Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Nov 22;74(Pt 12):1867–1871. doi: 10.1107/S2056989018016122

Crystal structure and Hirshfeld surface analysis of 2,4,6,11-tetra­kis­(4-fluoro­phen­yl)-9-oxa-1,5-di­aza­tri­cyclo­[5.3.1.03.8]undeca­ne

G Vengatesh a, M Sundaravadivelu a,*, Robert Swinton Darious b
PMCID: PMC6281130  PMID: 30574390

The compound, prepared by the NaBH4 reduction of 4,8,9,10-tetra­kis­(4-fluoro­phen­yl)-1,3-di­aza­adamantan-6-one in chloro­form and ethanol as solvent, crystallizes in the monoclinic space group P21/n with four mol­ecules in the unit cell.

Keywords: crystal structure, di­aza­bicyclo bis­pidine, quinuclidine ring, Hirshfeld surface analysis, Fluoro­phen­yl, π-π stacking inter­actions

Abstract

The title compound, C32H26F4N2O, crystallizes in the monoclinic space group P21/n with four mol­ecules in the unit cell. The compound was prepared by the NaBH4 reduction of 4,8,9,10-tetra­kis­(4-fluoro­phen­yl)-1,3-di­aza­adamantan-6-one in chloro­form and ethanol as solvent. The piperidine rings exhibit chair and boat conformations, and all four fluoro­phenyl groups are oriented in the equatorial direction. The crystal structure features C—H⋯F hydrogen bonds, C—H⋯π, N—H⋯π and π–π inter­actions. Hirshfeld surface and two-dimensional fingerprint analysis show that van der Waals inter­actions constitute a major contribution to the inter­molecular inter­actions, with H⋯H contacts accounting for 37.9% of the surface.

Chemical context  

Mol­ecules containing a bis­pidine nucleus are of great inter­est due to their presence in a wide variety of naturally occurring alkaloids and various biologically active mol­ecules (Jeyaraman & Avila, 1981). The biological activities of the mol­ecule depend crucially on the stereochemistry and conformation of the compound, and hence studies on the stereochemistry of the mol­ecules are inter­esting. The title compound contains four fluoro­phenyl groups and hence the investigation also looked for any weak inter­actions involving fluorine which are of current inter­est (Hathwar et al., 2014). Moreover, Das et al. (2017) have recently discussed the role of halogens in stabilizing stacking patterns.graphic file with name e-74-01867-scheme1.jpg

Structural commentary  

An ORTEP view of the title compound is shown in Fig. 1. The N2/C7/C8/C24–C26 piperidine ring adopts a chair conformation with puckering parameters Q = 0.6178 (19) Å, θ = 176.85 (18)°, φ = 25 (3)° while the N1/C9/C8/C24/C25/C17 piperidine ring [puckering parameters Q = 0.8564 (18) Å, θ = 89.49 (12)°, φ = 178.52 (12)°] adopts a boat conformation. The oxygen-containing quinuclidine ring system (C8/C9/N1/C17/C25/C24/O1/C16) also adopts a boat conformation, with puckering parameters Q = 0.7817 (18) Å, θ = 91.23 (13)°, φ = 121.27 (13)° for the C8/C9/N1/C16/O1/C24 ring and Q = 0.7867 (18) Å, θ = 89.40 (13)°, φ = 297.43 (3)° for the C17/C25/C24/O1/C16/N1 ring. The fluoro­phenyl groups at C7 and C26 subtend a dihedral angle of 29.45 (1)° and are oriented equatorially with respect to the N2/C7/C8/C24–C26 piperidine ring with torsion angles C6—C7—C8—C24 = −179.72 (14)° and C24—C25—C26—C27 = 176.10 (14)°. The other two fluoro­phenyl groups at C9 and C17 subtend a dihedral angle of 21.85 (1)° and are oriented equatorially with respect to the N1/C9/C8/C24/C25/C17 piperidine ring, with torsion angles C10—C9—C8—C24 = 125.64 (15)° and C18—C17—C25—C24 = −128.24 (15)°.

Figure 1.

Figure 1

An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at 40% probability level.

Supra­molecular features  

In the crystal, several C—H⋯F hydrogen bonds occur. Screw-related mol­ecules are linked by C32—H32⋯F4iii and C1—H1⋯F4iii hydrogen bonds with F4 acting as a bifurcated acceptor (Table 1). The mol­ecules are further linked by C31—H31⋯F1i and C8—H8⋯F3ii hydrogen bonds (Fig. 2). An N—H⋯π inter­action is present along with intra- and inter­molecular C—H⋯π inter­actions (Table 1, Figs. 2 and 3). Weak π–π stacking inter­actions occur between the fluoro­phenyl groups [Cg6vCg7vi = 4.0665 (12) Å; symmetry code: (vi) 1 − x, 1 − y, 1 − z; Cg6 and Cg7 are the centroids of the C10–C15 and C18–C23 rings respectively). Overall, these inter­actions generate a three-dimensional supra­molecular architecture.

