-G. & Cheng, P. (2006). Inorg. Chem. Commun. 9, 192–195.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  19. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.
  20. Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m249–m250. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018015359/xu5943sup1.cif

e-74-01700-sup1.cif (370.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018015359/xu5943Isup2.hkl

e-74-01700-Isup2.hkl (356.3KB, hkl)

CCDC reference: 1564209

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES