Skip to main content
Data in Brief logoLink to Data in Brief
. 2018 Oct 27;21:2447–2463. doi: 10.1016/j.dib.2018.10.100

Experimentally determined trace element partition coefficients between hibonite, melilite, spinel, and silicate melts

D Loroch 1,, S Klemme 1, J Berndt 1, A Rohrbach 1
PMCID: PMC6282632  PMID: 30547073

Abstract

This article provides new data on mineral/melt partitioning in systems relevant to the evolution of chondrites, Calcium Aluminum-Rich Inclusions (CAI) in chondrites and related meteorites. The data set includes experimentally determined mineral/melt partition coefficients between hibonite (CaAl12O19), melilite (Ca2(Al,Mg)2SiO7), spinel (MgAl2O4) and silicate melts for a wide range of trace elements: Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Rh, Cs, Ba, La, Ce, r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th and U. The experiments were performed at high temperatures (1350 °C < T < 1550 °C) and ambient pressure. The experimental run products were analyzed using electron microprobe (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The partition coefficients for 38 trace elements were calculated from the LA-ICP-MS data.


Specifications table

Subject area Earth Sciences
More specific subject area Experimental petrology, Geochemistry, Planetology, Planetary sciences
Type of data Table, figure
How data was acquired High-temperature furnace: Gero GmbH, Germany (University of Münster)
Scanning electron microscope (SEM) JEOL JSM-6610 LV in high vacuum mode equipped with EDX system (University of Münster)
Electron microprobe analysis (EMPA): JEOL JXA-8530F Hyperprobe equipped with a field emission gun (University of Münster)
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): Thermo element sector field – ICP-MS with Photon Machines Analyte G2 laser ablation system (University of Münster)
Data format Major element data of minerals and quenched melts: data in .xlsx format
Trace element data of minerals and quenched melts: data in .xlsx format
Mineral/melt trace element partition coefficients: data in .xlsx format
Mineral/mineral trace element partition coefficients: data in .xlsx format
Experimental features High temperature experiments were run at high temperatures to equilibrate hibonite, melilite, and spinel, with silicate melts. The experimental run products were mounted in epoxy resins and polished using a variety of diamond pastes. The mounts were carbon coated, and major elements were analyzed using EMPA techniques. Subsequently, trace element concentrations of minerals and glasses within the samples were determined using LA-ICP-MS techniques.
Data accessibility Supplementary materials

Value of the data

  • The new trace element partition coefficients supplement the existing database of mineral/melt partition coefficients of minerals that are frequently found in Ca- and Al-rich inclusions in chondritic meteorites.

  • The new trace element partition coefficients between hibonite, melilite and spinel and silicate melts may be used to test whether these minerals crystallized from or equilibrated with a silicate melt or whether they condensed from a vapor phase.

  • This partition coefficient data set is based on experiments under oxidizing conditions, since preliminary experiments under reducing conditions, which would have been more relevant to solar nebula processes, resulted in crystals which were too small to be analyzed.

  • Our mineral/mineral partition coefficients may be used to test whether hibonite, melilite and spinel are in thermodynamic equilibrium or not.

1. Data

In this article, we report new experimentally determined trace element partition coefficients between hibonite (CaAl12O19), melilite (Ca2(Al,Mg)2SiO7), spinel (MgAl2O4), and silicate melts at high temperatures (Tables 3 and 4). Data were generated using high temperature experiments, which were characterized using electron microprobe and LA-ICP-MS methods (Table 1, Table 4, Table 5, Table 6).

Table 2.

Trace element concentrations of minerals and quenched silicate melts determined with LA-ICP-MS. All values are given in µg/g.

Hibonite

H1-Ti2-R3
H1-Ti5-R4
H1-Ti5-R5
H2-Ti2-R2
H2-Ti2-R3
H2-Ti5-R4
H2-Ti5-R5
µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D.
Mg 13367 ± 2518 15263 ± 2195 14105 ± 3235 14245 ± 2822 17157 ± 3259 18699 ± 2799 20315 ± 5382
Si 7058 ± 1008 3778 ± 668 4712 ± 780 5629 ± 863 9282 ± 1272 5229 ± 841 4912 ± 758
Ca 59563 ± 2104 59749 ± 2165 59978 ± 2172 59077 ± 2166 59234 ± 2095 59349 ± 2167 59577 ± 2119
Sc 30.6 ± 2.0 28.2 ± 2.1 28.3 ± 2.2 28.7 ± 2.0 28.3 ± 1.9 24.6 ± 1.9 25.5 ± 1.9
Ti 11302 ± 1412 21355 ± 1797 19485 ± 2546 12899 ± 1736 14804 ± 1124 24027 ± 2099 28123 ± 3082
V 6.26 ± 0.57 3.46 ± 0.47 3.44 ± 0.53 5.70 ± 0.62 5.98 ± 0.56 4.87 ± 0.59 3.82 ± 0.49
Cr 29.1 ± 8.3 32.1 ± 9.8 25.0 ± 9.1 23.9 ± 9.0 27.9 ± 7.6 20.7 ± 9.7 23.8 ± 7.6
Co 185 ± 9 280 ± 16 270 ± 21 123 ± 6 132 ± 7 199 ± 12 226 ± 13
Ni 327 ± 85 353 ± 51 320 ± 76 137 ± 44 201 ± 55 249 ± 41 369 ± 126
Cu 11.0 ± 1.1 11.8 ± 1.2 8.67 ± 1.09 12.2 ± 1.2 11.5 ± 1.0 9.48 ± 1.16 7.98 ± 0.91
Zn 13.7 ± 3.4 14.7 ± 4.8 14.7 ± 4.1 12.4 ± 3.5 12.9 ± 3.3 14.2 ± 4.6 12.1 ± 3.3
Ga 247 ± 13 180 ± 9 175 ± 11 200 ± 11 258 ± 14 233 ± 11 229 ± 15
Ge 7.31 ± 2.42 8.23 ± 2.84 7.00 ± 2.65 9.32 ± 2.68 8.04 ± 2.25 10.7 ± 2.9 9.32 ± 2.32
Rb b.d.l b.d.l b.d.l b.d.l b.d.l 0.93 ± 0.31 0.57 ± 0.18
Sr 92.5 ± 4.0 94.4 ± 4.4 94.7 ± 5.5 91.8 ± 4.2 93.0 ± 4.1 94.8 ± 4.5 98.8 ± 4.9
Y 36.7 ± 2.1 23.4 ± 1.4 25.5 ± 1.9 53.8 ± 3.2 49.0 ± 2.8 32.2 ± 1.9 30.1 ± 2.2
Zr 27.6 ± 1.7 21.8 ± 1.4 21.1 ± 1.5 30.1 ± 2.0 28.9 ± 1.8 18.5 ± 1.2 21.0 ± 1.7
Nb 9.63 ± 0.59 8.17 ± 0.55 8.10 ± 0.58 20.3 ± 1.2 20.3 ± 1.1 10.2 ± 0.6 10.8 ± 0.7
Rh 7.14 ± 0.74 4.52 ± 0.55 4.91 ± 0.94 4.25 ± 0.54 6.29 ± 0.69 7.30 ± 0.88 8.87 ± 1.40
Cs b.d.l 0.43 ± 0.18 0.41 ± 0.15 b.d.l 0.33 ± 0.12 b.d.l b.d.l
Ba 3.57 ± 0.75 2.76 ± 0.78 3.33 ± 0.84 2.84 ± 0.88 3.09 ± 0.75 2.94 ± 0.77 3.40 ± 0.86
La 378 ± 16 291 ± 11 286 ± 14 589 ± 26 484 ± 20 446 ± 18 426 ± 23
Ce 454 ± 19 354 ± 15 346 ± 19 608 ± 27 496 ± 21 447 ± 19 450 ± 23
Pr 372 ± 15 281 ± 13 277 ± 18 421 ± 18 354 ± 15 306 ± 15 303 ± 15
Nd 319 ± 16 235 ± 12 232 ± 16 428 ± 23 366 ± 19 305 ± 15 297 ± 20
Sm 247 ± 14 180 ± 10 178 ± 13 316 ± 20 280 ± 16 223 ± 12 218 ± 18
Eu 143 ± 7 102 ± 5 102 ± 7 183 ± 9 160 ± 8 127 ± 6 121 ± 8
Gd 142 ± 8 104 ± 7 106 ± 11 217 ± 13 186 ± 11 142 ± 10 140 ± 11
Tb 95.1 ± 5.1 67.4 ± 3.4 70.3 ± 5.1 139 ± 8 120 ± 6 87.9 ± 4.6 83.6 ± 6.1
Dy 46.6 ± 3.3 31.5 ± 2.1 33.7 ± 3.1 64.8 ± 4.9 55.8 ± 4.0 39.6 ± 2.7 36.4 ± 3.7
Ho 42.4 ± 2.6 28.7 ± 1.6 30.8 ± 2.4 58.9 ± 3.9 52.2 ± 3.3 35.9 ± 2.0 32.4 ± 2.9
Er 15.9 ± 1.3 11.6 ± 0.9 11.6 ± 1.1 26.0 ± 2.1 22.4 ± 1.7 14.3 ± 1.0 13.8 ± 1.5
Tm 9.56 ± 0.65 5.88 ± 0.38 6.79 ± 0.55 15.6 ± 1.1 13.7 ± 0.9 8.38 ± 0.52 7.56 ± 0.72
Yb 11.3 ± 1.0 7.44 ± 0.75 8.00 ± 0.94 15.3 ± 1.4 13.9 ± 1.2 8.49 ± 0.84 7.70 ± 0.89
Lu 7.52 ± 0.49 4.43 ± 0.31 4.91 ± 0.42 11.8 ± 0.8 10.5 ± 0.7 6.05 ± 0.40 5.62 ± 0.50
Hf 39.6 ± 2.5 34.2 ± 2.2 33.7 ± 3.1 62.1 ± 4.1 55.8 ± 3.5 40.4 ± 2.6 43.8 ± 3.7
Ta 40.1 ± 2.2 35.7 ± 1.9 36.8 ± 2.8 84.6 ± 4.9 81.9 ± 4.4 45.9 ± 2.5 52.0 ± 3.9
W 0.09 ± 0.06 0.10 ± 0.07 0.20 ± 0.10 0.28 ± 0.13 0.19 ± 0.09 0.13 ± 0.10 0.29 ± 0.11
Pb b.d.l b.d.l 0.27 ± 0.11 b.d.l b.d.l b.d.l b.d.l
Th 131 ± 7 71.5 ± 3.5 72.3 ± 5.0 191 ± 11 162 ± 9 110 ± 5 106 ± 8
U b.d.l 0.01 ± 0.01 b.d.l 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

Hibonite
Melilite
Spinel

H3-Ti5-R4
H3-Ti5-R5
H1-Ti2-R3
H3-R8
H2-R8
H3-R8
Mel3-R9
µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D.
Mg 16888 ± 2734 20955 ± 5971 55758 ±10561 2525 ± 242 166434 ±36418 124887 ± 9030 176044 ±17334
Si 17111 ± 2303 7555 ± 1118 110371 ±14987 104108 ±13955 b.d.l 4197 ± 529 b.d.l
Ca 59120 ± 2034 59935 ± 2154 290740 ±12078 292070 ± 9299 1627 ± 681 1872 ± 554 1044 ± 348
Sc 44.5 ± 2.7 52.8 ± 3.9 189 ± 14 3.23 ± 0.36 15.4 ± 2.2 33.6 ± 2.1 16.8 ± 1.3
Ti 21275 ± 1994 29299 ± 3489 57273 ± 4394 3.78 ± 1.35 b.d.l 16.2 ± 4.8 372 ± 34
V 16.3 ± 1.2 7.11 ± 0.74 109 ± 9 0.39 ± 0.09 1.04 ± 0.50 4.79 ± 0.39 0.62 ± 0.24
Cr 24.9 ± 6.3 23.7 ± 8.3 b.d.l b.d.l b.d.l 18.5 ± 9.8 25.5 ± 6.7
Co 142 ± 9 196 ± 11 686 ± 38 18.2 ± 1.1 3577 ± 467 1409 ± 94 413 ± 39
Ni 144 ± 25 207 ± 78 1206 ± 354 17.5 ± 5.9 12392 ± 5282 3732 ± 515 1098 ± 216
Cu 10.4 ± 1.0 5.93 ± 0.87 93.8 ± 9.9 2.42 ± 0.32 122 ± 17 73.3 ± 5.3 7.87 ± 1.01
Zn 8.41 ± 2.71 8.75 ± 3.25 73.0 ± 25.4 1.45 ± 0.70 137 ± 48 37.1 ± 9.2 9.32 ± 3.82
Ga 236 ± 12 244 ± 17 815 ± 47 112 ± 6 577 ± 69 258 ± 12 373 ± 21
Ge 6.28 ± 1.74 8.93 ± 2.46 b.d.l 2.73 ± 0.92 13.3 ± 5.5 b.d.l 5.03 ± 2.20
Rb b.d.l b.d.l b.d.l 0.14 ± 0.06 0.82 ± 0.34 b.d.l 0.27 ± 0.15
Sr 86.3 ± 4.1 107 ± 5 422 ± 21 110 ± 5 b.d.l 5.02 ± 0.41 b.d.l
Y 28.7 ± 1.7 27.0 ± 2.2 189 ± 12 93.2 ± 4.1 b.d.l 4.59 ± 0.18 0.20 ± 0.08
Zr 23.0 ± 1.4 34.0 ± 2.7 169 ± 13 b.d.l b.d.l 6.04 ± 1.75 b.d.l
Nb 12.6 ± 0.7 21.4 ± 1.4 117 ± 8 0.03 ± 0.02 0.14 ± 0.07 1.18 ± 0.09 0.03 ± 0.03
Rh 6.31 ± 0.81 8.78 ± 1.51 45.2 ± 5.4 0.05 ± 0.02 b.d.l 9.49 ± 0.81 14.4 ± 1.5
Cs b.d.l b.d.l 1.53 ± 1.00 0.08 ± 0.03 b.d.l b.d.l b.d.l
Ba 9.20 ± 1.06 4.85 ± 1.04 61.9 ± 10.5 1.15 ± 0.23 1.60 ± 0.79 3.65 ± 0.06 0.88 ± 0.35
La 319 ± 13 336 ± 19 1176 ± 53 51.2 ± 1.7 b.d.l 0.11 ± 0.01 b.d.l
Ce 359 ± 16 379 ± 20 1522 ± 69 74.1 ± 2.6 0.03 ± 0.06 0.19 ± 0.01 0.02 ± 0.03
Pr 244 ± 12 269 ± 14 1258 ± 57 76.6 ± 2.7 b.d.l 0.08 ± 0.01 0.03 ± 0.02
Nd 215 ± 11 237 ± 17 1082 ± 63 91.1 ± 3.9 0.15 ± 0.24 0.13 ± 0.02 0.13 ± 0.09
Sm 158 ± 9 182 ± 16 930 ± 61 129 ± 6 0.50 ± 0.30 0.24 ± 0.05 0.05 ± 0.08
Eu 87.1 ± 4.5 99.8 ± 6.9 555 ± 30 93.0 ± 3.6 b.d.l 0.07 ± 0.01 0.03 ± 0.03
Gd 87.6 ± 6.4 104 ± 9 525 ± 38 124 ± 6 b.d.l 0.25 ± 0.03 0.09 ± 0.14
Tb 56.4 ± 3.1 64.5 ± 5.1 392 ± 23 107 ± 4 0.06 ± 0.04 0.12 ± 0.01 0.03 ± 0.02
Dy 31.8 ± 2.2 34.7 ± 3.8 189 ± 17 78.2 ± 3.4 0.10 ± 0.19 0.12 ± 0.02 0.04 ± 0.04
Ho 31.6 ± 1.8 33.8 ± 3.3 222 ± 15 93.8 ± 3.9 0.05 ± 0.04 0.10 ± 0.01 0.05 ± 0.02
Er 13.2 ± 0.9 12.7 ± 1.5 101 ± 10 44.8 ± 2.0 0.14 ± 0.11 0.10 ± 0.01 0.08 ± 0.04
Tm 9.54 ± 0.57 8.28 ± 0.84 77.5 ± 5.9 36.5 ± 1.4 0.11 ± 0.05 0.06 ± 0.01 0.08 ± 0.03
Yb 14.0 ± 1.1 10.7 ± 1.2 109 ± 11 54.7 ± 2.3 0.17 ± 0.17 0.14 ± 0.02 0.16 ± 0.08
Lu 12.3 ± 0.7 8.70 ± 0.80 101 ± 7 46.7 ± 1.9 0.14 ± 0.06 0.12 ± 0.01 0.15 ± 0.03
Hf 32.4 ± 2.2 53.4 ± 4.8 200 ± 15 0.05 ± 0.02 0.29 ± 0.17 0.14 ± 0.02 0.16 ± 0.07
Ta 35.9 ± 2.0 70.5 ± 5.6 313 ± 18 0.02 ± 0.01 0.07 ± 0.04 0.20 ± 0.01 0.03 ± 0.02
W 1.62 ± 0.23 1.57 ± 0.29 6.59 ± 1.95 0.03 ± 0.03 0.27 ± 0.14 0.31 ± 0.02 0.07 ± 0.05
Pb b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l
Th 68.4 ± 3.5 74.2 ± 6.4 490 ± 29 9.05 ± 0.35 0.06 ± 0.03 0.95 ± 0.07 0.01 ± 0.01
U 0.05 ± 0.02 0.03 ± 0.01 0.13 ± 0.10 0.00 ± 0.00 b.d.l 0.01 ± 0.01 b.d.l