Table 1. Hydrogen-bond geometry (Å, °).

Cg5 and Cg6 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31⋯F1i 0.93 2.51 3.231 (3) 135
C8—H8⋯F3ii 0.98 2.64 3.564 (2) 158
C32—H32⋯F4iii 0.93 2.66 3.567 (3) 162
C1—H1⋯F4iii 0.93 2.51 3.411 (2) 161
N2—H2ACg5iv 0.89 2.80 (2) 3.6594 (18) 161.7 (17)
C2—H2⋯Cg6v 0.93 2.68 3.552 (2) 156
C11—H11⋯Cg5 0.93 2.87 3.514 (2) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A view of the supra­molecular architecture of the title compound. Some of the atoms have been omitted for clarity.

Figure 3.

Figure 3

A view of the C11—H11⋯π inter­action (intra­molecular). Some of the atoms have been omitted for clarity.

Hirshfeld surface analysis  

Hirshfeld surface analysis and fingerprint plots, here generated with Crystal Explorer (Hirshfeld, 1977; Wolff et al., 2012; Turner et al., 2017), show the various inter­molecular inter­actions present in crystal structures (Wiedemann & Kohl, 2017; Tarahhomi et al., 2013). Fig. 4 shows the Hirshfeld surface of the title compound mapped over d norm where the intense red spots indicate regions of donor–acceptor inter­actions (Cárdenas-Valenzuela et al., 2018; Atioğlu et al., 2018) and represent the fluorine, carbon and hydrogen atoms involved. Fig. 5 shows the two-dimensional fingerprint plots, which qu­antify the contribution of each kind of inter­action to the surface formation (McKinnon et al., 2007). The largest contribution to the surface of 37.9% is from H⋯H contacts, while C⋯H contacts contribute 22.4%; these represent van der Waals inter­actions present in the crystal. Inter­molecular hydrogen-bonding inter­actions (F⋯H/H⋯F contacts) contribute 29.2%.

Figure 4.

Figure 4

Hirshfeld surface of the title compound plotted over d norm, with neighbouring inter­actions shown as red dashed lines.

Figure 5.

Figure 5

Two-dimensional fingerprint plots for the title compound.

Database survey  

Di­aza­bicyclic compounds with different substituents on the aromatic rings have been reported in the literature: 2,4,6,8-tetra­kis­(4-ethyl­phen­yl)-3,7-di­aza­bicyclo-[3.3.1]-nonan-9-one [(I); Rajesh et al., 2010], 2,4,6,8-tetra­kis­(4-bromo­phen­yl)-3,7di­aza­bicyclo-[3.3.1]-nonan-9-one [(II); Loh et al., 2010], 2,4,6,8-tetra­kis­(2-meth­oxy­phen­yl)-3,7-di­aza­bicyclo­[3.3.1]non­an-9-one [(III); Fun et al., 2009], 2,4,6,8-tetra­kis­(4-fluoro­phen­yl)-3,7-di­aza­bicyclo­[3.3.1]nonan-9-one [(IV); Natarajan et al., 2008]. Compounds (I), (II) and (III) crystallize in space group P21/c, while compound (IV) crystallizes in space group C2/c. The piperidine rings in all of these compounds adopt chair–boat conformations with an equatorial orientation of the aryl rings. In the crystal of (I), mol­ecules are linked via C—H⋯O hydrogen bonds, forming helical supra­molecular chains along the b-axis direction. In (II), the mol­ecules are connected through C—H⋯O and N—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction, and C—H⋯π inter­actions also occur. The supra­molecular structure of compound (III) features C—H⋯N hydrogen bonds, which link the mol­ecules along the b-axis direction, and C—H⋯π inter­actions. In (IV), the mol­ecules are linked into a two-dimensional network by N—H⋯O, C—H⋯F and C—H⋯O hydrogen bonds and the crystal packing is further supported by N—H⋯π and C—H⋯π inter­actions.

Further background to the synthesis and stereochemistry of 3,7-di­aza­bicyclo­[3.3.1]nonan-9-ones and their derivatives can be seen in reports of the following structures: chloro­phenyl-1,3-di­aza­adamantan-6-one (Krishnakumar et al., 2001), tetra­phenyl-1,3-di­aza­adamantan-6-one (Subha Nandhini et al., 2002), fluoro­phenyl-1,3-di­aza­tri­cyclo­[3.3.1.1]decan-6-one (Natarajan et al., 2009) and bis­pidine oxime (Parthiban et al., 2010).

Weak C—H⋯F hydrogen bonds with similar bond lengths and bond angles to those in the title compound have been reported in the crystal structures of N-(3,5-di­fluoro­phen­yl)-9,10-di­hydro-9,10-ethano­anthracene-11,12-dicarboximide and N-(2,4,6-tri­fluoro­phen­yl)-9,10-di­hydro-9,10-ethano­anthra­cene-11,12-dicarboximide (Schwarzer & Weber, 2011), 2,3,5,6-tetra­fluoro­benzene-1,4-diol quinoxaline (Czapik & Gdaniec, 2010) and 2,3-di­fluoro-N-(4-pyrid­yl)benzamide (McMahon et al., 2008). N—H⋯π inter­actions are present in the structures discussed by Fun et al. (2009) and Thirumurugan et al. (1999) while C—H⋯π inter­actions are present in the structures discussed by Selvanayagam et al. (2015), Muralikrishna et al. (2012) and Girisha et al. (2017).

Synthesis and crystallization  

The title compound was synthesized in three steps starting from 4-fluoro­benzaldehyde, acetone and ammonium acetate. 4,8,9,10-Tetra­kis(4-fluoro­phen­yl)-1,3-di­aza­adamantan-6-one (1 mmol) dissolved in chloro­form and NaBH4 (1 mmol) dissolved in ethanol were mixed, transferred to a closed container and stirred at 278–283 K. The reaction was monitored by TLC, and after complete disappearance of the ketone the resulting mixture was filtered. The solvent was evaporated and washed with cold water to obtain the resulting product. The crude product was recrystallized from a chloro­form–ethanol (1:2 v:v) mixture by the solvent diffusion method.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound hydrogen atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined in the riding-model approximation with U iso(H) = 1.2–1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C32H26F4N2O
M r 530.55
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 13.5712 (8), 9.5161 (6), 20.1543 (13)
β (°) 99.357 (2)
V3) 2568.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.711, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 45339, 4510, 3456
R int 0.039
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.117, 1.08
No. of reflections 4510
No. of parameters 356
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.23

Computer programs: APEX3, SAINT and XPREP (Bruker, 2016), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016122/dx2010sup1.cif

e-74-01867-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016122/dx2010Isup2.hkl

e-74-01867-Isup2.hkl (359.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018016122/dx2010Isup3.cml

CCDC reference: 1854381

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the DST and the SAIF, IIT Madras for X-ray crystallography facilities. They also thank Dr P. T. Mu­thiah (UGC-Emeritus Fellow) School of Chemistry, Bharathidasan University, Trichy and Dr M. Arunachalam, Department of Chemistry, The Gandhigram Rural Institute, for their helpful comments.

supplementary crystallographic information

Crystal data

C32H26F4N2O F(000) = 1104
Mr = 530.55 Dx = 1.372 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 13.5712 (8) Å Cell parameters from 9987 reflections
b = 9.5161 (6) Å θ = 2.9–27.2°
c = 20.1543 (13) Å µ = 0.10 mm1
β = 99.357 (2)° T = 296 K
V = 2568.2 (3) Å3 Block, colourless
Z = 4 0.15 × 0.10 × 0.10 mm

Data collection

Bruker Kappa APEX3 CMOS diffractometer 4510 independent reflections
Radiation source: fine-focus sealed tube 3456 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
ω and φ scan θmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −16→15
Tmin = 0.711, Tmax = 0.746 k = −11→11
45339 measured reflections l = −23→23

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.0821P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
4510 reflections Δρmax = 0.17 e Å3
356 parameters Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F4 0.36854 (15) −0.15750 (19) 0.84036 (7) 0.1037 (6)
F2 0.14924 (11) 0.80017 (13) 0.32630 (7) 0.0749 (4)
F1 −0.19168 (9) 0.36154 (18) 0.39919 (8) 0.0810 (5)
F3 0.71306 (11) 0.37803 (19) 0.77538 (7) 0.0862 (5)
O1 0.43408 (9) 0.18807 (14) 0.44967 (6) 0.0460 (3)
N1 0.36706 (10) 0.34033 (15) 0.52679 (7) 0.0333 (3)
N2 0.19955 (12) 0.05682 (16) 0.54676 (7) 0.0367 (4)
C30 0.3505 (2) −0.1210 (3) 0.77425 (11) 0.0666 (7)
C31 0.28511 (19) −0.0145 (3) 0.75434 (11) 0.0629 (6)
H31 0.2534 0.0331 0.7852 0.075*
C32 0.26722 (16) 0.0210 (2) 0.68670 (10) 0.0490 (5)
H32 0.2230 0.0935 0.6722 0.059*
C27 0.31384 (14) −0.04937 (19) 0.64048 (9) 0.0391 (4)
C26 0.29591 (13) −0.01240 (18) 0.56657 (9) 0.0375 (4)
H26 0.2955 −0.0998 0.5408 0.045*
C25 0.37815 (13) 0.08331 (18) 0.54726 (9) 0.0365 (4)
H25 0.4432 0.0374 0.5596 0.044*
C17 0.38155 (13) 0.23122 (18) 0.58041 (8) 0.0341 (4)
H17 0.3236 0.2370 0.6036 0.041*
C9 0.26532 (12) 0.32453 (17) 0.48748 (8) 0.0306 (4)
H9 0.2189 0.3244 0.5200 0.037*
C10 0.23762 (12) 0.44986 (18) 0.44154 (8) 0.0324 (4)
C15 0.28174 (13) 0.58030 (19) 0.45697 (9) 0.0388 (4)
H15 0.3311 0.5892 0.4945 0.047*
C14 0.25352 (15) 0.6971 (2) 0.41748 (10) 0.0461 (5)
H14 0.2852 0.7830 0.4273 0.055*
C13 0.17844 (16) 0.6839 (2) 0.36394 (11) 0.0487 (5)
C3 −0.10442 (14) 0.2911 (2) 0.41805 (11) 0.0526 (5)
C4 −0.06943 (15) 0.2070 (2) 0.37201 (11) 0.0541 (6)
H4 −0.1041 0.1985 0.3284 0.065*
C5 0.01920 (15) 0.1348 (2) 0.39199 (9) 0.0449 (5)
H5 0.0435 0.0761 0.3615 0.054*
C6 0.07241 (13) 0.14846 (18) 0.45673 (8) 0.0354 (4)
C1 0.03230 (13) 0.2329 (2) 0.50172 (9) 0.0415 (5)
H1 0.0656 0.2412 0.5457 0.050*
C2 −0.05616 (15) 0.3051 (2) 0.48247 (11) 0.0505 (5)
H2 −0.0822 0.3620 0.5129 0.061*
C7 0.17436 (13) 0.08262 (18) 0.47433 (9) 0.0352 (4)
H7 0.1742 −0.0074 0.4507 0.042*
C8 0.25592 (12) 0.17776 (17) 0.45258 (8) 0.0323 (4)
H8 0.2418 0.1909 0.4037 0.039*
C24 0.35693 (13) 0.10568 (18) 0.47129 (9) 0.0379 (4)
H24 0.3543 0.0139 0.4490 0.045*
C18 0.47282 (13) 0.2657 (2) 0.63240 (9) 0.0402 (4)
C19 0.49034 (16) 0.4052 (2) 0.65186 (10) 0.0540 (5)
H19 0.4467 0.4744 0.6322 0.065*
C20 0.57105 (18) 0.4435 (3) 0.69963 (11) 0.0631 (6)
H20 0.5824 0.5372 0.7116 0.076*
C21 0.63320 (16) 0.3411 (3) 0.72859 (10) 0.0586 (6)
C22 0.61911 (16) 0.2029 (3) 0.71244 (11) 0.0593 (6)
H22 0.6625 0.1349 0.7335 0.071*
C23 0.53842 (15) 0.1652 (2) 0.66377 (10) 0.0508 (5)
H23 0.5284 0.0711 0.6521 0.061*
C16 0.44100 (13) 0.3227 (2) 0.48368 (10) 0.0407 (4)
H16A 0.5069 0.3319 0.5104 0.049*
H16B 0.4332 0.3970 0.4503 0.049*
C12 0.13179 (16) 0.5590 (2) 0.34729 (10) 0.0517 (5)
H12 0.0805 0.5524 0.3107 0.062*
C11 0.16255 (14) 0.4425 (2) 0.38611 (10) 0.0439 (5)
H11 0.1319 0.3565 0.3747 0.053*
C29 0.39832 (19) −0.1925 (3) 0.73059 (13) 0.0674 (7)
H29 0.4427 −0.2645 0.7457 0.081*
C28 0.37981 (16) −0.1566 (2) 0.66327 (11) 0.0538 (5)
H28 0.4120 −0.2049 0.6329 0.065*
H2A 0.1518 (16) 0.002 (2) 0.5589 (10) 0.057 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F4 0.1449 (15) 0.1113 (13) 0.0448 (8) −0.0144 (12) −0.0148 (9) 0.0298 (8)
F2 0.0972 (10) 0.0440 (7) 0.0797 (9) 0.0120 (7) 0.0024 (8) 0.0233 (7)
F1 0.0451 (7) 0.1086 (12) 0.0845 (10) 0.0120 (8) −0.0037 (7) 0.0280 (9)
F3 0.0702 (9) 0.1238 (13) 0.0541 (8) −0.0221 (9) −0.0216 (7) −0.0030 (8)
O1 0.0436 (7) 0.0487 (8) 0.0510 (8) 0.0015 (6) 0.0231 (6) −0.0002 (6)
N1 0.0292 (7) 0.0343 (8) 0.0361 (8) −0.0024 (6) 0.0042 (6) 0.0022 (6)
N2 0.0369 (8) 0.0373 (8) 0.0358 (8) −0.0050 (7) 0.0058 (7) 0.0065 (7)
C30 0.0842 (17) 0.0705 (16) 0.0392 (12) −0.0193 (14) −0.0072 (12) 0.0161 (12)
C31 0.0797 (16) 0.0687 (15) 0.0387 (12) −0.0088 (13) 0.0051 (11) 0.0017 (11)
C32 0.0574 (12) 0.0465 (11) 0.0418 (11) −0.0018 (10) 0.0040 (9) 0.0031 (9)
C27 0.0430 (10) 0.0343 (10) 0.0384 (10) −0.0062 (8) 0.0014 (8) 0.0045 (8)
C26 0.0456 (10) 0.0289 (9) 0.0374 (10) 0.0002 (8) 0.0048 (8) 0.0006 (8)
C25 0.0355 (9) 0.0344 (9) 0.0403 (10) 0.0045 (8) 0.0082 (8) 0.0014 (8)
C17 0.0312 (9) 0.0348 (9) 0.0361 (9) −0.0009 (7) 0.0050 (7) 0.0015 (8)
C9 0.0288 (9) 0.0298 (9) 0.0332 (9) −0.0028 (7) 0.0054 (7) −0.0014 (7)
C10 0.0309 (9) 0.0318 (9) 0.0352 (9) −0.0008 (7) 0.0071 (7) −0.0001 (7)
C15 0.0362 (10) 0.0370 (10) 0.0425 (10) −0.0027 (8) 0.0048 (8) −0.0042 (8)
C14 0.0531 (12) 0.0292 (9) 0.0575 (12) −0.0037 (9) 0.0137 (10) −0.0021 (9)
C13 0.0606 (13) 0.0354 (10) 0.0507 (12) 0.0085 (9) 0.0111 (10) 0.0114 (9)
C3 0.0327 (10) 0.0652 (14) 0.0579 (13) −0.0047 (10) 0.0008 (9) 0.0164 (11)
C4 0.0461 (12) 0.0692 (14) 0.0419 (11) −0.0212 (11) −0.0077 (9) 0.0118 (11)
C5 0.0489 (11) 0.0487 (11) 0.0358 (10) −0.0169 (9) 0.0032 (8) −0.0011 (9)
C6 0.0359 (9) 0.0358 (9) 0.0335 (9) −0.0123 (8) 0.0028 (7) 0.0024 (8)
C1 0.0361 (10) 0.0538 (12) 0.0340 (10) −0.0063 (9) 0.0038 (8) 0.0005 (9)
C2 0.0390 (11) 0.0628 (13) 0.0504 (12) 0.0003 (10) 0.0096 (9) 0.0035 (10)
C7 0.0419 (10) 0.0290 (9) 0.0344 (9) −0.0055 (8) 0.0053 (8) −0.0032 (7)
C8 0.0380 (10) 0.0320 (9) 0.0273 (8) −0.0023 (7) 0.0066 (7) −0.0002 (7)
C24 0.0416 (10) 0.0319 (9) 0.0427 (10) −0.0007 (8) 0.0148 (8) −0.0039 (8)
C18 0.0373 (10) 0.0484 (11) 0.0347 (10) −0.0038 (8) 0.0055 (8) 0.0036 (9)
C19 0.0564 (13) 0.0536 (13) 0.0476 (12) 0.0015 (10) −0.0054 (10) −0.0073 (10)
C20 0.0687 (15) 0.0675 (15) 0.0482 (13) −0.0104 (12) −0.0056 (11) −0.0130 (11)
C21 0.0504 (13) 0.0873 (18) 0.0347 (11) −0.0140 (12) −0.0034 (9) 0.0008 (11)
C22 0.0484 (12) 0.0773 (17) 0.0479 (12) −0.0026 (11) −0.0051 (10) 0.0197 (12)
C23 0.0480 (12) 0.0522 (12) 0.0492 (12) −0.0047 (10) −0.0006 (9) 0.0116 (10)
C16 0.0345 (10) 0.0416 (10) 0.0471 (11) −0.0026 (8) 0.0100 (8) 0.0053 (9)
C12 0.0570 (13) 0.0461 (12) 0.0469 (12) 0.0017 (10) −0.0068 (10) 0.0057 (9)
C11 0.0474 (11) 0.0350 (10) 0.0464 (11) −0.0068 (8) −0.0016 (9) 0.0021 (8)
C29 0.0718 (16) 0.0562 (14) 0.0665 (16) 0.0019 (12) −0.0117 (13) 0.0235 (12)
C28 0.0581 (13) 0.0465 (12) 0.0543 (13) 0.0040 (10) 0.0016 (10) 0.0114 (10)

Geometric parameters (Å, º)

F4—C30 1.360 (2) C13—C12 1.362 (3)
F2—C13 1.364 (2) C3—C2 1.362 (3)
F1—C3 1.360 (2) C3—C4 1.367 (3)
F3—C21 1.362 (2) C4—C5 1.387 (3)
O1—C24 1.431 (2) C4—H4 0.9300
O1—C16 1.449 (2) C5—C6 1.391 (3)
N1—C16 1.440 (2) C5—H5 0.9300
N1—C9 1.484 (2) C6—C1 1.387 (3)
N1—C17 1.488 (2) C6—C7 1.508 (3)
N2—C26 1.461 (2) C1—C2 1.383 (3)
N2—C7 1.465 (2) C1—H1 0.9300
N2—H2A 0.89 (2) C2—H2 0.9300
C30—C29 1.358 (4) C7—C8 1.548 (2)
C30—C31 1.364 (4) C7—H7 0.9800
C31—C32 1.387 (3) C8—C24 1.524 (2)
C31—H31 0.9300 C8—H8 0.9800
C32—C27 1.381 (3) C24—H24 0.9800
C32—H32 0.9300 C18—C23 1.387 (3)
C27—C28 1.385 (3) C18—C19 1.394 (3)
C27—C26 1.511 (2) C19—C20 1.384 (3)
C26—C25 1.539 (2) C19—H19 0.9300
C26—H26 0.9800 C20—C21 1.357 (3)
C25—C24 1.526 (2) C20—H20 0.9300
C25—C17 1.555 (2) C21—C22 1.361 (3)
C25—H25 0.9800 C22—C23 1.393 (3)
C17—C18 1.522 (2) C22—H22 0.9300
C17—H17 0.9800 C23—H23 0.9300
C9—C10 1.519 (2) C16—H16A 0.9700
C9—C8 1.560 (2) C16—H16B 0.9700
C9—H9 0.9800 C12—C11 1.382 (3)
C10—C11 1.386 (3) C12—H12 0.9300
C10—C15 1.391 (2) C11—H11 0.9300
C15—C14 1.384 (3) C29—C28 1.382 (3)
C15—H15 0.9300 C29—H29 0.9300
C14—C13 1.364 (3) C28—H28 0.9300
C14—H14 0.9300
C24—O1—C16 109.55 (12) C1—C6—C5 117.92 (17)
C16—N1—C9 110.20 (14) C1—C6—C7 121.96 (15)
C16—N1—C17 109.51 (14) C5—C6—C7 119.91 (17)
C9—N1—C17 108.58 (12) C2—C1—C6 121.29 (18)
C26—N2—C7 113.67 (14) C2—C1—H1 119.4
C26—N2—H2A 108.7 (14) C6—C1—H1 119.4
C7—N2—H2A 107.9 (14) C3—C2—C1 118.7 (2)
C29—C30—F4 118.5 (2) C3—C2—H2 120.7
C29—C30—C31 122.6 (2) C1—C2—H2 120.7
F4—C30—C31 118.9 (3) N2—C7—C6 111.15 (14)
C30—C31—C32 118.1 (2) N2—C7—C8 108.58 (14)
C30—C31—H31 120.9 C6—C7—C8 111.19 (14)
C32—C31—H31 120.9 N2—C7—H7 108.6
C27—C32—C31 121.3 (2) C6—C7—H7 108.6
C27—C32—H32 119.4 C8—C7—H7 108.6
C31—C32—H32 119.4 C24—C8—C7 108.82 (14)
C32—C27—C28 118.39 (18) C24—C8—C9 106.68 (13)
C32—C27—C26 122.27 (17) C7—C8—C9 113.95 (13)
C28—C27—C26 119.34 (17) C24—C8—H8 109.1
N2—C26—C27 111.59 (15) C7—C8—H8 109.1
N2—C26—C25 108.53 (14) C9—C8—H8 109.1
C27—C26—C25 112.33 (15) O1—C24—C8 110.56 (14)
N2—C26—H26 108.1 O1—C24—C25 110.71 (14)
C27—C26—H26 108.1 C8—C24—C25 109.05 (14)
C25—C26—H26 108.1 O1—C24—H24 108.8
C24—C25—C26 108.06 (14) C8—C24—H24 108.8
C24—C25—C17 106.99 (14) C25—C24—H24 108.8
C26—C25—C17 113.51 (14) C23—C18—C19 117.44 (18)
C24—C25—H25 109.4 C23—C18—C17 123.74 (18)
C26—C25—H25 109.4 C19—C18—C17 118.77 (17)
C17—C25—H25 109.4 C20—C19—C18 121.7 (2)
N1—C17—C18 110.25 (14) C20—C19—H19 119.1
N1—C17—C25 109.16 (13) C18—C19—H19 119.1
C18—C17—C25 117.03 (15) C21—C20—C19 118.5 (2)
N1—C17—H17 106.6 C21—C20—H20 120.8
C18—C17—H17 106.6 C19—C20—H20 120.8
C25—C17—H17 106.6 C20—C21—C22 122.5 (2)
N1—C9—C10 111.25 (13) C20—C21—F3 118.8 (2)
N1—C9—C8 109.41 (13) C22—C21—F3 118.7 (2)
C10—C9—C8 115.73 (13) C21—C22—C23 118.8 (2)
N1—C9—H9 106.6 C21—C22—H22 120.6
C10—C9—H9 106.6 C23—C22—H22 120.6
C8—C9—H9 106.6 C18—C23—C22 121.1 (2)
C11—C10—C15 117.29 (16) C18—C23—H23 119.5
C11—C10—C9 121.89 (15) C22—C23—H23 119.5
C15—C10—C9 120.62 (15) N1—C16—O1 112.99 (14)
C14—C15—C10 121.28 (17) N1—C16—H16A 109.0
C14—C15—H15 119.4 O1—C16—H16A 109.0
C10—C15—H15 119.4 N1—C16—H16B 109.0
C13—C14—C15 118.81 (18) O1—C16—H16B 109.0
C13—C14—H14 120.6 H16A—C16—H16B 107.8
C15—C14—H14 120.6 C13—C12—C11 118.35 (19)
C12—C13—F2 119.30 (19) C13—C12—H12 120.8
C12—C13—C14 122.19 (18) C11—C12—H12 120.8
F2—C13—C14 118.50 (18) C12—C11—C10 122.04 (18)
F1—C3—C2 118.7 (2) C12—C11—H11 119.0
F1—C3—C4 118.78 (19) C10—C11—H11 119.0
C2—C3—C4 122.5 (2) C30—C29—C28 118.8 (2)
C3—C4—C5 118.24 (19) C30—C29—H29 120.6
C3—C4—H4 120.9 C28—C29—H29 120.6
C5—C4—H4 120.9 C29—C28—C27 120.8 (2)
C4—C5—C6 121.31 (19) C29—C28—H28 119.6
C4—C5—H5 119.3 C27—C28—H28 119.6
C6—C5—H5 119.3
C29—C30—C31—C32 0.1 (4) C5—C6—C7—N2 −156.40 (16)
F4—C30—C31—C32 −179.7 (2) C1—C6—C7—C8 −92.14 (19)
C30—C31—C32—C27 0.1 (3) C5—C6—C7—C8 82.51 (19)
C31—C32—C27—C28 −0.3 (3) N2—C7—C8—C24 57.70 (17)
C31—C32—C27—C26 −179.76 (19) C6—C7—C8—C24 −179.72 (14)
C7—N2—C26—C27 −174.43 (14) N2—C7—C8—C9 −61.20 (18)
C7—N2—C26—C25 61.26 (18) C6—C7—C8—C9 61.39 (18)
C32—C27—C26—N2 −23.9 (2) N1—C9—C8—C24 −0.98 (17)
C28—C27—C26—N2 156.61 (17) C10—C9—C8—C24 125.64 (15)
C32—C27—C26—C25 98.2 (2) N1—C9—C8—C7 119.13 (15)
C28—C27—C26—C25 −81.2 (2) C10—C9—C8—C7 −114.26 (16)
N2—C26—C25—C24 −60.04 (18) C16—O1—C24—C8 62.17 (18)
C27—C26—C25—C24 176.10 (14) C16—O1—C24—C25 −58.79 (18)
N2—C26—C25—C17 58.46 (19) C7—C8—C24—O1 177.82 (13)
C27—C26—C25—C17 −65.41 (19) C9—C8—C24—O1 −58.83 (17)
C16—N1—C17—C18 73.99 (17) C7—C8—C24—C25 −60.24 (18)
C9—N1—C17—C18 −165.64 (14) C9—C8—C24—C25 63.11 (17)
C16—N1—C17—C25 −55.89 (17) C26—C25—C24—O1 −176.91 (13)
C9—N1—C17—C25 64.48 (16) C17—C25—C24—O1 60.51 (17)
C24—C25—C17—N1 −2.18 (18) C26—C25—C24—C8 61.24 (18)
C26—C25—C17—N1 −121.29 (15) C17—C25—C24—C8 −61.34 (17)
C24—C25—C17—C18 −128.24 (15) N1—C17—C18—C23 −142.50 (18)
C26—C25—C17—C18 112.65 (17) C25—C17—C18—C23 −17.0 (3)
C16—N1—C9—C10 −71.76 (17) N1—C17—C18—C19 40.0 (2)
C17—N1—C9—C10 168.30 (13) C25—C17—C18—C19 165.47 (17)
C16—N1—C9—C8 57.36 (17) C23—C18—C19—C20 1.3 (3)
C17—N1—C9—C8 −62.58 (16) C17—C18—C19—C20 178.99 (19)
N1—C9—C10—C11 159.75 (16) C18—C19—C20—C21 −1.1 (4)
C8—C9—C10—C11 34.1 (2) C19—C20—C21—C22 0.0 (4)
N1—C9—C10—C15 −25.5 (2) C19—C20—C21—F3 179.7 (2)
C8—C9—C10—C15 −151.19 (16) C20—C21—C22—C23 0.7 (4)
C11—C10—C15—C14 −1.6 (3) F3—C21—C22—C23 −178.93 (18)
C9—C10—C15—C14 −176.61 (16) C19—C18—C23—C22 −0.5 (3)
C10—C15—C14—C13 2.4 (3) C17—C18—C23—C22 −178.11 (18)
C15—C14—C13—C12 −1.4 (3) C21—C22—C23—C18 −0.4 (3)
C15—C14—C13—F2 178.30 (17) C9—N1—C16—O1 −57.81 (19)
F1—C3—C4—C5 −179.50 (17) C17—N1—C16—O1 61.56 (18)
C2—C3—C4—C5 −0.7 (3) C24—O1—C16—N1 −2.7 (2)
C3—C4—C5—C6 −0.9 (3) F2—C13—C12—C11 −179.99 (19)
C4—C5—C6—C1 2.2 (3) C14—C13—C12—C11 −0.3 (3)
C4—C5—C6—C7 −172.63 (17) C13—C12—C11—C10 1.1 (3)
C5—C6—C1—C2 −2.0 (3) C15—C10—C11—C12 −0.1 (3)
C7—C6—C1—C2 172.73 (17) C9—C10—C11—C12 174.80 (18)
F1—C3—C2—C1 179.71 (18) F4—C30—C29—C28 179.6 (2)
C4—C3—C2—C1 0.9 (3) C31—C30—C29—C28 −0.3 (4)
C6—C1—C2—C3 0.5 (3) C30—C29—C28—C27 0.1 (3)
C26—N2—C7—C6 177.57 (14) C32—C27—C28—C29 0.2 (3)
C26—N2—C7—C8 −59.82 (18) C26—C27—C28—C29 179.65 (19)
C1—C6—C7—N2 28.9 (2)

Hydrogen-bond geometry (Å, º)

Cg5 and Cg6 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C31—H31···F1i 0.93 2.51 3.231 (3) 135
C8—H8···F3ii 0.98 2.64 3.564 (2) 158
C32—H32···F4iii 0.93 2.66 3.567 (3) 162
C1—H1···F4iii 0.93 2.51 3.411 (2) 161
N2—H2A···Cg5iv 0.89 2.80 (2) 3.6594 (18) 161.7 (17)
C2—H2···Cg6v 0.93 2.68 3.552 (2) 156
C11—H11···Cg5 0.93 2.87 3.514 (2) 128

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x, −y, −z+1; (v) −x, −y+1, −z+1.

Funding Statement

This work was funded by University Grants Commission grant 42-358/2013 (SR).

References

  1. Atioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035–1038. [DOI] [PMC free article] [PubMed]
  2. Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cárdenas-Valenzuela, A. J., González-García, G., Zárraga- Nuñez, R., Höpfl, H., Campos-Gaxiola, J. J. & Cruz-Enríquez, A. (2018). Acta Cryst. E74, 441–444. [DOI] [PMC free article] [PubMed]
  4. Czapik, A. & Gdaniec, M. (2010). Acta Cryst. C66, o356–o360. [DOI] [PubMed]
  5. Das, A. (2017). J. Mol. Struct. 1147, 520–540.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Fun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486–o2487. [DOI] [PMC free article] [PubMed]
  8. Girisha, M., Sagar, B. K., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. C73, 115–120. [DOI] [PubMed]
  9. Hathwar, V. R., Chopra, D., Panini, P. & Guru Row, T. N. (2014). Cryst. Growth Des. 14, 5366–5369.
  10. Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
  11. Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.
  12. Krishnakumar, R. V., Nandhini, M. S., Vijayakumar, V., Natarajan, S., Sundaravadivelu, M., Perumal, S. & Mostad, A. (2001). Acta Cryst. E57, o860–o862.
  13. Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o265–o266. [DOI] [PMC free article] [PubMed]
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
  16. McMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493–o497. [DOI] [PubMed]
  17. Muralikrishna, A., Kannan, M., Padmavathi, V., Padmaja, A. & Krishna, R. (2012). Acta Cryst. E68, o2954. [DOI] [PMC free article] [PubMed]
  18. Natarajan, S., Priya, V. S., Vijayakumar, V., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o1530. [DOI] [PMC free article] [PubMed]
  19. Natarajan, S., Sudhapriya, V., Vijayakumar, V., Shoba, N., Suresh, J. & Lakshman, P. L. N. (2008). Acta Cryst. E64, o2496. [DOI] [PMC free article] [PubMed]
  20. Parthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 6452–6458. [DOI] [PubMed]
  21. Rajesh, K., Vijayakumar, V., Safwan, A. P., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1316. [DOI] [PMC free article] [PubMed]
  22. Schwarzer, A. & Weber, E. (2011). Acta Cryst. C67, o457–o460. [DOI] [PubMed]
  23. Selvanayagam, S., Sridhar, B., Kathiravan, S. & Raghunathan, R. (2015). Acta Cryst. E71, 720–722. [DOI] [PMC free article] [PubMed]
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  27. Subha Nandhini, M., Krishnakumar, R. V., Narasimhamurthy, T., Vijayakumar, V., Sundaravadivelu, M. & Natarajan, S. (2002). Acta Cryst. E58, o675–o677.
  28. Tarahhomi, A., Pourayoubi, M., Golen, J. A., Zargaran, P., Elahi, B., Rheingold, A. L., Leyva Ramírez, M. A. & Mancilla Percino, T. (2013). Acta Cryst. B69, 260–270. [DOI] [PubMed]
  29. Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Raghukumar, V. & Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1522–1524.
  30. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western, Australia.
  31. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  32. Wiedemann, D. & Kohl, J. (2017). Acta Cryst. C73, 654–659. [DOI] [PubMed]
  33. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western, Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018016122/dx2010sup1.cif

e-74-01867-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018016122/dx2010Isup2.hkl

e-74-01867-Isup2.hkl (359.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018016122/dx2010Isup3.cml

CCDC reference: 1854381

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES