Skip to main content
Heliyon logoLink to Heliyon
. 2018 Dec 17;4(12):e01009. doi: 10.1016/j.heliyon.2018.e01009

Synthesis, spectroscopic investigation, molecular docking and DFT studies of novel (2Z,4Z)-2,4-bis(4-chlorobenzylidene)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid (BCOPCA)

Poornima Devi a, Shaheen Fatma b, Shraddha Shukla a, Roop Kumar a, Vineeta Singh c, Abha Bishnoi a,
PMCID: PMC6299111  PMID: 30582037

Abstract

The synthesized compound (2Z,4Z)-2,4-bis(4-chlorobenzylidene)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid (BCOPCA) was characterised by Ultraviolet, FT-Infra Red, 1H, 13C Nuclear Magnetic Resonance and mass spectroscopy. The compound was further subjected to quantum chemical calculations at the level of density functional theory (DFT) using 6-31G (d,p) basis sets method with B3LYP and CAM-B3LYP hybrid functionals. The intramolecular interactions, polarizability, hyperpolarizability and nonlinear optical properties of the title compound were also incorporated in the study. The total first static hyperpolarizability (β0 = 19.477 × 10−30 and 16.924 × 10−30 esu) value was also computed and indicated the title molecule as an interesting forthcoming NLO material. The other thermodynamic properties (entropy, heat capacity and zero vibrational energy) were also discussed. The study also includes NBO computations, complete vibrational assignments, Mulliken charges, UV–Visible spectral analysis and HOMO–LUMO energies. The regions of low and high electron density were obtained from MESP and ESP maps. The calculated parameters for BCOPCA using aforementioned functions are harmonious with the experimental findings. The in-vitro antimicrobial activity and molecular docking studies of BCOPCA were also done and showed a good correlation.

Keyword: Theoretical chemistry

1. Introduction

Nitrogen based five membered heterocycle pyrrolidine, is a reassuring molecule for the design of newer drugs. It is well known from the literature that pyrrolidine, is a pharmaceutically active molecule and exhibits miscellaneous biological activities [1, 2, 3, 4, 5]. In addition, it is also apparent that certain compounds with benzylidene moiety in their structure are also important in the field of medicinal chemistry [6]. As a part of our research on the synthesis and DFT studies of novel heterocyclic molecules [7, 8], in this research article, the writers look forward to contribute a detailed account on the molecular geometry, vibrational assignments, mulliken charges, conformations and electronic features of novel (2Z, 4Z)-2,4-bis(4-chlorobenzylidene)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid (BCOPCA), obtained by Claisen-Schmidt reaction of 5-oxo-1-phenylpyrrolidine-3-carboxylic acid (1) and p-chlorobenzaldehyde (2). The quantum chemical computations were investigated with the help of two hybrid functionals i.e. B3LYP and CAM-B3LYP using 6-31G (d,p) basis sets. The NBO properties of BCOPCA could be seen due to increasing interest in organic materials as non-linear optical devices which gathers the information about bonding and anti-bonding orbitals, electron affinities, bond energies, vibrational frequencies and geometries of organic compounds. The results obtained from computations establish a good agreement with the experimental results [9, 10, 11, 12, 13, 14].

2. Materials and method

The instrument used to record 1H and 13C-NMR spectra of BCOPCA with chemical shifts values in ppm was Bruker 400 MHz, taking CDCl3 as the solvent and TMS as the internal standard. IR (KBr) and UV (200–500 nm, CHCl3) spectra were recorded on a Perkin-Elmer FT-IR and UV-visible Spectrophotometer instruments. The mass spectrum (DART-MS) of BCOPCA was also recorded with the help of JEOL-AccuTOF JMS-T1100LC Mass spectrometer. 5-oxo-1-phenylpyrrolidine-3-carboxylic acid (1) was synthesized with the known procedure [15].

2.1. Synthesis of 4(2Z, 4Z)-2,4-bis(4-chlorobenzylidene)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid (BCOPCA)

5-oxo-1-phenylpyrrolidine-3-carboxylic acid (1) (0.005 mol, 1.025) and p-chlorobenzaldehyde (2) (0.005 mol, 0.705)were refluxed together for 5–8 hrs in 10 mL ethanol in presence of pyridine (1 mL). The product (3) obtained on cooling the reaction mixture was filtered and recrystallized from alcohol (Fig. 1). Yield: ∼56%; M.P. 87–89 °C, Rf value: 0.54, MS, m/z: 449 [Hexane: Ethyl acetate] (8.0:2.0 v/v) as mobile phase.

Fig. 1.

Fig. 1

Synthesis of 4 (2Z,4Z)-2,4-bis(4-chlorobenzylidene)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid (BCOPCA).

2.2. Computational details

The various DFT studies on BCOPCA were performed at B3LYP and CAM-B3LYP/6-31G (d,p) hybrid functionals respectively. The optimization of BCOPCA molecule was done with the help of GaussView5.0 and the Gaussian 09 software [16, 17, 18]. GIAO program was used for computing 1H & 13CNMR chemical shifts [19]. The Non Bonding Orbital predictions [20] were implemented at DFT/B3LYP level in further to compare the distinct second order interactions. The TD-DFT was used for Frontier orbital study by implementing IEFPCM model taking CHCl3 as solvent. The molecule BCOPCA was analysed by AIM calculation [21]. For potential energy distribution (PED) calculations vibrational problem was set up in terms of internal coordinates using GAR2PED [22] software.

3. Results and discussion

3.1. Molecular geometry

Fig. 2 shows the structure and atom numbering of BCOPCA. The optimized bond lengths and bond angles of BCOPCA are presented in Table 1. On comparing the experimental data of a similar molecule from the literature with the theoretical values of BCOPCA [23, 24], it is perceived that the values for BCOPCA are slightly larger than the data obtained from the literature.

Fig. 2.

Fig. 2

Optimized structure of BCOPCA.

Table 1.

Optimized geometrical parameters for BCOPCA calculated at B3LYP and CAM-B3LYP as 6-31Gd-p basis sets.

Geometrical parameter calculated with B3LYP CAM-B3LYP Experimental
Bond length (Å)
C1-C2 1.3931 1.3884 1.3927
C1-C6 1.3965 1.3913 1.381
C1-H32 1.0856 1.0846 0.93
C2-C3 1.4004 1.3926 1.396
C2-H33 1.0856 1.085 0.93
C3-C4 1.3982 1.3912 1.382
C3-N7 1.43 1.428 1.42
C4-C5 1.3949 1.3898 1.38
C4-H34 1.0826 1.0828 0.93
C5-C6 1.3951 1.3904 1.375
C5-H35 1.0856 1.0846 0.93
C6-H36 1.0856 1.0847 0.93
N7-C8 1.424 1.4209 1.472
N7-C11 1.412 1.3955 1.355
C8-C9 1.5212 1.5167 1.525
C8-C14 1.3473 1.3373 0.97
C9-C10 1.5164 1.5125 1.381
C9-C29 1.5475 1.5351 0.93
C9-H37 1.0907 1.0897 1.525
C10-C11 1.486 1.4847 0.97
C10-C13 1.3495 1.3391 0.97
C11-O12 1.2177 1.2142 1.215
C13-C15 1.4591 1.4618 0.93
C13-H38 1.0899 1.0886 1.38
C14-C16 1.4664 1.4685 0.93
C14-H39 1.0868 1.0857 0.93
C15-C17 1.4103 1.402 0.98
C15-C21 1.4105 1.4021 1.523
C16-C22 1.4103 1.4026 1.524
C16-C26 1.4094 1.4013 1.000
C17-C18 1.3895 1.3853 1.390
C17-H40 1.0862 1.0852 1.395
C18-C19 1.3951 1.3886 1.503
C18-C41 1.084 1.0833 1.504
C19-C20 1.3954 1.3887 1.392
C19-Cl27 1.7538 1.7469 1.747
C20-C21 1.3913 1.387 1.375
C20-H42 1.0841 1.0834 1.2070
C21-H43 1.0831 1.0825 1.392
C22-C23 1.3901 1.3855 1.207
C22-H44 1.0865 1.0854 1.373
C23-C24 1.3943 1.3883 1.295
C23-H45 1.0842 1.0835 1.207
C24-C25 1.3933 1.3867 1.503
C24-Cl28 1.7574 1.7501 1.264
C25-C26 1.3933 1.3889 1.292
C25-H46 1.0842 1.0836 1.52
C26-H47 1.0826 1.0819 1.371
C29-O30 1.2085 1.2065 1.19
C29-O31 1.3473 1.3372 1.282
O31-H48 0.971 0.97 1.5
Bond angle°
C2-C1-C6 120.1675 120.0936 121.5
C2-C1-H32 119.552 119.634 119.2
C6-C1-H32 120.2784 120.2706 119.2
C1-C2-C3 119.8525 119.6997 119.9
C1-C2-H33 120.4564 120.5939 120.1
C3-C2-H33 119.6909 119.7062 120.1
C2-C3-C4 120.2038 120.5062 118.4
C2-C3-N7 119.2024 119.1592 119.1
C4-C3-N7 120.5827 120.3336 119.1
C3-C4-C5 119.4649 119.416 120.9
C3-C4-H34 119.8178 119.8271 119.5
C5-C4-H34 120.7059 120.7519 119.5
C4-C5-C6 120.5561 120.3686 121
C4-C5-H35 119.3349 119.496 119.5
C6-C5-H35 120.1088 120.135 119.5
C1-C6-C5 119.7513 119.9117 118.3
C1-C6-H36 120.0944 120.0312 120.8
C5-C6-H36 120.1541 120.057 120.8
C3-N7-C8 124.5285 124.0042 120.4
C3-N7-C11 122.8067 122.5617 127.4
C8-N7-C11 111.7042 111.869 112
N7-C8-C9 106.24 106.1696 103.5
N7-C8-C14 123.9764 123.8905 111.1
C9-C8-C14 129.7058 129.8984 111.1
C8-C9-C10 102.7952 102.6542 111.1
C8-C9-29 111.37175 110.8963 111.1
C8-C9-H37 111.7079 111.8358 109
C10-C9-C29 111.1317 110.8401 104.4
C10-C9-H37 113.3464 113.2492 113
C29-C9-H37 106.9355 107.3983 108.1
C9-C10-C11 107.8382 107.5884 114.7
C9-C10-C13 132.5935 132.7076 108.1
C11-C10-C13 119.5053 119.6024 108.1
N7-C11-C10 106.495 106.7195 104.2
N7-C11-O12 125.2761 125.3382 110.9
C10-C11-O12 128.2287 127.9423 110.9
C10-C13-C15 131.9471 131.4343 110.9
C10-C13-H38 113.1128 113.5881 110.9
C15-C13-H38 114.883 114.9079 108.9
C8-C14-C16 130.1969 129.5292 125.2
C8-C14-H39 115.5543 115.9984 125.5
C16-C14-H39 114.1541 114.3742 123.4
C13-C15-C17 117.1306 117.0862 120.2
C13-C15-C21 124.9491 124.6486 116.3
C17-C15-C21 117.92 118.2641 111.1
C14-C16-C22 116.9533 116.9455 113.5
C14-C16-C26 125.6477 125.3662 109.5
C22-C16-C26 117.3968 117.6866 122.7
C15-C17-C18 121.7189 121.5305 120.3
C15-C17-H40 119.1775 119.3283 117.0
C18-C17-H40 119.1009 119.1392 119.0
C17-C18-C19 118.8788 118.7876 120.5
C17-C18-H41 120.8816 120.8289 120.5
C19-C18-H41 120.2393 120.3832 120.0
C18-C19-C20 120.9704 121.178 120.0
C18-C19-Cl27 119.4852 119.4077 120.0
C20-C19-Cl27 119.5417 119.4121 119.8
C19-C20-C21 119.6733 119.5158 123.4
C19-C20-H42 120.0229 120.1268 120.2
C21-C20-H42 120.3005 120.3553 116.3
C15-C21C20 120.8245 120.7106 111.1
C15-C21-C43 121.1407 121.2074 113.5
C20-C21-H43 117.9922 118.0484 109.5
C16-C22-C23 121.9783 121.8166 122.7
C16-C22-H44 119.1281 119.2167 120.3
C23-C22-H44 118.8904 118.9649 117.0
C22-C23-C24 119.0437 118.9541 119.0
C22-C23-H45 120.7247 120.6818 120.5
C24-C23-H45 120.2316 120.364 120.5
C23-C24-C25 120.6493 120.851 120.0
C23-C24-Cl28 119.6327 119.5533 120.0
C25-C24-Cl28 119.7147 119.593 120.0
C24-C25-C26 119.7834 119.6139 119.8
C24-C25-H46 120.0714 120.1907 123.4
C26-C25-H46 120.1401 120.1917 109.5
C16-C26-C25 121.1295 121.0607 118.4
C16-C26-H47 121.3002 121.3533 124.3
C25-C26-H47 117.5394 117.5642 124.4
C9-C29-O30 122.9859 123.0089 111
C9-C29-O31 116.4749 116.8521 119.9
O30-C29-O31 120.5385 120.1376 120.1
C29-O31-H48 110.8373 111.9199 120.1
Dihedral angles (°)
C6-C1-C2-C3 −0.6109 −0.5839
C6-C1-C2-H33 179.5494 179.5869
H32-C1-C2-C3 179.9191 179.9014
H32-C1-C2-H33 0.0794 0.0721
C2-C1-C6-C5 0.1657 0.2974
C2-C1-C6-H36 −179.64 −179.6126 −178.80
H32-C1-C6-C5 179.6318 179.809
H32-C1-C6-H36 −0.1738 −0.1009
C1-C2-C3-C4 0.5046 0.2642
C1-C2-C3-N7 179.3026 179.8984
H33-C2-C3-C4 −179.6545 −179.9051 −178.6
H33-C2-C3-N7 −0.8565 −0.2708
C2-C3-C4-C5 0.0471 0.3413
C2-C3-C4-H34 178.8302 179.5328
N7-C3-C4-C5 −178.7342 −179.2886
N7-C3-C4-H34 0.0489 −0.0971
C2-C3-N7-C8 57.6483 64.5247
C2-C3-N7-C11 −134.5078 −130.9131
C4-C3-N7-C8 −123.5584 −115.8405
C4-C3-N7-C11 44.2856 48.7217
C3-C4-C5-C6 −0.4965 −0.6307
C3-C4-C5-H35 179.6415 179.6003
H34-C4-C5-C6 −179.2686 −179.8146
H34-C4-C5-H35 0.8695 0.4164
C4-C5-C6-C1 0.3921 0.3146
C4-C5-C6-H36 −179.8023 −179.7755
H35-C5-C6-C1 −179.7469 −179.9179
H35-C5-C6-H36 0.0586 −0.0079
C3-N7-C8-C9 −170.5224 −173.4804
C3-N7-C8-C14 12.4116 8.6588
C11-N7-C8-C9 20.4592 20.5093
C11-N7-C8-C14 −156.6068 −157.3515
C3-N7-C11-C10 −178.8606 −175.7201
C3-N7-C11-O12 1.2808 4.2051
C8-N7-C11-C10 −9.6219 −9.4759
C8-N7-C11-O12 170.5194 170.4493
N7-C8-C9-C10 −22.0033 −22.1493
N7-C8-C9-C29 96.8884 96.2758
N7-C8-C9-H37 −143.8611 −143.8708
C14-C8-C9-C10 154.8339 155.536
C14-C8-C9-C29 −86.2744 −86.039
C14-C8-C9-H37 32.9761 33.8145
N7-C8-C14-C16 177.4438 177.3122
N7-C8-C14-H39 1.234 1.1589
C9-C8-C14-C16 1.1063 −0.0094
C9-C8-C14-H39 −175.1036 −176.1627
C8-C9-C10-C11 16.5817 16.8321
C8-C9-C10-C13 −160.4262 −159.3659
C29-C9-C10-C11 −102.2162 −101.6325
C29-C9-C10-C13 80.7759 82.1695
H37-C9-C10-C11 137.3216 137.5863
H37-C9-C10-C13 −39.6863 −38.6117
C8-C9-C29-O30 129.7818 131.4858
C8-C9-C29-O31 −50.5183 −48.9559 −28.72
C10-C9-C29-O30 −116.4732 −115.1709 −158.40
C10-C9-C29-O31 63.2268 64.3874 19.90
H37-C9-C29-O30 7.7078 9.016
H37-C9-C29-O31 −172.5923 −171.4257
C9-C10-C11-N7 −5.2282 −5.4971
C9-C10-C11-O12 174.6249 174.5803
C13-C10-C11-N7 172.2412 171.2903
C13-C10-C11O12 −7.9057 −8.6322
C9-C10-C13-C15 0.0359 0.1377
C9-C10-C13-C38 177.0893 176.8905
C11-C10-C13-C15 −176.6912 −175.6934
C11-C10-C13-H38 0.3623 1.0595
C10-C13-C15-C17 165.4828 164.0494
C10-C13-C15-C21 −14.3457 −15.5468
H38-C13-C15-C17 −11.5298 −12.6696
H38-C13-C15-C21 168.6417 167.7342
C8-C14-C16-C22 −158.5925 −156.846
C8−14−C16-C26 21.9495 23.6512
H39-C14-C16-C22 17.6601 19.3583
H39-C14-C16-C26 −161.7979 −160.1445
C13-C15-C17-C18 −178.5089 −178.3138
C13-C15-C17-H40 0.9 1.1686
C21-C15-C17-C18 1.332 1.309
C21-C15-C17-H40 −179.2591 −179.2086
C13-C15-C21-C20 178.7341 178.509
C13-C15-C21-H43 −3.689 −3.64
C17-C15-C21-C20 −1.0932 −1.0828
C17-C15-C21-H43 176.4837 176.7682
C14-C16-C22-C23 179.0046 179.0529
C14-C16-C22-C44 −0.3317 −0.4532
C26-C16-C22-C23 −1.4915 −1.4049
C26-C16-C22-H44 179.1723 179.0889
C14-C16-C26-C25 −179.0959 −179.1017
C14-C16-C26-H47 2.9761 2.6388
C22-C16-C26-C25 1.4482 1.3988
C22-C16-C26-H47 −176.4797 −176.8606
C15-C17-C18-C19 −0.5914 −0.5794
C15-C17-C18-H41 179.5982 179.5994
C40-C17-C18-C19 179.9992 179.9373
H40-C17-C18-H41 0.1888 0.1161
C17-C18-C19-C20 −0.4198 −0.4037
C17-C18-C19-Cl27 −179.8184 −179.8652
H41-C18-C19-C20 179.3919 179.4184
H41-C18-C19-Cl27 −0.0067 −0.0432
C18-C19-C20-C21 0.6457 0.6179
C18-C19-C20-H42 −178.702 −178.8638
Cl27-C19-C20-C21 −179.956 −179.9206
Cl27-C19-C20-H42 0.6963 0.5977
C19-C20-C21-C15 0.1344 0.1463
C19-C20-C21-H43 −177.517 −177.7711
H42-C20-C21-C15 179.4802 179.6268
H42-C20-C21-H43 1.8289 1.7093
C16-C22-C23-C24 0.5254 0.4755
C16-C22-C23-H45 −179.5588 −179.6161
H44-C22-C23-C24 179.8632 179.9829
H44-C22-C23-H45 −0.2211 −0.1087
C22-C23-C24-C25 0.5332 0.5037
C22-C23-C24-Cl28 179.8698 179.9084
H45-C23-C24-C25 −179.383 −179.4049
H45-C23-C24-Cl28 −0.0463 −0.0003
C23-C24-C25-C26 −0.5664 −0.5021
C23-C24-C25-H46 178.6157 178.803
Cl28-C24-C25-C26 −179.9025 −179.9065
Cl28-C24-C25-H46 −0.7204 −0.6014
C24-C25-C26-C16 −0.4575 −0.4786
C24-C25-C26-H47 177.5459 177.8447
H46-C25-C26-C16 −179.639 −179.7837
H46-H25-C26-H47 −1.6357 −1.4604
C9-C29-O31-H48 1.20772 1.8811
O30-C29-O31-H48 −179.335 −178.5472

The bond lengths of two carbonyl groups i.e. C29 = O30 and C11 = O12 and C29-O31 of acid with values of 1.192, 1.215 and 1.282 Å depicted double and single bond characters. The C-C bond lengths of benzene ring of BCOPCA are longer than standard double bond lengths and shorter than the standard single bond lengths ranging from 1.3890 to 1.4591 Å at B3LYP and CAM- B3LYP hybrid functionals. The bond angle value for C2-C1-C6 is found to be 121.5°, revealing slightly distorted hexagonal geometry. The discussed variations may be due to the following reasons: (a) lone pair (b) electronegativity of the central atom and (c) alternate double bonds in BCOPCA.

3.2. Conformational analysis

The Potential Energy Surface (PES) scan (sketched in Fig. 3), performed to determine the most energetically favourable conformer which showed three minima corresponding to the conformers I, II and III with energy values of −2163.74, −2163.76 and −2163.75, a.u. respectively.

Fig. 3.

Fig. 3

PES scan for the selected torsional angle T (N7-C8-C14-H39) of freedom.

3.3. 1H &13C NMR spectroscopy

Observed and calculated data for 1H and 13C NMR spectra are displayed in Tables 2 and 3. The experimental 1H and 13C NMR spectra of BCOPCA have been measured in CDCl3 and displayed in Fig. 4(a) and (b) respectively. The aromatic ring protons in the 1H NMR spectrum of the title molecule appeared at 7.50–7.53, 7.27–7.33 and 7.06–7.11 ppm respectively. The doublets observed at 7.71–7.74 and 7.86–7.91 ppm represent methine (=CH-) protons and the multiplet at 4.10–4.90 ppm corresponded to pyrrolidine ring. The 13C NMR spectrum showed signals at 172.25 and 171.66 ppm corresponding to carbonyl carbon (–C=O). In BCOPCA signals at 138.51, 131.12, 130.73, 129.21, 128.67, 128.39, 124.70, 124.60 and 119.91 ppm represented the aromatic carbons [25] of phenyl rings. The –CH carbon appeared at 61.36 ppm.

Table 2.

Calculated and experimental 1H NMR chemical shifts (δ/ppm) of BCOPCA in CDCl3.

δcalcd.
δexp. Assignment
B3LYP CAM-B3LYP
32H 7.36 7.82 7.339–7.062 m, 5H, phenyl ring
33H 8.48 8.63
34H 7.08 7.3
35H 7.59 7.76
36H 7.21 7.35
37H 8.79 8.76 4.109–3.900 m, 1H, CH in pyrrolidine ring
38H 7.25 7.65 7.742–7.714 m, 2H, CH between pyrrolidine and 4-chloro substituted phenyl ring
39H 6.41 6.63
40H 7.21 7.49 7.533–7.507 dd, 4H, 4-chloro substituted phenyl ring
41H 7.12 7.36
42H 7.65 7.9
43H 10.03 11.43
44H 6.71 6.93 7.434–7.406 dd, 4H, 4-chloro substituted phenyl ring
45H 7.08 7.3
46H 7.76 8.09
47H 4.96 4.04
48H 7.51 7.45 11.45 Hydroxyl proton of carboxylic acid

Table 3.

Calculated and experimental 13C NMR chemical shifts (δ/ppm) of BCOPCA in CDCl3-solvent.

Atom δcalcd.
δexp. Assignment
B3LYP CAM-B3LYP
1C 129.04 129.11 124.70–119.91 Phenyl ring attached at nitrogen of pyrrolidine ring
2C 117.29 116.65
3C 126.25 132.85
4C 115.92 114.78
5C 127.81 127.81
6C 120.83 119.99
8C 88.87 134.71 77.64–76.69 Pyrrolidine ring
9C 135.99 71.17
10C 73.5 126.74
11C 130.46 167.93 171.66 C=O in Pyrrolidine ring
13C 167.6 128.88 61.36 Methine group between Pyrrolidine and 4-chloro substituted phenyl ring
14C 127.71 103.11
15C 102.78 116.93 129.21–128.39 4-chloro substituted phenyl ring
16C 117.88 123.98
17C 124.37 133.12
18C 133.09 125.55
19C 126.2 140.8
20C 142.34 130.01
21C 130.56 146.57
22C 145.77 128.51 138.51–130.73 4-chloro substituted phenyl ring
23C 128.75 129.7
24C 129.75 134.82
25C 136.38 128.23
26C 189.63 188.07
29C 149.5 149.38 172.25 C=O group in carboxylic acid

Fig. 4.

Fig. 4

(a) 1HNMR spectra of BCOPCA. (b) 13HNMR spectra of BCOPCA.

3.4. Electronic absorption

The UV-Visible spectrum of compound was computed at the B3LYP and CAM-B3LYP hybrid functionals with 6-31G (d,p) basis sets and integral equation formalism polarizable continuum model (IEFPCM) was employed for accounting solvent effect [26]. The excitation energies, oscillator strength, percent contributions have been tabulated in Table 4. Fig. 5 represents two intense electronic transitions at 348 and 278 with an oscillator strength ƒ = 0.269 and 0.255 in chloroform complying to the observed values of 256 and 240 nm. The title compound depicted n → π* HOMO-1 to LUMO+1 with 63% and π → π* HOMO-2 to LUMO with 53% contribution as shown in Fig. 6. The HOMO-LUMO energy gaps were found to be 2.199 (B3LYP) and 3.060 (CAM-B3LYP).

Table 4.

Experimental and theoretical absorption wavelengths λ (nm) and excitation energies E (eV) of BCOPCA using functional B3LYP and CAM- B3LYP 6-31G/(d,p) basis set.

Major contributing molecular orbitals E (eV) Calculated (λmax) Oscillatory strength (f) Assignments Observed (λmax)
B3LYP H → L (69%) 2.19 523 0.014 π → π* 288
H-1 → L+1 (63%) 2.92 424 0.225 n → π* 273
H-2 → L (61%) 3.55 348 0.269 π → π* 256
H-2 → L+2 (46%) 3.77 328 0.222 n → π* 240
H-4 → L (46%) 3.99 310 0.192 π → π* 227
CAM-B3LYP H → L (55%) 3.06 405 0.05 π → π* 288
H-1 → L (40%) 3.49 354 0.40 n →π* 273
H → L+2 (45%) 3.82 323 0.11 π → π* 256
H-2 → L (53%) 4.45 278 0.25 n → π* 240
H-2 → L+1 (52%) 4.65 266 0.14 π → π* 227

Fig. 5.

Fig. 5

Experimental and theoretical UV-Visible spectra of BCOPCA.

Fig. 6.

Fig. 6

HOMO-LUMO Transitions of BCOPCA using B3LYP and CAM-B3LYP/6-31-G (d,p) basis sets.

3.5. Vibrational assignment

There are 48 atoms having C1 point group and 138 routine modes of vibrations performed on the basis of recorded FT-IR spectrum, in BCOPCA. The discard of anharmonicity in real system is responsible for higher calculated vibrational wavenumbers than the observed wavenumbers. Therefore, calculated wavenumbers are scaled down by a single factor 0.9679 [27] B3LYP and compared with experimental wavenumbers. The observed and computed frequencies, PED and simulated vibrational spectra of BCOPCA are presented in Table 5 and Fig. 7.

Table 5.

Experimental and calculated (selected) vibrational wavenumbers of BCOPCA using B3LYP/6-31 G (d,p) and their assignments [harmonic wavenumbers (cm−1), IR int (Kmmol−1)].

Wave number unscaled Wave number scaled Exp. Wave numbers Exp.IRint Assignment (PED) ≥ 5 %
3689.7 3545.064 3622 101.07 ν(O31-H48) (68.) ν(O22-C20) (41.)
3263.2 3135.283 3297 1.92 ν(C26-H47) (11.)
3241.8 3114.721 4.65 ν(C18-H41) (37.) ν(C5-C6) (32.)
3239.5 3112.512 3205 132.76 ν(C23-H45) (31.)
3235.2 3108.38 11.28 ν(C20-H42) (17.) -ν(C5-C6) (34.)
3223.6 3097.235 26.29 ν(C25-H46) (7.) ν(C25-C26) (14.) -ν(C25-C21) (9.)
3213.5 3087.531 1.83 ν(C5-C36) (17.) -ν(C5-C6) (23.) -ν(C1-C2) (27.)
3187.8 3062.838 3003 33.77 -ν(C6-H36) (34.) -ν(C1-C6) (18.) ν(C5-C6) (14.)
3186.6 3061.685 11.27 ν(C2-C3) (16.) ν(C1-C6) (12.) -ν(C4-H34) (7.) ν(C5-C6) (13.)
3179.2 3054.575 2944 13.35 ν(C5-H35) (86.)
3173.4 3049.003 2893 4.61 ν(C17-H40) (29.) ν(C17-C15) (7.)
3168.3 3044.103 0.44 ν(C22-H44) (16.) ν(C22-C23) (9.) ν(C22-C16) (6.)
3157.08 3033.322 1.99 ν(C6-C36) (51.)
3127.25 3004.662 107.24 ν(C14-H39) (39.) ν(C14-C8) (32.) ν(C16-C14) (19.)
1827.74 1756.093 0.21 ν(C2-C3) (99.)
1786.58 1716.546 1729 11.17 ν(C4- C20) (99.)
1710.14 1643.103 1702 33.06 ν(C4-H34) (60.) ν(C3-N4) (15.) ν(C1-H32) (12.) ν(C1-H32) (6.)
1692.15 1625.818 154.16 ν(C1-C6) (69.) ν(C4-C5) (9.) -ν(C10-C11) (5.)
1652.43 1587.655 9.19 ν(C3-C4) (45.) ν(C1-C2) (12.) -ν(C1-C2) (9.) -ν(C1-C2) (6.)
-ν(C2-H33) (5.)
1643.02 1578.614 101.03 ν(C1-C2) (42.) -ν(C3-C4) (11.) -δ(C10-C13-H38) (7.) ν(C1-C6) (7.) -ν(C1-H32) (5.) -ν(C10-C11) (5.)
1641.62 1577.268 135.99 ν(C1-C2) (24.) ν(C4-C5) (22.) -ν(C2-C3) (8.) -ν(C5-C6) (7.) ν(C4-C5) (6.)
-ν(C2-C3) (6.) ν(C2-C3) (5.)
1640.94 1576.615 41.78 ν(C22-C23) (23.) ν(C3-C4) (21.) -ν(C4-H34) (12.) -ν(C4-H34) (7.) -ν(C16-C26) (7.) ν(C1-C2) (7.) ν(C2-H33) (5.)
1611.62 1548.444 15.76 ν(C1-C6) (18.) ν(C3-C4) (16.) -ν(C5-C6) (14.) -ν(C2-C3) (12.) -ν(C1-H32) (5.)
-ν(C1-C2) (5.) -ν(C3-N4) (5.)
1609.97 1546.859 24.12 ν(C1-C2) (17.) ν(C3-N4) (16.) ν(C1-H32) (8.) -ν(C3-C4) (6.) -ν(C3-N4) (6.)
ν(C4-C5) (6.) -ν(C4-C5) (5.)
1539.05 1478.719 1513 11.43 ν(C4-C5) (16.) ν(C2-C3) (15.) ν(C4-H34) (14.) -ν(C1-C2) (14.) -ν(C1-C6) (12.)
-ν(C16-C26) (11.) -δ(C8-C14-C16) (6.)
1535.31 1475.126 51.92 ν(C2-H33) (21.) -ν(C1-H32) (17.) -ν(C4-C5) (17.) ν(C3-N4) (14.) -ν(C2-C3) (9.)
-ν(C3-C4) (5.)
1533.9 1473.771 1442 183.64 ν(C2-C3) (15.) -δ(C2-C1-H32) (15.) -ν(C4-C5) (14.) ν(C3-C4) (12.) ν(C3-C4) (9.) ν(C2-C3) (9.) -ν(C5-C6) (8.) -ν(C1-C6) (8.) -ν(C3-N4) (7.)
1494.33 1435.752 166.6 ν(C1-H32) (14.) -ν(C3-N4) (13.) ν(C1-C6) (13.) ν(C1-C2) (12.) -ν(C4-H34) (11.)
-ν(C4-H34) (11.) ν(C2-C3) (7.) -ν(C16-C26) (5.)
1452.24 1395.312 16.69 δip (C17-H40) (16.) -ν(C2-C3) (15.) ν(C1-H32) (13.) ν(C4-C5) (13.) -ν(C3-C4) (12.) ν(C2-H33) (7.) -ν(C3-N4) (7.) -ν(C4-C5) (5.)
1451.23 1394.342 200.84 ν(C1-C2) (20.) -ν(C4-C5) (19.) -ν(C2-C3) (13.) -δ(C2-C1-H32) (13.)
ν(C1-C6) (10.) ν(C2-C3) (6.) -ν(C3-C4) (5.)
1421.23 1365.518 9.5 ν(C1-C2) (22.) -ν(C22-C23) (10.) ν(C3-C4) (10.) ν(C1-C2) (7.) -ν(C4-H34) (7.)
-ν(C1-C2) (6.) -ν(C4-C5) (6.)
1404.45 1349.396 6.13 ν(C1-C2) (13.) -ν(C3-N4) (12.) ν(C3-C4) (9.) -ν(C1-C2) (9.) ν(C4-C5) (7.)
-δ(C10-C13-H38) (6.) -δip (C17-H40) (5.)
1365.65 1312.117 1375 3.93 ν(C1-C6) (25.) δ(C8-C14-C16) (17.) -ν(C1-C2) (17.) ν(C3-C4) (5.) ν(C2-H33) (5.)
1360.93 1307.582 2.22 δ(C10-C13-H38) (42.) -ν(C3-N4) (11.) -ν(C3-N4) (8.) ν(C3-C4) (5.) ν(C1-C2) (5.)
1347.32 1294.505 31.21 ν(C4-C5) (9.) ν(C1-C2) (8.) -ν(C3-N4) (6.) -δ(C8-C14-C16) (6.) ν(C5-C6) (5.)
1343.19 1290.537 467.5 ν(C3-C4) (13.) δ(C8-C14-C16) (9.) ν(C4-C5) (8.) ν(C1-C6) (6.) ν(C3-N4) (6.)
-ν(C4-C5) (5.) ν(C1-C2) (5.)
1338.76 1286.281 7.6 ν(C3-C4) (8.) ν(C2-C3) (7.) -ν(C1-H32) (6.) δip (C17-H40) (6.) -ν(C4-C5) (6.)
1337.4 1284.974 85.78 ν(C2-C3) (13.) -ν(C3-C4) (13.) -ν(C5-C6) (7.) ν(C1-C6) (7.) ν(C2-C3) (6.)
-ν(C1-C2) (6.) δ(C2-C1-H32) (6.) -ν(C3-C4) (5.) ν(C4-C5) (5.)
1326.19 1274.203 21.8 ν(C2-C3) (14.) -ν(C1-C6) (12.) ν(C4-H34) (10.) ν(C1-C2) (9.) ν(C1-H32) (7.)
-ν(C4-H34) (6.) ν(C3-N4) (5.)
1316.12 1264.528 43.95 ν(C2-H33) (21.) -ν(C1-H32) (18.) ν(C4-C5) (12.) -ν(C3-N4) (11.)
ν(C1-C2) (7.) ν(C4-C5) (5.)
1285.83 1235.425 44.82 ν(C4-C5) (14.) -δ(C8-C14-C16) (12.) -ν(C1-C2) (11.) -ν(C16-C26) (8.) ν(C2-H33) (6.) ν(C4-H34) (6.) -ν(C2-C3) (5.)
1276.77 1226.721 104.08 ν(C1-H32) (42.) -ν(C3-N4) (24.) -ν(C29-O31) (13.)
1269.12 1219.37 50.09 ν(C1-H32) (34.) -ν(C3-N4) (34.) -ν(C2-H33) (15.)
1232.16 1183.859 111.88 ν(C2-C3) (19.) -ν(C3-N4) (16.) ν(C1-H32) (15.) -ν(C1-H32) (6.)
-ν(C2-H33) (6.) -ν(C3-N4) (5.)
1222.23 1174.319 4.82 ν(C3-N4) (10.) ν(C2-H33) (10.) -ν(C1-H32) (8.) -ν(C1-H32) (8.) δ(C8-C14-C16) (7.) -ν(C4-H34) (7.) ν(C2-C3) (7.) ν(C1-C2) (5.)
1220.82 1172.964 55.32 ν(C2-C3) (27.) ν(C1-H32) (11.) ν(C4-H34) (9.) -ν(C2-H33) (7.) -ν(C3-N4) (7.) ν(C1-C2) (6.)
1206.25 1158.965 34.78 ν(C2-C3) (16.) -ν(C3-C4) (14.) ν(C4-C5) (13.) -δip (C17-H40) (8.) -ν(C3-N4) (7.) ν(C3-N4) (6.) -ν(C3-C4) (5.)
1201.85 1154.737 5.82 ν(C3-N4) (16.) -ν(C4-H34) (13.) ν(C1-C2) (12.) -ν(C1-H32) (10.) -ν(C3-C4) (8.)
-ν(C2-C3) (6.) ν(C3-C4) (5.)
1194.19 1147.378 3.6 δ(C2-C1-H32) (23.) -ν(C4-C5) (18.) ν(C3-C4) (16.) -ν(C2-C3) (16.) ν(C1-C2) (11.) ν(C4-C5) (6.)
1186.58 1140.066 3.71 ν(C3-N4) (41.) -ν(C1-H32) (23.) -ν(C29-O31) (9.) -ν(C2-H33) (8.) ν(C4-C5) (5.)
1180.41 1134.138 5.73 ν(C1-C6) (18.) δ(C8-C14-C16) (15.) ν(C2-C3) (11.) -ν(C1-H32) (10.)
ν(C4-H34) (5.) -ν(C10-C11) (5.)
1150.05 1104.968 2.92 ν(C2-C3) (32.) δ(C2-C1-H32) (26.) ν(C5-C6) (11.) -ν(C1-C6) (9.)
1146.19 1101.259 0.61 ν(C3-N4) (14.) -ν(C1-H32) (8.) -ν(C10-C11) (8.) -ν(C1-C6) (8.) ν(C1-H32) (8.)
-δ(C8-C14-C16) (6.) -ν(C2-H33) (5.)
1125.27 1081.159 1078 0.24 δip (C17-H40) (21.) ν(C1-C2) (14.) ν(C2-C3) (11.) -ν(C4-C5) (9.) -ν(C3-N4) (9.)
-ν(C3-C4) (8.) ν(C2-C3) (6.)
1109.35 1065.863 1038 0.94 ν(C1-C2) (25.) -ν(C1-H32) (14.) -ν(C22-C23) (11.) -ν(C3-N4) (7.) -ν(C4-C5) (7.) ν(C3-C4) (6.) ν(C1-C2) (6.) ν(C4-H34) (5.) -ν(C4-H34) (5.)
1108.03 1064.595 5.41 ν(C1-C6) (14.) ν(C3-N4) (13.) -ν(C2-C3) (11.) -ν(C3-C4) (9.) -ν(C10-C11) (5.)
1105.37 1062.039 50.09 ν(C1-C2) (9.) -ν(C2-H33) (8.) ν(C1-C6) (8.) ν(C2-C3) (8.) -ν(C4-C5) (7.)
ν(C1-H32) (6.) -ν(C3-C4) (5.) ν(C2-H33) (5.) -ν(C3-C4) (5.)
1054.67 1013.327 6.53 ν(C2-H33) (17.) -ν(C1-C6) (16.) -ν(C2-C3) (16.) ν(C1-H32) (7.) -ν(C3-C4) (6.) ν(C2-H33) (6.)
1023.66 983.5325 50.81 ν(C2-H33) (12.) -ν(C3-C4) (11.) ν(C1-H32) (10.) ν(C2-C3) (8.) -ν(C1-C2) (7.)
1021.59 981.5437 21.37 ν(C5-C6) (27.) ν(C1-C6) (26.) -δ(C2-C1-H32) (6.) -ν(C1-C6) (6.) ν(C3-C4) (6.) ν(C2-C3) (5.)
1018.45 978.5268 918 6.43 ν(C1-C6) (63.) ν(C4-C5) (10.) ν(C3-N4) (9.) -ν(C3-C4) (5.)
1005.8 966.3726 32.43 ν(C4-C5) (35.) ν(C4-H34) (17.) ν(C16-C26) (12.) -ν(C4-H34) (11.) -ν(C2-H33) (8.)
1001.41 962.1547 2.27 ν(C1-C6) (63.) ν(C2-C3) (8.) ν(C3-C4) (8.) ν(C4-C5) (6.) ν(C1-C2) (5.)
988.26 949.5202 25.84 ν(C1-H32) (28.) -ν(C2-H33) (19.) ν(C1-C2) (18.) ν(C2-H33) (17.) -ν(C4-H34) (5.)
983.9 945.3311 35.87 ν(C2-H33) (21.) -ν(C3-N4) (11.) ν(C1-C6) (10.) -ν(C3-N4) (6.) ν(C2-H33) (5.)
980.18 941.7569 17.69 ν(C1-C2) (32.) ν(C3-N4) (18.) -ν(C2-H33) (10.) -ν(C4-H34) (10.) ν(C4-H34) (10.) -ν(C2-H33) (9.)
977.39 939.0763 25.74 ν(C3-N4) (21.) -ν(C2-H33) (16.) -ν(C4-H34) (13.) -ν(C1-C2) (13.) -ν(C10-C11) (9.) ν(C1-C2) (7.) ν(C4-C5) (5.) -ν(C3-N4) (5.)
968.88 930.8999 32.85 ν(C10-C11) (38.) -ν(C4-C5) (25.) ν(C3-N4) (7.) -ν(C2-H33) (5.)
963.22 925.4618 9.93 ν(C2-H33) (24.) -ν(C1-C2) (22.) ν(C4-H34) (19.) -ν(C3-N4) (14.) ν(C3-C4) (12.)
-ν(C3-N4) (8.)
940.85 903.9687 17.69 ν(C1-C6) (30.) -ν(C2-C3) (23.) -ν(C4-C5) (22.) ν(C5-C6) (20.)
929.51 893.0732 18.41 ν(C1-C2) (33.) ν(C1-C2) (25.) -ν(C4-H34) (22.) ν(C2-H33) (6.)
903.87 868.4383 7.93 ν(C10-C11) (15.) -ν(C4-C5) (8.) ν(C1-C6) (7.) -ν(C4-C5) (6.) ν(C3-N4) (5.)
888.87 854.0263 10.42 ν(C4-H34) (27.) ν(C3-N4) (27.) -ν(C3-N4) (11.) ν(C2-H33) (8.) ν(C1-H32) (7.)
876.45 842.0932 4.24 ν(C1-C6) (49.) -(τ–R2) (10.) ν(C4-C5) (6.)
853.77 820.3022 11.95 (τ–R2) (30.) ν(C1-C6) (11.) -ν(C4-C5) (10.) -ν(C1-H32) (9.) -ν(C29-O31) (8.)
-ν(C3-N4) (7.) -δ(C8-C14-C16) (6.)
850.75 817.4006 21.31 δ(C8-C14-C16) (31.) ν(C1-C6) (26.) -ν(C2-H33) (8.) ν(C3-C4) (7.)
847.74 814.5086 19.72 δ(C8-C14-C16) (26.) (τ–R2) (13.)
844.44 811.338 14.39 6ν(C3-N4) (31.) -ν(C4-H34) (26.) -ν(C1-C2) (20.) ν(C2-H33) (16.)
838.36 805.4963 792 11.09 ν(C2-H33) (41.) ν(C3-N4) (23.) -ν(C3-C4) (14.) -ν(C4-H34) (9.)
832.42 799.7891 0.08 ν(C4-C5) (38.) ν(C10-C11) (27.)
800.72 769.3318 9 ν(C1-C2) (41.) ν(C4-H34) (34.) -ν(C3-C4) (10.) -ν(C4-H34) (6.)
789.41 758.4651 749 9.21 ν(C2-C3) (36.) ν(C1-C6) (36.) -ν(C1-C6) (6.) ν(C1-C6) (5.)
762.46 732.5716 14.35 ν(C2-H33) (17.) -ν(C1-C6) (13.) -δ(C8-C14-C16) (11.)
743.29 714.153 86.47 δ(C8-C14-C16) (30.) (τ–R2) (12.) ν(C1-C2) (5.) ν(C4-H34) (5.)
736.17 707.3121 33.27 ν(C2-H33) (26.) -ν(C2-H33) (10.) ν(C3-N4) (8.) -ν(C1-H32) (7.) ν(C4-H34) (6.) ν(C2-H33) (5.) ν(C1-C2) (5.)
724.59 696.1861 12.74 ν(C4-H34) (29.) (τ–R2) (18.) ν(C1-C2) (12.) -ν(C3-N4) (7.)
716.1 688.0289 23.91 δ(C8-C14-C16) (21.) ν(C2-H33) (17.) ν(C4-H34) (10.) ν(C2-H33) (9.)
ν(C1-C6) (6.) ν(C1-C2) (5.)
706.81 679.103 18.21 ν(C2-H33) (25.) ν(C4-H34) (13.) ν(C1-C6) (11.) -δ(C8-C14-C16) (10.) -ν(C4-C5) (7.) -ν(C1-H32) (5.)
694.6 667.3717 57.73 ν(C2-H33) (18.) -ν(C1-C6) (11.) ν(C4-H34) (8.) -δ(C8-C14-C16) (7.) ν(C4-C5) (7.)
-ν(C1-C6) (5.) -ν(C3-C4) (5.) -ν(C1-C2) (5.) (τ–R2) (5.)
682.25 655.5058 667 5.28 ν(C2-H33) (53.) -ν(C1-H32) (32.) -ν(C2-H33) (7.) -ν(C1-C2) (7.)
675.05 648.588 17.19 ν(C4-C5) (12.) -ν(C1-C2) (12.) -ν(C1-C2) (8.) -ν(C4-H34) (7.) ν(C3-N4) (6.)
-ν(C2-H33) (5.) ν(C2-H33) (5.)
666.38 640.2579 23.53 δ(C8-C14-C16) (28.) ν(C1-C2) (8.) ν(C1-C6) (5.) ν(C2-C3) (5.) -ν(C3-N4) (5.) 4ν(C2-H33) (5.)
641.16 616.0265 2.66 ν(C2-C3) (14.) -ν(C1-C2) (13.) ν(C4-C5) (8.) ν(C1-H32) (8.) -δ(C8-C14-C16) (7.) ν(C4-C5) (5.)
631.6 606.8413 2.74 ν(C1-C2) (9.) -ν(C4-H34) (7.) ν(C3-N4) (7.) -ν(C2-C3) (7.) -ν(C1-H32) (6.)
ν(C2-C3) (6.) ν(C2-H33) (5.) -ν(C1-C2) (5.)
630.31 605.6018 1.32 δ(C8-C14-C16) (26.) ν(C2-C3) (24.) -ν(C4-H34) (13.) ν(C4-C5) (6.)
614.96 590.8536 14.97 ν(C1-C6) (23.) -ν(C1-H32) (21.) ν(C2-C3) (19.) -δ(C8-C14-C16) (11.) ν(C2-C3) (5.)
566.24 544.0434 15.77 δ(C8-C14-C16) (20.) -ν(C2-C3) (19.) -ν(C1-H32) (17.) ν(C1-C6) (8.)
537.68 516.6029 1.42 ν(C4-C5) (12.) ν(C1-H32) (10.) -ν(C1-H32) (9.) ν(C2-C3) (5.) ν(C2-H33) (5.) ν(C3C4) (5.) ν(C3N4) (5.)
536.69 515.6518 2.96 ν(C3-N4) (29.) ν(C3-C4) (16.) -ν(C1-H32) (16.) -δ(C8-C14-C16) (6.) ν(C3-N4) (6.) -ν(C3-C4) (5.)
526.12 505.4961 1.36 ν(C3-C4) (25.) ν(C4-H34) (19.) ν(C1-H32) (10.) -ν(C3-N4) (6.) ν(C3-N4) (5.) ν(C5-C6) (5.)
511.3 491.257 3.12 ν(C1-H32) (31.) -ν(C3-N4) (21.) ν(C3-N4) (8.) ν(C1-H32) (5.)
473.04 454.4968 6.53 ν(C1-C6) (21.) -ν(C5-C6) (19.) -ν(C3-C4) (12.) ν(C3-C4) (8.) ν(C4-C5) (7.)
-ν(C1-H32) (6.) ν(C4-H34) (5.)
466.85 448.5495 3.89 ν(C1-H32) (21.) -ν(C1-H32) (20.) ν(C3-N4) (13.) ν(C3-N4) (8.)
441.8 424.4814 0.97 ν(C1-H32) (18.) ν(C1-C6) (18.) -ν(C3-N4) (15.) -ν(C3-N4) (6.) -ν(C3-C4) (6.)
-ν(C2-H33) (6.)
424.95 408.292 1.2 ν(C3-N4) (33.) ν(C3-C4) (20.) ν(C1-H32) (8.) -(τ–R2) (7.)
422.12 405.5729 1.27 δ(C8-C14-C16) (30.) ν(C1-C2) (25.) -ν(C2-H33) (9.) ν(C3-C4) (5.)

Fig. 7.

Fig. 7

Comparison between theoretical and experimental IR spectra of BCOPCA.

The experimental FT-IR -OH stretching vibration band appeared at 3622 cm−1 is in good agreement with the calculated value at 3545 cm−1 with a contribution of 68% [28, 29, 30, 31]. The band at 2944 cm−1 is assigned to C-H stretching vibrations with a calculated value of 3054 cm−1 and 86% contribution. The C–H in plane bending vibrations with 63% contribution and out of plane bending vibrations with 41% contribution in IR were observed at 1375, 1038 and 978, 805 cm−1 respectively [32, 33, 34]. The bands for C=C and C–C stretching vibrations in the molecule appeared at 1375, 1442, and 1513 cm−1 depicting good correlation between theoretical and experimental values [35, 36]. The carbonyl carbons showed stretching vibrations at 1729 and 1702 cm−1 [37] while it was calculated at 1716 cm−1. The C–O stretching vibration [38, 39] appeared at 1036 cm−1 complying well with the calculated value at 1020 cm−1. C-Cl vibration in BCOPCA appeared at 679 cm−1 with PED contribution of 53% and is in good agreement with the observed wavenumber at 667 cm−1 [40].

3.6. Mulliken charge distribution

The Mulliken charges were calculated at two different levels as enumerated in Table 6 and plotted in Fig. 8. On the basis of the results performed on neutral molecule the negative charges were delocalized on O12, O30 and O31 atoms and similar positive charges were noticed on all the hydrogen atoms in the molecule. C11 and C29 attached with oxygen atoms had more positive charges due to electronegative character of oxygen atoms [41, 42, 43]. Almost like values of positive charges were observed for hydrogen atoms bonded to carbon atoms in the aromatic ring. It must be noted that the biggest value of charge on H48 might be due to hydrogen bonding.

Table 6.

The Mulliken charge distribution calculated atB3LYPand CAM-B3LYP/6-31G (d,p) methods of BCOPCA.

Atom no. Atomic charges (Mulliken)
B3LYP/6-31 G (d,p) CAM-B3LYP/6-31 G (d,p)
C1 −0.0984 −0.112305
C2 −0.12148 −0.133082
C3 0.307709 0.298710
C4 −0.1131 −0.124885
C5 −0.09443 −0.109076
C6 −0.08815 −0.108510
N7 −0.59224 −0.596539
C8 0.155754 0.160467
C9 −0.31508 −0.319554
C10 0.003882 −0.006426
C11 0.490942 0.506113
O12 −0.4566 −0.466186
C13 −0.11424 −0.100354
C14 −0.12482 −0.114265
C15 0.127164 0.103231
C16 0.174044 0.152624
C17 −0.11282 −0.117769
C18 −0.09507 −0.109200
C19 −0.0881 −0.092192
C20 −0.10377 −0.116854
C21 −0.01027 −0.015269
C22 −0.13217 −0.140170
C23 −0.08157 −0.094387
C24 −0.10668 −0.113412
C25 −0.087 −0.094325
C26 −0.14349 −0.144029
Cl27 0.00253 −0.016928
Cl28 −0.00293 −0.021647
C29 0.56722 0.554144
O30 −0.50087 −0.512658
O31 −0.46541 −0.470745
H32 0.090539 0.105410
H33 0.123023 0.122702
H34 0.089017 0.106571
H35 0.088672 0.105458
H36 0.083435 0.097917
H37 0.206544 0.232032
H38 0.122806 0.142620
H39 0.112816 0.132991
H40 0.096202 0.119416
H41 0.10825 0.124519
H42 0.111383 −0.112305
H43 0.075855 −0.133082
H44 0.086612 0.298710
H45 0.106367 −0.124885
H46 0.140598 −0.109076
H47 0.242209 −0.108510
H48 0.335112 0.596539

Fig. 8.

Fig. 8

Mulliken charge distribution in BCOPCA.

3.7. Molecular electrostatic potential

A colour scheme depicting different values of the electrostatic potential in ascending order at the surface is as follows: red < yellow < green < light blue < blue (Figs. 9 and 10). Red colour depicts nucleophilic region while blue depicts electrophilic region [44, 45, 46, 47]. The yellow, green and light blue colours portrayed slightly electron rich; neutral and slightly electron deficient regions respectively [48, 49]. The region of maximum negative electrostatic potential with a value of −7.648 a.u, is around C11 & O12 and the most positive region with a value of +7.648 a.u, is at C47 & O30, as revealed by MEP and ESP maps. C11, O12 and C47, O30 are most preferred sites for nucleophilic and electrophilic attack respectively.

Fig. 9.

Fig. 9

3D plot of the molecular electrostatic potential of BCOPCA.

Fig. 10.

Fig. 10

Electrostatic potential contour surface of BCOPCA.

3.8. Non bond orbital (NBO) analysis

The hyperconjugative interactions in molecular systems [50, 51], correlation between donor (i), acceptor (j) level bonds and stabilization energy E(2) are explained according to second order Fock matrix as follows:

E(2)=ΔEij=qi(Fij)2(EjEi) (1)

Where, qi is occupancy of donor orbital; Ei and Ej are diagonal elements; Fij is off diagonal NBO Fock matrix element. The result of the calculations is tabulated in Table 7.

Table 7.

Second order perturbation theory analysis of Fock matrix in NBO basis of BCOPCA.

Doner (i) Type ED/e Acceptor (j) Type ED/e E (2)a (Ej-Ei)b Fijc
C1-C6 π 1.66 C2-C3 π* 0.409 18.03 0.28 0.066
C1-C6 π 1.66 C4-C5 π* 0.33 22.22 0.28 0.07
C1-C3 π 1.96 N7-C8 π* 0.044 5.49 1.03 0.068
C2-C3 π 1.62 C1-C6 π* 0.34 21.25 0.29 0.07
C2-C3 π 1.62 C4-C5 π* 0.33 18.36 0.29 0.065
C3-C4 n 1.96 N7-C11 π* 0.119 5.23 1.02 0.067
C4-C5 π 1.69 C1-C6 π* 0.34 18.01 0.29 0.065
C4-C5 π 1.69 C2-C3 π* 0.4 21.69 0.28 0.072
C8-C14 π 1.97 C14-C16 π* 0.025 5.34 1.43 0.073
C8-C14 π 1.97 C16-C26 π* 0.04 17.7 0.33 0.074
C9-C29 σ 1.93 C21-H43 σ* 0.07 8.93 1.23 0.094
C9-C29 σ 1.93 C26-H47 σ* 0.14 38.41 1.34 0.206
C9-H37 σ 1.91 C21-H43 σ* 0.074 14.96 1.07 0.114
C9-H37 σ 1.91 C29-O31 π* 0.12 5.6 0.84 0.062
C10-C13 σ 1.82 C11-O12 π* 0.015 17.43 0.28 0.064
C13-C15 σ 1.96 C10-C13 π* 0.192 5.04 1.4 0.075
C-13-H38 σ 1.96 C9-C10 π* 0.045 7.6 0.9 0.074
C13-H38 σ 1.96 C15-C21 π* 0.035 5.45 1.11 0.07
C14-C16 n 1.96 N7-C8 σ* 0.44 6.73 1.08 0.076
C14-C16 σ 1.96 C8-C14 π* 0.22 5.37 1.39 0.077
C14-C16 σ 1.96 C16-C26 π* 0.44 5.42 1.34 0.076
C14-H39 σ 1.96 C8-H9 σ* 0.049 7.58 0.9 0.074
C14-H39 σ 1.96 C16-C26 π* 0.44 5.48 1.12 0.07
C15-C21 π 1.96 C13-C15 π* 0.024 5.11 1.35 0.074
C16-C26 π 1.96 C14-C16 π* 0.025 5.28 1.35 0.076
C16-C26 π 1.58 C29-C9 π* 0.121 56.27 1.1 0.071
C16-C26 π 1.58 C8-C14 π* 0.22 21.23 0.28 0.065
C16-C26 π 1.58 C22-C23 π* 0.3 17.82 0.28 0.073
C16-C26 π 1.58 C24-C25 π* 0.37 23.43 0.27 0.011
C17-C18 π 1.68 C19-C20 π* 0.37 20.4 0.27 0.067
C19-C20 π 1.66 C17-C18 π* 0.014 18.42 0.3 0.067
C21-C43 σ 1.92 C8-C9 σ* 0.049 6.66 0.91 0.07
C22-C23 π 1.68 C16-C26 π* 0.44 20.12 0.29 0.07
C22-C23 π 1.68 C24-C25 π* 0.377 18.68 0.27 0.06
C24-C25 π 1.68 C16-C26 π* 0.44 15.71 0.31 0.064
C24-C25 π 1.68 C22-C23 π* 0.3 20.18 0.3 0.07
C29-O30 n 1.95 C26-H47 σ* 0.14 37.82 1.73 0.235
O31-H48 n 1.98 C29-O30 π* 0.04 8.61 1.31 0.096
LP (1) N7 n 1.62 C2-C3 π* 0.4 38.35 0.3 0.097
LP (1)N7 n 1.62 C11-O12 π* 0.24 26.42 0.26 0.076
LP (1) O12 n 1.97 N7-C11 σ* 0.119 34.24 0.6 0.129
LP (2) O12 n 1.83 C10-C11 σ* 0.072 19.88 0.66 0.105
LP (1) C15 n 1.04 C10-C13 π* 0.192 77.03 0.14 0.12
LP (1) C15 n 1.04 C17-C18 π* 0.29 17.15 0.13 0.106
LP (1) O12 n 0.93 C19-C20 π* 0.37 78.68 0.12 0.108
LP (3) Cl27 π 1.91 C19-C20 σ* 0.37 13.74 0.34 0.066
LP (1) Cl28 π 1.92 C24-C25 π* 0.37 13.07 0.34 0.065
LP (1) O30 n 1.94 C16-C26 π* 0.049 5.47 1.32 0.076
LP (1) O30 n 1.94 C21-H43 σ* 0.074 5.1 0.82 0.06
LP (2) O30 n 1.75 C26-H47 σ* 0.14 22.1 0.92 0.131
LP (2) O30 n 1.75 C29-C9 σ* 0.04 156.15 0.14 0.147
LP (3) O30 n 1.75 C16-C26 π* 0.04 6.32 0.89 0.071
LP (2) O30 n 1.75 C26-H47 σ* 0.14 5.95 0.92 0.068
LP (1) O31 n 1.96 C9-C29 σ* 0.092 7.59 0.95 0.077
LP (2) O31 n 1.79 C9-C29 σ* 0.049 77.29 0.21 0.13
a

Energy of hyperconjugative interactions (Kcal/mol).

b

Energy difference between donor and acceptor i and j NBO orbitals in a.u.

c

The Fock matrix elements between i and j NBO orbitals in a.u.

The results showed 22 consecutive high energy transitions in BCOPCA. A transition from π (C1-C6) to π* (C2-C3) and (C4-C5) with stabilization energies of 18.03 and 22.22 kcal mol−1, and an intramolecular charge transfer from π (C2-C3) to π* (C1-C6) and (C4-C5) with stabilisation energies of 21.25 and 18.36 kcal mol−1, designating the presence of conjugation in the phenyl ring attached to the nitrogen atom of pyrrolidine ring. An intramolecular charge transfer from π (C8-C14) to π* (C16-C26) is seen with an energy of 17.7 kcal mol−1. The molecule also observed four transitions showing intramolecular charge transfer from π (C16-C26) to π* (C29-C9), (C8-C14), (C22-C23) and (C24-C25) with stabilisation energies of 56.27, 21.23, 17.82 and 23.43 kcal mol−1 respectively. Another intramolecular charge transfer is observed from π (C17-C18) to π* (C19-C20) with a stabilisation energies of 20.40 kcal mol−1 and from π (C19-C20) to π* (C17-C18) with a stabilisation energies of 18.42. Charge transfers from π (C22-C23) to π* (C16-C26) and (C24-C25), from π (C24-C25) to π*(C22-C23) and from nonbonding orbital of O30 to σ* (C26-H47) with stabilisation energies of 20.12, 18.68 kcal mol−1, 20.18 and 37.82 kcal mol−1 are also observed for BCOPCA. Two very high energy transitions from nonbonding orbital of O30 and O31 to σ* orbitals of (C29-C9) and (C9-O29) with stabilisation of 156.15 and 77.29 kcal mol−1 are also present in BCOPCA. In BCOPCA charge transfer is also taking place from nonbonding orbital of O12 to σ* of (C10-C11) and π* (C10-C13), (C17-C18) with stabilization energies of 19.88 and 77.03, 17.15 kcal mol−1. The intramolecular charge transfer is observed from nonbonding orbital of Cl27and28 to σ* (C19-C20) and π* (C24-C25) with a stabilisation energies of 13.74 and 13.07 kcal mol−1 respectively. A very high stabilization energy of 38.35 and 26.42 kcal mol−1 is due to the charge transfer from nonbonding orbital of N7 to π* (C2-C3) and (C11-O12). All these transitions are due to high delocalisation of bonds inside the molecular system.

3.9. Non -linear optical (NLO) analysis

NLO studies [52, 53] find wide applications in laser technology, optical communication, optical information processing. The results of these studies when performed on BCOPCA (tabulated in Table 8), revealed that the computed dipole moment, polarizability αtot and first hyper polarizability [54] for the BCOPCA are found to be 3.832 D, 66.30814×10−24 and 19.477 ×10−30 esu for B3LYP functional and 3.994 D, 61.16037×10−24 and 16.924 ×10−30 esu for CAM-B3LYP functional.

Table 8.

Dipole Moment μ, Polarizability αtot (×10−24esu) and first order static hyperpolarizability βtot (10−30) data of BCOPCA.

Dipole moment B3LYP6-31G (d,p) CAM-B3LYP6-31G (d,p) Hyperpolarisability B3LYP 6-31G (d,p) CAM-B3LYP6-31G (d,p)
μx −3.662 −3.828 βxxx −2.94566 −18.1538
μy −1.028 −1.081 βxxy −3.74721 1.572093
μz 0.465 0.366 βxyy 15.26366 9.189278
μ 3.832 3.994 βyyy −4.18332 −2.02151
Polarizability
αxx 94.94433 86.27759 βxxz −17.1825 −10.3637
αxy 0.236824 0.337451 βxyz 4.443019 3.289241
αyy 71.67693 67.41914 βyyz 4.662803 −3.53805
αxz 2.720952 3.09738 βxzz −0.31326 −0.94099
αyz 6.916494 68.98265 βyzz −0.81097 −0.68121
αzz 32.30315 31.58438 βzzz −0.08346 0.225054
(α) 66.30814 61.76037 βtotal (esu) 19.477 16.924

3.10. Thermodynamical analysis

Statistical thermodynamic functions mainly heat capacity and entropy were calculated for the molecule at varying temperatures (100–500 K) and summarised in Table 9. The correlation graph between these thermodynamic measurements and temperatures (T) are shown in Figs. 11(a) and (b). The calculated fitting factors (R2) are 0.998 and 1 for B3LYP and CAM-B3LYP/6-31G (d,p) hybrid functionals respectively. The zero point vibrational energy (ZPVEs), thermal energy, rotational constant, molar heat capacity, entropy and enthalpy at room temperature for BCOPCA were obtained and indexed in Table 10 [55, 56]. It is obvious from our observations that the calculated ZPVE energy is lower in B3LYP (225.86 kcal mol−1) than CAM-B3LYP (228.47 kcal mol−1) method. However, the calculated molar heat and entropy were 83.392, 140.86 and 83.029, 140.093 cal mol−1 k−1 respectively at B3LYP and CAM-B3LYP/6-31G (d,p) hybrid functionals.

Table 9.

Thermodynamic functions at different temperatures of BCOPCA employing B3LYPand CAM-B3LYP/6-31 G (d,p)methods.

Temperature (T) (K) B3LYP/6-31-G (d,p)
CAM-B3LYP/6-31-G (d,p)
Heat capacity (CV) (Cal/mol K) Entropy (S) Cal/Mol K) Heat capacity (CV) (Cal/mol K) Entropy (S) Cal/Mol K)
100 26.74 86.85 27.35 87.48
200 54.27 115.05 54.74 116.07
298 83.02 142.86 83.39 144.04
300 83.56 143.39 83.93 144.57
400 111.1 171.86 111.54 173.15
500 134.49 199.69 135.08 201.1

Fig. 11.

Fig. 11

(a) & (b) Correlation graphs of heat capacity and entropy calculated at various temperatures using B3LYPand CAM-B3LYP/6-31G (d,p) of BCOPCA.

Table 10.

Calculated thermodynamic parameters of BCOPCA employing B3LYPand CAM-B3LYP/6-31 G (d,p)methods.

Parameters B3LYP/6-31 G (d,p) CAM-B3LYP/6-31 G (d,p)
Zero-point vibrational energy (Kcal/mol) 225.86 228.47
Rotational temperatures (K) 0.00704 0.00704
0.00482 0.00482
0.00315 0.00315
Rotational constants (GHZ)
X 0.14672 0.14672
Y 0.10047 0.10047
Z 0.06559 0.06559
Thermal energy (Kcal/mol)
Total 238.10 240.85
Translational 0.889 0.889
Rotational 0.889 0.889
Vibrational 236.32 239.07
Molar capacity at constant volume (cal mol−1 k−1)
Total 83.392 83.029
Translational 2.9810 2.9810
Rotational 2.9810 2.9810
Vibrational 77.438 77.068
Entropy (cal mol−1 k−1)
Total 140.86 140.093
Translational 40.192 44.196
Rotational 37.054 37.052
Vibrational 61.627 62.804

3.11. Reactivity descriptors

3.11.1. Global reactivity descriptors

Global reactivity descriptors such as electronegativity, chemical potential (μ), global hardness (η), global softness (S), ΔNmax and electrophilicity index (ω) have been calculated and listed in Table 11. Koopman's theorem was used to confirm chemical reactivity and site selectivity for BCOPCA [56, 57, 58].

Table 11.

Calculated εLUMO, εHOMO, energy band gap εHOMOεLUMO, ionization potential (IP), electron affinity (EA), electronegativity (χ), global hardness (η), chemical potential (μ), global electrophilicity index (ω), global softness (S) and additional electronic charge (ΔNmax) in eV for BCOPCA, using B3LYP and CAM- B3LYP/6-31G (d,p).

Descriptors B3LYP/6-31G (d,p) CAM- B3LYP/6-31G (d,p)
εH −5.4304 −6.6329
εL −2.2490 −1.0993
εHL −3.1814 −5.5335
IP 5.4304 6.6329
EA 2.2495 1.0993
χ −3.8399 −3.8661
ɳ 1.5907 2.7667
μ 3.8399 3.8661
ω 4.6344 3.5226
S 0.3143 0.1807
ΔNMax 2.4133 1.3973

3.11.2. Local reactivity descriptors

Local reactivity descriptors such as softness (Sk), Fukui Function (FF) and electrophilicity index (ωk) [59, 60] were enumerated in Table 12. Local softnesses (sk+, sk,sk0) and electrophilicity indices k+, ωk, ωk0) are described with the help of following equations.

sK+=SfK+,sk=SfK,sK0=SfK0 (2)
ωK+=ωfK+,ωK=ωfK,ωK0=ωfK0 (3)

Where +, −, 0 signs show attack of nucleophile, electrophile and radical.

Table 12.

Fukui functions (fk+, fk), Local softnesses (sk+,sk) in eV, local electrophilicity indices (ωk+, ωk-) in eV for specific atomic sites of BCOPCA.

Atoms qN qN+1 qN−1 fk+ fk sk+ sk ωk+ ωk−
1 C −0.00786 −0.02542 0.033475 −0.01756 −0.04134 −0.00453 −0.01065 −0.06428 −0.15133
2 C 0.001539 0.048247 0.037914 0.046708 −0.03638 0.01204 −0.00937 0.170984 −0.13316
3 C 0.307709 0.009798 0.306242 −0.29791 0.001467 −0.0768 0.000378 −1.09056 0.00537
4 C −0.02409 0.050011 −0.0047 0.074098 −0.01939 0.019101 −0.005 0.271251 −0.07097
5 C −0.00575 −0.02706 0.031592 −0.0213 −0.03735 −0.00549 −0.00962 −0.07799 −0.13671
6 C −0.00471 0.080973 0.055309 0.085687 −0.06002 0.022088 −0.01547 0.313674 −0.21973
7 N −0.59224 0.102799 −0.57026 0.695039 −0.02198 0.179167 −0.00566 2.544329 −0.08047
8 C 0.155754 −0.04326 0.153809 −0.19901 0.001945 −0.0513 0.000501 −0.72853 0.00712
9 C −0.10853 0.003445 −0.09773 0.111976 −0.01081 0.028865 −0.00278 0.409911 −0.03956
10 C 0.003882 0.062521 0.002279 0.058639 0.001603 0.015116 0.000413 0.21466 0.005868
11 C 0.490942 −0.01266 0.503595 −0.5036 −0.01265 −0.12982 −0.00326 −1.84354 −0.04632
12 O −0.4566 −0.01315 −0.42393 0.443457 −0.03267 0.114314 −0.00842 1.623363 −0.1196
13 C 0.008565 0.002923 0.069755 −0.00564 −0.06119 −0.00145 −0.01577 −0.02065 −0.224
14 C −0.01201 0.071771 0.051188 0.083779 −0.0632 0.021597 −0.01629 0.30669 −0.23134
15 C 0.127164 0.042609 0.134058 −0.08456 −0.00689 −0.0218 −0.00178 −0.30953 −0.02524
16 C 0.174044 −0.01827 0.173628 −0.19232 0.000416 −0.04957 0.000107 −0.70401 0.001523
17 C −0.01662 −0.02564 0.028202 −0.00903 −0.04482 −0.00233 −0.01155 −0.03305 −0.16406
18 C 0.013185 0.043672 0.070556 0.030487 −0.05737 0.007859 −0.01478 0.111604 −0.21002
19 C −0.0881 −0.00617 −0.08513 0.081928 −0.00297 0.021119 −0.00077 0.299914 −0.01088
20 C 0.007614 −0.00083 0.031913 −0.00845 −0.0243 −0.00218 −0.00626 −0.03092 −0.08895
21 C 0.065587 0.054414 0.040768 −0.01117 0.024819 −0.00288 0.006396 −0.0409 0.090855
22 C −0.04556 0.075571 0.020497 0.121129 −0.06606 0.031225 −0.01702 0.443417 −0.24181
23 C 0.024794 −0.03624 0.085728 −0.06103 −0.06093 −0.01573 −0.0157 −0.22341 −0.22306
24 C −0.10668 0.052009 −0.10027 0.158684 −0.0064 0.040906 −0.00165 0.580895 −0.02343
25 C 0.053594 −0.00012 0.098318 −0.05372 −0.04472 −0.01385 −0.01153 −0.19663 −0.16372
26 C −0.14349 0.138092 −0.15236 0.281579 0.008868 0.072585 0.002285 1.030776 0.032463
27 Cl 0.00253 0.001909 0.069687 −0.00062 −0.06716 −0.00016 −0.01731 −0.00227 −0.24584
28 Cl −0.00293 0.012659 0.081015 0.015591 −0.08395 0.004019 −0.02163 0.057074 −0.3073
29 C 0.809429 0.021538 0.848196 −0.78789 −0.03877 −0.2031 −0.00999 −2.88423 −0.14191
30 O −0.50087 0.340429 −0.40777 0.841299 −0.0931 0.21687 −0.02399 3.079743 −0.34082
31 O −0.1303 −0.00657 −0.08558 0.123728 −0.04471 0.031895 −0.01152 0.452931 −0.16368

The observed values at C2, C6, C19, C23 and C25 showed that these sites are more liable to nucleophilic attack whereas the relatively enhanced values at H48, C29, O30, O31 suggested that these sites are accountable for attack of electrophiles. These explorations are helpful enough to provide more information about the chemical reactivity of the molecule.

3.12. Atom In molecule (AIM) approach

The molecular graph of compound BCOPCA at B3LYP/6-31G (d, p) hybrid functionals is presented in Fig. 12 with help of AIM program. The strong, medium, weak H-bonds and their covalent, partially covalent and electrostatic nature can be denoted by 2ρ(BCP) < 0 and HBCP < 0, 2ρ (BCP) > 0 and HBCP < 0 and 2ρ(BCP) > 0 and HBCP > 0 [61]. ρ(BCP) and HBCP are Laplacian of electron density and total electron density at bond critical point respectively. The various bond interactions and their values are provided in Table 13 and indicated that C2-H24···O12 and C19-H41···O12 are weak interactions having 2(BCP) and HBCP values greater than zero. The total energy of intramolecular interaction was 0.0903 kcal mol−1 as calculated with the help of AIM. There is delocalization of π electrons in aromatic ring as shown by the lower values of ellipticity [62].

Fig. 12.

Fig. 12

Molecular graph of BCOPCA using AIM program at B3LYP/6-31G (d,p) level ring critical points (small blue sphere), bond paths (dark green lines).

Table 13.

Topological parameters for intramolecular interactions in compound electron density (ρBCP), Laplacian of electron density (2ρBCP), electron kinetic energy density (GBCP), electron potential energy density (VBCP), total electron energy density (HBCP), Hydrogen bond energy (EHB) at bond critical point (BCP).

Interactions ρBCP 2ρBCP GBCP VBCP HBCP EHB(Elipticity)
C21—H43…O30 0.013730 0.040154 0.009933 −0.009828 0.009734 0.063524
C26—H47…O30 0.011629 0.036157 0.008547 −0.007975 0.016153 0.253943
C31—H48…N7 0.012850 0.041625 0.009642 −0.008877 0.032226 0.430191
C9—H37…H47 0.008698 0.036508 0.006843 −0.004559 0.567843 0.611709

ρBCP, 2ρBCP, GBCP, VBCP, HBCP in a.u. and EHB in (kcal/mol).

3.13. Evaluation of antimicrobial activity

The in-vitro antimicrobial activity of BCOPCA was studied using the disc diffusion method with different strains of bacteria [Salmonella typhi (St, MTCC 537), Klebsiella pneumonia (Kp, MTCC 661), Pseudomonas aeruginosa (Pa, MTCC 424)] [63]. Chloroform was used as negative control and Vancomycin was used as standard drug. The zone of inhibition (mm) results showed that compound showed a good bactericidal activity against Salmonella typhi, Klebsiella pneumonia and Pseudomonas aeruginosa where the diameter of zone of inhibition was 12, 10 and 9.5 mm etc.

3.14. Molecular docking studies

In modern drug designing, molecular docking, which predicts the preferred orientation of one molecule to a second when bound to each other to form a stable complex, is an important tool for understanding drug-receptor interaction. The molecular docking study of BCOPCA was also carried out in the present article to come up with the rationale for the biological activity. All in silico docking experiment were carried out the using Auto Dock version 4.2 [64, 65]. Crystal structure of 3-Dehydroquinase from Salmonella typhi (PDB ID: 1GQN), Pyridoxal kinase (PDBID: 5B6A) from Pseudomonas aeruginosa and Dihydrofolate reductase enzyme from Klebsiella pneumonia (PDBID: 4oR7) for the docking studies was downloaded from Protein Data Bank (http://www.rscb.org/pdb).

The purpose of taking type I DHQase (3-Dehydroquinase), as a target molecule is due to the fact that the shikimate pathway for the biosynthesis of aromatic amino acids (Phenylalanine, Tyrosine and tryptophan), is absent in mammals. Pyridoxal kinase is an essential enzyme for Pyridoxal 5′-phosphate (PLP) homeostasis since PLP is required for the catalytic activity of a variety of PLP-dependent enzymes involved in amino acid, lipid, and sugar metabolism as well as neurotransmitter biosynthesis. Dihydrofolate reductase enzyme is taken as target molecule because the resistance to the antibacterial antifolate trimethoprim (TMP) is increasing in members of the family Enterobacteriaceae including Klebsiella pneumonia.

Hydrogen atoms and Kollman charges were added and water molecules were removed from the molecule to execute the docking operations. The B3LYP/6-31G (d,p) functional of theory set was used to prepare minimum energy ligand for docking. Auto Dock requires pre-calculated grid maps. This grid must to include residues of the active site. In the present study the grid size was 60 Å × 60 Å × 60 Å. Lamarckian Genetic Algorithm (LGA) available in Auto Dock was employed for docking. The obtained docking results are stated as correct when the root mean square deviation (RMSD) value is smaller than 2 Ǻ [66]. RMSD is used to estimate the average distance or deviation from the active site of the ligand and most important criterium for the docking results. The binding energy was taken into consideration after the RMSD values, as the molecule may also give lower binding energy with a place other than the active region. UCSF Chimera 1.10.2 program was employed to accomplish graphical representations of the docked pose. The ligand binds at the active site of the protein by H-bonding. Out of 10 conformations acquired by docking into the active site of 3-Dehydroquinase, Pyridoxal kinase and Dihydrofolatereductase, the best conformation was chosen depending on the RMSD value and binding energy. The ligand-target interaction of BCOPCA to 3-Dehydroquinase, Pyridoxal kinase and Dihydrofolatereductase binding site is depicted in Fig. 13(a–c). The hydrogen bond interactions and binding energy of compound to 3-Dehydroquinase, Pyridoxal kinase and Dihydrofolatereductase are presented in Table 14. Out of all docked conformations, the conformation well bonded to the active site, was chosen for detailed interactions. The docking output inferred that BCOPCA could compactly occupy the active sites of 3-Dehydroquinase, Pyridoxal kinase and Dihydrofolatereductase with binding energy – 2.26, −6.15 and −8.47 kcal/mol respectively.

Fig. 13.

Fig. 13

(a) Schematic representation for the docked conformation at active site of the bacterial enzyme 3-Dehydroquinase (PDB ID: 1GQN) from Salmonella typhi with BCOPCA. (b) Schematic representation for the docked conformation at active site of the bacterial enzyme Pyridoxal kinase (PDBID: 5B6A) from Pseudomonas aeruginosa with BCOPCA. (c) Schematic representation for the docked conformation at active site of the bacterial enzyme Dihydrofolate reductase (PDBID: 4oR7) enzyme from Klebsiella pneumonia with BCOPCA.

Table 14.

Hydrogen bond interactions of BCOPCA with target 3-Dehydroquinase from Salmonella typhi (PDB ID: 1GQN), Pyridoxal kinase (PDBID: 5B6A) from Pseudomonas aeruginosa and dihydrofolatereductase enzyme from Klebsiellapneumoniae (PDBID: 4oR7).

Macromolecular target Compound
Bonded residue…Ligand atom No. of hydrogen bonds Bond distance (Å) Inhibition constant (μM) Binding energy Kcal/mol
1GQN ARG 48…OH 1 2.690 21940 −4.71
5B6A ASN 148 A…OH 1 3.554 31.09 −6.15
4oR7 SER 49.A…O=C 1 3.427 0.6196 −8.47

Estimated Free Energy of Binding for compound with 3-Dehydroquinase = −2.26 kcal mol−1 [=(1)+(2)+(3)-(4)]

  • (1)

    Final Intermolecular Energy = −2.99 kcal mol−1

  • vdW + Hbond + desolv Energy = −2.41 kcal mol−1

  • Electrostatic Energy = −0.58 kcal mol−1

  • (2)

    Final Total Internal Energy = −0.64 kcal mol−1

  • (3)

    Torsional Free Energy = +1.37 kcal mol−1

  • (4)

    Unbound System's Energy = +0.00 kcal mol−1

Estimated Free Energy of Binding for compound with Pyridoxal kinase = −6.15 kcal mol−1 [=(1)+(2)+(3)-(4)]

  • (1)

    Final Intermolecular Energy = −7.11 kcal mol−1

  • vdW + Hbond + desolv Energy = −7.14 kcal mol−1

  • Electrostatic Energy = +0.03 kcal mol−1

  • (2)

    Final Total Internal Energy = −0.41 kcal mol−1

  • (3)

    Torsional Free Energy = +1.37 kcal mol−1

  • (4)

    Unbound System's Energy = +0.00 kcal mol−1

Estimated Free Energy of Binding for compound with Dihydrofolatereductase = −8.47 kcal mol−1 [=(1)+(2)+(3)-(4)]

  • (1)

    Final Intermolecular Energy = −9.13 kcal mol−1

  • vdW + Hbond + desolv Energy = −9.51 kcal mol−1

  • Electrostatic Energy = +0.38 kcal mol−1

  • (2)

    Final Total Internal Energy = −0.71 kcal mol−1

  • (3)

    Torsional Free Energy = +1.37 kcal mol−1

  • (4)

    Unbound System's Energy = +0.00 kcal mol−1

All the three enzymes showed only one hydrogen bond interaction with the best docked conformation of compound. The residue ARG 48 of 3-Dehydroquinase from Salmonella typhi, residue ASN 148 A of Pyridoxal kinase (PDBID: 5B6A) from Pseudomonas aeruginosa has hydrogen bond interactions with the hydroxyl O atom of ligand at a distance of 2.690 Å and 3.554 Å respectively and residues SER 49 Å of Dihydrofolatereductase enzyme from Klebsiella pneumonia, has hydrogen bond interactions with the carbonyl oxygen atom of ligand at a distance of 3.427 Å.

It is a well known fact that, if the number of interactions is greater in the docked complex, it will enrich the bioactivity of the compound but the noteworthy part is that one hydrogen bond interaction was obtained with all three enzymes. Compound may be deemed as a capable inhibitor of 3-Dehydroquinase as compared to Pyridoxal kinase (PDBID: 5B6A) and Dihydrofolatereductase enzyme due to small distance of ligand–residue interaction which was also confirmed by experimental results.

4. Conclusions

The present study gives a detailed account for spectral and computational characterisation of BCOPCA. The complete vibrational analysis of novel (2Z,4Z)-2,4-bis(4-chlorobenzylidene)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid was performed on two different hybrid functionals (B3LYP and CAM-B3LYP6-31G (d,p)).The observed and calculated wavenumbers agreed with each other. The stabilization energy and the calculated HOMO and LUMO energies indicated charge transfer in the molecule, which in turn indicated its bioactive properties. The title compound depicted n → π* HOMO-1 to LUMO+1 with 63% and π → π* HOMO-2 to LUMO with 53% contribution.

The chemical shift values, obtained by GIAO NMR calculations were in good agreement with experimental data. The results of the fundamental vibrational frequencies, calculated with the help of PED, were found satisfactory. The sites of chemical reactivity and charge density distribution of BCOPCA were ascertained by mapping molecular electrostatic potential surface (MESP) and electrostatic potential surface (ESP) contour surface. The MEP and ESP values 7.648 a.u. and −7.648 a.u. indicated that C11, O12 and C47, O30 are most preferred sites for electrophilic and nucleophilic attack. The delocalisation of π electrons in the aromatic ring is shown by the lower values of ellipticity and four feeble hydrogen bonds were explored by AIM approach. IR showed good agreement between experimental and calculated value. Mulliken charge distribution confirmed the enhanced value of charge on H48 that can be accounted to hydrogen bonding. Molecular docking studies using in-silico analysis were done to access the interactions of BCOPCA with 3-Dehydroquinase (PDB ID: 1GQN), Pyridoxal kinase (PDBID: 5B6A) and Dihydrofolate reductase (PDBID: 4oR7) enzymes from Salmonella typhi, Pseudomonas aeruginosa and Klebsiella pneumonia and matched well with the in vitro antibacterial activity.

Declarations

Author contribution statement

Poornima Devi: performed the experiments.

Shaheen Fatma, Shraddha Shukla, Roop Kumar, Vineeta Singh: contributed reagents, materials, analysis tools or data.

Abha Bishnoi: conceived and designed the experiments; wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

Authors are thankful to the Head, Department of Chemistry, Lucknow University, Lucknow, for providing laboratory, spectral and computational facilities.

References

  • 1.John H.B., John M.B. eleventh ed. Lippincott Williams and Wilkins; Philadelphia: 2004. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry; p. 1. [Google Scholar]
  • 2.Li X., Li Y., Xu W. Design, synthesis, and evaluation of novel galloyl pyrrolidine derivatives as potential anti-tumor agents. Bioorg. Med. Chem. 2006;14:1287–1293. doi: 10.1016/j.bmc.2005.09.031. [DOI] [PubMed] [Google Scholar]
  • 3.Malawska B. New anticonvulsant agents. Curr. Top. Med. Chem. 2005;5:69–85. doi: 10.2174/1568026053386944. [DOI] [PubMed] [Google Scholar]
  • 4.Barrett D.G., Catalano J.G., Deaton D.N., Hassell A.M., Long S.T., Miller A.B. Novel, potent P2-P3 pyrrolidine derivatives of ketoamide-based cathepsin K inhibitors. Bioorg. Med. Chem. Lett. 2006;16:1735–1739. doi: 10.1016/j.bmcl.2005.11.101. [DOI] [PubMed] [Google Scholar]
  • 5.Tran J.A., Chen C.W., Jiang W., Tucci F.C., Fleck B.A. Pyrrolidines as potent functional agonists of the human melanocortin-4 receptor. Bioorg. Med. Chem. Lett. 2007;17:5165–5170. doi: 10.1016/j.bmcl.2007.06.088. [DOI] [PubMed] [Google Scholar]
  • 6.Hamlaoui I., Bencheraiet R., Bensegueni R., Bencharif M. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives. J. Mol. Struct. 2018;1156:385–389. [Google Scholar]
  • 7.Verma A.K., Bishnoi A., Fatma S. Synthesis, spectral analysis and quantum chemical studies on molecular geometry. J. Mol. Struct. 2016;1116:9–21. [Google Scholar]
  • 8.Fatma S., Bishnoi A., Verma A.K., Singh V., Srivastava K. Quantum chemical calculations and molecular docking studies of 5-(4-chlorobenzylidene)thiazolidine-2,4-dione(CTD) and its mannich product 5-(4-chlorobenzylidene)-3-(morpholinomethyl)thiazolidine-2,4-dione (CMTD) J. Mol. Struct. 2018;1157:177–190. [Google Scholar]
  • 9.Scott A.P., Radom L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 1996;100:16502–16513. [Google Scholar]
  • 10.Ocola E.J., Brito T., McCann K., Laane J. Conformational energetics and low-frequency vibrations of cyclohexene and its oxygen analogs. J. Mol. Struct. 2010;978:74–78. [Google Scholar]
  • 11.Durig J.R., Ganguly A., El Defrawy A.M., Guirgis G.A., Gounev T.K., Herrebout W.A., Van Der Veken B.J. Conformational stability, r0 structural parameters, barriers to internal rotation and vibrational assignment of cyclobutylamine. J. Mol. Struct. 2009;918:64–76. [Google Scholar]
  • 12.Durig J.R., Ganguly A., El Defrawy A.M., Gounev T.K., Guirgis G.A. Conformational stability of cyclobutanol from temperature dependent infrared spectra of xenon solutions, r0 structural parameters, ab initio calculations and vibrational assignment. Spectrochim. Acta A. 2008;71:1379–1389. doi: 10.1016/j.saa.2008.04.010. [DOI] [PubMed] [Google Scholar]
  • 13.Alver Ö., Parlak C. Vibrational spectroscopic investigation and conformational analysis of 1-pentylamine: a comparative density functional study. J. Theor. Comput. Chem. 2010;9:667–685. [Google Scholar]
  • 14.Güneş E., Parlak C. DFT, FT-Raman and FT-IR investigations of 5-methoxysalicylic acid. Spectrochim. Acta A. 2011;82:504–512. doi: 10.1016/j.saa.2011.07.089. [DOI] [PubMed] [Google Scholar]
  • 15.Paytash L.P., Sparrow E., Gathe J.C. The reaction of itaconic acid with primary amines. J. Am. Chem. Soc. 1950;72:1415–1416. [Google Scholar]
  • 16.Kohn W., Becke A.D., Parr R.G. Density functional theory of electronic structure. J. Phys. Chem. 1996;100:12974–12980. [Google Scholar]
  • 17.Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988;B37:785–789. doi: 10.1103/physrevb.37.785. [DOI] [PubMed] [Google Scholar]
  • 18.Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian Inc.; Wallingford CT: 2009. Gaussian 09, Revision A.1. [Google Scholar]
  • 19.Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. [Google Scholar]
  • 20.Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J.E., Bohmann J.A., Morales C.M., Weinhold F. Theoretical Chemistry Institute, University of Wisconsin; Madison: 2001. NBO 5.0. [Google Scholar]
  • 21.Bader R.F.W., Cheeseman J.R. 2000. AIMPAC. [Google Scholar]
  • 22.Martin J.M.L., Van Alsenoy C. University of Antwerp; Belgium: 1995. GAR2PED, A Program to Obtain a Potential Energy Distribution from a Gaussian Archive Record. [Google Scholar]
  • 23.Devi P., Fatma S., Parveen H., Bishnoi A., Singh R. Spectroscopic analysis, first order hyperpolarizability, NBO, HOMO and LUMO analysis of 5-oxo-1-phenylpyrrolidine-3-carboxylic acid: experimental and theoretical approach. Indian J. Pure Appl. Phys. 2018;56:814–829. [Google Scholar]
  • 24.Karapetyan H., Tamazyan R., Martirosyan A., Hovhannesyan V., Gasparyan S. 1-Substituted derivatives of 2-aryl-5-oxopyrrolidine-2-carboxylic acid. Acta Cryst. 2002;C58:o399–o401. doi: 10.1107/s0108270102009241. [DOI] [PubMed] [Google Scholar]
  • 25.Arjunan V., Ravindran P., Rani T., Mohan S. FTIR, FT-Raman, FT-NMR, ab initio and DFT electronic structure investigation on 8-chloroquinoline and 8-nitroquinoline. J. Mol. Struct. 2011;988:91–101. [Google Scholar]
  • 26.Cossi M., Barone V. Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 2001;115:4708–4717. [Google Scholar]
  • 27.Hiroshi Y., Akito E. Density functional vibrational analysis using wavenumber-linear scale factors. Chem. Phys. Lett. 2000;325:477–483. [Google Scholar]
  • 28.Colthup N.B., Daly L.H., Wiberley S.E. Academic Press; New York: 1990. Introduction to Infrared and Raman spectroscopy. [Google Scholar]
  • 29.Green J.H.S., Harrison D.J., Kynaston W. Vibrational spectra of benzene derivatives—XIV: mono substituted phenols. Spectrochim. Acta A. 1971;27:2199–2217. [Google Scholar]
  • 30.Lutz E.T.G., Mass J.H.V. Spectrochim. Acta A. 1986;42:749. [Google Scholar]
  • 31.Sathyanarayana D.N. Vibrational Spectroscopy Theory and Applications. second ed. New Age International(P) Ltd. Publishers; New Delhi: 2004. [Google Scholar]
  • 32.Nagabalasubramanian P.B., Periandy S., Mohan S., Govindarajan M. FTIR and FT Raman spectra, vibrational assignments, ab initio, DFT and normal coordinate analysis of α,α dichlorotoluene. Spectrochim. Acta A. 2009;73:277–280. doi: 10.1016/j.saa.2009.02.044. [DOI] [PubMed] [Google Scholar]
  • 33.Varsanyi G. vols. 1 and 2. Academiai Kiado; Budapest: 1973. (Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives). [Google Scholar]
  • 34.Arunagiri C., Arivazhagan M., Subashini A. Vibrational spectroscopic (FT-IR and FT-Raman), first-order hyperpolarizablity, HOMO, LUMO, NBO, Mulliken charges and structure determination of 2-bromo-4-chlorotoluene. Spectrochim. Acta A. 2011;79:1747–1756. doi: 10.1016/j.saa.2011.05.050. [DOI] [PubMed] [Google Scholar]
  • 35.Krishnakumar V., John Xavier R. Normal coordinate analysis of vibrational spectra of 2-methylindoline and 5-hydroxyindane. Indian J. Pure. Appl. Phys. 2003;41:95–99. http://hdl.handle.net/123456789/25035 [Google Scholar]
  • 36.Altun A., Gölcük K., Kumru M. Theoretical and experimental studies of the vibrational spectra of m-methylaniline. J. Mol. Struct. (Theochem) 2003;625:17–24. [Google Scholar]
  • 37.Harayama T., Hori A., Serban G., Morikami Y., Matsumoto T., Abe H., Takeuchi Y. Concise synthesis of quinazoline alkaloids, luotonins A and B, and rutaecarpine. Tetrahedron. 2004;60:10645–10649. [Google Scholar]
  • 38.Drużbicki K., Mikuli E., Ossowska-Chruściel M.D. Experimental (FT-IR, FT-RS) and theoretical (DFT) studies of vibrational dynamics and molecular structure of 4-n-pentylphenyl-4′-n-octyloxythiobenzoate (8OS5) Vib. Spectrosc. 2010;52:54–62. [Google Scholar]
  • 39.Dołęga D., Migdal-Mikulo A., Chruściel J. Experimental (FT-IR, FT-RS) and theoretical (DFT) studies of vibrational dynamics and molecular structure of 4-n-pentylphenyl-4'-n-heptyloxythiobenzoate (7OS5) J. Mol. Struct. 2009;933:30–37. [Google Scholar]
  • 40.Rastogi V.K., Palafox M.A., Lang K., Singhal S.K., Soni R.K., Sharma R. Vibrational spectra and thermodynamics of biomolecule: 5-chlorocytosine. Indian J. Pure Appl. Phys. 2006;44:653–660. http://hdl.handle.net/123456789/8355 [Google Scholar]
  • 41.Govindarajan M., Karabacak M. Spectroscopic properties, NLO, HOMO-LUMO and NBO analysis of 2,5-lutidine. Spectrochim. Acta Part A. 2012;96:421–435. doi: 10.1016/j.saa.2012.05.067. [DOI] [PubMed] [Google Scholar]
  • 42.Ramalingam S., Karabacak M., Periandy S., Tanuja D. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime. Spectrochim. Acta Part A. 2012;96:207–220. doi: 10.1016/j.saa.2012.03.090. [DOI] [PubMed] [Google Scholar]
  • 43.Ramalingan S., Periandy S., Govindarajan M., Mohan S. FTIR and FT Raman spectra, assignments, ab initio HF and DFT analysis of 4-nitrotoluene. Spectrochim. Acta Part A. 2010;75:1308–1314. doi: 10.1016/j.saa.2009.12.072. [DOI] [PubMed] [Google Scholar]
  • 44.Prabavathi N., Senthil Nayaki N. The spectroscopic (FT-IR, FT-Raman and NMR), first order hyperpolarizability and HOMO–LUMO analysis of 2-mercapto-4(3H)-quinazolinone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;129:572–583. doi: 10.1016/j.saa.2014.04.041. [DOI] [PubMed] [Google Scholar]
  • 45.Fatma S., Bishnoi A., Verma A.K. Synthesis, spectral analysis (FT-IR, 1H NMR, 13C NMR and UV–visible) and quantum chemical studies on molecular geometry, NBO, NLO, chemical reactivity and thermodynamic properties of novel 2-amino-4-(4-(dimethylamino)phenyl)-5-oxo-6-phenyl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile. J. Mol. Struct. 2015;1095:112–124. [Google Scholar]
  • 46.Singh R.N., Kumar A., Tiwari R.K., Rawat P. Synthesis, molecular structure, hydrogen-bonding, NBO and chemical reactivity analysis of a novel 1,9-bis(2-cyano-2-ethoxycarbonylvinyl)-5-(4-hydroxyphenyl)-dipyrromethane: a combined experimental and theoretical (DFT and QTAIM) approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;113:378–385. doi: 10.1016/j.saa.2013.04.121. [DOI] [PubMed] [Google Scholar]
  • 47.Zaater S., Bouchoucha A., Djebbar S., Brahimi M. Structure, vibrational analysis, electronic properties and chemical reactivity of two benzoxazole derivatives: functional density theory study. J. Mol. Struct. 2016;1123:344–354. [Google Scholar]
  • 48.Saha S.K., Hens A., Murmu N.C., Banerjee P. A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface. J. Mol. Liq. 2016;215:486–495. [Google Scholar]
  • 49.Politzer P., Murray J.S. Electrostatic potential analysis of dibenzo-p-dioxins and structurally similar systems in relation to the or biological activities. In: Beveridge D.L., Lavery R., editors. vol. 2. Adenine Press; Schenectady, NY: 1991. (Theoretical Biochemistry and Molecular Biophysics: A Comprehensive Survey, Protein). (Chapter 13) [Google Scholar]
  • 50.Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F. University of Wisconsin; Madison: 1998. NBO Version 3.1, TCI. [Google Scholar]
  • 51.Reed A.E., Curtis L.A., Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988;88:899–926. [Google Scholar]
  • 52.Andraud C., Brotin T., Garcia C., Pelle F., Goldner P., Bigot B., Collet A. Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. J. Am. Chem. Soc. 1994;116:2094–2102. [Google Scholar]
  • 53.Geskin V.M., Lambert C., Bredas J.L. Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J. Am. Chem. Soc. 2003;125:15651–15658. doi: 10.1021/ja035862p. [DOI] [PubMed] [Google Scholar]
  • 54.Kleinman D.A. Nonlinear dielectric polarization in optical media. Phys. Rev. 1962;126:1977–1979. [Google Scholar]
  • 55.Gopinath E., John Xavier R. Quantum chemical calculations, vibrational studies, HOMO–LUMO and NBO/NLMO analysis of 2-bromo-5-nitrothiazole. Spectrochim. Acta Part A. 2013;104:394–402. doi: 10.1016/j.saa.2012.11.066. [DOI] [PubMed] [Google Scholar]
  • 56.Arivazhagan M., Senthilkumar J. Molecular structure, vibrational spectral assignments, HOMO-LUMO, MESP, Mulliken analysis and thermodynamic properties of 2,6-xylenol and 2,5-dimethyl cyclohexanol based on DFT calculation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;137:490–502. doi: 10.1016/j.saa.2014.08.054. [DOI] [PubMed] [Google Scholar]
  • 57.Soliman S.M., Hagar M., Ibid F., Sayed E., Ashry H.E. Experimental and theoretical spectroscopic studies, HOMO-LUMO, NBO analyses and thione-thiol tautomerism of a new hybrid of 1,3,4-oxadiazole-thione with quinazolin-4-one. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;145:270–279. doi: 10.1016/j.saa.2015.01.061. [DOI] [PubMed] [Google Scholar]
  • 58.Sethi A., Prakash R. Novel synthetic ester of brassicasterol, DFT investigation including NBO, NLO response, reactivity descriptor and its intramolecular interactions analyzed by AIM theory. J. Mol. Struct. 2015;1083:72–81. [Google Scholar]
  • 59.Parr R.G., Szentpaly L., Liu S. Electrophilicity index. J. Am. Chem. Soc. 1999;121:1922–1924. [Google Scholar]
  • 60.Chattaraj K., Giri S. Stability, reactivity, and aromaticity of compounds of a multivalent superatom. J. Phys. Chem. A. 2007;111:11116–11121. doi: 10.1021/jp0760758. [DOI] [PubMed] [Google Scholar]
  • 61.Espinosa E., Molins E., Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998;285:170–173. [Google Scholar]
  • 62.Matta L.F., Boyd R.J. Wiley-VCH Verlag Gmbh; 2007. An Introduction of the Quantum theory of Atom in Molecule. [Google Scholar]
  • 63.National Committee for Clinical Laboratory Standards . fourth ed. NCCLS; Wayne, PA: 2000. Approved standard M7-A5 Methods for dilution antimicrobial susceptibility. [Google Scholar]
  • 64.Huey R., Morris G.M., Olson A.J., Goodsell D.S. A semiempirical free energy force field with charge-based desolvation. J. Comp. Chem. 2007;28:1145–1152. doi: 10.1002/jcc.20634. [DOI] [PubMed] [Google Scholar]
  • 65.Trott O., Olson A. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comp. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Kramer B., Rarey M., Lengauer T. Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking. Proteins Struct. Funct. Bioinf. 1999;37:228. doi: 10.1002/(sici)1097-0134(19991101)37:2<228::aid-prot8>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]

Articles from Heliyon are provided here courtesy of Elsevier

RESOURCES