Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jan 1;75(Pt 1):53–57. doi: 10.1107/S2056989018017450

Crystal structure and Hirshfeld surface analysis of a chalcone derivative: (E)-3-(4-fluoro­phen­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one

Qin Ai Wong a, Tze Shyang Chia a,, Huey Chong Kwong b, C S Chidan Kumar c,*, Ching Kheng Quah a,§, Md Azharul Arafath d,*
PMCID: PMC6323869  PMID: 30713733

The mol­ecular structure of the title chalcone derivative is nearly planar and the mol­ecule adopts a trans-configuration with respect to the conjugated C=C double bond. In the crystal, the mol­ecules are connected by weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds into sheets parallel to (104). Weak inter­molecular π–π inter­actions also occur.

Keywords: crystal structure, chalcone, hydrogen bond, Hirshfeld surface analysis

Abstract

The mol­ecular structure of the title chalcone derivative, C15H10FNO3, is nearly planar and the mol­ecule adopts a trans configuration with respect to the C=C double bond. The nitro group is nearly coplanar with the attached benzene ring, which is nearly parallel to the second benzene ring. In the crystal, mol­ecules are connected by pairs of weak inter­molecular C—H⋯O hydrogen bonds into inversion dimers. The dimers are further linked by another C—H⋯O hydrogen bond and a C—H⋯F hydrogen bond into sheets parallel to (104). π–π inter­actions occur between the sheets, with a centroid–centroid distance of 3.8860 (11) Å. Hirshfeld surface analysis was used to investigate and qu­antify the inter­molecular inter­actions.

Chemical context  

Non-linear optics (NLO) is the study of inter­actions between intense light and matter, in which the dielectric polarization responds non-linearly to the electric field of the light. This non-linearity leads to frequency-mixing processes (second-, third- and high-harmonic generations), the optical Kerr effect etc (Boulanger & Zyss, 2006). Chalcone is one of the NLO materials and is known for its high NLO coefficients and good crystallizability (Prabhu et al., 2013). Donor–acceptor substituted chalcone derivatives consist of two substituted phenyl rings covalently bonded to the ends of a α,β-unsaturated propenone bridge (C=C—C=O), which provides the necessary configuration for intra­molecular charge transfer to show NLO properties (Fun et al., 2011). However, organic chalcone derivatives with a low melting point are at a disadvantage for applications as optical instruments. In a contin­uation of our ongoing studies on non-linear optical properties of various chalcone derivatives (Chandra Shekhara Shetty et al., 2017; Ekbote et al., 2017; Kwong et al., 2018), we report herein the synthesis, structure determination and Hirshfeld surface analysis of the title compound.graphic file with name e-75-00053-scheme1.jpg

Structural commentary  

The asymmetric unit of the title chalcone derivative consists of a unique mol­ecule, containing two para-substituted phenyl rings and an enone connecting bridge (Fig. 1). The mol­ecule adopts a trans configuration with respect to the C8=C9 olefinic double bond, as indicated by the C7—C8—C9—C10 torsion angle of −179.96 (15)°. The C7=O3 carbonyl group adopts an s-cis configuration with respect to the C8=C9 double bond as indicated by O3—C7—C8—C9 torsion angle of −0.8 (3)°. The mol­ecule (excluding H atoms) is nearly planar with a maximum deviation of 0.103 (2) Å at atom O1 of the terminal nitro group. The nitro group is nearly coplanar with the attached C1–C6 benzene ring as indicated by the small dihedral angle of 7.9 (2)°. The C1–C6 and C10–C15 benzene rings make a small dihedral angle of 4.27 (8)° with each other.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.

Supra­molecular features  

In the crystal, mol­ecules are connected by pairs of weak C—H⋯O hydrogen bonds (C11—H11A⋯O3ii; symmetry code as in Table 1) into inversion dimers with an Inline graphic(14) ring motif. These dimers are further linked by C—H⋯O and C—H⋯F hydrogen bonds (C15—H15A⋯O1iii and C4—H4A⋯F1i; Table 1) into two-dimensional sheets parallel to (104) (Fig. 2). Weak π–π inter­actions occur between the sheets [Cg1⋯Cg1iv,v and Cg2⋯Cg2iv,v = 3.8860 (11) Å, where Cg1 and Cg2 are the centroids of C1–C6 and C10–C15 benzene rings, respectively; symmetry codes: (iv) x − 1, y, z; (v) x + 1, y, z] (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F1i 0.93 2.53 3.183 (2) 128
C11—H11A⋯O3ii 0.93 2.43 3.329 (2) 161
C15—H15A⋯O1iii 0.93 2.58 3.489 (2) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram of the title compound, showing a two-dimensional sheet formed by C—H⋯O and C—H⋯F hydrogen bonds (dotted lines). H atoms not involved in hydrogen bonding are omitted for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) −x + 2, −y + 1, −z + 1; (iii) −x, y − Inline graphic, −z + Inline graphic.]

Figure 3.

Figure 3

A partial packing diagram of the title compound, showing three separated sheets parallel to (104). The inter­molecular π–π inter­actions between adjacent sheets are represented as red and blue dashed lines, involving Cg1⋯Cg1 and Cg2⋯Cg2, respectively. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

Hirshfeld surface analysis  

The Hirsheld surfaces mapped with normalized contact distance d norm and electrostatic potentials, and the two-dimensional fingerprint plot were generated using CrystalExplorer (Version 17.5; Spackman & Jayatilaka, 2009; Spackman & McKinnon, 2002; Spackman et al., 2008; Turner et al., 2017). The darkest red spots on the Hirshfeld surface mapped with d norm [Fig. 4(a)] correspond to the C11—H11A⋯O3 hydrogen bond. The C4—H4A⋯F1 and C15—H15A⋯O1 hydrogen bonds are indicated as two pairs of lighter red spots on the d norm surface. The H12A⋯F1 contact, with its H⋯F distance shorter than the sum of van der Waals radii by 0.01 Å, appears as two tiny red spots on the d norm surface. The donor and acceptor of a hydrogen bond with positive and negative electrostatic potentials, respectively, are represented as blue and red regions on the Hirshfeld surface mapped with electrostatic potential [Fig. 4(b)]. The electrostatic potential of the F atom is less negative as compared to the O atoms of nitro and carbonyl groups, as indicated by the lighter red region. The H⋯O/O⋯H contacts are the most populated contacts and contribute 30.2% of the total inter­molecular contacts, followed by H⋯H (20.6%), H⋯C/C⋯H (18.0%), H⋯F/F⋯H (13.1%) and C⋯C (10.1%) contacts (Fig. 5). The shortest H⋯O/O⋯H and H⋯F/F⋯H contacts are represented as the tips of the pseudo-mirrored sharp spikes and blunt peaks at d e + d i ≃ 2.3 and 2.4 Å, respectively, which correspond to the C11—H11A⋯O3 and C4—H4A⋯F1 hydrogen bonds. The characteristic ‘wings’ are missing in the fingerprint plot of H⋯C/C⋯H contacts, indicating the absence of any significant C—H⋯π inter­actions in the crystal. The C⋯C contacts, including the inter­molecular π–π inter­actions, appear as a unique ‘triangle’ focused at d ed i ≃ 1.8 Å. The presence of significant π–π inter­actions is supported by the unique pattern of red and blue ‘triangles’ on the shape-index surface (Fig. 6), and the flat regions on the curvedness surface (Fig. 7) of the benzene rings.

Figure 4.

Figure 4

The Hirshfeld surfaces mapped with (a) d norm and (b) electrostatic potential for the central mol­ecule of the title compound surrounded by six neighbouring mol­ecules.

Figure 5.

Figure 5

The two-dimensional fingerprint plots of the title compound for different inter­molecular contacts and their percentage contributions to the Hirshfeld surface. d i and d e are the distances from the Hirshfeld surface to the nearest atom inter­ior and exterior, respectively, to the surface.

Figure 6.

Figure 6

(a) Front and (b) rear views of the Hirshfeld surface mapped over shape-index for the title compound. The dashed-line circles highlight unique patterns of red and blue ‘triangles’.

Figure 7.

Figure 7

(a) Front and (b) rear views of the Hirshfeld surface mapped over curvedness.

Database survey  

The bond lengths and bond angles of the title compound are comparable with those in two similar structures, viz., (E)-1-(4-nitro­phen­yl)-3-phenyl­prop-2-en-1-one (refcode BUDXOO; Jing, 2009a ) and (E)-3-(4-fluoro­phen­yl)-1-phenyl­prop-2-en-1-one (refcode BUDYOP; Jing, 2009b ) found in the Cambridge Structural Database (Version 5.39; Groom et al., 2016). The mol­ecular conformations of these two structures are nearly planar, with small dihedral angles of 5.00 (6) and 10.60 (11)°, respectively, between the phenyl rings.

Synthesis and crystallization  

4-Nitro­aceto­phenone (1.65 g, 0.01 mol) and 4-fluoro­benzaldehyde (1.24 g, 0.01 mol) were dissolved in methanol (20 ml). A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 6 h at room temperature. The progress of the reaction was monitored by TLC. The formed crude product was filtered, washed repeatedly with distilled water and recrystallized from ethanol to obtain the title chalcone derivative. Yellowish single-crystals suitable for X-ray diffraction were obtained from an acetone solution by slow evaporation at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C15H10FNO3
M r 271.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 3.8860 (5), 13.2324 (16), 24.199 (3)
β (°) 91.963 (2)
V3) 1243.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.49 × 0.35 × 0.31
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.794, 0.926
No. of measured, independent and observed [I > 2σ(I)] reflections 10823, 2418, 1922
R int 0.026
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.138, 1.04
No. of reflections 2418
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.17

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2013 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018017450/is5506sup1.cif

e-75-00053-sup1.cif (516.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017450/is5506Isup2.hkl

e-75-00053-Isup2.hkl (193.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018017450/is5506Isup3.cml

CCDC reference: 1036743

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C15H10FNO3 F(000) = 560
Mr = 271.24 Dx = 1.449 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 3.8860 (5) Å Cell parameters from 4607 reflections
b = 13.2324 (16) Å θ = 2.3–30.4°
c = 24.199 (3) Å µ = 0.11 mm1
β = 91.963 (2)° T = 296 K
V = 1243.6 (3) Å3 Block, yellow
Z = 4 0.49 × 0.35 × 0.31 mm

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 2418 independent reflections
Radiation source: fine-focus sealed tube 1922 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −4→4
Tmin = 0.794, Tmax = 0.926 k = −16→15
10823 measured reflections l = −29→29

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.072P)2 + 0.3042P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2418 reflections Δρmax = 0.21 e Å3
181 parameters Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.7362 (4) −0.01394 (9) 0.57883 (5) 0.0899 (5)
O1 −0.1032 (4) 0.85915 (12) 0.77829 (6) 0.0784 (5)
O2 0.0898 (6) 0.97163 (12) 0.72386 (8) 0.1026 (7)
O3 0.7296 (4) 0.61266 (9) 0.55381 (5) 0.0665 (4)
N1 0.0476 (4) 0.88363 (12) 0.73723 (6) 0.0578 (4)
C1 0.3037 (4) 0.63109 (12) 0.68456 (6) 0.0460 (4)
H1A 0.2995 0.5638 0.6955 0.055*
C2 0.1758 (4) 0.70499 (13) 0.71878 (6) 0.0479 (4)
H2A 0.0857 0.6880 0.7527 0.057*
C3 0.1848 (4) 0.80391 (12) 0.70162 (6) 0.0443 (4)
C4 0.3144 (5) 0.83206 (12) 0.65149 (7) 0.0502 (4)
H4A 0.3157 0.8995 0.6407 0.060*
C5 0.4418 (4) 0.75795 (12) 0.61790 (6) 0.0474 (4)
H5A 0.5311 0.7757 0.5841 0.057*
C6 0.4388 (4) 0.65682 (11) 0.63385 (6) 0.0397 (4)
C7 0.5886 (4) 0.58109 (12) 0.59466 (6) 0.0437 (4)
C8 0.5671 (4) 0.47246 (12) 0.60636 (7) 0.0465 (4)
H8A 0.4609 0.4501 0.6380 0.056*
C9 0.6995 (4) 0.40594 (13) 0.57171 (6) 0.0461 (4)
H9A 0.8020 0.4332 0.5409 0.055*
C10 0.7052 (4) 0.29630 (12) 0.57557 (6) 0.0441 (4)
C11 0.8374 (4) 0.24150 (13) 0.53176 (7) 0.0498 (4)
H11A 0.9211 0.2760 0.5015 0.060*
C12 0.8463 (5) 0.13763 (14) 0.53240 (8) 0.0573 (5)
H12A 0.9314 0.1015 0.5029 0.069*
C13 0.7264 (5) 0.08894 (13) 0.57778 (7) 0.0571 (5)
C14 0.5966 (5) 0.13871 (13) 0.62234 (7) 0.0571 (5)
H14A 0.5188 0.1032 0.6526 0.069*
C15 0.5851 (4) 0.24251 (13) 0.62076 (7) 0.0504 (4)
H15A 0.4958 0.2776 0.6503 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1376 (12) 0.0406 (6) 0.0943 (9) 0.0055 (6) 0.0442 (9) 0.0029 (6)
O1 0.1010 (11) 0.0756 (10) 0.0608 (8) 0.0045 (8) 0.0352 (8) −0.0084 (7)
O2 0.1626 (18) 0.0471 (9) 0.1018 (12) 0.0065 (9) 0.0579 (12) −0.0095 (8)
O3 0.0962 (10) 0.0503 (7) 0.0550 (7) −0.0027 (7) 0.0350 (7) 0.0017 (6)
N1 0.0665 (10) 0.0540 (10) 0.0534 (9) 0.0024 (7) 0.0107 (7) −0.0086 (7)
C1 0.0552 (10) 0.0401 (9) 0.0430 (8) −0.0028 (7) 0.0065 (7) 0.0049 (6)
C2 0.0546 (9) 0.0502 (10) 0.0395 (8) −0.0036 (7) 0.0103 (7) 0.0030 (7)
C3 0.0465 (9) 0.0449 (9) 0.0417 (8) −0.0009 (7) 0.0050 (7) −0.0049 (7)
C4 0.0622 (10) 0.0374 (8) 0.0515 (9) −0.0012 (7) 0.0107 (8) 0.0028 (7)
C5 0.0580 (10) 0.0443 (9) 0.0406 (8) −0.0030 (7) 0.0110 (7) 0.0055 (7)
C6 0.0409 (8) 0.0398 (8) 0.0386 (8) −0.0025 (6) 0.0027 (6) 0.0008 (6)
C7 0.0469 (9) 0.0449 (9) 0.0397 (8) −0.0027 (7) 0.0056 (6) 0.0004 (6)
C8 0.0502 (9) 0.0438 (9) 0.0459 (8) −0.0013 (7) 0.0098 (7) 0.0018 (7)
C9 0.0475 (9) 0.0464 (9) 0.0447 (8) −0.0016 (7) 0.0061 (7) 0.0018 (7)
C10 0.0424 (8) 0.0450 (9) 0.0450 (8) 0.0008 (7) 0.0056 (7) −0.0011 (7)
C11 0.0562 (10) 0.0493 (10) 0.0449 (9) 0.0016 (7) 0.0155 (7) 0.0020 (7)
C12 0.0689 (11) 0.0505 (10) 0.0538 (10) 0.0072 (8) 0.0206 (9) −0.0059 (8)
C13 0.0689 (12) 0.0398 (9) 0.0634 (11) 0.0028 (8) 0.0151 (9) 0.0014 (8)
C14 0.0711 (12) 0.0503 (10) 0.0512 (10) −0.0003 (8) 0.0194 (8) 0.0073 (8)
C15 0.0586 (10) 0.0494 (10) 0.0443 (9) 0.0032 (7) 0.0147 (7) −0.0024 (7)

Geometric parameters (Å, º)

F1—C13 1.362 (2) C7—C8 1.468 (2)
O1—N1 1.2147 (19) C8—C9 1.331 (2)
O2—N1 1.221 (2) C8—H8A 0.9300
O3—C7 1.2204 (19) C9—C10 1.454 (2)
N1—C3 1.473 (2) C9—H9A 0.9300
C1—C2 1.385 (2) C10—C11 1.397 (2)
C1—C6 1.393 (2) C10—C15 1.398 (2)
C1—H1A 0.9300 C11—C12 1.375 (2)
C2—C3 1.374 (2) C11—H11A 0.9300
C2—H2A 0.9300 C12—C13 1.369 (3)
C3—C4 1.381 (2) C12—H12A 0.9300
C4—C5 1.377 (2) C13—C14 1.374 (2)
C4—H4A 0.9300 C14—C15 1.375 (2)
C5—C6 1.393 (2) C14—H14A 0.9300
C5—H5A 0.9300 C15—H15A 0.9300
C6—C7 1.510 (2)
O1—N1—O2 122.95 (16) C9—C8—C7 120.02 (14)
O1—N1—C3 118.80 (16) C9—C8—H8A 120.0
O2—N1—C3 118.24 (15) C7—C8—H8A 120.0
C2—C1—C6 120.53 (14) C8—C9—C10 128.67 (15)
C2—C1—H1A 119.7 C8—C9—H9A 115.7
C6—C1—H1A 119.7 C10—C9—H9A 115.7
C3—C2—C1 118.60 (14) C11—C10—C15 118.08 (15)
C3—C2—H2A 120.7 C11—C10—C9 118.33 (14)
C1—C2—H2A 120.7 C15—C10—C9 123.59 (14)
C2—C3—C4 122.43 (15) C12—C11—C10 121.34 (15)
C2—C3—N1 119.47 (14) C12—C11—H11A 119.3
C4—C3—N1 118.09 (15) C10—C11—H11A 119.3
C5—C4—C3 118.43 (15) C13—C12—C11 118.06 (16)
C5—C4—H4A 120.8 C13—C12—H12A 121.0
C3—C4—H4A 120.8 C11—C12—H12A 121.0
C4—C5—C6 120.95 (14) F1—C13—C12 118.38 (16)
C4—C5—H5A 119.5 F1—C13—C14 118.37 (16)
C6—C5—H5A 119.5 C12—C13—C14 123.25 (17)
C5—C6—C1 119.06 (14) C13—C14—C15 118.00 (15)
C5—C6—C7 117.17 (13) C13—C14—H14A 121.0
C1—C6—C7 123.78 (14) C15—C14—H14A 121.0
O3—C7—C8 121.43 (15) C14—C15—C10 121.26 (15)
O3—C7—C6 118.36 (14) C14—C15—H15A 119.4
C8—C7—C6 120.20 (13) C10—C15—H15A 119.4
C6—C1—C2—C3 0.0 (3) C1—C6—C7—C8 6.1 (2)
C1—C2—C3—C4 0.4 (3) O3—C7—C8—C9 −0.8 (3)
C1—C2—C3—N1 179.54 (15) C6—C7—C8—C9 −179.99 (15)
O1—N1—C3—C2 −7.6 (2) C7—C8—C9—C10 −179.96 (15)
O2—N1—C3—C2 172.67 (18) C8—C9—C10—C11 175.31 (17)
O1—N1—C3—C4 171.54 (17) C8—C9—C10—C15 −4.6 (3)
O2—N1—C3—C4 −8.2 (3) C15—C10—C11—C12 0.8 (3)
C2—C3—C4—C5 −0.6 (3) C9—C10—C11—C12 −179.15 (16)
N1—C3—C4—C5 −179.74 (15) C10—C11—C12—C13 −1.0 (3)
C3—C4—C5—C6 0.3 (3) C11—C12—C13—F1 −179.66 (17)
C4—C5—C6—C1 0.1 (3) C11—C12—C13—C14 0.4 (3)
C4—C5—C6—C7 −179.16 (15) F1—C13—C14—C15 −179.50 (17)
C2—C1—C6—C5 −0.3 (2) C12—C13—C14—C15 0.5 (3)
C2—C1—C6—C7 178.91 (15) C13—C14—C15—C10 −0.7 (3)
C5—C6—C7—O3 6.1 (2) C11—C10—C15—C14 0.1 (3)
C1—C6—C7—O3 −173.10 (16) C9—C10—C15—C14 −179.98 (16)
C5—C6—C7—C8 −174.65 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4A···F1i 0.93 2.53 3.183 (2) 128
C11—H11A···O3ii 0.93 2.43 3.329 (2) 161
C15—H15A···O1iii 0.93 2.58 3.489 (2) 166

Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x, y−1/2, −z+3/2.

Funding Statement

This work was funded by Ministry of Higher Education, Malaysia grants 1001/PFIZIK/8011080 and MyBrain15.

References

  1. Boulanger, B. & Zyss, J. (2006). International Tables for Crystallography, Vol. D, ch. 1.7, 178–219.
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chandra Shekhara Shetty, T., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306–317.
  4. Ekbote, A., Patil, P. S., Maidur, S. R., Chia, T. S. & Quah, C. K. (2017). Dyes Pigments, 139, 720–729.
  5. Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o2651–o2652. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Jing, L.-H. (2009a). Acta Cryst. E65, o2510. [DOI] [PMC free article] [PubMed]
  8. Jing, L.-H. (2009b). Acta Cryst. E65, o2515. [DOI] [PMC free article] [PubMed]
  9. Kwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur, S. R., Patil, P. S., Quah, C. K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349–360.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Prabhu, A. N., Jayarama, A., Subrahmanya Bhat, K., Manjunatha, K. B., Umesh, G. & Upadhyaya, V. (2013). Indian J. Mater. Sci. 2013, 1–5.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  15. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  16. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018017450/is5506sup1.cif

e-75-00053-sup1.cif (516.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017450/is5506Isup2.hkl

e-75-00053-Isup2.hkl (193.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018017450/is5506Isup3.cml

CCDC reference: 1036743

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES