Abstract
Retinoblastoma is caused by mutational inactivation of both alleles of the RB1 gene, which maps to chromosome 13q14 and encodes retinoblastoma protein that acts as a tumor suppressor. Histopathological high-risk features of retinoblastoma are predictive of metastasis or local recurrence. The focus of this update is to emphasize the recent advances in pathology, various molecular key pathways and genome wide approaches for newer potential therapeutic future targets associated with retinoblastoma tumor biology. This review article highlights the new biomarkers expressed by the retinoblastoma tumor for the better survival of patients.
Keywords: retinoblastoma, pathology, molecular biology
RETINOBLASTOMA
Retinoblastoma is the most common intraocular malignancy of childhood and infancy accounting for 3% of all pediatrics cancers. It is caused by inactivation of RB1 genes commonly known as tumor suppressor gene[1]. Incidence of retinoblastoma ranges approximately worldwide at one case per 15 000-20 000 live births, which corresponds to about 9000 new cases every year[2]. There is no racial or gender predisposition. The sign of retinoblastoma is a white pupil, called leukocoria, strabismus, painful blind eye and loss of vision[3]. With the advancement in treatment and multidisciplinary approach, eye salvage is possible in group A through D intraocular tumours[4]. However, in group E tumours and group D (unilateral cases), enucleation always remains the choice of treatment. Higher incidences of histopathologic risk factors are reported from enucleated eyes from developing countries as opposed to developed countries[5].
GENETICS
Knudson's putative tumor suppressor gene was cloned by Weinberg's lab by studying genetic lesions and chromosomal aberrations in families with a history of retinoblastoma. This gene was the first human tumor suppressor gene to be cloned and it was named as RB1[6]. Initially, researchers considered that RB1 was important only for retinoblastoma susceptibility but Harbour et al[7] found that the RB1 gene was also mutated in lung cancer.
India has the largest number of retinoblastoma cases with an estimated 1500 new cases annually[8]. It was the first tumour in which cancer genetics was revealed[9]. Cases with heritable retinoblastoma (48%) carry a germline mutation in the RB1 gene and are likely to develop secondary cancers later in life like bone and soft tissue sarcomas, melanoma, brain tumours, etc. They have a 50% risk of transmitting their germline RB1 mutation to their offspring[10]. Cases with nonheritable retinoblastoma have normal RB1 gene. Some of the retinoblastoma cases are caused by RB1 gene mutation while others are caused by somatic amplification of the MYCN gene[11]. Recently, genetic laboratories have found that retinoblastoma may arise when the MYCN oncogene is amplified even in the presence of non-mutated RB1 genes. These cases are relatively rare, occuring in <3% of unilateral retinoblastoma cases[12]. Only 6% are familial while 94% are sporadic in newly diagnosed cases of retinoblastoma. All the cases of bilateral retinoblastoma involve germinal mutations[13]. Almost 15% of unilateral sporadic retinoblastoma is caused by germinal mutations affecting only one eye while the 85% are sporadic.
Knudson proposed the two hit hypothesis in 1971[9]. Knudson stated that two chromosomal mutations are needed for developing retinoblastoma. The initial hit is a germinal mutation, which is inherited and is found in all cells in hereditary retinoblastoma. The second hit grows in the somatic retinal cells leading to the development of retinoblastoma. Therefore, hereditary cases are subjected to the development of non-ocular tumors such as osteosarcoma. In unilateral sporadic retinoblastoma, both the hits occur during the development of the retina and are somatic mutations[14]. Therefore, there is no risk of second nonocular tumors.
Genetic testing for RB1 mutations and counselling of the patient can improve disease outcome and management. There are definitive molecular tests which help in identifying children and their relatives who are at high risk for retinoblastoma, and need to be followed closely for the disease[15]. Recently, combinational approach of multiplex ligation-dependent probe amplification assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays provides mutational spectrum of RB1 gene mutation in retinoblastoma patients[16].
PATHOLOGY
Gross
The gross appearance of retinoblastoma at cut section of the eye is somewhat variable, reflecting the stage of the disease at enucleation. The tumor has a white, encephaloid or brain-like appearance, with chalky areas of calcification and yellow necrotic areas[17]. The presence of calcium is often accentuated in eyes that have had prior radiotherapy or chemotherapy. Gross examination of the eyeball in the laboratory involves a total of 4 blocks. One block is the eyeball section with the optic nerve. Two blocks should contain the calottes. The fourth block consists of the resected margin of the optic nerve.
Histopathological
On microscopic examination, retinoblastoma reveals a tumor composed of small hyperchromatic cells with a high nuclear to cytoplasmic ratio with large areas of necrosis and multifocal area of calcifications. Tumour differentiation are categorized into well differentiated [>50% known as Homer-Wright (HW) rosettes] or poorly differentiated [<50% known as Flexner-Wintersteiner (FW) rosettes][18]. In 2014, new rosettes were found which were comparatively larger than FW and HW and has an unusal anterior segment involvement[19]. Necrosis in the tumor is graded as none (<25%), mild (25%-50%), or extensive (>50%). Optic nerve invasion is graded as prelaminar, postlaminar and invasion of the resected margin. Postlaminar invasion is defined as tumour invasion beyond the lamina cribrosa of optic nerve[20]. Choroidal involvement is divided into focal invasion defined as a tumour focus of less than 3 mm in any diameter (thickness or width) or massive invasion defined as invasive focus of tumour measuring 3 mm or more in any diameter as per the Retinoblastoma Staging Working Group[21]. Artifactual seeding of tumour cells is seen at times in the sections which pose a problem to the pathologist. These are composed of small groups of tumour cells usually with many necrotic cells present within natural spaces of the eye. In contrast true tumour invasion comprises of solid nests of tumour cells with pushing or infiltrating borders without necrosis.
Histopathological Prognostic High Risk Factors
The survival and management of high risk retinoblastoma has improved by identification of high-risk factors and appropriate adjuvant therapy. Histopathological high risk factors (HRFs) are evaluated and identified after enucleation for predicting metastasis. Prognostic factors like massive choroidal invasion, retrolaminar invasion and involvement of resected end of optic nerve, iris and ciliary body involvement, anterior chamber involvement, scleral and extrascleral involvement by tumour cells are associated with a greater risk of orbital recurrence and predictive of metastasis. There is a still debate regarding anterior chamber as a high-risk factor for retinoblastoma. Recently, Sreelakshmi et al[22] concluded in their study that anterior chamber seeds do not, by themselves, constitute an independent risk factor for metastasis in retinoblastoma. The reported incidences of HRFs are 7% to 56% for invasion of retrolaminar optic nerve and optic nerve to the transaction line; 12% to 42% for choroidal involvement; and 3% to 30% for scleral and extrascleral spread. Kashyap et al[23] described variousclinical features like older age at presentation, longer lag period, presence of hyphema, pseudohypopyon, staphyloma, and orbital cellulitis. These factors were associated with occurrence of HRFs and may be a useful indicator for considering adjuvant chemotherapy especially in developing countries. Also poorly differentiated retinoblastomas present at a later age and are associated with presence of multiple HRFs and necrosis[18]. Cases with presence of HRFs need systemic adjuvant chemotherapy which improves the survival of children at risk for metastatic disease[24]. Therefore, histopathologic HRFs can provide important basis for clinicians to determine treatment plan.
Pathological Tumor, Node, Metastasis Classification
Tumor, node, metastasis (TNM) classification is developed by the American Joint Commission on Cancer (AJCC) and the Union International Control Cancer (Table 1)[25]. Retinoblastoma is the first cancer in which role of germline predisposition is recognised by incorporating stage category “H” into the AJCC classication[26]. Table 2 describes the AJCC 2017 8th edition tumor, node, metastasis, heritable trait (TNMH) clinical (c) and pathological (p) staging system which is known to be the first evidence-based system for predicting overall prognosis of both eye(s) and patients[27]–[28].
Table 1. AJCC pathological classification (pTNM).
Primary tumor (pT) | |
pTX | Primary tumor cannot be assessed |
pTO | No evidence of primary tumor |
pT1 | Tumor confined to the eye with no optic nerve or choroidal invasion |
pT2 | Tumor with minimal optic nerve or choroidal invasion |
pT2a | Tumor superficially invades optic nerve head, or tumor exhibits focal choroidal invasion but does not extend past lamina cribrosa |
pT2b | Tumor superficially invades optic nerve head and tumor exhibits focal choroidal invasion but does not extend past lamina cribrosa |
pT3 | Tumor with significant optic nerve and/or choroidal invasion |
pT3a | Tumor invades optic nerve past lamina cribrosa but not to surgical resection line, or tumor exhibits massive choroidal invasion |
pT3b | Tumor invades optic nerve past lamina cribrosa but not to surgical resection line and exhibits massive choroidal invasion |
pT4 | Tumor invades optic nerve to surgical resection line or exhibits extra-ocular extension elsewhere |
pT4a | Tumor invades optic nerve to resection line, but no extra-ocular extension identified |
pT4b | Tumor invades optic nerve to resection line, and extra-ocular extension identified |
Regional lymph nodes (pN) | |
pNX | Regional lymph nodes cannot be assessed |
pNO | No regional lymph node metastasis |
pN1 | Regional lymph node involvement (preauricular, cervical) |
pN2 | Distant lymph node involvement |
Metastasis (pM) | |
pMX | Presence of metastasis cannot be assessed |
pM0 | No distant metastasis |
pM1 | Metastasis to sites other than central nervous system |
pM1a | Single lesion |
pM1b | Multiple lesions |
pM1c | Central nervous system metastasis |
pM1d | Discrete masses without leptomeningeal and/or cerebrospinal fluid involvement |
pM1e | Leptomeningeal and/or cerebrospinal fluid involvement |
Table 2. AJCC cTNMH retinoblastoma staging.
Primary tumor (cT) | ||
cTX | Unknown evidence of intraocular tumour | |
cTO | No evidence of intraocular tumor | |
cT1 | Intraocular tumour(s) with subretinal fluid ≤5 mm from the base of any tumour | |
cT1a | Tumours ≤3 mm and further than 1.5 mm from the disc and fovea | |
cT1b | Tumours >3 mm or closer than 1.5 mm to the disc and fovea | |
cT2 | Intraocular tumour(s) with retinal detachment, vitreous seeding or subretinal seeding | |
cT2a | Subretinal fluid >5 mm from the base of any tumour | |
cT2b | Tumours with vitreous seeding and/or subretinal seeding | |
cT3 | Advanced intraocular tumour(s) | |
cT3a | Phthisis or pre-phthisis bulbi | |
cT3b | Tumour invasion of the pars plana, ciliary body, lens, zonules, iris or anterior chamber | |
cT3c | Raised intraocular pressure with neovascularization and/or buphthalmos | |
cT3d | Hyphema and/or massive vitreous haemorrhage | |
cT3e | Aseptic orbital cellulitis | |
cT4 | Extraocular tumour(s) involving the orbit, including the optic nerve | |
cT4a | Radiological evidence of retrobulbar optic nerve involvement or thickening of the optic nerve or involvement of the orbital tissues | |
cT4b | Extraocular tumour clinically evident with proptosis and orbital mass | |
Regional lymph nodes (cN) | ||
cNX | Regional lymph nodes cannot be assessed | |
cN0 | No regional lymph nodes involvement | |
cN1 | Evidence of preauricular, submandibular, and cervical lymph node involvement | |
Distant metastasis (M) | ||
cM0 | No signs or symptoms of intracranial or distant metastasis | |
cM1 | Distant metastasis without microscopic confirmation | |
cM1a | Tumour(s) involving any distant site (e.g. bone marrow, liver) on clinical or radiological tests | |
cM1b | Tumour involving the central nervous system on radiological imaging (not including trilateral retinoblastoma) | |
pM1 | Distant metastasis with microscopic confirmation | |
pM1a | Histopathological confirmation of tumour at any distant site (e.g. bone marrow, liver, or other) | |
pM1b | Histopathological confirmation of tumour in the cerebrospinal fluid or central nervous system parenchyma | |
Heritable trait (H) | ||
HX | Unknown or insufficient evidence of a constitutional RB1 gene mutation | |
H0 | Normal RB1 alleles in blood tested with demonstrated high sensitivity assays | |
H1 | Bilateral retinoblastoma, retinoblastoma with an intracranial central nervous system midline embryonic tumour (e.g. trilateral retinoblastoma), patient with family history of retinoblastoma, or molecular definition of constitutional RB1 gene mutation |
RECENT ADVANCES IN MOLECULAR PATHOLOGY OF RETINOBLASTOMA
Ongoing studies via higher resolution genomic technologies, gene expression profiling, direct gene sequencing, multiplex-polymerase chain reaction, mi-RNA microarray profiling, next-generation sequencing (NGS), microsatellite analysis for loss of heterogeneity, and in-situ hybridization for chromosomal aberrations will continue to facilitate our exploration into the molecular intricacies of retinoblastoma and results in newer therapeutic approaches.
The discovery of proto-oncogenes transformed our insight into mechanisms of cancer. More recent studies shows that retinoblastoma tumors may differ in the mutagenic pathway as some of retinoblastoma tumors are caused by RB1 mutation[29]–[32] while some can also be initiated by amplification of MYCN proto-oncogene.
Singh et al[33] demonstrated prognostic significance of CDC25 phosphatases and polo-like kinases in retinoblastoma. They suggested that expression of CDC25B might be used as a potential prognostic marker in the pathogenesis of retinoblastoma and contribute to the development of the disease by causing genomic instability through deregulation of cell division. In their study, PLK1 was more frequently expressed and deregulated in poorly differentiated retinoblastoma tissue as compared to PLK3 protein that might serve as a poor prognostic marker in retinoblastoma[20].
Evasion of apoptosis is a hallmark of human cancers that leads to cancer development, progression and treatment resistance. The Bcl-2 family members are important regulators of the mitochondrial pathway of apoptosis. Bax and Bcl-2 are proteins that regulate programmed cell death and apoptosis. Recently, Singh et al[34] revealed higher expression of Bcl-2 in 66% of cases whereas Bax expression was found only in fewer cases (30%) of retinoblastoma tissue by immunohistochemistry, mRNA and Western blotting techniques. According to the author, differential expression of apoptotic regulatory proteins might represent poor response to patient outcome and have potential for tumor invasiveness.
Grotta et al[35] used a combined approach of next-generation sequencing (NGS) and RB1 custom array-comparative genomic hybridization (aCGH) on a cohort of retinoblastoma patients. NGS and RB1 custom aCGH have demonstrated to be an effective combined approach in order to optimize the overall diagnostic procedures of retinoblastoma. Devarajan et al[36] demonstrated for the first time that targeted next generation sequencing is an efficient approach for the identification of wide spectrum of pathogenic variants in retinoblastoma patients. Using this approach, an array of pathogenic variants including single nucleotide variants, InDels (small insertions/deletions) and copy number variations were detected in retinoblastoma patients. This comprehensive approach reduces the time and number of assays required for the detection of pathogenic variants by conventional methods which is sensitive (0.97) and efficient for RB1 screening.
The application of genomics to the study of cancer is rapidly shifting toward the analysis of tissue samples to discover new biomarkers for early detection of cancers. Mitochondria have been implicated in tumor progression, cell differentiation, and apoptotic pathways. The identification of mitochondrial DNA mutations and its associated proteins as a biomarker has been used to help understand not only gene function but also the underlying molecular mechanisms of mitochondrial biology in retinoblastoma. This strategy relies on the hypothesis that if mutations in mtDNA cause physiological aberrations specifically in a particular tissue, the gene is more likely to be selectively expressed in that tissue. Currently, the role of mitochondria in retinoblastoma biology is still poorly understood.
Recently, Singh et al[37] have described and analyzed the morphological changes of mitochondria in retinoblastoma tumor by transmission electron microscopy. Poorly differentiated retinoblastoma cases showed fewer mitochondria, scant cytoplasm, disorganized organelles (mitochondria), and necrosis, whereas well-differentiated retinoblastomas had larger number of mitochondria and more organized organelles. Understanding the structural and functional characteristics of mitochondria in retinoblastoma might be essential for the design of future therapeutic strategies. They have also studied the expression of mitochondrial oxidative phosphorylation complexes in retinoblastoma tumor tissues. Among all the complexes, loss of mitochondrial complex I immunoexpression proved to be a useful independent prognostic biomarker to identify high-risk retinoblastoma patients[38]. Role of mitochondrial DNA and its protein biomarkers necessitate careful experimentation to adequately assess its contribution in retinoblastoma which might prove of diagnostic and prognostic value, and serve as a basis for the development of better long term therapeutic strategies. This provides an insight into molecular mechanisms of mitochondrial dysfunction, and also helps to find novel cancer biomarkers in retinoblastoma.
Sangeetha et al[39] investigated lipogenesis-dependent survival of retinoblastoma cancer cells and the associated molecular pathways in fatty acid synthase (FASN) silenced retinoblastoma cells and revealed that FASN silencing reduced the invading property of retinoblastoma cancer cells by scratch assay. Venkatesan et al[40] studied computational and in vitro investigation of miRNAs-gene regulation in retinoblastoma pathogenesis by an in silico approach. They concluded downregulation of miR-486-3p and miR-532-5p in primary retinoblastoma tissues, which might implicates their role in tumorigenesis.
Cytoplasmic expression of FOXO3a (transcription factor) has been found to be associated in pathogenesis of retinoblastoma. Relocation of FOXO3a from cytoplasmic to nucleus activates non-mutated retinoblastoma and might be a therapeutic target for retinoblastoma[41]. Reactive oxygen species and free radicals are associated with cancer development and its progression, which might suggest potential avenues of therapeutic intervention. Expression of NOX4 protein might be a source of reactive-oxygen species production in tumor cells, leading to oxidative stress and associated with less overall survival rate in retinoblastoma[42].
Sirt1 (Sirtuin1) is the most important protein among all the sirtuins as it involves multiple factors that are highly relevant to cancer. Batra et al[43] found high expression of Sirt1 in retinoblastoma tumors but it was not associated with any high-risk histopathological factors. Similarly, Sirt2 and Sirt6 were also expressed in tumor cells along with various normal structures of the remaining ocular tissues[44]. Apart from the expression studies, mass spectrometry-based quantitative proteomic approach was also implemented to identify differentially expressed proteins in which mitochondrial dysfunction and lipid metabolism pathways found to be deregulated in retinoblastoma tumor[45].
Recently, an elevated expression of PDK1 protein levels has been validated in retinoblastoma tumors especially in vitreous seeds and hypoxic regions. Inhibition of PDK1 gene in retinoblastoma cell lines demonstrated reduced cell growth and increased apoptosis, which might be a potential future therapeutic target in retinoblastoma[46].
FUTURE TRENDS IN CLINICAL MANAGEMENT
Current treatment strategies contribute significantly to vision salvage in patients harbouring intraocular diseases, and overall survival rates in patients with extraocular disease. However therapies such as chemotherapy, brachytherapy and plaque therapy do result in significant morbidity. A better understanding of pathobiology of retinoblastoma may lead to better outcome in therapies with less long-term morbidity and prevent onset of secondary cancers. Translational research has shown the efficacy of adjuvant treatment in animal model and retinoblastoma cell lines leading to new insights into the development of retinoblastoma. Future trends in retinoblastoma treatment will focus on the local delivery of optimally-timed therapeutic agents which will act synergistically in the control of retinoblastoma tumors.
Acknowledgments
Conflicts of Interest: Singh L, None; Kashyap S, None.
REFERENCES
- 1.Dunn JM, Phillips RA, Becker AJ, Gallie BL. Identification of germline and somatic mutations affecting the retinoblastoma gene. Science. 1998;241(4874):1797–1800. doi: 10.1126/science.3175621. [DOI] [PubMed] [Google Scholar]
- 2.Kivela T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93(9):1129–1131. doi: 10.1136/bjo.2008.150292. [DOI] [PubMed] [Google Scholar]
- 3.Abramson DH, Frank CM, Susman M, Whalen MP, Dunkel IJ, Boyd NW., 3rd Presenting signs of retinoblastoma. J Pediatr. 1998;132(3 Pt 1):505–508. doi: 10.1016/s0022-3476(98)70028-9. [DOI] [PubMed] [Google Scholar]
- 4.Yousef YA, Hajja Y, Nawaiseh I, Mehyar M, Sultan I, Deebajah R, Rawashdeh K, Khurma S, Jaradat I, Al-Hussaini M. A histopathologic analysis of 50 eyes primarily enucleated for retinoblastoma in a tertiary cancer center in Jordan. Turk Patoloji Derg. 2014;30(3):171–177. doi: 10.5146/tjpath.2014.01260. [DOI] [PubMed] [Google Scholar]
- 5.Vemuganti G, Honavar S, John R. Clinicopathological profile of retinoblastoma patients in Asian Indians. Invest Ophthalmol Vis Sci. 2000;41(S):790. [Google Scholar]
- 6.Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986;323(6089):643–646. doi: 10.1038/323643a0. [DOI] [PubMed] [Google Scholar]
- 7.Harbour JW, Lai SL, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science. 1988;241(4863):353–357. doi: 10.1126/science.2838909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Dimaras H, Kimani K, Dimba EA, Gronsdahl P, White A, Chan HS, Gallie BL. Retinoblastoma. Lancet. 2012;379(9824):1436–1446. doi: 10.1016/S0140-6736(11)61137-9. [DOI] [PubMed] [Google Scholar]
- 9.Dimaras H. Retinoblastoma genetics in India: from research to implementation. Indian J Ophthalmol. 2015;63(3):219–226. doi: 10.4103/0301-4738.156917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276–292. doi: 10.1200/JCO.2005.10.042. [DOI] [PubMed] [Google Scholar]
- 11.Rushlow DE, Mol BM, Kennett JY, et al. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol. 2013;14(4):327–334. doi: 10.1016/S1470-2045(13)70045-7. [DOI] [PubMed] [Google Scholar]
- 12.Fabian ID, Rosser E, Sagoo MS. Epidemiological and genetic considerations in retinoblastoma. Community Eye Health. 2018;31(101):29–30. [PMC free article] [PubMed] [Google Scholar]
- 13.Shields JA, Shields CL. Genetics of retinoblastoma. In: Shields JA, Shields CL, editors. Intraocular tumors: a text and Atlas. Philadelphia, Pa: WB Saunders; 1992. pp. 333–340. [Google Scholar]
- 14.Ray A, Gombos DS, Vats TS. Retinoblastoma: an overview. Indian J Pediatr. 2012;79(7):916–921. doi: 10.1007/s12098-012-0726-8. [DOI] [PubMed] [Google Scholar]
- 15.Skalet AH, Gombos DS, Gallie BL, Kim JW, Shields CL, Marr BP, Plon SE, Chévez-Barrios P. Screening children at risk for retinoblastoma: consensus report from the American association of ophthalmic oncologists and pathologists. Ophthalmology. 2018;125(3):453–458. doi: 10.1016/j.ophtha.2017.09.001. [DOI] [PubMed] [Google Scholar]
- 16.Tomar S, Sethi R, Sundar G, Quah TC, Quah BL, Lai PS. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling. PLoS One. 2017;12(6):e0178776. doi: 10.1371/journal.pone.0178776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Eagle RC., Tr . Eye pathology: an Atlas and text. 2nd edition. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2011. [Google Scholar]
- 18.Kashyap S, Sethi S, Meel R, Pushker N, Sen S, Bajaj MS, Chandra M, Ghose S. A histopathologic analysis of eyes primarily enucleated for advanced intraocular retinoblastoma from a developing country. Arch Pathol Lab Med. 2012;136(2):190–193. doi: 10.5858/arpa.2010-0759-OA. [DOI] [PubMed] [Google Scholar]
- 19.Das D, Bhattacharjee K, Barthakur SS, Tahiliani PS, Deka P, Bhattacharjee H, Deka A, Paul R. A new rosette in retinoblastoma. Indian J Ophthalmol. 2014;62(5):638–641. doi: 10.4103/0301-4738.129786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Singh L, Pushker N, Sen S, Singh MK, Chauhan FA, Kashyap S. Prognostic significance of polo-like kinases in retinoblastoma: correlation with patient outcome, clinical and histopathological parameters. Clin Exp Ophthalmol. 2015;43(6):550–557. doi: 10.1111/ceo.12517. [DOI] [PubMed] [Google Scholar]
- 21.Sastre X, Chantada GL, Doz F, Wilson MW, de Davila MT, Rodríguez-Galindo C, Chintagumpala M, Chévez-Barrios P, International Retinoblastoma Staging Working Group Proceedings of the consensus meetings from the International Retinoblastoma Staging Working Group on the pathology guidelines for the examination of enucleated eyes and evaluation of prognostic risk factors in retinoblastoma. Arch Pathol Lab Med. 2009;133(8):1199–1202. doi: 10.5858/133.8.1199. [DOI] [PubMed] [Google Scholar]
- 22.Sreelakshmi KV, Chandra A, Krishnakumar S, Natarajan V, Khetan V. Anterior chamber invasion in retinoblastoma: not an indication for adjuvant chemotherapy. Invest Ophthalmol Vis Sci. 2017;58(11):4654–4661. doi: 10.1167/iovs.17-22111. [DOI] [PubMed] [Google Scholar]
- 23.Kashyap S, Meel R, Pushker N, Sen S, Bakhshi S, Sreenivas V, Sethi S, Chawla B, Ghose S. Clinical predictors of high risk histopathology in retinoblastoma. Pediatr Blood Cancer. 2012;58(3):356–361. doi: 10.1002/pbc.23239. [DOI] [PubMed] [Google Scholar]
- 24.Eagle RC., Jr High-risk features and tumor differentiation in retinoblastoma: a retrospective histopathologic study. Arch Pathol Lab Med. 2009;133(8):1203–1209. doi: 10.5858/133.8.1203. [DOI] [PubMed] [Google Scholar]
- 25.Finger PT, Harbour JW, Murphree AL. Retinoblastoma. In: Edge DR, Byrd DR, Compton CC, editors. AJCC cancer staging manual 2009. vol. 7. New York, NY: Springer; [Google Scholar]
- 26.AlAli A, Kletke S, Gallie B, Lam WC. Retinoblastoma for pediatric ophthalmologists. Asia Pac J Ophthalmol (Phila) 2018;7(3):160–168. doi: 10.22608/APO.201870. [DOI] [PubMed] [Google Scholar]
- 27.Mallipatna A, Gallie BL, Chévez-Barrios P. Retinoblastoma. In: Amin MB, Edge SB, Greene FL, editors. AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer; 2017. pp. 819–831. [Google Scholar]
- 28.Fabian ID, Onadim Z, Karaa E, Duncan C, Chowdhury T, Scheimberg I, Ohnuma S, Reddy MA, Sagoo MS. The management of retinoblastoma. Oncogene. 2018;37(12):1551–1560. doi: 10.1038/s41388-017-0050-x. [DOI] [PubMed] [Google Scholar]
- 29.Knudson AG., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Comings DE. A general theory of carcinogenesis. Proc Natl Acad Sci U S A. 1973;70(12):3324–3328. doi: 10.1073/pnas.70.12.3324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Dryja TP, Friend S, Weinberg RA. Genetic sequences that predispose to retinoblastoma and osteosarcoma. Symp Fundam Cancer Res. 1986;39:115–119. [PubMed] [Google Scholar]
- 32.Khetan V, Gupta A, Gopal L. Retinoblastoma: recent trends a mini review based on published literature. Oman J Ophthalmol. 2011;4(3):108–115. doi: 10.4103/0974-620X.91265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Singh L, Pushker N, Sen S, Singh MK, Bakhshi S, Chawla B, Kashyap S. Expression of CDC25A and CDC25B phosphatase proteins in human retinoblastoma and its correlation with clinicopathological parameters. Br J Ophthalmol. 2015;99(4):457–463. doi: 10.1136/bjophthalmol-2014-305830. [DOI] [PubMed] [Google Scholar]
- 34.Singh L, Pushker N, Saini N, Sen S, Sharma A, Bakhshi S, Chawla B, Kashyap S. Expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins in human retinoblastoma. Clin Exp Ophthalmol. 2015;43(3):259–267. doi: 10.1111/ceo.12397. [DOI] [PubMed] [Google Scholar]
- 35.Grotta S, D'Elia G, Scavelli R, et al. Advantages of a next generation sequencing targeted approach for the molecular diagnosis of retinoblastoma. BMC Cancer. 2015;15:841. doi: 10.1186/s12885-015-1854-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Devarajan B, Prakash L, Kannan TR, Abraham AA, Kim U, Muthukkaruppan V, Vanniarajan A. Targeted next generation sequencing of RB1 gene for the molecular diagnosis of Retinoblastoma. BMC Cancer. 2015;15:320. doi: 10.1186/s12885-015-1340-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Singh L, Nag TC, Kashyap S. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness. Tumour Biol. 2016;37(5):5797–5803. doi: 10.1007/s13277-015-4120-9. [DOI] [PubMed] [Google Scholar]
- 38.Singh L, Saini N, Bakhshi S, Pushker N, Sen S, Sharma A, Kaur J, Kashyap S. Prognostic significance of mitochondrial oxidative phosphorylation complexes: therapeutic target in the treatment of retinoblastoma. Mitochondrion. 2015;23:55–63. doi: 10.1016/j.mito.2015.06.001. [DOI] [PubMed] [Google Scholar]
- 39.Sangeetha M, Deepa PR, Rishi P, Khetan V, Krishnakumar S. Global gene deregulations in FASN silenced retinoblastoma cancer cells: molecular and clinico-pathological correlations. J Cell Biochem. 2015;116(11):2676–2694. doi: 10.1002/jcb.25217. [DOI] [PubMed] [Google Scholar]
- 40.Venkatesan N, Deepa PR, Khetan V, Krishnakumar S. Computational and in vitro investigation of miRNA-gene regulations in retinoblastoma pathogenesis: miRNA mimics strategy. Bioinform Biol Insights. 2015;9:89–101. doi: 10.4137/BBI.S21742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Batra A, Kashyap S, Singh L, Bakhshi S. Expression of FOXO3a and correlation with histopathologic features in retinoblastoma. Appl Immunohistochem Mol Morphol. 2017;25(2):95–99. doi: 10.1097/PAI.0000000000000278. [DOI] [PubMed] [Google Scholar]
- 42.Singh L, Saini N, Pushker N, Sen S, Sharma A, Kashyap S. Prognostic significance of NADPH oxidase-4 as an indicator of reactive oxygen species stress in human retinoblastoma. Int J Clin Oncol. 2016;21(4):651–657. doi: 10.1007/s10147-016-0951-7. [DOI] [PubMed] [Google Scholar]
- 43.Batra A, Kashyap S, Singh L, Bakhshi S. Sirtuin1 expression and correlation with histopathological features in retinoblastoma. Ocul Oncol Pathol. 2015;2(2):86–90. doi: 10.1159/000439594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Orellana ME, Quezada C, Maloney SC, Antecka E, Balazsi M, Burnier MN., Jr Expression of SIRT2 and SIRT6 in retinoblastoma. Ophthalmic Res. 2015;53(2):100–108. doi: 10.1159/000368718. [DOI] [PubMed] [Google Scholar]
- 45.Danda R, Ganapathy K, Sathe G, Madugundu AK, Ramachandran S, Krishnan UM, Khetan V, Rishi P, Keshava Prasad TS, Pandey A, Krishnakumar S, Gowda H, Elchuri SV. Proteomic profiling of retinoblastoma by high resolution mass spectrometry. Clin Proteomics. 2016;13:29. doi: 10.1186/s12014-016-9128-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Sradhanjali S, Tripathy D, Rath S, Mittal R, Reddy MM. Overexpression of pyruvate dehydrogenase kinase 1 in retinoblastoma: a potential therapeutic opportunity for targeting vitreous seeds and hypoxic regions. PLoS One. 2017;12(5):e0177744. doi: 10.1371/journal.pone.0177744. [DOI] [PMC free article] [PubMed] [Google Scholar]