Spinel
Silicate Melt

Mel3-R11
Mel3-R12
H1-Ti2-R3
H1-Ti5-R4
H1-Ti5-R5
H2-Ti2-R2
H2-Ti2-R3
µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D.
Mg 186262 ±33494 181809 ±31474 7171 ± 1349 5695 ± 822 4735 ± 1125 15407 ± 3107 15370 ± 2944
Si 1293 ± 336 1010 ± 304 157158 ±20531 140628 ±18404 151388 ±21120 170836 ±22512 182917 ±23969
Ca b.d.l 1190 ± 339 204571 ± 6514 194023 ±6185 210641 ± 6714 174887 ± 5580 182874 ± 5835
Sc 13.1 ± 2.2 12.4 ± 1.7 169 ± 9 146 ± 8 163 ± 11 147 ± 8 156 ± 9
Ti 369 ± 57 333 ± 48 12438 ± 922 31610 ± 2649 29161 ± 3938 11937 ± 965 12212 ± 930
V 0.54 ± 0.24 0.58 ± 0.23 192 ± 11 169 ± 10 183 ± 15 129 ± 8 121 ± 7
Cr 34.1 ± 10.1 46.5 ± 10.5 b.d.l 6.12 ± 2.33 b.d.l b.d.l 12.3 ± 2.5
Co 425 ± 70 425 ± 51 113 ± 5 117 ± 7 117 ± 9 139 ± 7 117 ± 6
Ni 1014 ± 251 1030 ± 223 284 ± 71 185 ± 25 194 ± 47 222 ± 59 261 ± 66
Cu 73.2 ± 10.6 26.5 ± 3.0 71.1 ± 4.2 65.7 ± 4.0 48.1 ± 3.9 176 ± 11 97.5 ± 5.8
Zn 23.5 ± 5.0 15.7 ± 4.0 4.08 ± 0.97 4.16 ± 1.21 3.40 ± 1.14 5.61 ± 1.16 5.27 ± 1.15
Ga 369 ± 60 413 ± 49 96.3 ± 4.9 99.5 ± 4.6 89.5 ± 5.4 121 ± 6 106 ± 5
Ge b.d.l b.d.l 2.44 ± 0.66 2.94 ± 0.73 2.27 ± 0.73 2.48 ± 0.78 2.07 ± 0.75
Rb 0.44 ± 0.18 b.d.l 0.40 ± 0.08 0.52 ± 0.10 0.44 ± 0.09 1.23 ± 0.13 0.70 ± 0.10
Sr 0.72 ± 0.38 b.d.l 188 ± 8 171 ± 7 184 ± 10 178 ± 7 183 ± 7
Y 0.10 ± 0.06 0.07 ± 0.05 163 ± 9 142 ± 7 164 ± 12 149 ± 8 159 ± 9
Zr b.d.l 0.09 ± 0.07 138 ± 7 118 ± 5 132 ± 8 107 ± 6 116 ± 6
Nb b.d.l 0.03 ± 0.02 110 ± 5 98.7 ± 4.3 108 ± 6 100 ± 5 107 ± 5
Rh 32.9 ± 6.4 36.1 ± 6.0 0.37 ± 0.06 0.33 ± 0.05 0.25 ± 0.06 b.d.l 0.18 ± 0.04
Cs b.d.l 0.24 ± 0.12 b.d.l 0.11 ± 0.05 b.d.l b.d.l b.d.l
Ba b.d.l b.d.l 116 ± 6 101 ± 6 115 ± 10 114 ± 6 120 ± 6
La b.d.l b.d.l 50.3 ± 2.0 67.9 ± 2.5 55.3 ± 2.8 83.3 ± 3.5 57.4 ± 2.3
Ce 0.03 ± 0.03 0.04 ± 0.02 101 ± 4 122 ± 5 113 ± 6 117 ± 5 85.3 ± 3.5
Pr 0.06 ± 0.03 0.02 ± 0.02 79.6 ± 3.2 95.6 ± 4.3 86.0 ± 5.6 79.5 ± 3.3 62.1 ± 2.6
Nd 0.10 ± 0.09 0.09 ± 0.08 80.4 ± 4.0 93.3 ± 4.4 86.1 ± 5.8 92.9 ± 4.9 77.1 ± 3.9
Sm 0.16 ± 0.11 0.09 ± 0.07 126 ± 7 132 ± 6 133 ± 10 124 ± 7 115 ± 7
Eu b.d.l 0.04 ± 0.05 106 ± 5 108 ± 5 110 ± 8 99.6 ± 4.9 96.5 ± 4.6
Gd b.d.l b.d.l 127 ± 7 124 ± 8 130 ± 13 137 ± 8 137 ± 8
Tb 0.01 ± 0.02 0.04 ± 0.02 146 ± 8 134 ± 6 148 ± 11 139 ± 8 144 ± 8
Dy 0.08 ± 0.06 0.06 ± 0.05 108 ± 7 98.5 ± 5.4 110 ± 10 96.0 ± 6.8 101 ± 7
Ho 0.05 ± 0.02 0.02 ± 0.01 151 ± 9 134 ± 7 152 ± 12 130 ± 9 137 ± 8
Er 0.07 ± 0.05 0.10 ± 0.05 89.8 ± 5.9 79.4 ± 3.9 89.9 ± 6.8 86.0 ± 6.2 90.8 ± 6.2
Tm 0.05 ± 0.03 0.10 ± 0.03 89.2 ± 5.3 78.8 ± 3.7 88.6 ± 6.3 83.6 ± 5.4 89.8 ± 5.5
Yb 0.07 ± 0.09 0.14 ± 0.11 164 ± 9 144 ± 8 161 ± 14 129 ± 8 141 ± 8
Lu 0.10 ± 0.04 0.06 ± 0.03 142 ± 8 124 ± 6 140 ± 10 134 ± 8 146 ± 8
Hf 0.04 ± 0.06 0.09 ± 0.06 80.5 ± 4.6 72.2 ± 4.0 80.1 ± 7.1 94.1 ± 5.7 98.3 ± 5.7
Ta 0.01 ± 0.03 0.01 ± 0.02 114 ± 6 103 ± 5 113 ± 8 114 ± 6 118 ± 6
W 0.03 ± 0.05 b.d.l 6.94 ± 0.50 13.6 ± 0.8 22.6 ± 1.9 5.26 ± 0.42 4.48 ± 0.37
Pb b.d.l 0.27 ± 0.08 0.08 ± 0.03 0.09 ± 0.03 b.d.l 0.15 ± 0.04 0.09 ± 0.03
Th b.d.l 0.01 ± 0.01 84.2 ± 4.6 83.6 ± 3.8 88.7 ± 6.2 83.1 ± 4.9 80.4 ± 4.5
U 0.01 ± 0.01 b.d.l 0.37 ± 0.03 0.53 ± 0.04 0.42 ± 0.04 0.55 ± 0.05 0.27 ± 0.03

Silicate Melt

H3-Ti5-R4
H3-Ti5-R5
H3-R8
Mel3-R9
Mel3-R11
Mel3-R12
µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D. µg/g S.D.
Mg 16270 ± 2730 13761 ± 4025 11830 ± 1200 46019 ± 5506 46648 ± 11969 36571 ± 6463
Si 152332 ± 20231 150673 ± 20774 152250 ± 20475 198640 ± 27085 170473 ± 23065 187738 ± 4966
Ca 191451 ± 6107 205918 ± 6551 194399 ± 6193 259365 ± 8229 224959 ± 7156 230146 ± 14
Sc 204 ± 12 230 ± 16 260 ± 13 288 ± 15 209 ± 13 215 ± 21
Ti 28655 ± 2763 29097 ± 3562 141 ± 15 16910 ± 2233 12990 ± 1373 13316 ± 1462
V 167 ± 11 179 ± 14 193 ± 10 328 ± 19 249 ± 17 442 ± 27
Cr 5.43 ± 2.54 b.d.l b.d.l b.d.l b.d.l b.d.l
Co 158 ± 10 135 ± 8 144 ± 8 135 ± 9 115 ± 6 87.5 ± 2.8
Ni 198 ± 32 179 ± 67 102 ± 17 65.0 ± 13.7 73.6 ± 24.6 82.0 ± 15.3
Cu 68.2 ± 4.4 48.6 ± 3.8 55.1 ± 3.9 27.4 ± 2.3 174 ± 12 64.6 ± 2.9
Zn 5.63 ± 1.35 3.85 ± 0.97 3.03 ± 1.12 2.59 ± 1.18 3.53 ± 0.83 3.26 ± 0.21
Ga 137 ± 7 105 ± 7 139 ± 8 141 ± 9 133 ± 8 154 ± 2
Ge 3.14 ± 0.79 2.34 ± 0.68 2.26 ± 0.76 9.62 ± 0.83 6.89 ± 0.85 18.8 ± 0.6
Rb 0.48 ± 0.10 0.36 ± 0.07 0.39 ± 0.07 0.45 ± 0.06 0.43 ± 0.07 0.62 ± 0.02
Sr 179 ± 8 193 ± 10 211 ± 10 354 ± 19 288 ± 13 391 ± 13
Y 132 ± 7 155 ± 12 160 ± 7 275 ± 14 204 ± 14 285 ± 9
Zr 125 ± 6 127 ± 10 142 ± 6 206 ± 9 152 ± 10 166 ± 7
Nb 90.3 ± 4.1 99.1 ± 5.8 110 ± 4 199 ± 8 151 ± 8 247 ± 9
Rh 0.71 ± 0.11 0.29 ± 0.07 0.16 ± 0.03 0.28 ± 0.04 0.47 ± 0.08 0.90 ± 0.26
Cs b.d.l b.d.l b.d.l b.d.l 0.05 ± 0.03 b.d.l
Ba 97.3 ± 6.5 114 ± 8 124 ± 7 302 ± 19 235 ± 15 468 ± 32
La 96.0 ± 3.9 69.5 ± 3.9 117 ± 4 191 ± 7 147 ± 7 238 ± 8
Ce 163 ± 7 131 ± 7 182 ± 7 264 ± 10 204 ± 10 323 ± 12
Pr 103 ± 5 86.1 ± 4.6 117 ± 4 151 ± 6 116 ± 6 173 ± 6
Nd 104 ± 5 93.2 ± 6.7 120 ± 5 191 ± 9 145 ± 9 211 ± 7
Sm 132 ± 7 137 ± 12 154 ± 8 258 ± 15 195 ± 15 269 ± 9
Eu 99.7 ± 5.1 108 ± 7 113 ± 4 151 ± 7 116 ± 7 158 ± 5
Gd 120 ± 9 133 ± 11 141 ± 8 233 ± 15 175 ± 13 237 ± 11
Tb 117 ± 6 139 ± 11 142 ± 6 221 ± 11 168 ± 12 229 ± 7
Dy 93.7 ± 5.9 113 ± 12 116 ± 5 139 ± 7 106 ± 10 144 ± 6
Ho 126 ± 7 152 ± 15 158 ± 7 245 ± 12 185 ± 16 254 ± 9
Er 71.1 ± 4.0 86.8 ± 9.6 91.0 ± 4.1 247 ± 13 188 ± 18 254 ± 9
Tm 69.4 ± 3.7 85.6 ± 8.3 90.3 ± 3.4 238 ± 10 178 ± 15 245 ± 8
Yb 124 ± 8 156 ± 14 165 ± 7 246 ± 11 184 ± 15 250 ± 10
Lu 126 ± 7 154 ± 14 162 ± 7 229 ± 11 172 ± 13 227 ± 8
Hf 81.2 ± 5.1 95.1 ± 8.5 111 ± 4 174 ± 8 126 ± 10 127 ± 10
Ta 102 ± 6 115 ± 9 133 ± 5 144 ± 7 109 ± 8 152 ± 5
W 20.2 ± 1.3 27.0 ± 2.6 198 ± 8 225 ± 11 93.5 ± 7.9 146 ± 10
Pb 0.11 ± 0.04 b.d.l 0.07 ± 0.02 b.d.l 0.09 ± 0.02 0.08 ± 0.01
Th 77.9 ± 4.0 87.3 ± 7.6 103 ± 4 233 ± 9 177 ± 13 296 ± 14
U 0.57 ± 0.05 0.45 ± 0.05 0.49 ± 0.03 11.4 ± 0.5 8.18 ± 0.70 22.0 ± 1.3

Table 3.

Mineral-melt partition coefficients including the available literature data. The 1σ represents the mean absolute standard error on the average and “n” stands for the number of analyzes that had been incorporated in the calculations for the D-values in the form of “n” of the mineral vs. “n” of the silicate melt.

Hibonite
H1-Ti2-R3
H1-Ti5-R4
H1-Ti5-R5
H2-Ti2-R2
H2-Ti2-R3
D-Value σ n D-Value σ n D-Value σ n D-Value σ n D-Value σ n
Mg 1.86 ±0.21 5/6 2.68 ±0.22 6/6 2.98 ±0.40 6/6 0.92 ±0.11 6/6 1.12 ±0.12 6/6
Si 0.045 ±0.004 5/6 0.027 ±0.003 5/6 0.031 ±0.003 6/6 0.033 ±0.003 6/6 0.051 ±0.004 6/6
Ca 0.29 ±0.01 5/6 0.31 ±0.01 6/6 0.28 ±0.01 6/6 0.34 ±0.01 6/6 0.32 ±0.01 6/6
Sc 0.18 ±0.01 5/6 0.19 ±0.01 6/6 0.17 ±0.01 6/6 0.20 ±0.01 6/6 0.18 ±0.01 6/6
Ti 0.91 ±0.06 5/6 0.68 ±0.03 6/6 0.67 ±0.05 6/6 1.08 ±0.07 6/6 1.21 ±0.05 6/6
V 0.033 ±0.002 5/6 0.020 ±0.001 6/6 0.019 ±0.001 6/6 0.044 ±0.002 6/6 0.049 ±0.002 6/6
Cr 3/0 5.24 ±2.30 2/1 1/0 3/0 2.26 ±0.58 3/1
Co 1.63 ±0.05 5/6 2.40 ±0.08 6/6 2.30 ±0.10 6/6 0.88 ±0.03 6/6 1.13 ±0.03 6/6
Ni 1.15 ±0.18 5/6 1.91 ±0.16 6/6 1.65 ±0.23 6/6 0.62 ±0.11 6/6 0.77 ±0.12 6/6
Cu 0.16 ±0.01 5/6 0.18 ±0.01 6/6 0.18 ±0.01 6/6 0.069 ±0.003 6/6 0.12 ±0.01 6/6
Zn 3.37 ±0.55 4/5 3.53 ±0.63 6/6 4.32 ±1.07 2/5 2.21 ±0.37 4/6 2.44 ±0.35 5/6
Ga 2.56 ±0.08 5/6 1.81 ±0.05 6/6 1.95 ±0.07 6/6 1.66 ±0.05 6/6 2.44 ±0.07 6/6
Ge 2.99 ±0.74 3/3 2.80 ±0.56 4/6 3.08 ±0.83 3/4 3.76 ±0.84 5/3 3.89 ±0.92 6/3
Rb 0/6 0/6 0/6 0/6 0/6
Sr 0.49 ±0.01 5/6 0.55 ±0.01 6/6 0.52 ±0.02 5/6 0.52 ±0.01 6/6 0.51 ±0.01 6/6
Y 0.23 ±0.01 5/6 0.17 ±0.01 6/6 0.16 ±0.01 6/6 0.36 ±0.01 6/6 0.31 ±0.01 6/6
Zr 0.20 ±0.01 5/6 0.19 ±0.01 6/6 0.16 ±0.01 6/6 0.28 ±0.01 6/6 0.25 ±0.01 6/6
Nb 0.087 ±0.003 5/6 0.083 ±0.003 6/6 0.075 ±0.003 6/6 0.20 ±0.01 6/6 0.19 ±0.01 6/6
Rh 19.4 ±1.5 5/6 13.6 ±1.1 6/6 19.8 ±2.5 6/6 0/6 34.6 ±3.5 6/6
Cs 0/0 4.02 ±2.39 1/1 1/0 0/1 1/0
Ba 0.031 ±0.003 4/6 0.027 ±0.003 6/6 0.029 ±0.003 5/6 0.025 ±0.004 4/6 0.026 ±0.003 6/6
La 7.52 ±0.19 5/6 4.29 ±0.09 6/6 5.17 ±0.15 6/6 7.07 ±0.17 6/6 8.44 ±0.20 6/6
Ce 4.49 ±0.11 5/6 2.89 ±0.07 6/6 3.05 ±0.10 6/6 5.18 ±0.13 6/6 5.82 ±0.14 6/6
Pr 4.68 ±0.12 5/6 2.94 ±0.08 6/6 3.23 ±0.12 6/6 5.29 ±0.13 6/6 5.69 ±0.14 6/6
Nd 3.97 ±0.12 5/6 2.52 ±0.07 6/6 2.69 ±0.10 6/6 4.60 ±0.14 6/6 4.75 ±0.14 6/6
Sm 1.96 ±0.07 5/6 1.36 ±0.04 6/6 1.34 ±0.06 6/6 2.56 ±0.09 6/6 2.43 ±0.08 6/6
Eu 1.35 ±0.04 5/6 0.95 ±0.03 6/6 0.93 ±0.04 6/6 1.83 ±0.05 6/6 1.66 ±0.05 6/6
Gd 1.11 ±0.04 5/6 0.84 ±0.03 6/6 0.81 ±0.05 6/6 1.58 ±0.05 6/6 1.36 ±0.04 6/6
Tb 0.65 ±0.02 5/6 0.50 ±0.01 6/6 0.48 ±0.02 6/6 1.00 ±0.03 6/6 0.83 ±0.03 6/6
Dy 0.43 ±0.02 5/6 0.32 ±0.01 6/6 0.31 ±0.02 6/6 0.67 ±0.03 6/6 0.55 ±0.02 6/6
Ho 0.28 ±0.01 5/6 0.21 ±0.01 6/6 0.20 ±0.01 6/6 0.45 ±0.02 6/6 0.38 ±0.01 6/6
Er 0.18 ±0.01 5/6 0.15 ±0.01 6/6 0.13 ±0.01 6/6 0.30 ±0.01 6/6 0.25 ±0.01 6/6
Tm 0.11 ±0.00 5/6 0.075 ±0.002 6/6 0.077 ±0.003 6/6 0.19 ±0.01 6/6 0.15 ±0.01 6/6
Yb 0.069 ±0.003 5/6 0.052 ±0.002 6/6 0.050 ±0.003 6/6 0.12 ±0.01 6/6 0.098 ±0.004 6/6
Lu 0.053 ±0.002 5/6 0.036 ±0.001 6/6 0.035 ±0.002 6/6 0.088 ±0.003 6/6 0.072 ±0.003 6/6
Hf 0.49 ±0.02 5/6 0.47 ±0.02 6/6 0.42 ±0.02 6/6 0.66 ±0.02 6/6 0.57 ±0.02 6/6
Ta 0.35 ±0.01 5/6 0.35 ±0.01 6/6 0.33 ±0.01 6/6 0.74 ±0.02 6/6 0.70 ±0.02 6/6
W 0.012 ±0.004 5/6 0.007 ±0.003 4/6 0.009 ±0.002 4/6 0.053 ±0.013 4/6 0.042 ±0.008 6/6
Pb 0/4 0/3 1/0 0/6 0/2
Th 1.56 ±0.05 5/6 0.86 ±0.02 6/6 0.81 ±0.03 6/6 2.30 ±0.08 6/6 2.01 ±0.07 6/6
U 0/6 0.021 ±0.015 1/6 0/6 0.038 ±0.010 3/6 0.047 ±0.018 3/6

Hibonite
H2-Ti5-R4
H2-Ti5-R5
H3-Ti5-R4
H3-Ti5-R5
Ø Hibonite
D-Value σ n D-Value σ n D-Value σ n D-Value σ n D-Value σ
Mg 1.47 ±0.13 6/6 1.63 ±0.26 6/6 1.04 ±0.10 6/6 1.52 ±0.25 6/6 1.69 ±0.57
Si 0.032 ±0.003 6/6 0.028 ±0.002 6/6 0.11 ±0.01 6/6 0.050 ±0.004 6/6 0.045 ±0.011
Ca 0.35 ±0.01 6/6 0.33 ±0.01 6/6 0.31 ±0.01 6/6 0.29 ±0.01 6/6 0.31 ±0.02
Sc 0.17 ±0.01 6/6 0.17 ±0.01 6/6 0.22 ±0.01 6/6 0.23 ±0.01 6/6 0.19 ±0.02
Ti 0.87 ±0.04 6/6 0.91 ±0.06 6/6 0.74 ±0.04 6/6 1.01 ±0.07 6/6 0.90 ±0.15
V 0.039 ±0.002 6/6 0.028 ±0.002 6/6 0.098 ±0.004 6/6 0.040 ±0.002 6/6 0.041 ±0.006
Cr 1/0 1/0 4.59 ±2.21 5/1 4/0 4.03 ±2.82
Co 1.46 ±0.05 6/6 1.61 ±0.05 6/6 0.90 ±0.03 6/6 1.45 ±0.05 6/6 1.53 ±0.14
Ni 1.26 ±0.11 6/6 1.33 ±0.27 6/6 0.73 ±0.07 6/6 1.15 ±0.25 6/6 1.18 ±0.51
Cu 0.13 ±0.01 6/6 0.14 ±0.01 6/6 0.15 ±0.01 6/6 0.12 ±0.01 6/6 0.14 ±0.02
Zn 3.73 ±1.01 2/5 2.68 ±0.41 5/6 1.49 ±0.26 5/6 2.27 ±0.45 5/5 2.89 ±1.51
Ga 2.18 ±0.06 6/6 2.21 ±0.09 6/6 1.72 ±0.05 6/6 2.33 ±0.09 6/6 2.10 ±0.19
Ge 3.57 ±0.61 4/6 4.56 ±1.00 3/4 2.00 ±0.36 4/5 3.82 ±0.78 3/5 3.39 ±2.02
Rb 0.86 ±0.29 1/6 0.81 ±0.25 1/6 0/6 0/6 0.83 ±0.38
Sr 0.57 ±0.02 6/6 0.56 ±0.02 6/6 0.48 ±0.01 6/6 0.55 ±0.02 6/6 0.53 ±0.04
Y 0.23 ±0.01 6/6 0.19 ±0.01 6/6 0.22 ±0.01 6/6 0.17 ±0.01 6/6 0.23 ±0.02
Zr 0.18 ±0.01 6/6 0.19 ±0.01 6/6 0.18 ±0.01 6/6 0.27 ±0.01 6/6 0.21 ±0.02
Nb 0.11 ±0.00 6/6 0.10 ±0.00 6/6 0.14 ±0.00 6/6 0.22 ±0.01 6/6 0.13 ±0.01
Rh 29.2 ±2.7 6/6 21.2 ±2.2 6/6 8.93 ±0.73 6/6 30.0 ±3.4 6/6 22.1 ±5.5
Cs 0/0 0/0 0/0 0/0 4.02 ±2.39
Ba 0.028 ±0.003 5/6 0.028 ±0.003 6/6 0.095 ±0.005 6/6 0.043 ±0.004 5/6 0.037 ±0.012
La 5.76 ±0.13 6/6 6.91 ±0.21 6/6 3.33 ±0.08 6/6 4.83 ±0.16 6/6 5.92 ±0.43
Ce 4.16 ±0.10 6/6 4.47 ±0.13 6/6 2.20 ±0.06 6/6 2.90 ±0.09 6/6 3.91 ±0.29
Pr 4.08 ±0.11 6/6 4.49 ±0.13 6/6 2.37 ±0.07 6/6 3.12 ±0.10 6/6 3.99 ±0.31
Nd 3.42 ±0.10 6/6 3.70 ±0.14 6/6 2.06 ±0.06 6/6 2.54 ±0.11 6/6 3.36 ±0.31
Sm 1.86 ±0.06 6/6 1.82 ±0.09 6/6 1.20 ±0.04 6/6 1.32 ±0.07 6/6 1.76 ±0.19
Eu 1.33 ±0.04 6/6 1.24 ±0.05 6/6 0.87 ±0.03 6/6 0.93 ±0.04 6/6 1.23 ±0.11
Gd 1.10 ±0.04 6/6 1.03 ±0.05 6/6 0.73 ±0.03 6/6 0.78 ±0.04 6/6 1.04 ±0.12
Tb 0.67 ±0.02 6/6 0.60 ±0.03 6/6 0.48 ±0.02 6/6 0.46 ±0.02 6/6 0.63 ±0.06
Dy 0.44 ±0.02 6/6 0.37 ±0.02 6/6 0.34 ±0.01 6/6 0.31 ±0.02 6/6 0.42 ±0.05
Ho 0.30 ±0.01 6/6 0.24 ±0.01 6/6 0.25 ±0.01 6/6 0.22 ±0.01 6/6 0.28 ±0.03
Er 0.18 ±0.01 6/6 0.16 ±0.01 6/6 0.19 ±0.01 6/6 0.15 ±0.01 6/6 0.19 ±0.02
Tm 0.11 ±0.00 6/6 0.089 ±0.005 6/6 0.14 ±0.00 6/6 0.097 ±0.006 6/6 0.11 ±0.01
Yb 0.070 ±0.003 6/6 0.058 ±0.003 6/6 0.11 ±0.00 6/6 0.069 ±0.004 6/6 0.077 ±0.011
Lu 0.048 ±0.002 6/6 0.040 ±0.002 6/6 0.098 ±0.003 6/6 0.056 ±0.003 6/6 0.058 ±0.007
Hf 0.46 ±0.02 6/6 0.46 ±0.02 6/6 0.40 ±0.02 6/6 0.56 ±0.03 6/6 0.50 ±0.06
Ta 0.43 ±0.01 6/6 0.46 ±0.02 6/6 0.35 ±0.01 6/6 0.61 ±0.03 6/6 0.48 ±0.05
W 0.017 ±0.007 3/6 0.035 ±0.007 4/6 0.080 ±0.005 6/6 0.058 ±0.005 6/6 0.035 ±0.026
Pb 0/1 0/3 0/1 0/0
Th 1.38 ±0.04 6/6 1.29 ±0.06 6/6 0.88 ±0.03 6/6 0.85 ±0.04 6/6 1.33 ±0.14
U 0.027 ±0.013 3/6 0.018 ±0.013 2/6 0.092 ±0.015 4/6 0.066 ±0.018 3/6 0.044 ±0.055

Hibonite
Melilite1
Kennedy et al. 1994
H1-Ti2-R3
H3-R8
Ø Melilite
Beckett & Stolper 1994
D-Value σ D-Value σ n D-Value σ n D-Value σ D-Value σ
Mg 0.50 7.78 ±1.20 2/6 0.21 ±0.01 6/5 3.99 ±0.66
Si 0.028 0.70 ±0.08 2/6 0.68 ±0.06 6/5 0.69 ±0.09
Ca 0.30 1.42 ±0.05 2/6 1.50 ±0.03 6/5 1.46 ±0.05
Sc 0.46 1.12 ±0.07 2/6 0.012 ±0.001 6/5 0.57 ±0.04 0.016 ±0.007
Ti 1.29 4.60 ±0.29 2/6 0.027 ±0.010 1/5 2.32 ±0.84
V 0.57 ±0.04 2/6 0.002 ±0.000 6/5 0.28 ±0.03
Cr 0/0 0/0
Co 6.07 ±0.27 2/6 0.13 ±0.00 6/5 3.10 ±0.17
Ni 4.25 ±0.98 2/6 0.17 ±0.03 4/5 2.21 ±0.65
Cu 1.32 ±0.10 2/6 0.044 ±0.003 6/5 0.68 ±0.07
Zn 17.9 ±6.5 1/5 0.48 ±0.18 2/5 9.18 ±4.81
Ga 8.47 ±0.39 2/6 0.81 ±0.03 6/5 4.64 ±0.26
Ge 0.78 0/3 1.21 ±0.27 4/5 1.21 ±0.27
Rb 0/6 0.36 ±0.16 1/5 0.36 ±0.16
Sr 0.62 2.24 ±0.09 2/6 0.52 ±0.01 6/5 1.38 ±0.07
Y 1.17 ±0.06 2/6 0.58 ±0.02 6/5 0.87 ±0.05
Zr 0.35 1.22 ±0.07 2/6 0/5 1.22 ±0.07
Nb 0.27 1.06 ±0.05 2/6 0.0003 ±0.0001 2/5 0.53 ±0.18
Rh 123 ±13 2/6 0.32 ±0.08 3/5 123 ±31
Cs 1/0 1/0
Ba 0.030 0.53 ±0.06 2/6 0.009 ±0.001 6/5 0.27 ±0.04 0.059 ±0.012
La 5.50 23.4 ±0.8 2/6 0.44 ±0.01 6/5 11.9 ±0.5 0.16 ±0.04
Ce 4.50 15.1 ±0.5 2/6 0.41 ±0.01 6/5 7.74 ±0.33 0.12 ±0.04
Pr 3.80 15.8 ±0.6 2/6 0.66 ±0.01 6/5 8.23 ±0.35
Nd 3.20 13.5 ±0.6 2/6 0.76 ±0.02 6/5 7.11 ±0.38
Sm 1.65 7.39 ±0.38 2/6 0.84 ±0.02 6/5 4.11 ±0.25
Eu 1.25 5.23 ±0.22 2/6 0.82 ±0.02 6/5 3.03 ±0.15
Gd 1.03 4.12 ±0.23 2/6 0.88 ±0.03 6/5 2.50 ±0.16
Tb 0.62 2.69 ±0.12 2/6 0.75 ±0.02 6/5 1.72 ±0.09
Dy 0.36 1.75 ±0.12 2/6 0.67 ±0.02 6/5 1.21 ±0.09
Ho 0.25 1.47 ±0.08 2/6 0.60 ±0.02 6/5 1.03 ±0.06
Er 0.22 1.12 ±0.08 2/6 0.49 ±0.01 6/5 0.81 ±0.06
Tm 0.13 0.87 ±0.05 2/6 0.40 ±0.01 6/5 0.64 ±0.04 0.078 ±0.027
Yb 0.21 0.67 ±0.05 2/6 0.33 ±0.01 6/5 0.50 ±0.04
Lu 0.075 0.71 ±0.04 2/6 0.29 ±0.01 6/5 0.50 ±0.03
Hf 0.73 2.49 ±0.14 2/6 0.0004 ±0.0001 3/5 1.24 ±0.38
Ta 2.74 ±0.13 2/6 0.0002 ±0.0000 4/5 1.37 ±0.28
W 0.95 ±0.20 2/6 0.0002 ±0.0001 3/5 0.47 ±0.24
Pb 0/4 0/3
Th 0.93 5.82 ±0.28 2/6 0.088 ±0.002 6/5 2.95 ±0.16
U 0.080 0.34 ±0.20 2/6 0.004 ±0.004 1/5 0.17 ±0.20

Melilite1
Spinel2
Kuehner et al. 1989
Lundstrom et al. 2006
H2-R8
H3-R8
Mel3-R9
D-Value σ D-Value σ D-Value σ n D-Value σ n D-Value σ n
Mg 11.6 ±2.7 4/7 10.6 ±0.6 6/5 3.83 ±0.24 8/5
Si 0/7 0.028 ±0.004 1/5 0/5
Ca 0.008 ±0.002 2/7 0.010 ±0.002 2/5 0.004 ±0.001 3/5
Sc 0.066 ±0.010 4/7 0.13 ±0.00 6/5 0.058 ±0.002 8/5
Ti 0/7 0.12 ±0.01 0/5 0.022 ±0.001 8/5
V 0.005 ±0.002 1/7 0.025 ±0.002 1/5 0.002 ±0.001 2/5
Cr 0/0 1/0 8/0
Co 12.3 ±1.9 4/7 9.82 ±0.37 6/5 3.07 ±0.14 8/5
Ni 34.0 ±11.3 4/7 36.4 ±3.4 6/5 16.9 ±2.0 8/5
Cu 1.81 ±0.35 4/7 1.33 ±0.06 6/5 0.29 ±0.02 8/5
Zn 20.9 ±7.9 4/6 12.2 ±2.4 6/5 3.60 ±0.90 8/5
Ga 2.77 ±0.40 4/7 1.85 ±0.06 6/5 2.65 ±0.09 8/5
Ge 2.41 ±1.20 1/2 0/5 0.52 ±0.23 1/5
Rb 0.013 ±0.002 1.20 ±0.52 1/7 0/5 0.61 ±0.33 1/5
Sr 0.93 ±0.00 0.68 ±0.02 0/7 0.024 ±0.002 1/5 0/5
Y 0.22 ±0.00 0/7 0.029 ±0.001 1/5 0.0007 ±0.0002 3/5
Zr 0.002 ±0.000 0.004 ±0.002 0/7 0.042 ±0.012 1/5 0/5
Nb 0.003 ±0.001 0.0009 ±0.0003 2/7 0.011 ±0.001 2/5 0.0001 ±0.0001 1/5
Rh 0/0 59.1 ±5.4 6/5 52.1 ±3.8 8/5
Cs 0.003 ±0.001 0/1 0/0 0/0
Ba 0.018 ±0.001 0.010 ±0.005 1/7 0.029 ±0.001 1/5 0.003 ±0.001 1/5
La 0.35 ±0.00 0.056 ±0.006 0/7 0.0009 ±0.0000 3/5 0/5
Ce 0.053 ±0.002 0.0001 ±0.0003 1/7 0.001 ±0.000 3/5 0.0001 ±0.0001 1/5
Pr 0/7 0.0007 ±0.0000 4/5 0.0002 ±0.0001 1/5
Nd 0.066 ±0.013 0.0008 ±0.0013 1/7 0.001 ±0.000 4/5 0.0007 ±0.0003 2/5
Sm 0.38 ±0.00 0.072 ±0.003 0.002 ±0.001 0/7 0.002 ±0.000 2/5 0.0002 ±0.0003 1/5
Eu 0.067 ±0.005 0/7 0.0006 ±0.0000 4/5 0.0002 ±0.0002 1/5
Gd 0/7 0.002 ±0.000 2/5 0.0004 ±0.0004 2/5
Tb 0.0003 ±0.0001 2/7 0.0009 ±0.0000 4/5 0.0001 ±0.0000 5/5
Dy 0.0006 ±0.0011 1/7 0.0010 ±0.0001 3/5 0.0003 ±0.0002 3/5
Ho 0.0002 ±0.0002 1/7 0.0006 ±0.0000 6/5 0.0002 ±0.0000 6/5
Er 0.037 ±0.005 0.001 ±0.001 1/7 0.001 ±0.000 4/5 0.0003 ±0.0001 7/5
Tm 0.0008 ±0.0004 1/7 0.0007 ±0.0000 6/5 0.0003 ±0.0000 8/5
Yb 0.13 ±0.00 0.019 ±0.011 0.0008 ±0.0006 2/7 0.0008 ±0.0001 4/5 0.0007 ±0.0001 6/5
Lu 0.0006 ±0.0001 4/7 0.0008 ±0.0000 6/5 0.0006 ±0.0001 8/5
Hf 0.001 ±0.001 0.002 ±0.001 2/7 0.001 ±0.000 5/5 0.0009 ±0.0002 6/5
Ta 0.003 ±0.001 0.0005 ±0.0003 1/7 0.002 ±0.000 2/5 0.0002 ±0.0001 2/5
W 0.002 ±0.001 1/7 0.002 ±0.000 2/5 0.0003 ±0.0001 4/5
Pb 0.33 ±0.21 0/0 0/3 0/0
Th 0.002 ±0.002 0.0004 ±0.0002 1/7 0.009 ±0.000 4/5 0.0001 ±0.0000 2/5
U 0.002 ±0.002 0/7 0.029 ±0.029 1/5 0/5

Spinel2
Mel3-R11-Spinel
Mel3-R12-Spinel
Ø Spinel
Lundstrom et al. 2006
D-Value σ n D-Value σ n D-Value σ n D-Value σ
Mg 3.99 ±0.51 6/6 4.97 ±0.71 6/12 7.00 ±2.20
Si 0.008 ±0.002 1/6 0.005 ±0.001 2/12 0.014 ±0.005
Ca 0/6 0.005 ±0.001 2/12 0.007 ±0.003
Sc 0.063 ±0.005 6/6 0.058 ±0.005 6/12 0.075 ±0.015
Ti 0.028 ±0.002 6/6 0.025 ±0.002 6/12 0.048 ±0.009
V 0.002 ±0.001 1/6 0.001 ±0.001 1/12 0.007 ±0.006
Cr 6/0 6/0
Co 3.70 ±0.26 6/6 4.85 ±0.26 6/12 6.74 ±1.26
Ni 13.8 ±2.3 6/6 12.6 ±1.4 6/8 22.7 ±9.5
Cu 0.42 ±0.03 6/6 0.41 ±0.02 6/12 0.85 ±0.19
Zn 6.65 ±0.91 6/5 4.80 ±0.51 6/9 9.65 ±5.04
Ga 2.77 ±0.20 6/6 2.69 ±0.13 6/12 2.55 ±0.45
Ge 0/6 0/12 1.47 ±0.97
Rb 1.01 ±0.42 1/5 0/11 0.94 ±0.76
Sr 0.002 ±0.001 1/6 0/12 0.013 ±0.007
Y 0.0005 ±0.0003 1/6 0.0002 ±0.0001 2/12 0.008 ±0.007
Zr 0/6 0.0006 ±0.0003 3/12 0.022 ±0.003 0.001 ±0.000
Nb 0/6 0.0001 ±0.0001 2/12 0.003 ±0.004 0.00004 ±0.00001
Rh 69.3 ±7.4 6/6 39.9 ±11.8 6/11 55.1 ±18.5
Cs 0/1 1/0
Ba 0/6 0/11 0.014 ±0.009
La 0/6 0/12 0.0009 ±0.0000 0.000003 ±0.000004
Ce 0.0002 ±0.0001 2/6 0.0001 ±0.0001 2/12 0.0003 ±0.0008
Pr 0.0005 ±0.0001 3/6 0.0001 ±0.0001 1/12 0.0004 ±0.0005
Nd 0.0007 ±0.0006 1/6 0.0004 ±0.0003 2/12 0.0007 ±0.0015 0.00003 ±0.00004
Sm 0.0008 ±0.0004 2/6 0.0003 ±0.0001 4/12 0.001 ±0.002
Eu 0/6 0.0003 ±0.0002 2/12 0.0003 ±0.0005
Gd 0/6 0/12 0.001 ±0.001
Tb 0.0000 ±0.0001 1/6 0.0002 ±0.0000 4/12 0.0003 ±0.0006
Dy 0.0007 ±0.0006 1/6 0.0004 ±0.0002 3/12 0.0006 ±0.0013
Ho 0.0003 ±0.0001 4/6 0.0001 ±0.0000 5/12 0.0003 ±0.0002
Er 0.0004 ±0.0001 5/6 0.0004 ±0.0001 3/12 0.0006 ±0.0006 0.0003 ±0.0001
Tm 0.0003 ±0.0001 3/6 0.0004 ±0.0001 3/12 0.0005 ±0.0003
Yb 0.0004 ±0.0005 1/6 0.0005 ±0.0002 3/12 0.0006 ±0.0010
Lu 0.0006 ±0.0001 6/6 0.0002 ±0.0000 6/12 0.0006 ±0.0002
Hf 0.0003 ±0.0004 2/6 0.0007 ±0.0003 4/12 0.001 ±0.001 0.001 ±0.000
Ta 0.0001 ±0.0003 1/6 0.0001 ±0.0001 3/12 0.0005 ±0.0019 0.0001 ±0.0001
W 0.0003 ±0.0005 1/6 0/12 0.0010 ±0.0020
Pb 0/2 3.47 ±1.11 1/4 3.47 ±1.11
Th 0/6 0.0000 ±0.0000 1/12 0.002 ±0.003 0.0006 ±0.0000
U 0.001 ±0.001 1/6 0/12 0.015 ±0.021 0.0003 ±0.0002

1

The D-values for melilite are directly influenced by the initial Ti concentration within the starting mixture. As far as two samples are appropriate enough to show, it could be that a higher Ti concentration is enhancing the incorporation possibilities for several elements.

2

The D-values for spinel are influenced by the very different starting compositions in respect to the aluminum and magnesium content between the starting mixtures H2, H3 and Mel3 (cf. Table 5)

Table 4.

Mineral-mineral partition coefficients with corresponding 1σ error as the mean absolute standard error of the average.

Hibonite/Melilite
Hibonite/Spinel
Melilite/Spinel
D-Value σ D-Value σ D-Value σ
Mg 0.42 ±0.16 0.24 ±0.11 0.57 ±0.20
Si 0.066 ±0.018 3.37 ±1.47 51.3 ±20.2
Ca 0.21 ±0.01 46.6 ±21.5 217 ±100
Sc 0.34 ±0.04 2.54 ±0.58 7.56 ±1.62
Ti 0.39 ±0.15 18.8 ±4.7 48.6 ±20.0
V 0.14 ±0.03 5.91 ±4.98 41.0 ±34.3
Cr
Co 0.49 ±0.05 0.23 ±0.05 0.46 ±0.09
Ni 0.53 ±0.28 0.052 ±0.031 0.097 ±0.050
Cu 0.20 ±0.04 0.16 ±0.04 0.80 ±0.20
Zn 0.32 ±0.23 0.30 ±0.22 0.95 ±0.70
Ga 0.45 ±0.05 0.82 ±0.16 1.82 ±0.34
Ge 2.81 ±1.79 2.31 ±2.06 0.82 ±0.58
Rb 2.31 ±1.48 0.89 ±0.83 0.39 ±0.36
Sr 0.38 ±0.03 40.1 ±21.6 105 ±56
Y 0.26 ±0.03 29.9 ±26.1 116 ±101
Zr 0.17 ±0.02 9.79 ±1.63 56.6 ±8.1
Nb 0.25 ±0.09
Rh 0.18 ±0.06 0.40 ±0.17 2.23 ±0.94
Cs
Ba 0.14 ±0.05 2.60 ±1.85 19.2 ±12.6
La 0.50 ±0.04 6420 ±522 12,915 ±706
Ce 0.50 ±0.04
Pr 0.48 ±0.04
Nd 0.47 ±0.05
Sm 0.43 ±0.05
Eu 0.41 ±0.04
Gd 0.42 ±0.05
Tb 0.37 ±0.04
Dy 0.34 ±0.05
Ho 0.27 ±0.04 997 ±848 3651 ±3086
Er 0.23 ±0.04 287 ±273 1247 ±1178
Tm 0.18 ±0.02 222 ±135 1238 ±740
Yb 0.15 ±0.02
Lu 0.12 ±0.01 103 ±37 876 ±303
Hf 0.40 ±0.13
Ta 0.35 ±0.08
W 0.073 ±0.066
Pb
Th 0.45 ±0.05
U

Table 1.

Major element concentrations of minerals and quenched silicate melts determined by EMPA. All values are given in wt%.

Sample MgO
Al2O3
SiO2
CaO
TiO2
wt% S.D. wt% S.D. wt% S.D. wt% S.D. wt% S.D.
Hibonite
H1-Ti2-R3 1.50 ±0.14 86.8 ±0.1 0.86 ±0.14 8.33 ±0.10 1.77 ±0.21
H1-Ti5-R4 2.01 ±0.13 85.1 ±0.7 0.64 ±0.13 8.36 ±0.08 3.16 ±0.41
H1-Ti5-R5 2.02 ±0.47 84.9 ±1.6 0.70 ±0.17 8.39 ±0.06 3.19 ±0.97
H2-Ti2-R2 1.87 ±0.06 85.7 ±0.3 1.22 ±0.12 8.27 ±0.09 1.84 ±0.05
H2-Ti2-R3 1.96 ±0.28 85.5 ±2.0 1.12 ±0.25 8.29 ±0.14 2.23 ±0.62
H2-Ti5-R4 2.41 ±0.07 83.8 ±0.3 0.90 ±0.19 8.30 ±0.09 3.61 ±0.16
H2-Ti5-R5 2.53 ±0.18 83.6 ±0.8 0.91 ±0.15 8.34 ±0.07 3.86 ±0.57
H3-Ti5-R4 2.37 ±0.06 84.8 ±0.4 0.81 ±0.11 8.27 ±0.09 3.57 ±0.10
H3-Ti5-R5 2.79 ±0.11 82.7 ±0.9 0.96 ±0.39 8.39 ±0.10 4.37 ±0.41
Melilite
H1-Ti2-R3 0.175 ±0.031 35.7 ±0.4 22.1 ±0.2 40.7 ±0.2 0.046 ±0.042
H3-R8 0.318 ±0.030 35.1 ±1.4 21.6 ±0.3 40.9 ±0.2
Spinel
H2-R8 25.3 ±0.2 72.1 ±0.1 0.026 ±0.012 0.021 ±0.004
H3-R8 19.7 ±1.1 78.3 ±1.3 0.034 ±0.043 0.026 ±0.014
Mel3-R9 28.0 ±0.2 70.9 ±0.4 0.022 ±0.036 0.014 ±0.004 0.057 ±0.047
Mel3-R11 28.0 ±0.2 70.5 ±0.9 0.037 ±0.024 0.016 ±0.007 0.081 ±0.028
Mel3-R12 27.9 ±0.2 70.9 ±0.2 0.024 ±0.032 0.011 ±0.009 0.059 ±0.052
Silicate Melt
H1-Ti2-R3 0.79 ±0.13 34.0 ±0.5 32.2 ±0.9 28.6 ±0.3 2.05 ±0.21
H1-Ti5-R4 0.71 ±0.02 35.2 ±0.5 28.8 ±2.0 27.2 ±0.3 4.97 ±0.40
H1-Ti5-R5 0.66 ±0.09 31.8 ±0.6 31.6 ±2.2 29.1 ±0.5 4.60 ±0.40
H2-Ti2-R2 1.41 ±0.19 36.0 ±0.5 32.7 ±1.1 24.5 ±0.1 1.86 ±0.31
H2-Ti2-R3 1.38 ±0.21 33.2 ±0.2 34.9 ±1.3 25.6 ±0.4 1.92 ±0.3
H2-Ti5-R4 1.81 ±0.22 34.9 ±0.3 32.9 ±1.5 23.9 ±0.3 4.29 ±0.38
H2-Ti5-R5 1.59 ±0.16 31.3 ±0.4 34.7 ±1.0 25.3 ±0.4 4.25 ±0.24
H2-R8 2.38 ±0.17 36.2 ±0.7 31.3 ±0.8 28.1 ±0.3
H3-Ti5-R4 2.07 ±0.12 35.8 ±0.8 28.2 ±1.2 26.8 ±0.6 4.23 ±0.33
H3-Ti5-R5 1.90 ±0.18 31.2 ±0.8 36.2 ±1.8 28.8 ±0.1 4.42 ±0.24
H3-R8 1.69 ±0.10 37.4 ±1.3 31.6 ±2.7 27.2 ±0.4
Mel3-R9 6.04 ±0.12 19.1 ±2.1 36.1 ±4.1 36.3 ±3.0 1.02 ±0.15
Mel3-R11 5.33 ±0.50 19.1 ±1.4 38.4 ±1.1 31.5 ±3.9 2.16 ±0.22
Mel3-R12 6.13 ±0.67 18.9 ±4.3 38.5 ±5.7 32.2 ±7.1 2.18 ±0.91

Table 5.

Compositions of the starting materials.

SiO2 MgO Al2O3 CaO TiO2 MnCO3 GeO2 K2CO3
Material [wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wt%]
H1 28.2 0.86 42.9 27.3 0.17 0.42 0.15
H1-Ti2 27.7 0.84 42.0 26.8 1.99 0.17 0.41 0.15
H1-Ti5 26.8 0.82 40.7 25.9 4.99 0.16 0.40 0.14
H2 31.9 1.89 41.3 25.1 0.17 0.30 0.25
H2-Ti2 31.3 1.85 40.5 24.6 1.95 0.17 0.29 0.25
H2-Ti5 30.4 1.80 39.2 23.9 4.90 0.16 0.29 0.24
H3 29.5 2.11 39.7 27.8 0.25 0.40 0.30
H3-Ti2 28.8 2.06 38.8 27.1 2.23 0.24 0.39 0.29
H3-Ti5 28.0 2.01 37.8 26.4 4.87 0.24 0.38 0.29
Mel1 29.9 6.30 21.9 40.8 0.54 0.24 0.35
Mel2 39.6 11.3 7.52 40.1 0.72 0.46 0.35
Mel3 32.9 8.88 26.4 29.1 1.62 0.33 0.47 0.29

Table 6.

Experimental run conditions. All samples were inserted into the furnace at 800 °C and heated to Tmax with the rate of 100 °C/h. For experiments with complex heating cycles the intermediate steps are given as well. The total duration of the experiments also includes the time for reaching Tmax and the time at Tquench.

Sample Starting Mix Run Heating cycles
Tmax Time Cooling rate T1 Time Heating rate T2 Time Cooling rate Tquench Total Time Phases
[°C] [h] [°C/h] [°C] [h] [°C/h] [°C] [h] [°C/h] [°C] [h]
H2-Ti2-R2 H2 R2 1550 8 - - - - - - 5 1450 117.0 hib, gl
H1-Ti2-R3 H1 R3 1550 8 - - - - - - 1 1350 333.5 hib, mel, gl
H2-Ti2-R3 H2 R3 1550 8 - - - - - - 1 1350 333.5 hib, gl
H1-Ti5-R4 H1 R4 1550 8 - - - - - - 5 1450 139.5 hib, gl
H2-Ti5-R4 H2 R4 1550 8 - - - - - - 5 1450 139.5 hib, gl
H3-Ti5-R4 H3 R4 1550 8 - - - - - - 5 1450 139.5 hib, gl
H1-Ti5-R5 H1 R5 1550 8 5 1350 40 50 1437 24 2 1350 305.7 hib, gl
H2-Ti5-R5 H2 R5 1550 8 5 1350 40 50 1437 24 2 1350 305.7 hib, gl
H3-Ti5-R5 H3 R5 1550 8 5 1350 40 50 1437 24 2 1350 305.7 hib, gl
H2-R8 H2 R8 1550 10 5 1350 10 50 1450 10 2 1350 140.0 an, sp, gl
H3-R8 H3 R8 1550 10 5 1350 10 50 1450 10 2 1350 140.0 mel, sp, gl
Mel3-R9 Mel3 R9 1550 10 5 1350 10 50 1450 10 2 1200 142.5 mel, sp, gl
Mel3-R11 Mel3 R11 1550 8 - - - - - - 3 1200 193.0 sp, gl
Mel3-R12 Mel3 R12 1550 8 - - - - - - 3 1000 211.0 sp, gl

an = anorthite, gl = glass, hib = hibonite, mel = melilite, sp = spinel

2. Experimental design, materials, and methods

2.1. Starting materials

The starting materials compositions are given in Table 5. Starting materials H1 and H2 are based on the starting materials Hib-1 and Hib-6 of Beckett and Stolper [1], our H3 is based on the HB-1 starting material of Kennedy et al. [2]; our starting materials Mel1, Mel2 and Mel3 are similar to the starting materials used by Kuehner et al. ([3], AK40), Beckett and Stolper ([1], AK80) and Lundstrom et al. (CAI-Glass, [4]). In total six different starting material mixtures were prepared from high purity oxides and carbonates. The resulting mixtures were homogenized in an agate mortar under acetone and were subsequently fused in a large Pt-crucible at 1500 °C for at least 3 h in a Linn VMK (Linn Gmbh, Eschenfelden, Germany) high temperature box furnace. The resulting silicate glasses were reground using the same agate mortar with acetone and the resulting powders were doped with 200 µg/g each of Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Rh, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th and U, using ICP-MS standard solutions (1000 µg/ml, Alfa Aesar, Germany). However, Ti was added to the hibonite starting mixtures (H1-Ti2, H1-Ti5, H2-Ti2, H2-Ti5 and H3-Ti2, H3-Ti5) using high purity TiO2 (Alfa Aesar, Germany).

2.2. Experimental techniques

Experiments were conducted in a vertical tube furnaces (Gero GmbH, Neuhausen, Germany) at atmospheric pressure. We used the so-called “wire-loop technique” [5], [6], [7] where small amounts of starting material powder are mixed with an organic glue (UHU Gmbh, Flinke Flasche, Germany) and suspended on a 0.1 mm thick Pt wire. The loops are about 3 mm in diameter each. Using a home-made platinum wire “chandelier”, several samples could be run simultaneously. The samples were placed in the hot zone of the furnace at 800 °C. The temperature paths were designed so that the samples were first heated to temperatures well above the liquidus (i.e. 1550 °C, Tmax in Table 6), the run was left at 1550 °C (Tmax in Table 6) for at least 8–10 h, and then slowly cooled down to the final run temperature (Tquench) to equilibrate crystals with melts. Most experimental runs were performed with a single cooling ramp, whereas some experiments (H1-Ti5-R5, H2-Ti5-R5, H3-Ti5-R5, H2-R8, H3-R8, Mel3-R9; Table 6) were run with a more complex multi step cooling and heating cycle close to the liquidus temperature. In these runs the experiment was first heated to 1550 °C, then cooled to 1350 °C, left for 10–40 h, then heated with 50 °C/h to 1437 or 1450 °C (c.f. Table 6), left for a few hours, and then cooled to the final run temperature (Tquench). This technique was employed by Kennedy et al. [2] to facilitate crystal growth. However, we found no significant difference between runs with a single cooling ramp compared to the complex heating/cooling experiments. Table 6 shows that the total run time of the experiments was between 100 and 300 h. The experiments were quenched in air by rapidly removing them from the furnace. Details of all experimental parameters are given in Table 6.

The samples were mounted in epoxy resin, polished, and pre-examined using optical microscopy and a JEOL JSM-6610 LV SEM scanning electron microscope equipped with EDX system at the University of Münster. Samples that contained hibonite, melilite or spinel large enough for further chemical characterization were subsequently analyzed for major and trace elements.

2.3. Analytical techniques

Major elements analyses were performed with a JXA-8530F Hyperprobe field emission electron beam microprobe analyzer (EMPA) at the University of Münster. Operating at 15 kV acceleration voltage, a beam diameter of 3 μm and 5 nA beam current for the silicate melts and 15 nA for the minerals. We used a five WDX detector setup with two TAP crystals (Mg, Al), two PET (Ca, Si) and one LiF crystal (Ti). Natural and synthetic materials that were used for standardization are: jadeite (Na2O), kyanite (Al2O3), sanidine (K2O), Cr-diopside (Cr2O3), diopside (CaO), San Carlos olivine (MgO), fayalite (FeO), hypersthene (SiO2), rhodonite (MnO) and rutile (TiO2). A number of secondary standards (chromite, olivine, cr-diopside) were measured as unknowns to monitor external precision and accuracy.

Trace elements were measured by with a ThermoFisher Element II sector field ICP-MS coupled to a Photon Machines AnalyteG2 ArF Excimer laser at the University of Münster, operating with a 4 J/cm2 laser fluency and a repetition rate of 5 Hz. A HelEx 2-volume sample cell was used which holds up to 8 one-inch diameter mounts, 6 thin sections and additional reference materials. Prior to sample analyses, the system was tuned with the NIST SRM 612 for high sensitivity, stability, and low oxide rates (232Th16O/232Th < 0.2%). Spot sizes for analysis were between 35 and 50 μm in diameter, while the 50 µm where mainly used for the silicate glasses. Total measurement time was 75 s with 40 s ablation time on the sample and 20 s on the background, the wash out delay was 15 s.

The NIST 612 standard glass [8] was used as an external standard and the BIR-1G [8] and BCR-2G [8] were analyzed as unknowns over the course of this study to monitor precision and accuracy. Twelve sample measurements were bracketed by three measurements of the NIST 612 glasses. For the hibonite and melilite crystals, 43Ca was used as an internal standard, for spinel 26Mg and for the silicate melts 29Si was used internal standard element.

Acknowledgments

Our thanks go to B. Schmitte and M. Trogisch for sample preparation and support during EMPA and LA-ICP-MS measurements. Moreover, we would also like to thank members of the mechanical workshops at Münster University (M. Feldhaus, J. Kemmann, P. Weitkamp, H. Heying) for their sterling efforts in the labs. This work was supported by the Deutsche Forschungsgemeinschaft (SFB-TRR170). This is TRR 170 Publication no. 52.

Footnotes

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.100.

Appendix A

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.100.

Contributor Information

D. Loroch, Email: d.loroch@uni-muenster.de.

S. Klemme, Email: Stephan.klemme@uni-muenster.de.

J. Berndt, Email: jberndt@uni-muenster.de.

A. Rohrbach, Email: arno.rohrbach@uni-muenster.de.

Transparency document. Supplementary material

Transparency document.

mmc1.pdf (560.6KB, pdf)

Appendix A. Supplementary material

Supplementary Table A1.

mmc2.xls (14KB, xls)

Supplementary Table A2.

mmc3.xls (14KB, xls)

References

  • 1.Beckett J.R., Stolper E. Stability of hibonite, melilite and other aluminous phases in silicate melts: implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites. Meteoritics. 1994;29:41–65. [Google Scholar]
  • 2.Kennedy A.K., Lofgren G.E., Wasserburg G.J. Trace-element partition-coefficients for perovskite and hibonite in meteorite compositions. Chem. Geol. 1994;117:379–390. [Google Scholar]
  • 3.Kuehner S.M., Laughlin J.R., Grossman L., Johnson M.L., Burnett D.S. Determination of trace-element mineral liquid partition-coefficients in melilite and diopside by ion and electron-microprobe techniques. Geochim. Cosmochim. Acta. 1989;53:3115–3130. [Google Scholar]
  • 4.Lundstrom C.C., Sutton A.L., Chaussidon M., McDonough W.F., Ash R. Trace element partitioning between type BCAI melts and melilite and spinel: implications for trace element distribution during CAI formation. Geochim. Cosmochim. Acta. 2006;70:3421–3435. [Google Scholar]
  • 5.Borisov A., Palme H., Spettel B. Solubility of Pd insilicate melts: implications for core formation in the Earth. Geochim. Cosmochim. Acta. 1994;58:705–716. [Google Scholar]
  • 6.Wijbrans C.H., Klemme S., Berndt J., Vollmer C. Experimental determination of trace element partition coefficients between spinel and silicate melt: the influence of chemical composition and oxygen fugacity. Contrib. Miner. Pet. 2015;169:45–77. [Google Scholar]
  • 7.Beyer C., Berndt J., Tappe S., Klemme S. Trace element partitioning between perovskite and kimberlite to carbonatite melt: new experimental constraints. Chem. Geol. 2013;353:132–139. [Google Scholar]
  • 8.Jochum K., Nohl U., Herwig K., Lammel E., Stoll B., Hoffman A.W. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 2007;29:333–338. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Transparency document.

mmc1.pdf (560.6KB, pdf)

Supplementary Table A1.

mmc2.xls (14KB, xls)

Supplementary Table A2.

mmc3.xls (14KB, xls)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES