Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 9;74(Pt 12):1731–1734. doi: 10.1107/S2056989018015438

Two polymorphs of 2-(prop-2-yn-1-yl­oxy)naphthalene-1,4-dione: solvent-dependent crystallization

Flaviano Melo Ottoni a,*, Raquel Geralda Isidório a, Ricardo José Alves a, Nivaldo Lúcio Speziali b
PMCID: PMC6281128  PMID: 30574364

The title compound crystallizes in monoclinic (space group P21/c) and triclinic (space group Pī) forms from N,N-di­methyl­formamide and isopropyl alcohol solutions, respectively. The planar structures of the mol­ecules in both crystals are essentially the same as each other, with maximum deviations of 0.0969 (11) and 0.209 (4) Å for the monoclinic and triclinic forms, respectively, from the mean planes of all non-H atoms.

Keywords: crystal structure; naphthalene-1,4-dione; naphtho­quinone; polymorphs

Abstract

The title compound, C13H8O3, crystallizes in two polymorphs, namely the monoclinic (space group P21/c) and triclinic (space group Pī) forms, obtained from N,N-di­methyl­formamide and isopropyl alcohol solutions, respectively. The mol­ecular structures and conformations in the two forms are essentially the same as each other. The naphtho­quinone ring systems are essentially planar with r.m.s. deviations of 0.015 and 0.029 Å for the monoclinic and triclinic forms, respectively. The O-propargyl groups are coplanar with the naphtho­quinone units with r.m.s deviations ranging from 0.04 to 0.09 Å. In the monoclinic crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming a tape structure running along [120]. The tapes are further linked by a C—H⋯π inter­action into a layer parallel to the ab plane. Adjacent layers are linked by another C—H⋯π inter­action. In the triclinic crystal, mol­ecules are linked via C—H⋯O and π–π inter­actions, forming a layer parallel to the ab plane. Adjacent layers are linked by a C—H⋯π inter­action.

Chemical context  

Naphtho­quinone derivatives have been studied intensively over the past few decades, mostly because of their numerous biological activities, mainly anti­microbial and anti­tumor (Fujii et al., 1992; Hussain et al., 2007; Epifano et al., 2014). The main mechanism of the activity is related to the formation of reactive oxygen species (ROS) through semiquinonic radicals, which cause damage to cell macromolecules and consequently cell death (Da Silva et al., 2003). Among the substances that comprise this class, some synthetic bioactive derivatives have been obtained from lawsone (2-hy­droxy­naphthalene-1,4-dione) (Jordão et al., 2015). In a basic medium, lawsone shows three sites able to be alkyl­ated (Lamoureux et al., 2008), resulting in O-alkyl and C-alkyl derivatives difficult to purify in some cases in some cases (Kongkathip et al., 2003). The title compound was obtained in higher yields since oxygen better accommodates the negative charge generated in the enolate formation, using a weak base, propargyl bromide, aprotic solvent and heat. The product has an alkyne terminal chain and can be used as the starting material in the synthesis of triazole derivatives, which are widely exploited in medicinal chemistry (Haider et al., 2014). The present study shows that the title compound has two polymorphs, monoclinic (space group P21/c) and triclinic (space group Pī), crystallized from N,N-di­methyl­formamide (DMF) and isopropyl alcohol, respectively.graphic file with name e-74-01731-scheme1.jpg

Structural commentary  

The mol­ecular structures in the two polymorphs are essentially the same (Fig. 1). The naphtho­quinone ring systems in the monoclinic and triclinic forms are both planar, with r.m.s. deviations of 0.015 and 0.029 Å, respectively, for the non-H atoms. Each propargyl group is coplanar with the naphtho­quinone ring system, with C1—C2—O3—C11 and C2—O3—C11—C12 torsion angles being −178.8 (1) and 175.9 (1)°, respectively, for the monoclinic form, and −177.1 (3) and −171.9 (3)°, respectively, for the triclinic form.

Figure 1.

Figure 1

(a) The mol­ecular structure of the title compound (monoclinic form) with the atom labelling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. (b) A view of the overlay of the mol­ecular structures of the monoclinic and triclinic forms of the title compound.

Supra­molecular features  

The mol­ecular arrangements in both crystals are similar (Fig. 2) with nearly the same crystal densities (ρ = 1.383 and 1.392 Mg m−3 for the monoclinic and triclinic forms, respect­ively). In the monoclinic crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds (C3—H3⋯O2i and C13—H13⋯O1ii; symmetry codes as in Table 1), forming a tape structure running along [120]. The tapes are further linked by a C—H⋯π inter­action (C11—H11ACg2iii; Table 1) into a layer parallel to the ab plane; Cg2 is the centroid of the C12≡C13 triple bond [Fig. 3(a)]. In the layer, mol­ecules are arranged parallel to each other and adjacent layers are linked by another C—H⋯π inter­action (C7—H7⋯Cg2iv; Table 1), forming a three-dimensional network [Fig. 4(a)]. In the tri­clinic crystal, mol­ecules are linked via C—H⋯O inter­actions (C3—H3⋯O2i, C11—H11B⋯O2 ii and C13—H13⋯O1iii; Table 1) and π–π inter­actions with centroid-centroid distances of 3.9906 (18) and 3.991 (2) Å, respectively, between C1–C4/C10/C9 rings and between C5–C10 rings, forming a layer parallel to the ab plane [Fig. 3(b)]. Adjacent layers are linked by a C—H⋯π inter­action [Fig. 4( b); C7—H7⋯Cg2v; Table 1].

Figure 2.

Figure 2

Packing diagrams of the title compound, showing the stacked naphtho­quinone mol­ecules: (a) monoclinic form viewed along the b axis and (b) triclinic form viewed along the a axis.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the midpoint of the C12≡C13 bond.

D—H⋯A D—H H⋯A DA D—H⋯A
Monoclinic form        
C3—H3⋯O2i 0.93 2.58 3.436 (2) 153
C13—H13⋯O1ii 0.93 2.33 3.350 (2) 173
C11—H11ACg2iii 0.97 2.91 3.740 (4) 145
C7—H7⋯Cg2iv 0.93 2.87 3.703 (4) 151
         
Triclinic form        
C3—H3⋯O2i 0.93 2.49 3.409 (4) 173
C11—H11B⋯O2ii 0.97 2.52 3.380 (4) 149
C13—H13⋯O1iii 0.93 2.44 3.340 (5) 164
C7—H7⋯Cg2v 0.93 2.93 3.829 (4) 162

Symmetry codes: monoclinic: (i) −1 − x, 2 − y, 1 − z; (ii) −x, −y, 1 − z; (iii) x, −1 + y, z; (iv) x, Inline graphic − y, −Inline graphic + z. Triclinic: (i) 2 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) −x, 2 − y, 1 − z; (iv) −x, 2 − y, −z; (v) x, y, −1 + z.

Figure 3.

Figure 3

Selected inter­molecular inter­actions in the crystals of (a) the monoclinic form and (b) the triclinic form. Purple dashed lines represent the C—H⋯O hydrogen bonds and green dashed lines the C—H⋯π and π–π inter­actions. Cg1 is the centroid of the C5–C10 ring, while Cg2 is the midpoint of the C12≡C13 bond.

Figure 4.

Figure 4

Partial packing diagrams of (a) the monoclinic form and (b) the triclinic from. Purple dashed lines represent the C—H⋯O hydrogen bonds and green dashed lines the C—H⋯π and π–π inter­actions.

Database survey  

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for naphthalene-1,4-dione gave about 790 structures. Among them, 2-meth­oxy­naphthalene-1,4-dione (Jin et al., 2011) and 2-{[1-(4-bromo­benz­yl)-1H-1,2,3-triazol-4-yl]meth­oxy}naphthalene-1,4-dione (Raja et al., 2015) are very similar to the title compound. These compounds exhibit additional functional groups linked at O3 and essentially planar naphtho­quinone ring systems and C—H⋯O and π–π inter­actions are also observed in their crystal structures.

Synthesis and crystallization  

The synthesis of the title compound was achieved in one step according to the literature method (Raja et al., 2015). To a solution of lawsone (0.20 g, 1.15 mmol) in DMF (10 ml) was added K2CO3 (0.16 g, 1.15 mmol) and propargyl bromide (0.48 g, 4.07 mmol). The mixture was stirred at 363 K for 24 h. Then hydro­chloric acid (1.0 mol l−1, 0.34 ml) was added and the resulting solution was extracted with di­chloro­methane (3 × 25 ml). The organic layers were washed with water (60 ml), dried over anhydrous sodium sulfate and concentrated. The solid obtained was purified by column chromatography using silica gel and hexa­ne–ethyl acetate (9:1) and furnished the title compound in 70% yield. Yellow single crystals of the monoclinic and triclinic forms (m.p. 420.0–423.1 K) suitable for X-ray diffraction were obtained by slow evaporation of DMF and isopropyl alcohol solutions (about 0.5 mg ml-1), respectively, at room temperature.

Spectrometric data. IR νmax (cm−1): The spectrum show the characteristic absorption bands of the main functional groups for title compound at IR (ν max/cm−1): 3250 (C—H alkyne), 3053 (C—H aromatic), 2130 (C≡C) 1649, 1680 (C=O quinone), 1575–1604 (C—C aromatic), 1016, 1208 and 1245 (C—O).1H NMR (400 MHz, CDCl3): δ H 8.12 (dd, 1H, J 5,6 7.1 Hz, J 8,7 1.9 Hz, H-5), 8,07 (dd, 1H, J 8,7 7.0 Hz, J 8,6 1.9 Hz, H-8), 7.74 (td, 1H, J 6,5 7.5 Hz, J 6,7 7.5 Hz, J 6,8 1.7 Hz, H-6), 7.70 (td, 1H, J 7,6 7.4 Hz, J 7,8 7.4 Hz, J 7,5 1.6 Hz, H-7), 6.33 (s, 1H, H-3), 4.78 (d, 2H, J 11,13 2.4 Hz, H-11), 2.63 (t, 1H, J 13,11 2.4 Hz, H-13). 13C NMR (100 MHz, CDCl3): δ C 184.6 (C-4), 179.8 (C-1), 158.1 (C-2), 134.3 (C-6), 133.4 (C-7), 131.9 (C-10), 131.1 (C-9), 126.7 (C-5), 126.2 (C-8), 111.6 (C-3), 78.2 (C-13), 75.5 (C-12), 56.7 (C-11).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were constrained to an ideal geometry with C—H = 0.93–0.97 Å and with U iso(H) = 1.2U eq (C).

Table 2. Experimental details.

  Monoclinic Triclinic
Crystal data
Chemical formula C13H8O3 C13H8O3
M r 212.19 212.19
Crystal system, space group Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c (Å) 10.0911 (7), 4.8021 (3), 20.8939 (15) 3.9906 (6), 11.6943 (16), 12.3413 (16)
α, β, γ (°) 90, 91.174 (7), 90 63.347 (14), 83.343 (12), 83.018 (12)
V3) 1012.27 (12) 509.69 (14)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.10
Crystal size (mm) 0.35 × 0.2 × 0.1 0.35 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku Xcalibur Atlas Gemini ultra Rigaku Xcalibur Atlas Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015) Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.764, 1.000 0.773, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10652, 3452, 1765 7730, 2503, 923
R int 0.058 0.084
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.156, 1.01 0.064, 0.184, 1.00
No. of reflections 3452 2503
No. of parameters 145 145
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20 0.24, −0.24

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) Monoclinic, Triclinic, OPLAU. DOI: 10.1107/S2056989018015438/is5501sup1.cif

e-74-01731-sup1.cif (36.2KB, cif)

Supporting information file. DOI: 10.1107/S2056989018015438/is5501Monoclinicsup2.cml

CCDC references: 1876486, 1876485

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic). Crystal data

C13H8O3 F(000) = 440
Mr = 212.19 Dx = 1.392 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.0911 (7) Å Cell parameters from 1655 reflections
b = 4.8021 (3) Å θ = 3.9–30.6°
c = 20.8939 (15) Å µ = 0.10 mm1
β = 91.174 (7)° T = 293 K
V = 1012.27 (12) Å3 Rod, yellow
Z = 4 0.35 × 0.2 × 0.1 mm

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic). Data collection

Rigaku Xcalibur Atlas Gemini ultra diffractometer 3452 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 1765 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
Detector resolution: 10.4186 pixels mm-1 θmax = 32.8°, θmin = 2.8°
ω scans h = −13→15
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) k = −7→7
Tmin = 0.764, Tmax = 1.000 l = −30→31
10652 measured reflections

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0571P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3452 reflections Δρmax = 0.19 e Å3
145 parameters Δρmin = −0.20 e Å3
0 restraints

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.08336 (12) 0.4803 (2) 0.34723 (5) 0.0512 (3)
O2 0.50658 (13) 1.0905 (3) 0.41264 (6) 0.0646 (4)
O3 0.19024 (11) 0.3978 (2) 0.46005 (5) 0.0493 (3)
C1 0.17768 (15) 0.6268 (3) 0.36127 (7) 0.0381 (4)
C2 0.24795 (16) 0.5949 (3) 0.42459 (7) 0.0390 (4)
C3 0.35379 (16) 0.7492 (3) 0.44063 (7) 0.0434 (4)
H3 0.3937 0.7248 0.4807 0.052*
C4 0.40849 (16) 0.9546 (3) 0.39706 (8) 0.0419 (4)
C5 0.38922 (16) 1.1922 (3) 0.29135 (8) 0.0445 (4)
H5 0.4645 1.2953 0.3021 0.053*
C6 0.32525 (17) 1.2340 (4) 0.23311 (8) 0.0495 (4)
H6 0.3576 1.3651 0.2046 0.059*
C7 0.21324 (18) 1.0817 (4) 0.21695 (8) 0.0528 (5)
H7 0.1701 1.1116 0.1778 0.063*
C8 0.16518 (16) 0.8854 (4) 0.25877 (8) 0.0460 (4)
H8 0.0899 0.7832 0.2477 0.055*
C9 0.22882 (15) 0.8402 (3) 0.31716 (7) 0.0362 (3)
C10 0.34126 (15) 0.9961 (3) 0.33397 (7) 0.0363 (4)
C11 0.24569 (19) 0.3468 (3) 0.52323 (7) 0.0488 (4)
H11A 0.2477 0.5175 0.5480 0.059*
H11B 0.3354 0.2761 0.5204 0.059*
C12 0.16027 (19) 0.1408 (4) 0.55324 (8) 0.0510 (5)
C13 0.0907 (2) −0.0220 (4) 0.57682 (9) 0.0649 (6)
H13 0.0352 −0.1518 0.5956 0.078*

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0476 (7) 0.0589 (7) 0.0465 (7) −0.0115 (6) −0.0106 (5) 0.0087 (5)
O2 0.0593 (8) 0.0758 (9) 0.0578 (9) −0.0230 (7) −0.0195 (6) 0.0080 (7)
O3 0.0576 (8) 0.0521 (7) 0.0377 (6) −0.0075 (6) −0.0101 (5) 0.0117 (5)
C1 0.0386 (8) 0.0394 (8) 0.0362 (8) 0.0037 (7) −0.0047 (6) −0.0009 (7)
C2 0.0474 (9) 0.0381 (8) 0.0315 (8) 0.0030 (7) −0.0020 (7) 0.0039 (6)
C3 0.0494 (9) 0.0474 (9) 0.0330 (8) 0.0008 (8) −0.0112 (7) 0.0019 (7)
C4 0.0415 (9) 0.0438 (9) 0.0402 (9) 0.0014 (7) −0.0068 (7) −0.0023 (7)
C5 0.0397 (8) 0.0453 (9) 0.0485 (10) −0.0006 (7) 0.0016 (7) 0.0030 (8)
C6 0.0524 (10) 0.0523 (10) 0.0439 (10) 0.0008 (8) 0.0037 (8) 0.0122 (8)
C7 0.0571 (11) 0.0630 (11) 0.0380 (9) 0.0015 (9) −0.0095 (8) 0.0115 (8)
C8 0.0453 (9) 0.0519 (10) 0.0405 (9) −0.0034 (8) −0.0086 (7) 0.0065 (7)
C9 0.0367 (8) 0.0374 (8) 0.0343 (8) 0.0040 (7) −0.0028 (6) 0.0017 (6)
C10 0.0361 (8) 0.0369 (8) 0.0356 (8) 0.0060 (6) −0.0025 (6) −0.0011 (6)
C11 0.0655 (11) 0.0482 (10) 0.0323 (8) −0.0007 (9) −0.0078 (7) 0.0043 (7)
C12 0.0674 (12) 0.0489 (10) 0.0366 (9) 0.0023 (9) −0.0013 (8) 0.0006 (8)
C13 0.0780 (15) 0.0633 (12) 0.0536 (12) −0.0049 (11) 0.0071 (10) 0.0095 (10)

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic). Geometric parameters (Å, º)

O1—C1 1.2145 (18) C8—C7 1.380 (2)
O2—C4 1.2241 (18) C8—H8 0.9300
O3—C2 1.3423 (18) C9—C10 1.398 (2)
O3—C11 1.4442 (19) C9—C1 1.478 (2)
C1—C2 1.496 (2) C9—C8 1.384 (2)
C2—C3 1.337 (2) C10—C4 1.483 (2)
C3—H3 0.9300 C10—C5 1.390 (2)
C4—C3 1.458 (2) C11—C12 1.462 (3)
C5—C6 1.380 (2) C11—H11A 0.9700
C5—H5 0.9300 C11—H11B 0.9700
C6—C7 1.382 (2) C12—C13 1.167 (2)
C6—H6 0.9300 C13—H13 0.9300
C7—H7 0.9300
O1—C1—C9 122.19 (14) C6—C5—H5 120.0
O1—C1—C2 120.61 (14) C6—C7—H7 119.9
O2—C4—C10 121.15 (15) C7—C8—C9 120.16 (16)
O2—C4—C3 120.59 (15) C7—C6—H6 119.9
O3—C2—C1 110.92 (14) C7—C8—H8 119.9
O3—C11—H11A 110.4 C8—C9—C10 119.80 (14)
O3—C11—H11B 110.4 C8—C9—C1 119.77 (14)
O3—C11—C12 106.62 (14) C8—C7—C6 120.20 (16)
C2—O3—C11 117.37 (13) C8—C7—H7 119.9
C2—C3—C4 121.94 (14) C9—C10—C4 120.35 (14)
C2—C3—H3 119.0 C9—C1—C2 117.20 (14)
C3—C2—O3 127.29 (15) C9—C8—H8 119.9
C3—C2—C1 121.78 (14) C10—C9—C1 120.42 (14)
C3—C4—C10 118.26 (14) C10—C5—H5 120.0
C4—C3—H3 119.0 H11A—C11—H11B 108.6
C5—C6—H6 119.9 C12—C11—H11A 110.4
C5—C6—C7 120.24 (15) C12—C11—H11B 110.4
C5—C10—C9 119.55 (14) C12—C13—H13 180.0
C5—C10—C4 120.10 (15) C13—C12—C11 179.1 (2)
C6—C5—C10 120.05 (16)
O1—C1—C2—O3 −1.5 (2) C8—C9—C1—C2 −177.9 (1)
O1—C1—C2—C3 178.5 (1) C9—C1—C2—O3 179.1 (1)
O2—C4—C3—C2 −179.0 (2) C9—C10—C4—O2 −179.6 (2)
O3—C2—C3—C4 178.9 (1) C9—C10—C5—C6 0.6 (2)
C1—C9—C8—C7 −179.2 (2) C9—C8—C7—C6 0.1 (3)
C1—C9—C10—C5 178.8 (1) C9—C1—C2—C3 −1.0 (2)
C1—C9—C10—C4 −1.7 (2) C9—C10—C4—C3 −0.3 (2)
C1—C2—C3—C4 −1.0 (2) C10—C9—C1—O1 −177.1 (1)
C2—O3—C11—C12 175.9 (1) C10—C5—C6—C7 0.1 (3)
C5—C10—C4—O2 −0.1 (2) C10—C9—C8—C7 0.7 (2)
C5—C6—C7—C8 −0.5 (3) C10—C9—C1—C2 2.3 (2)
C8—C9—C1—O1 2.7 (2) C10—C4—C3—C2 1.7 (2)
C8—C9—C10—C5 −1.0 (2) C11—O3—C2—C3 1.2 (2)
C8—C9—C10—C4 178.5 (1) C11—O3—C2—C1 −178.8 (1)

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic). Crystal data

C13H8O3 Z = 2
Mr = 212.19 F(000) = 220
Triclinic, P1 Dx = 1.383 Mg m3
a = 3.9906 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.6943 (16) Å Cell parameters from 796 reflections
c = 12.3413 (16) Å θ = 3.2–22.3°
α = 63.347 (14)° µ = 0.10 mm1
β = 83.343 (12)° T = 293 K
γ = 83.018 (12)° Rod, yellow
V = 509.69 (14) Å3 0.35 × 0.2 × 0.1 mm

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic). Data collection

Rigaku Xcalibur Atlas Gemini ultra diffractometer 2503 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 923 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.084
Detector resolution: 10.4186 pixels mm-1 θmax = 29.5°, θmin = 3.2°
ω scans h = −5→5
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) k = −14→15
Tmin = 0.773, Tmax = 1.000 l = −16→16
7730 measured reflections

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H-atom parameters constrained
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.0469P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2503 reflections Δρmax = 0.24 e Å3
145 parameters Δρmin = −0.23 e Å3
0 restraints

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1734 (6) 0.9294 (2) 0.1987 (2) 0.0641 (7)
O2 0.9527 (6) 0.4894 (2) 0.3422 (2) 0.0669 (8)
O3 0.3732 (5) 0.82577 (18) 0.41940 (19) 0.0502 (6)
C1 0.3597 (7) 0.8310 (3) 0.2279 (3) 0.0434 (8)
C2 0.4859 (7) 0.7629 (3) 0.3529 (3) 0.0403 (8)
C3 0.6822 (7) 0.6529 (3) 0.3868 (3) 0.0446 (8)
H3 0.7612 0.6142 0.4642 0.053*
C4 0.7756 (7) 0.5920 (3) 0.3068 (3) 0.0469 (8)
C5 0.7466 (8) 0.6005 (3) 0.1040 (3) 0.0623 (10)
H5 0.8690 0.5209 0.1307 0.075*
C6 0.6507 (9) 0.6636 (4) −0.0147 (4) 0.0734 (12)
H6 0.7105 0.6264 −0.0676 0.088*
C7 0.4685 (9) 0.7804 (4) −0.0543 (3) 0.0693 (11)
H7 0.4083 0.8226 −0.1343 0.083*
C8 0.3734 (8) 0.8360 (3) 0.0234 (3) 0.0544 (9)
H8 0.2467 0.9147 −0.0038 0.065*
C9 0.4678 (7) 0.7737 (3) 0.1427 (3) 0.0428 (8)
C10 0.6598 (7) 0.6563 (3) 0.1823 (3) 0.0447 (8)
C11 0.4891 (8) 0.7741 (3) 0.5405 (3) 0.0532 (9)
H11A 0.7294 0.7831 0.5362 0.064*
H11B 0.4510 0.6837 0.5849 0.064*
C12 0.2992 (8) 0.8455 (3) 0.6013 (3) 0.0518 (9)
C13 0.1377 (9) 0.9034 (3) 0.6476 (3) 0.0692 (11)
H13 0.0087 0.9496 0.6846 0.083*

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0807 (17) 0.0553 (14) 0.0518 (16) 0.0214 (13) −0.0130 (12) −0.0243 (12)
O2 0.0784 (17) 0.0510 (14) 0.0670 (17) 0.0249 (13) −0.0154 (13) −0.0273 (12)
O3 0.0621 (14) 0.0495 (13) 0.0460 (14) 0.0123 (10) −0.0128 (11) −0.0294 (11)
C1 0.0431 (18) 0.0423 (18) 0.044 (2) 0.0002 (14) 0.0003 (15) −0.0204 (16)
C2 0.0425 (18) 0.0415 (18) 0.040 (2) 0.0020 (14) −0.0068 (14) −0.0206 (16)
C3 0.0479 (19) 0.0440 (18) 0.0411 (19) 0.0029 (15) −0.0038 (14) −0.0195 (15)
C4 0.0456 (19) 0.0450 (19) 0.048 (2) −0.0002 (15) −0.0002 (15) −0.0204 (16)
C5 0.068 (2) 0.068 (2) 0.064 (3) 0.0107 (19) −0.0070 (19) −0.044 (2)
C6 0.077 (3) 0.095 (3) 0.069 (3) 0.009 (2) −0.008 (2) −0.057 (3)
C7 0.073 (3) 0.089 (3) 0.052 (2) 0.003 (2) −0.0072 (19) −0.038 (2)
C8 0.059 (2) 0.055 (2) 0.043 (2) 0.0090 (17) −0.0107 (17) −0.0171 (18)
C9 0.0392 (18) 0.0492 (19) 0.045 (2) −0.0027 (14) 0.0019 (15) −0.0268 (16)
C10 0.0482 (19) 0.0462 (19) 0.043 (2) 0.0013 (15) −0.0035 (15) −0.0238 (16)
C11 0.051 (2) 0.066 (2) 0.050 (2) 0.0075 (17) −0.0159 (17) −0.0329 (19)
C12 0.056 (2) 0.058 (2) 0.046 (2) 0.0043 (17) −0.0090 (17) −0.0274 (18)
C13 0.078 (3) 0.079 (3) 0.054 (2) 0.018 (2) −0.0136 (19) −0.036 (2)

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic). Geometric parameters (Å, º)

O1—C1 1.220 (3) C7—H7 0.9300
O2—C4 1.236 (3) C8—C7 1.378 (4)
O3—C2 1.339 (3) C8—H8 0.9300
O3—C11 1.447 (3) C9—C8 1.394 (4)
C1—C2 1.499 (4) C10—C9 1.393 (4)
C1—C9 1.481 (4) C10—C4 1.478 (4)
C2—C3 1.339 (3) C10—C5 1.382 (4)
C3—H3 0.9300 C11—H11A 0.9700
C4—C3 1.449 (4) C11—H11B 0.9700
C5—H5 0.9300 C12—C11 1.454 (4)
C5—C6 1.389 (5) C12—C13 1.164 (4)
C6—H6 0.9300 C13—H13 0.9300
C6—C7 1.369 (4)
O1—C1—C2 120.7 (3) C6—C5—H5 120.1
O1—C1—C9 121.8 (3) C7—C8—C9 119.7 (3)
O3—C2—C1 111.2 (2) C7—C8—H8 120.1
O3—C11—C12 107.6 (2) C7—C6—C5 120.2 (3)
O3—C11—H11A 110.2 C7—C6—H6 119.9
O3—C11—H11B 110.2 C8—C7—H7 119.7
O2—C4—C10 121.0 (3) C8—C9—C1 120.2 (3)
O2—C4—C3 120.2 (3) C9—C8—H8 120.1
C2—C3—C4 122.2 (3) C9—C10—C4 120.3 (3)
C2—O3—C11 117.2 (2) C9—C1—C2 117.5 (3)
C2—C3—H3 118.9 C10—C9—C1 120.1 (3)
C3—C2—O3 127.8 (3) C10—C9—C8 119.7 (3)
C3—C2—C1 121.0 (3) C10—C5—H5 120.1
C3—C4—C10 118.7 (3) C10—C5—C6 119.9 (3)
C4—C3—H3 118.9 H11A—C11—H11B 108.5
C5—C10—C9 119.8 (3) C12—C11—H11A 110.2
C5—C10—C4 119.9 (3) C12—C11—H11B 110.2
C5—C6—H6 119.9 C12—C13—H13 180.0
C6—C7—C8 120.6 (4) C13—C12—C11 177.6 (3)
C6—C7—H7 119.7
O1—C1—C2—O3 −1.3 (4) C5—C10—C9—C1 177.0 (3)
O1—C1—C2—C3 178.0 (3) C5—C10—C9—C8 −2.0 (5)
O1—C1—C9—C10 −175.2 (3) C5—C10—C4—O2 0.8 (5)
O1—C1—C9—C8 3.8 (5) C5—C10—C4—C3 179.7 (3)
O2—C4—C3—C2 −178.8 (3) C5—C6—C7—C8 −1.0 (6)
O3—C2—C3—C4 177.5 (3) C9—C1—C2—O3 179.1 (3)
C1—C2—C3—C4 −1.7 (5) C9—C1—C2—C3 −1.5 (5)
C1—C9—C8—C7 −178.5 (3) C9—C10—C5—C6 1.9 (5)
C2—O3—C11—C12 −171.9 (3) C9—C8—C7—C6 1.0 (6)
C2—C1—C9—C10 4.4 (5) C10—C9—C8—C7 0.5 (5)
C2—C1—C9—C8 −176.6 (3) C10—C4—C3—C2 2.3 (5)
C4—C10—C9—C1 −3.9 (5) C10—C5—C6—C7 −0.5 (6)
C4—C10—C9—C8 177.1 (3) C11—O3—C2—C1 −177.1 (3)
C4—C10—C5—C6 −177.1 (3) C11—O3—C2—C3 3.7 (5)

Funding Statement

This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) grant . Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant . Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) grant .

References

  1. Da Silva, M. N., Da Souza, M. C. B. V., Ferreira, V. F., Pinto, A. V., Pinto, M. C. R. F., Solange, M. S. V. & Wardell, J. (2003). Arkivoc, 10, 156–168.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Epifano, F., Genovese, S., Fiorito, S., Mathieu, V. & Kiss, R. (2014). Phytochem. Rev. 13, 37–49.
  4. Fujii, N., Yamashita, Y., Arima, Y., Nagashima, M. & Nakano, H. (1992). Antimicrob. Agents Chemother. 36, 2589–2594. [DOI] [PMC free article] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Haider, S., Alam, M. S. & Hamid, H. (2014). Inflammation Cell Signal, 1, 1–10.
  7. Hussain, H., Krohn, K., Ahmad, V. U., Miana, G. A. & Green, I. R. (2007). Arkivoc, 2, 145–171.
  8. Jin, B., Song, Z.-C., Jiang, F.-S., Liu, W.-H. & Ding, Z.-S. (2011). Acta Cryst. E67, o947. [DOI] [PMC free article] [PubMed]
  9. Jordão, A. K., Vargas, M. D., Pinto, A. C., da Silva, F. C. & Ferreira, V. F. (2015). RSC Adv. 5, 67909–67943.
  10. Kongkathip, N., Kongkathip, B., Siripong, P., Sangma, C., Luangkamin, S., Niyomdecha, M., Pattanapa, S., Piyaviriyagul, S. & Kongsaeree, P. (2003). Bioorg. Med. Chem. 11, 3179–3191. [DOI] [PubMed]
  11. Lamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022–1028.
  12. Raja, R., Kandhasamy, S., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o231–o232. [DOI] [PMC free article] [PubMed]
  13. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Monoclinic, Triclinic, OPLAU. DOI: 10.1107/S2056989018015438/is5501sup1.cif

e-74-01731-sup1.cif (36.2KB, cif)

Supporting information file. DOI: 10.1107/S2056989018015438/is5501Monoclinicsup2.cml

CCDC references: 1876486, 1876485

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES