Skip to main content
The Journal of International Medical Research logoLink to The Journal of International Medical Research
. 2018 Oct 25;46(12):4885–4897. doi: 10.1177/0300060518803041

Indocyanine green can stand alone in detecting sentinel lymph nodes in cervical cancer

Qurat Ulain 1,*, Lu Han 1,*, Qian Wu 2,*, Lanbo Zhao 3, Qi Wang 1, Xiaoqian Tuo 1, Yiran Wang 1, Qing Wang 1, Sijia Ma 1, Chao Sun 1, Qing Song 1,4, Qiling Li 1,
PMCID: PMC6300975  PMID: 30360672

Short abstract

Objectives

The effectiveness of indocyanine green (ICG) dye for detecting sentinel lymph nodes (SLNs) in cervical cancer compared with other tracers is unknown. This study aimed to assess the validity of ICG dye in detecting SLNs in cervical cancer preoperatively.

Methods

We performed a literature search for identifying eligible articles from PubMed database using the search terms “cervical cancer”, “sentinel lymph node”, “indocyanine green”, “blue dyes”, “human serum albumin”, and “technetium-99 radiocolloid”. We performed a meta-analysis. Comparison of the overall, bilateral, and unilateral detection rates of the different tracers was the primary goal. Comparison of the false-negative rate among the tracers was the secondary goal.

Results

Only eight retrospective studies including 661 patients were included. ICG versus combinations of three other tracers showed significantly higher bilateral and unilateral detection rates, but no difference in the overall rate of detecting SLNs. ICG had a higher bilateral detection rate than blue dye and technetium-99. Absorbing human serum albumin into ICG as a lymphatic tracer did not show a difference in detection rate compared with ICG alone.

Conclusions

ICG is superior and better than other tracers, and absorbing human serum albumin as a lymphatic tracer is not required in patients with cervical cancer.

Keywords: Sentinel lymph node detection, indocyanine green, blue dye, human serum albumin, radiocolloid technetium-99, cervical cancer, tracer

Introduction

Cervical cancer is the most common gynecological cancer in developing countries compared with other gynecological cancers. Bilateral pelvic lymphadenectomy is one of the standard surgical treatments of early-stage cervical cancer.1,2 The pelvic lymph node involvement rates are only 0% to 4.8% for stage IA, 0% to 17% for IB, 12% to 27% for IIA, and 25% to 29% for IIB.3,4 Therefore, most patients receive pelvic lymph node dissection on a routine basis if there is no metastasis. This causes many complications, such as lymphedema,5 nerve injury, bleeding, ureteral injury, sensory loss, and lymph cyst formation.6 A considerable amount of research has been performed on sentinel lymph node (SLN) detection using safe and effective tracers, especially in clinical use.7 This detection reduces the morbidity rate because it can show the position of local and regional lymph nodes in patients with cervical cancer. Instead of performing a complete lymphadenectomy, an identified region can be treated after SLN detection.8 In 2014, SLN mapping was taken into account as an appropriate surgical lymph node assessment in patients with cervical cancer by the National Comprehension Cancer Network guidelines.9

The National Cancer Institute defines indocyanine green (ICG) as a cyanine dye, which is used in medical diagnostics to examine cardiac output, hepatic function, liver blood flow, and ophthalmic angiography. This dye has been used and tested for SLN detection not only for various tumors, but also for cervical cancer.10,11 ICG can be used clinically because of the following reasons: (1) higher signal-to-background ratio, (2) reasonable cost, (3) fewer adverse effects and less toxicity than other tracers, and (4) infrequent allergic reactions.12 Many studies on cervical cancer have compared the efficacy of ICG dye and the combined vital-radiotracer method with other diagnostic tracers in terms of detection rates.13 However, some studies have reported lower detection rates of ICG dye compared with other tracers.14 To clarify these issues, we conducted a quantitative study in the form of a meta-analysis on ICG and other tracers. This study aimed to assess the validity of ICG dye in SLN detection of cervical cancer preoperatively.

Methods

Search strategy

We performed a comprehensive, systematic search in July 2018 using the search terms “cervical cancer”, “sentinel lymph node”, and “indocyanine green” in the PubMed database. Predefined search terms were used to identify reports on detection of SLNs in patients with cervical cancer using ICG. The selected articles were limited to the English language. Exclusion criteria were review articles, letters, comments, conference proceedings, unpublished data, and case reports. Only randomized, controlled trials and retrospective studies were included. We analyzed studies in which SLNs were detected by ICG. Some of the articles were excluded because of the following reasons: (1) the focus of injection was not the cervix; (2) the articles were related to endometrial and cervical cancer, not only cervical cancer; and (3) the intervention and outcome did not meet our requirements. No studies using animal models and no research involving human subjects were performed for this study. Therefore, approval for this study was not required.

Data extraction

We extracted relevant data by using a standardized data abstraction form. The identity of study investigators and the institution was blinded. A true positive SLN, defined as a positive SLN, was indicated by tracers that dyed SLNs by similar histopathological techniques (hematoxylin and eosin staining, serial sectioning, immunohistochemistry) independent of regional lymph node status. A false-negative SLN was defined as the finding of metastasis, despite an undetected SLN.

The primary goal of the study was to compare the detection rates of the following different mapping tracers: ICG versus combined dyes, ICG versus blue dye (BD), ICG versus ICG:human serum albumin (HSA), and ICG versus technetium-99 (99Tc) dye with BD. We examined overall, bilateral, and unilateral detection rates, and with mapping of at least one SLN per hemi-pelvis. The effectiveness of all of the dyes was analyzed. The secondary goal was the false-negative rate of SLNs, using different tracers for SLN mapping. Studies were considered false-negative when the SLN was negative with positive non-SLN.

Statistical analysis

The risk ratio (RR) (also called relative risk) and the odds ratio (OR) were considered. Therefore, overall, bilateral, and unilateral detection of SLNs by using different tracers (BD, HSA, and 99Tc) versus ICG was achieved by calculation of the OR or RR. A fixed-effects model was used when heterogeneity between the results was large and a random-effects model was used otherwise. We assumed that effects from each study were the same as “no difference was seen” in the underlying study population, subject selection criteria, and application of tracers.

The chi-square (I2) test was used to assess statistical heterogeneity between studies. Data from each study were tabulated under an experimental group (ICG dye) and control groups (other dyes, such as BDs, HSA, and 99Tc) and then displayed by forest plots. All statistical analyses were performed using Review Manager (RevMan, version 5.3.5, http://www.cochrane.org) and STATA version 12.0 (College Station, TX, USA). All statistical tests were two-sided and a P value < 0.05 was considered significant.

Results

Overall, 19 studies were selected through the literature search. Among them, three studies were removed as duplicates. Two of the studies were not selected because of different types of cancer (endometrial cancer). Two studies were excluded after evaluation of the title and abstract. A further four studies were excluded successively after full-text evaluation because of a lack of detailed data. Finally, eight studies that included 661 patients were selected (Table 1),6,1521 in whom dyes were injected into the cervix at different positions (four quadrants). The reasons for exclusion are as follows: (1) the focus of injection was other than the cervix; (2) the results were from combining two cancers, endometrial and cervical cancer, rather than from only cervical cancer; (3) the intervention and outcome differed from our requirements; and (4) exclusion was due to different bias within the studies. The PRISMA flow chart summarizes the process (Figure 1). An experimental group and control group were studied. The experimental group included female patients in whom ICG alone was injected into the cervix. The control group included female patients in whom different dyes, such as combinations of HSA, BDs, and 99Tc, were injected into the cervix. Although tracers were injected in the same number of female patients, the detection rate was measured separately. In the selected studies, SLN detection with different tracers was compared with reference to bilateral, overall, and unilateral detection rates.

Table 1.

Characteristics of the studies included in the meta-analysis

Authors Study design Number of patients Intervention Outcome
Schaafsma et al, 201215 Retrospective 18 Surgery: lymphadenectomyTracer: ICG & HSAPosition: injected into the cervix alone, and divided into the 3- and 9-o’clock positions Randomized trial showed no advantage of ICG:HSA over ICG alone for the SLN procedure
Imboden et al, 20156 Retrospective 58 Surgery: laparoscopyTracer: ICG, blue dye, and 99TcPosition: injected into the cervix alone, and divided into the 3- and 9-o’clock positions ICG SLN mapping in cervical cancer provided high overall and bilateral detection rates
Buda et al, 201616 Retrospective 144 Surgery: laparoscopyTracer: ICG, blue dye, and 99TcPosition: injected into the cervix alone, and divided into the 3- and 9-o’clock positions Fluorescence SLN mapping with ICG achieved a significantly higher detection rate and bilateral mapping compared with the standard radiocolloid and BD technique
Buda et al, 201617 Retrospective 45 Surgery: lymphadenectomyTracer: ICG, 99Tc, and blue dyePosition: injected into the cervix alone, and divided into the 3- and 9-o’clock positions SLN mapping using ICG showed a higher detection rate compared with other modalities. ICG was significantly superior to 99Tc with blue dye regarding the bilateral detection rate
Di Martino et al, 201718 Retrospective 95 Surgery: laparoscopyTracer: ICG, blue dye, and 99TcPosition: injected into the cervix alone, and divided into the 3- and 9-o’clock positions The detection rate and bilateral migration rate on real-time fluorescent SLN mapping were higher with ICG than with 99Tc radiotracer with or without blue dye
Paredes et al, 201719 Retrospective 48 Surgery: laparoscopyTracer: ICG, blue dye, and 99TcPosition: injected into the cervix alone, and divided into the 3- and 9-o’clock positions SLN biopsy with ICG-99Tc-nanocolloid provided bilateral SLN detection in all patients and a higher detection rate than that with blue dye
Salvo et al, 201720 Retrospective 188 Surgery: lymphadenectomyTracer: ICG, 99Tc, and blue dyePosition: injected into the cervix alone, and divided into the 3- and 9-o’clock positions SLN biopsy had a high sensitivity and negative predictive value
Buda et al, 201821 Retrospective 65 Surgery: lymphadenectomyTracer: ICG, 99Tc, and blue dyePosition: injected into the cervix alone, and divided into the 3- and 9-o’clock positions Use of ICG and radiotracer with or without blue dye had no significant effect on the SLN detection rate. Use of the fluorescent dye ICG showed a higher bilateral mapping rate than that with standard techniques

ICG, indocyanine green; HAS, human serum albumin; SLN, sentinel lymph node;99Tc, technetium-99

Figure 1.

Figure 1.

Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) flow chart

ICG versus combined dyes

When ICG was compared with BDs, including isosulfan blue, 99Tc, and HSA, for SLN detection, there was no difference in the overall detection rate (OR 1.64; 95% confidence interval [CI]: 0.82–3.29; P = 0.17, fixed-effect model; Figure 2a). The bilateral detection rate with ICG for detection of SLNs showed obvious superiority compared with a combination of tracers (OR 4.49; 95% CI: 1.36–14.77; P = 0.01, random-effects model; Figure 2b). Similarly, the unilateral detection rate was significantly higher with ICG than with a combination of different tracers (OR 0.22; 95% CI: 0.07–0.70; P = 0.01, random-effects model; Figure 2c). Therefore, ICG showed better bilateral and unilateral detection rates than did a combination of different tracers.

Figure 2.

Figure 2.

Detection rate of ICG versus other tracers. (a) Overall detection rate of ICG versus other tracers; (b) bilateral detection rate of ICG versus other tracers; (c) unilateral detection rate of ICG versus other tracers; (d) false-negative rate of ICG versus other tracers. ICG, indocyanine green

ICG versus BDs

When ICG was compared with BDs for detecting SLNs in patients with cervical cancer, the pooled analysis data did not show such a remarkable change in the overall detection rate between these two dyes (OR 5.69; 95% CI: 0.25–128.50; P = 0.27, random-effects model; Figure 3a). The bilateral detection rate appeared to be greater for ICG than for BD (OR 12.09; 95%CI: 0.52–280.40; P = 0.12 fixed-effect model; Figure 3b). The unilateral detection rate also appeared to be greater for ICG than for BD (OR 0.08; 95% CI: 0.00–1.92; P = 0.12, fixed-effect model; Figure 3c). Although there were no significant differences in the bilateral and unilateral rates, we concluded that ICG was better than BD because it appeared to show a better detection rate. This finding proved that ICG could stand alone and was superior to BD.

Figure 3.

Figure 3.

Detection rate of ICG versus blue dyes. (a) Overall detection rate for ICG versus blue dyes; (b) bilateral detection rate for ICG versus blue dyes; (c) unilateral detection rate for ICG versus blue dyes. ICG, indocyanine green

ICG versus a combination of ICG and HSA

When ICG was compared with ICG:HSA for SLN detection, the pooled analysis data showed a non-significant higher overall detection rate with ICG (OR 0.25; 95% CI: 0.02–3.04; P = 0.28, fixed-effect model; Figure 4a). The bilateral detection rate was not different between ICG and ICG:HSA (OR 1.60; 95%CI: 0.24–10.81; P = 0.63, random-effects model; Figure 4b). The unilateral detection rate was also not different between ICG and ICG:HSA (OR 0.10; 95% CI: 0.00–2.23; P = 0.14, fixed-effect model; Figure 4c). Therefore, HSA appeared to be unnecessary because there was no change in the results.

Figure 4.

Figure 4.

Detection rate of ICG versus ICG:HSA. (a) Overall detection rate for ICG versus ICG:HSA; (b) bilateral detection rate for ICG versus ICG:HSA; (c) unilateral detection rate for ICG versus ICG:HSA; (d) false-negative rate for ICG versus ICG:HSA (not applicable). ICG, indocyanine green; HAS, human serum albumin

ICG versus 99Tc dye combined with BD

When ICG was compared with 99Tc combined with BD for SLN detection, the overall detection rate was not significantly different between them; however, this result was considered meaningful (OR 1.70; 95% CI: 0.74–3.90; P = 0.21, fixed-effect model; Figure 5a). The bilateral detection rate appeared to be much higher for ICG than for 99Tc combined with BD, but this was nonsignificant (OR 4.71; 95% CI: 0.93–23.95; P = 0.06, random-effects model; Figure 5b). The unilateral detection rate for ICG was much higher than that for 99Tc combined with BD, but this was still considered nonsignificant (OR 0.27; 95% CI: 0.06–1.10; P = 0.07, random-effects model; Figure 5c). With regard to all detection rates, ICG alone had the same role, and even appeared to be better, than using 99Tc combined with BD. Therefore, ICG appeared to be superior to 99Tc with BD in detecting SLNs in patients with cervical cancer because of higher detection rates.

Figure 5.

Figure 5.

Detection rate of ICG vs. 99Tc combined with blue dyes. (a) Overall detection rate for ICG versus 99Tc combined with blue dyes; (b) bilateral detection rate for ICG versus 99Tc combined with blue dyes; (c) unilateral detection rate for ICG versus 99Tc combined with blue dyes; (d) false-negative detection rate for ICG versus 99Tc combined with blue dyes. ICG, indocyanine green; 99Tc, technetium-99

False-negative rates

When ICG was compared with BDs, including isosulfan blue, 99Tc, and HSA for SLN mapping, the pooled analysis data showed no difference in false-negative rates between the two groups (OR 2.44; 95% CI: 0.52–11.49; P = 0.26, fixed-effect model; Figure 2d). ICG alone compared with other dyes also showed no difference in false-negative rates (Figure 4d, Figure 5d).

Discussion

When SLN detection algorithms are adopted for cervical cancer as proposed by the Memorial Sloan Kettering Cancer Center, higher overall and bilateral detection rates lead to a lower number of side-specific lymphadenectomies on non-mapping hemi-pelvises.16 This reduces lymphadenectomy-related surgical morbidity, which has been reported to be as high as 20%,22 and other common complications. The most commonly used tracers are ICG, BDs, and 99Tc in detecting SLNs in cervical cancer.4,17,23 HSA is absorbed with ICG to make it more effective. Currently, overall SLN mapping of the pelvis is adequate, with detection rates of 80%.24 However, for patients with cervical cancer, this mapping is not as effective for SLNs that are located along the internal or external iliac nodal basin.25 We evaluated unilateral, bilateral, and overall detection rates of SLNs in cervical cancer.

The clinical effectiveness of ICG has been evaluated for SLN identification in gynecological malignancies, either by the laparoscopic approach or by using a robotic platform.24 An extensive study that used ICG in gynecologic cancers was recently published by Jewell et al.24 The optimal bilateral mapping of ICG alone was 79% (156/197) and it was 77% (23/30) for ICG and BD. These authors concluded that ICG has a high bilateral detection rate and appears to offer an advantage over using BD alone.16,26 The outcome in our meta-analysis also supports this finding. According to the National Comprehension Cancer Network guidelines, evaluation of SLNs in early-stage cervical cancer remains unclear because of a poor detection rate and low negative predictive value with radiocolloid and BD techniques.25 However, our outcome showed significant detection rates, especially bilaterally, in evaluating SLNs with ICG over other tracers. Therefore, ICG is superior preoperatively among patients with cervical cancer because of its high detection rate, higher signal-to-background ratio, cheaper cost, fewer adverse effects, and less toxicity compared with other tracers. Understanding of identification of SLNs among patients with cervical cancer is growing rapidly, but several questions remain unanswered.27

Several studies have reported the combined use of green dyes and BDs for detecting SLNs.19,20 After performing our meta-analysis, we did not find any advantage in using BDs and ICG together or BDs over ICG. Therefore, we suggest discontinuing the use of BDs in conjunction with ICG because ICG dye alone can simplify SLN identification. We also evaluated HSA with ICG. This is because preclinical studies indicated that adsorption of ICG in HSA increases the fluorescent intensity and the hydrodynamic diameter, thereby providing improved detection and better retention in SLNs.28 However, our study showed that ICG:HSA performed as well as ICG alone, with no remarkable changes or differences. This finding is in accordance with a previous study in which no difference was found between the use of ICG:HSA and ICG alone in SLN mapping in patients with cervical cancer,15 but using ICG alone has advantages in early-stage cervical cancer. Therefore, we conclude that the use of ICG:HSA is clinically unnecessary. Besides the advantages of ICG, it also has some disadvantages. ICG rapidly binds to proteins that are present in lymphatic fluid. Four clinical studies, including our study, justified the use of ICG at different anatomical locations (breast cancer, cervical cancer, and vulvar cancer) and at different times, from injection to imaging.29,30

ICG has some practical advantages, which include avoiding radiation exposure to patients and staff, and the need for fewer personnel because more staff are no longer required. Additionally, ICG dye is injected while patients are under anesthesia, which avoids painful administration of radiocolloid preoperatively. Finally, use of ICG appears to be useful during a surgical procedure after SLN detection, allowing the surgeon to complete the procedure without staining the operative field, which occasionally occurs with BD. This is particularly useful in the case of obese patients, when bleeding covers the retroperitoneal fat and obscures the SLN, and BD extensively stains the operative field.17

Our meta-analysis had a large sample size and showed better results for ICG compared with other tracers. Therefore, our study can help gynecological oncologists in detection of SLNs using ICG in patients with cervical cancer. Optimization of detection techniques and rates, with the goal of convenience, safety, and lower cost, is important as accuracy rates continue to be assessed.

Acknowledgement

The authors are grateful to Mrs. Juan Li for collecting data.

Declaration of conflicting interest

The authors declare that there is no conflict of interest.

Funding

This work was partly funded by the Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University (XJTU1AHCR2014-007), the Key Research and Development Project of Shaanxi Provincial Science and Technology Department (2017ZDXM-SF-068), the Natural Foundation of Shaanxi Province (2017ZDJC-11), a grant from the National Natural Science Foundation of China (81472823), and the Shaanxi Provincial Collaborative Technology Innovation Project (2017XT-026).

References

  • 1.Suprasert P., Srisomboon J, Charoenkwan K, et al. Twelve years experience with radical hysterectomy and pelvic lymphadenectomy in early stage cervical cancer. J Obstet Gynaecol 2010; 30: 294–298. [DOI] [PubMed] [Google Scholar]
  • 2.Sakuragi N. Up-to-date management of lymph node metastasis and the role of tailored lymphadenectomy in cervical cancer. Int J Clin Oncol 2007; 12: 165–175. [DOI] [PubMed] [Google Scholar]
  • 3.Wang HY, Sun JM, Lu HF, et al. Micrometastases detected by cytokeratin 19 expression in sentinel lymph nodes of patients with early‐stage cervical cancer. Int J Gynecol Cancer 2006; 16: 643. [DOI] [PubMed] [Google Scholar]
  • 4.Martínez-Palones JM, Gil-Moreno A, Pérez-Benavente MAet al. Intraoperative sentinel node identification in early stage cervical cancer using a combination of radiolabeled albumin injection and isosulfan blue dye injection. Gynecol Oncol 2004; 92: 845–850. [DOI] [PubMed] [Google Scholar]
  • 5.Eifel PJ, Burke TM, Morris M, et al. Adenocarcinoma as an independent risk factor for disease recurrence in patients with stage IB cervical carcinoma. Gynecol Oncol 1995; 59: 38–44. [DOI] [PubMed] [Google Scholar]
  • 6.Imboden S., Papadia A, Nauwerk Met al. A comparison of radiocolloid and indocyanine green fluorescence imaging, sentinel lymph node mapping in patients with cervical cancer undergoing laparoscopic surgery. Ann Surg Oncol 2015; 22: 4198–4203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Siesto G, Romano F, Fiamengo B, et al. Sentinel node mapping using indocyanine green and near-infrared fluorescence imaging technology for uterine malignancies: preliminary experience with the Da Vinci Xi System. J Minim Invasive Gynecol 2016; 23: 470–471. [DOI] [PubMed] [Google Scholar]
  • 8.Lécuru F, Mathevet P, Querleu D, et al. Bilateral negative sentinel nodes accurately predict absence of lymph node metastasis in early cervical cancer: results of the SENTICOL study. J Clin Oncol 2011; 29: 1686–1691. [DOI] [PubMed] [Google Scholar]
  • 9.Ruscito I, Gasparri ML, Braicu EIet al. Sentinel node mapping in cervical and endometrial cancer: indocyanine green versus other conventional dyes—A meta-analysis. Ann Surg Oncol 2016; 23: 3749–3756. [DOI] [PubMed] [Google Scholar]
  • 10.Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11: 220–228. [DOI] [PubMed] [Google Scholar]
  • 11.Xiong L, Gazyakan E, Yang Wet al. Indocyanine green fluorescence-guided sentinel node biopsy: a meta-analysis on detection rate and diagnostic performance. Eur J Surg Oncol 2014; 40: 843–849. [DOI] [PubMed] [Google Scholar]
  • 12.Schaafsma BE, Verbeek FP, Elzevier HWet al. Optimization of sentinel lymph node mapping in bladder cancer using near-infrared fluorescence imaging. J Surg Oncol 2014; 110: 845–850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Holloway RW, Bravo RA, Rakowski JAet al. Detection of sentinel lymph nodes in patients with endometrial cancer undergoing robotic-assisted staging: a comparison of colorimetric and fluorescence imaging. Gynecol Oncol 2012; 126: 25–29. [DOI] [PubMed] [Google Scholar]
  • 14.Crane LM, Themelis G, Arts HJet al. Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol Oncol 2011; 120: 291–295. [DOI] [PubMed] [Google Scholar]
  • 15.Schaafsma BE, van der Vorst JR, Gaarenstroom KNet al. Randomized comparison of near-infrared fluorescence lymphatic tracers for sentinel lymph node mapping of cervical cancer. Gynecol Oncol 2012; 127: 126–130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Buda A, Papadia A, Zapardiel I, et al. From conventional radiotracer Tc-99(m) with blue dye to indocyanine green fluorescence: a comparison of methods towards optimization of sentinel lymph node mapping in early stage cervical cancer for a laparoscopic approach. Ann Surg Oncol 2016; 23: 2959–2965. [DOI] [PubMed] [Google Scholar]
  • 17.Buda A, Crivellaro C, Elisei Fet al. Impact of indocyanine green for sentinel lymph node mapping in early stage endometrial and cervical cancer: comparison with conventional radiotracer (99m)Tc and/or blue dye. Ann Surg Oncol 2016; 23: 2183–2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Di Martino G, Crivellaro C, De Ponti E, et al. Indocyanine green versus radiotracer with or without blue dye for sentinel lymph node mapping in stage >IB1 cervical cancer (>2 cm). J Minim Invasive Gynecol 2017; 24: 954–959. [DOI] [PubMed] [Google Scholar]
  • 19.Paredes P, Vidal-Sicart S, Campos Fet al. Role of ICG-(99m)Tc-nanocolloid for sentinel lymph node detection in cervical cancer: a pilot study. Eur J Nucl Med Mol Imaging 2017; 44: 1853–1861. [DOI] [PubMed] [Google Scholar]
  • 20.Salvo G, Ramirez PT, Levenback CF, et al. Sensitivity and negative predictive value for sentinel lymph node biopsy in women with early-stage cervical cancer. Gynecol Oncol 2017; 145: 96–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Buda A, Papadia A, Di Martino G, et al. Real-time fluorescent sentinel lymph node mapping with indocyanine green in women with previous conization undergoing laparoscopic surgery for early invasive cervical cancer: comparison with radiotracer +/− blue dye. J Minim Invasive Gynecol 2018; 25: 455–460. [DOI] [PubMed] [Google Scholar]
  • 22.Conte M, Panici PB, Guariglia Let al. Pelvic lymphocele following radical para-aortic and pelvic lymphadenectomy for cervical carcinoma: incidence rate and percutaneous management. Obstet Gynecol 1990; 76: 268–271. [PubMed] [Google Scholar]
  • 23.Beavis AL, Salazar-Marioni S, Sinno AKet al. Sentinel lymph node detection rates using indocyanine green in women with early-stage cervical cancer. Gynecol Oncol 2016; 143: 302–306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Jewell EL, Huang JJ, Abu-Rustum NRet al. Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecol Oncol 2014; 133: 274–277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Holman LL, Levenback CF, Frumovitz M. Sentinel lymph node evaluation in women with cervical cancer. J Minim Invasive Gynecol 2014; 21: 540–545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Buda A, Bussi B, Di Martino G, et al. Sentinel lymph node mapping with near-infrared fluorescent imaging using indocyanine green: a new tool for laparoscopic platform in patients with endometrial and cervical cancer. J Minim Invasive Gynecol 2016; 23: 265–269. [DOI] [PubMed] [Google Scholar]
  • 27.Tanner EJ, Sinno AK, Stone RL, et al. Factors associated with successful bilateral sentinel lymph node mapping in endometrial cancer. Gynecol Oncol 2015; 138: 542–547. [DOI] [PubMed] [Google Scholar]
  • 28.Ohnishi S, Lomnes SJ, Laurence RGet al. Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping. Mol Imaging 2005; 4: 172–181. [DOI] [PubMed] [Google Scholar]
  • 29.Ahmed M, Purushotham AD, Douek M. Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol 2014; 15: e351–e362. [DOI] [PubMed] [Google Scholar]
  • 30.Schaafsma BE, Verbeek FP, Peters AA, et al. Near-infrared fluorescence sentinel lymph node biopsy in vulvar cancer: a randomized comparison of lymphatic tracminers. BJOG 2013; 120: 758–764. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of International Medical Research are provided here courtesy of SAGE Publications

RESOURCES