Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jan 1;75(Pt 1):12–20. doi: 10.1107/S2056989018017024

Syntheses and crystal structures of [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}ClH]Cl·2.75CH2Cl2 and its derivatives, [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}(CH2CO2Et)Cl]Cl·CH3OH·0.5H2O, [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}Cl2]Cl·CH3OH·2H2O and [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}(CH2CO2Et)(CO)]Cl2·2CH2Cl2·1.5H2O

Inge Schlapp-Hackl a,*, Christoph Falschlunger a, Kathrin Zauner a, Walter Schuh a, Holger Kopacka a, Klaus Wurst a, Paul Peringer a
PMCID: PMC6323871  PMID: 30713725

The common structural feature of the four title IrIII compounds is the octa­hedral coordination of the IrIII atom by a PCP pincer complex, a C atom of a (eth­oxy­oxoethanyl­idene)methane group and two variable ligands X (H, CH2CO2Et, Cl) and Y (Cl, CO).

Keywords: carbodi­phospho­rane (CDP), PCP pincer, diazo compounds, cyclo­addition, iridium(III), C–C coupling reaction, non-innocent behaviour, alkyl­idene bridge, carbene inter­mediate, insertion reaction, crystal structure

Abstract

The common feature of the four iridium(III) salt complexes, (bis­{[(di­phenyl­phosphan­yl)meth­yl]di­phenyl­phosphanyl­idene}(eth­oxy­oxoethanyl­idene)methane-κ4 P,C,C′,P′)chlorido­hydridoiridium(III) chloride methyl­ene chloride 2.75-solvate (4), (bis­{[(di­phenyl­phosphan­yl)meth­yl]di­phenyl­phosphanyl­idene}(eth­oxy­oxoethanyl­idene)methane-κ4 P,C,C′,P′)chlorido­(eth­oxy­oxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5), (bis­{[(di­phenyl­phosphan­yl)meth­yl]di­phenyl­phosphanyl­idene}(eth­oxy­oxoethanyl­idene)methane-κ4 P,C,C′,P′)di­chlorido­iridium(III) chloride–methanol–water (1/1/2) (6) and (bis­{[(di­phenyl­phosphan­yl)meth­yl]di­phenyl­phosphanyl­idene}(eth­oxy­oxoethanyl­idene)methane-κ4 P,C,C′,P′)carbon­yl(eth­oxy­oxoethanide)iridium(III) dichloride–meth­yl­ene chloride–water (1/2/1.5) (7) or in terms of their formulae [Ir(C55H50O2P4)ClH]Cl·2.75CH2Cl2 (4), [Ir(C4H7O2)(C55H50O2P4)Cl]Cl·CH3OH·0.5H2O (5), [Ir(C55H50O2P4)Cl2]Cl·CH3OH·2H2O (6) and [Ir(C4H7O2)(C55H50O2P4)(CO)]Cl2·2CH2Cl2·1.5H2O (7) is a central IrIII atom coordin­ated in a distorted octa­hedral fashion by a PCCP ligand system and two additional residues, such as chlorides, a hydride, a carbonyl or an alkyl unit. Thereby, the PCP pincer ligand system and the residue trans to the carbodi­phospho­rane (CDP) C atom surround the iridium(III) transition metal in the equatorial plane under the formation of two five-membered dissimilar chelate rings [C—CCDP—P (4, 5, 6 and 7) for the first ring: 120.2 (3), 121.9 (5), 111.2 (3) and 121.7 (2) °; for the second ring: 112.1 (3), 113.5 (5), 120.5 (3) and 108.3 (2)°]. A cyclo­propane-like heterocycle is positioned approximately orthogonal (84.21–88.85°) to the equatorial plane, including an alkyl­idene bridge connecting the IrIII atom and the coordinating CDP atom of the PCP subunit. In general, the neutral PCCP ligand system coordinates the metal in a tetra­dentate way via three Lewis acid/base bonds and by an alkyl­idene unit presenting strengthened inter­actions. In all the crystal structures, (disordered) solvent mol­ecules are present in the voids of the packed mol­ecules that inter­act with the positively charged complex and its chloride counter-ion(s) through weak hydrogen bonding.

Chemical context  

Carbodi­phospho­ranes (CDP) in combination with transition metals initialize a huge variety of functionalities. As a result of the presence of two σ-electron-donor groups, preferred in the form of tertiary phosphines, the stabilization of two free-electron pairs with σ- and simultaneously π-symmetry, the establishment of a localized electron octet and further the creation of a zero-valent, naked carbon atom in an excited singlet (1 D) state is possible (Petz & Frenking, 2010). The carbodi­phospho­rane C atom can be considered as a four-electron donor, and accordingly enables the coordination of two Lewis acids, such as protons or different metal cations. Our inter­ests focus on the combination of a carbodi­phospho­rane pincer ligand system, [CH(dppm)2]Cl (dppm = 1,1-bis­(di­phenyl­phosphino)methane; Reitsamer et al., 2012), with reactive functionalities to enter new reaction pathways, to create new complexes and to analyse in detail the new properties obtained. In general, C—C coupling reactions can be induced via the use of diazo compounds such as ethyl diazo­acetate. As a result of the presence of two nitro­gen atoms acting together as an excellent leaving group, and an alkyl­idene group stabilized by different functionalities, the electrons are delocalized between three atoms and thus a positive and one negative charge theoretically allows by a disregard of the coordinating residuals and chemical conditions four different resonance structures to be gained in total. Therefore, the diazo compound can be regarded as both a nucleophilic and as an electrophilic reaction partner. By the use of this compound, a targeted synthesis of cyclo­propanes or rather hetero­cyclo­propanes, consisting of a transition metal, an electron-donor atom and a carbene carbon, is possible and has been reported several times in the literature (e.g. Nomura et al., 2011; Liu & Yan, 2015; Malisch et al., 1998; Strecker et al., 1991; Zhang et al., 2005, and references cited therein). An electrophilic reaction partner such as a transition metal establishes a nucleophilic attack of the diazo subunit and, according to the choice of the reaction conditions, the elimination of the nitro­gen leaving group is supported. Consequently, the alkyl­idene carbon atom is stabilized by coordination of an electron-accepting atom and a reactive carbene inter­mediate complex is formed. The existence of a nucleophilic reaction partner in the vicinity of the carbene atom results in the formation of a ring including an alkyl­idene bridging subunit. In summary, the reaction of a diazo compound with an electrophilic and additionally a nucleophilic reaction partner initiates a mechanism that can be described as a cheletropic-like process. Inspired by this reaction sequence, we have synthesized a three-membered heterocycle by the combination of an ethyl diazo­acetate and an iridium(III) PCP pincer carbodi­phospho­rane complex.

If the starting materials [CH(dppm)2]Cl (Reitsamer et al., 2012) and [IrCl(cod)]2 are mixed, a reaction sequence is initialized that consists of the following steps: Coordination of the iridium(I) atom, followed by deprotonation of the carbodi­phospho­rane carbon atom, the generation of a hydrido ligand caused by an oxidation of the iridium(I) atom and the formation of the [Ir{C(dppm)2-κ3P,C,P‘}ClH(MeCN)]Cl complex 1 (Schlapp-Hackl et al., 2018; Fig. 1). In summary, the iridium(III) transition metal is stabilized by the PCP pincer ligand system, and by a chlorido and a hydrido ligand and an aceto­nitrile solvent mol­ecule. The addition of ethyl diazo­acetate causes, via loss of the di­nitro­gen subunit, the formation of an IrIII–carbene bond. As a result of the presence of the second free lone-electron pair at the carbodi­phospho­rane carbon atom, a cyclization and further the creation of an alkyl­idene bridge is accomplished. The formation of the three-membered Ir—CCDP—C ring is accompanied by a surprising displacement of the hydrido ligand from a position perpendicular to the plane of the PCP pincer system to a meridional arrangement trans to the carbodi­phospho­rane carbon atom. Supported by the polar solvent mixture methanol/aceto­nitrile (v/v 5:1) an [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}H(MeCN)]Cl2 precursor system (2) is generated in high yields (86%). Moreover, the preparation of complex 2 in a less polar solvent environment like chloro­form/aceto­nitrile or in a solvent mixture of methyl­ene chloride/aceto­nitrile (v/v 5:1) is not possible and qu­anti­tatively results in the substitution of one phosphine moiety of the carbodi­phospho­rane functionality against the carbene CHCO2Et subunit. An [Ir{C(CHCO2Et)(dppm)-κ2P,C}Cl(dppm)H]Cl complex 3 is generated, offering a phospho­rus ylide carbon backbone (Schlapp-Hackl et al., 2018). To a lesser extent (14% yield), this complex is additionally obtained as by-product by the production of complex 2. Heating of complex 2 in methanol/aceto­nitrile (v/v 5:1) to 333 K for 2 h benefits the ring-opening reaction of the PCCP pincer ligand system. Therefore, a reorganization of the ligand system is supported, resulting in the qu­anti­tative formation of complex 3. Furthermore, evaporation of the reaction mixture of complex 2 causes an exchange of the aceto­nitrile solvent ligand with a chloride counter-ion and the creation of the desired [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}ClH]Cl complex 4. graphic file with name e-75-00012-scheme1.jpg

Figure 1.

Figure 1

Scheme (Cambridge Soft, 2001) for the synthesis and crystallization of the title compounds 47.

The stucture of this irid­ium(III) PCCP complex was completely determined by NMR spectroscopy and X-ray crystallography, but up to now crystallization attempts of the inter­mediates, 1 and 2, were unsuccessful. With regard to a ruthenium PCP pincer complex, a related cyclo­addition was monitored (Zhang et al., 2005). Thereby, the ruthenium transition metal first stabilizes the phenyl­diazo­methane by coordination. After the elimination of the di­nitro­gen mol­ecule, the formation of the corresponding carbene complex and finally a carbon–carbon coupling reaction between the central carbon atom of the phenyl-based PCP ligand and the carbene was detected. As a consequence, the arene backbone of the PCP ligand system is transformed to an arenium moiety. Treatment of complex 4 with an additional equivalent amount of ethyl diazo­acetate causes an insertion reaction of the alkyl­idene to the iridium(III)–hydrido bond and the formation of the [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}(CH2CO2Et)Cl]Cl alkyl derivative 5. This reaction procedure is well known, and the mechanism of the inter­molecular insertion reaction has been clarified via an inter­mediate carbene complex (Cohen et al., 2003). Moreover, treatment of complexes 4 and 5 with hydro­chloric acid leads to a ligand substitution at the position trans to the central carbon atom of the PCP pincer ligand system with a chloride ion and to the formation of the [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}Cl2]Cl complex 6. Besides, a replacement of the chlorido ligand of compound 5 by a carbonyl group is possible and results in the [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}(CH2CO2Et)(CO)]Cl2 complex 7.

Here we report details of the syntheses and crystal structures of complexes 47.

Structural commentary  

The asymmetric unit of compound 4, [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}ClH]Cl, comprises of one formula unit of 4 and additionally of 2.75 mol­ecules of methyl­ene chloride solvent mol­ecules. The central iridium(III) transition metal is surrounded in a distorted octa­hedral fashion by a PCCP pincer-like ligand system, and anionic chlorido and hydrido ligands (Fig. 2). The neutral [C(CHCO2Et)(dppm)24 P,C,C′,P′] ligand coordinates the IrIII metal in a tetra­dentate fashion via two P and two C atoms under formation of two five-membered, dissimilar chelate rings [C4—C1—P3 = 120.2 (3)°, C4—C1—P2 = 112.1 (3)°] and one three membered heterocycle. The PCP ligand exhibits a meridional arrangement with the hydrido ligand completing the equatorial plane trans to the C1 carbodi­phospho­rane atom. A cyclo­propane-like chelate ring is positioned nearly normal (84.21°) to the equatorial plane, and a chlorido ligand is positioned trans to the alkyl­idene carbon atom C4. The Ir—C1 [2.273 (4) Å] and Ir—C4 [2.072 (5) Å] distances differ significantly and consequently these values substanti­ate a strengthened inter­action between the iridium(III) metal and the alkyl­idene carbon atom. The C1—C4 separation [1.515 (6) Å] is slightly shorter in comparison to a typical C—C single bond but, in general, very close to that of cyclo­propanes. However, in comparison with a cyclo­propane mol­ecule the C4—Ir1—C1 [40.5 (2)°], C4—C1—Ir1 [62.6 (2)°] and C1—C4—Ir1 [76.9 (3)°] angles emphasise a significant distortion of the synthesized three-membered heterocycle. All mentioned geometric features of this strained Ir—C1—C4 metallacycle can be associated with the structural results of the Ru—C—C triangle reported by Zhang et al. (2005). Furthermore, the three-membered ring causes a distortion of the octa­hedral coordination geometry (Table 1). The P1—Ir1—P4 [178.4 (1)°] atoms are less affected and show only a slight deviation from linearity. Though, the tetra­hedral environment of the carbodi­phospho­rane C1 atom is strongly influenced and thus distorted, which is reflected by a P3—C1—P2 angle of 124.2 (3)°. Overall, the transition metal and its ligand system present a cationic complex balanced by one chloride.

Figure 2.

Figure 2

Mol­ecular structure of the complex cation in 4 and the counter-anion. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only the ipso carbon atoms of the phenyl groups are presented and the solvent mol­ecules are omitted.

Table 1. Selected bond lengths (Å) and angles (°) of the compounds 4, 5, 6 and 7 .

  4 5 6 7
Ir1—C1 2.273 (4) 2.279 (6) 2.149 (4) 2.225 (3)
Ir1—C4 2.072 (5) 2.046 (7) 2.076 (4) 2.119 (3)
Ir1—P1 2.290 (1) 2.318 (2) 2.309 (1) 2.339 (1)
Ir1—P4 2.278 (1) 2.306 (2) 2.330 (1) 2.366 (1)
P2—C1 1.791 (5) 1.788 (7) 1.822 (4) 1.837 (3)
Ir1—L x (L x= –H, –Cl, –CH2CO2Et) 1.62 (2) 2.163 (7) 2.427 (1) 2.177 (3)
Ir1—L y (L y = –Cl, –CO) 2.462 (1) 2.461 (2) 2.460 (1) 1.910 (3)
P3—C1 1.788 (5) 1.789 (7) 1.833 (4) 1.791 (3)
C1—C4 1.515 (6) 1.507 (9) 1.513 (5) 1.515 (4)
C4—Ir1—C1 40.5 (2) 40.3 (2) 41.9 (2) 40.72 (11)
C4—C1—Ir1 62.6 (2) 61.5 (3) 66.5 (2) 65.88 (15)
C1—C4—Ir1 76.9 (3) 78.2 (4) 71.6 (2) 73.40 (16)
C4—Ir1—L y (L y = –Cl, –CO) 150.3 (1) 152.5 (2) 151.9 (1) 158.8 (1)
C1—Ir1—L y (L y = –Cl, –CO) 111.3 (1) 112.8 (2) 111.5 (1) 118.8 (1)
C4—Ir1—L x (L x = –H, –Cl, –CH2CO2Et) 119.7 (18) 120.8 (3) 116.2 (1) 106.7 (1)
C1—Ir1—L x (L x = –H, –Cl, –CH2CO2Et) 159.8 (18) 161.1 (3) 158.1 (1) 147.4 (1)
P1—Ir1—P4 178.4 (1) 173.5 (1) 177.6 (1) 176.4 (1)
P1—Ir1—(C1—C4) 84.21 88.85 85.57 84.56

The asymmetric unit of compound 5, [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}(CH2CO2Et)Cl]Cl, is defined by one complex 5, one half-occupied water mol­ecule and one disordered methanol solvent mol­ecule. In comparison with the structural features discussed in detail for compound 4, significant differences pertain only to the equatorial position trans to C1. Here the hydrido ligand in 4 is exchanged by an ethyl acetate unit (Fig. 3).

Figure 3.

Figure 3

Mol­ecular structure of the complex cation in 5 and the counter-anion. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only the ipso carbon atoms of the phenyl groups are presented and the solvent mol­ecules are omitted.

The replacement of the hydrido ligand of compound 4 by a chlorido ligand led to formation of 6, [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}Cl2]Cl. In its crystalline form, besides one formula unit of 6, one solvent mol­ecule of MeOH and two water mol­ecules in total are present in the asymmetric unit. Overall, this PCCP derivative shows very similar structural characteristics (Fig. 4) to complex 4.

Figure 4.

Figure 4

Mol­ecular structure of the complex cation in 6 and the counter-anion. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only the ipso carbon atoms of the phenyl groups are presented and the solvent mol­ecules are omitted.

Finally, an elimination of the chlorido ligand of complex 5 and its replacement by a carbonyl ligand results in compound 7, [IrIII{C(CHCO2Et)(dppm)24 P,C,C′,P′}(CH2CO2Et)(CO)]Cl2 (Fig. 5). The asymmetric unit comprises one complex mol­ecule of 7 and additionally of two methyl­ene chloride solvent mol­ecules and 1.5 mol­ecules of water. In comparison with complex 5, the structural features have not changed dramatically, with some slight variations for bond lengths and angles (Table 1).

Figure 5.

Figure 5

Mol­ecular structure of the complex cation in 7 and the two counter-ions. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only the ipso carbon atoms of the phenyl groups are presented and the solvent mol­ecules are omitted.

Supra­molecular features  

In all crystal structures, the complex cations and counter-ions are packed in a way that leaves voids for various types of solvent mol­ecules. Weak non-classical hydrogen-bonding inter­actions are observed between complex cations, chloride counter-ions and solvent mol­ecules. Numerical details of these inter­actions are given in Tables 2–5 , and discussed briefly below.

Table 2. Hydrogen-bond geometry (Å, °) for 4 .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Cl2 0.98 2.58 3.488 (5) 154
C3—H3A⋯O1 0.98 2.31 2.892 (7) 117
C3—H3B⋯Cl2i 0.98 2.83 3.456 (5) 122

Symmetry code: (i) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for 5 .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O5i 0.98 2.22 3.139 (15) 156
C3—H3A⋯Cl2 0.98 2.91 3.693 (8) 137
C3—H3B⋯O1 0.98 2.40 2.895 (10) 111
C102—H102⋯O4 0.94 2.48 3.263 (11) 141
C212—H212⋯O5i 0.94 2.54 3.445 (18) 163
C306—H306⋯Cl2 0.94 2.57 3.491 (9) 167
C308—H308⋯Cl1 0.94 2.56 3.464 (8) 162
C408—H408⋯O3 0.94 2.23 3.046 (10) 145

Symmetry code: (i) Inline graphic.

Table 4. Hydrogen-bond geometry (Å, °) for 6 .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1 0.98 2.33 2.852 (5) 112
C2—H2B⋯O5i 0.98 2.45 3.320 (8) 148
C3—H3B⋯Cl3 0.98 2.66 3.589 (4) 158
C6—H6A⋯O3ii 0.98 2.40 3.369 (8) 169
C102—H102⋯Cl1 0.94 2.63 3.343 (4) 133
C108—H108⋯Cl1 0.94 2.82 3.671 (5) 151
C206—H206⋯Cl3i 0.94 2.87 3.742 (5) 156
C208—H208⋯Cl2 0.94 2.64 3.487 (5) 150
C312—H312⋯Cl3 0.94 2.84 3.749 (6) 164
C402—H402⋯Cl1 0.94 2.59 3.398 (6) 144
C406—H406⋯Cl3 0.94 2.88 3.757 (6) 156
C412—H412⋯Cl3 0.94 2.95 3.870 (5) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 5. Hydrogen-bond geometry (Å, °) for 7 .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Cl1 0.98 2.48 3.421 (3) 162
C3—H3A⋯Cl1i 0.98 2.59 3.488 (3) 152
C3—H3B⋯O1 0.98 2.21 2.968 (4) 134
C102—H102⋯Cl2 0.94 2.61 3.505 (4) 160
C108—H108⋯O2 0.94 2.61 3.313 (4) 132
C112—H112⋯Cl1 0.94 2.80 3.595 (4) 143
C202—H202⋯Cl2 0.94 2.70 3.574 (4) 156
C212—H212⋯Cl1 0.94 2.80 3.733 (5) 173
C306—H306⋯O1 0.94 2.47 3.061 (4) 121
C312—H312⋯Cl1i 0.94 2.73 3.503 (4) 140
C402—H402⋯O2 0.94 2.47 3.375 (4) 162
C408—H408⋯O3 0.94 2.44 3.326 (5) 156
C412—H412⋯Cl1i 0.94 2.97 3.866 (4) 161
C13—H13A⋯O5ii 0.98 2.58 3.194 (6) 121
C13—H13A⋯Cl2ii 0.98 2.68 3.500 (7) 141
C14—H14A⋯Cl2iii 0.98 2.65 3.553 (6) 153
C14—H14B⋯O1iv 0.98 2.37 3.327 (6) 164
C14A—H14C⋯O1iv 0.98 2.38 3.327 (6) 163
C14A—H14D⋯Cl2iii 0.98 2.59 3.553 (6) 168
O6—H6OA⋯Cl2 0.85 (2) 2.39 (4) 3.178 (5) 154 (7)
O6—H6OB⋯Cl1 0.85 (2) 2.39 (2) 3.239 (6) 178 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

In the structure of 4, there are weak C—H⋯Cl inter­actions between the chloride counter-ion and the methyl­ene groups of the PCP pincer ligand system [Cl2⋯H2B = 2.58 Å, H3B⋯Cl2(x − 1, y, z) = 2.83 Å] exhibiting distances shorter than the sum of the van der Waals radii (Table 2, Fig. 6). Such C—H⋯X inter­actions are a common feature of complexes containing dppm or related ligands (Jones & Ahrens, 1998).

Figure 6.

Figure 6

A view along the c axis of the crystal packing of compound 4. Only the H atoms involved in the most significant inter­molecular inter­actions (Table 2) are displayed and the intra­molecular inter­action is omitted.

Moreover, compound 5 shows C—H⋯O and C—H⋯Cl inter­actions (Table 3) between the methyl­ene groups of the dppm moieties and the solvent mol­ecules and additionally the counter-ion, forming short contacts of 2.22 Å [H2A⋯O5 (x, y − 1, z)], 2.91 Å (H3A⋯Cl2) and 2.40 Å (H3B⋯O1) (Fig. 7).

Figure 7.

Figure 7

A view along the a axis of the crystal packing of compound 5. Only the H atoms involved in the most significant inter­molecular inter­actions (Table 3) are presented and the intra­molecular inter­actions are omitted. One phenyl group and the solvent mol­ecules show positional disorder.

In the structure of 6, the methyl­ene groups of the PCP unit and the chloride counter-ion and the solvent mol­ecules form C—H⋯O and C—H⋯Cl inter­actions (Table 4), exhibiting distances of 2.45 Å [H2B⋯O5(x, y − 1, z)], 2.66 Å (H3B⋯Cl3) and 2.40 Å [H6A⋯O3 (−x + 1, −y, −z + 2)] (Fig. 8).

Figure 8.

Figure 8

A view along the a axis of the crystal packing of compound 6. Only the H atoms involved in the most significant inter­molecular inter­actions (Table 4) are presented and the intra­molecular inter­actions are omitted.

In compound 7, the chloride counter-ions inter­act with both the PCP pincer ligand system and the solvent mol­ecules. The solvent mol­ecules also show inter­actions with the iridium complex (Table 5, Fig. 9).

Figure 9.

Figure 9

A view along the a axis of the crystal packing of compound 7. Only the H atoms involved in the most significant inter­molecular inter­actions (Table 5) are presented and the intra­molecular inter­actions are omitted. The solvent mol­ecules are disordered.

Synthesis and crystallization  

Each reaction step was carried out under an atmosphere of nitro­gen by the use of standard Schlenk techniques. All starting materials and solvents were obtained from commercial suppliers, excluding the compound [CH(dppm)2]Cl that was prepared by a previously reported procedure (Reitsamer et al., 2012). 1H-, 13C- and 31P-NMR spectra were recorded on a Bruker DPX 300 NMR spectrometer and were referenced against the 13C/1H peaks of deuterated solvents chloro­form and methanol or an external 85% H3PO4 standard, respectively. For the following assignment of the NMR data, atoms are labelled as in Figs. 2, 3, 4, 5.

Synthesis of [IrIII{C(CHCO2Et)(dppm)2- κ4P,C,C′,P′}ClH]Cl·2.75CH2Cl2 (4): A mixture of [CH(dppm)2]Cl (0.0250 mmol, 20.4 mg) and [IrCl(cod)]2 (0.0125 mmol, 8.4 mg) was solved in 0.1 ml of MeCN. After a reaction time of one minute, a solution of ethyl diazo­acetate (0.0250 mmol, 2.85 mg) in MeOH (0.5 ml) was added. 10 min later, a deep yellow liquid was obtained. The volatiles were removed and the remaining solid was dissolved in methyl­ene chloride (0.6 ml), leading to complex 4 in high yield (0.0250 mmol, 28.3 mg). Single crystals of complex 4 were grown from a solvent mixture of n-hexane (1.2 ml) and CH2Cl2 (0.2 ml). 31P {1H} NMR (CHCl3): δ = 18.8 (ddd, P1, 2 J P1P2 = 16.9 Hz, 4 J P1P3 = 16.6 Hz, 2 J P1P4 = 399.2 Hz), 38.1 (ddd, P2, 2 J P2P3 = 38.3 Hz, 4 J P2P4 = 16.9 Hz), 34.7 (ddd, P3, 2 J P3P4 = 29.0 Hz), 10.7 (ddd, P4) ppm; 1H NMR (CDCl3/MeOH, 5:1): δ = −15.2 (ddddd, hydride, 3 J P2H = 5.5 Hz, 3 J P3H = 5.5 Hz, 2 J P1H = 13.1 Hz, 2 J P4H = 13.1 Hz, 2 J C1H = 14.3 Hz) ppm; 13C {1H} NMR (CDCl3): δ = 3.6 (dddd, C1, 1 J C1P2 = 63.5 Hz, 2 J C1P3 = 74.6 Hz, 2 J C1P1 = 3.9 Hz, 2 J C1P4 = 3.9 Hz) ppm.

Synthesis of [IrIII{C(CHCO2Et)(dppm)2- κ4P,C,C′,P }(CH2CO2Et)Cl]Cl·CH3OH·0.5 H2O (5): Ethyl diazo­acetate (0.116 mmol, 13.2 mg) was added to a solution of complex 4 (0.0250 mmol, 28.3 mg) in CH2Cl2 (0.6 ml), and the reaction mixture was stirred for 30 min. Complex 5 (0.0250 mmol, 30.7 mg) was formed qu­anti­tatively. Single crystals were obtained via slow evaporation of a 1:1methyl­ene chloride/methanol mixture. 31P {1H} NMR (CHCl3): δ = 0.3 (ddd, P1, 2 J P1P2 = 24.4 Hz, 4 J P1P3 = 10.6 Hz, 2 J P1P4 = 436.4 Hz), 40.6 (dddd, P2, 2 J P2P3 = 35.1 Hz, 4 J P2P4 = 15.3 Hz), 36.4 (dddd, P3, 2 J P3P4 = 15.9 Hz), −4.4 (ddd, P4) ppm; 13C {1H} NMR (CDCl3): δ = 3.1 (dddd, C1, 1 J C1P2 = 68.8 Hz, 1 J C1P3 = 55.6 Hz, 2 J C1P1 = 3.5 Hz, 2 J C1P4 = 3.5 Hz) ppm.

Synthesis of [IrIII{C(CHCO2Et)(dppm)2- κ4P,C,C′,P }Cl2]Cl·CH3OH·2H2O (6): A solution of complex 4 (0.0250 mmol, 28.3 mg) in CH2Cl2 (0.6 ml) was treated with hydro­chloric acid (77.0 µl, 37%, 0.925 mmol) and stirred vigorously for approximately 10 min. The organic phase was separated and washed with water (0.5 ml) three times in total. Complex 6 (0.0250 mmol, 29.1 mg) was formed almost qu­anti­tatively. Yellow single crystals were generated by slow evaporation of a 1:1 solvent mixture of MeCN and MeOH. 31P {1H} NMR (CHCl3): δ = −6.1 (ddd, P1, 2 J P1P2 = 19.9 Hz, 4JP1P3 = 19.8 Hz, 2 J P1P4 = 452.1 Hz), 46.9 (ddd, P2, 2 J P2P3 = 38.3 Hz, 4 J P2P4 = 30.6 Hz), 45.8 (ddd, P3, 2 J P3P4 = 19.8 Hz), −10.3 (ddd, P4) ppm; 13C {1H} NMR (CDCl3): δ = 3.8 (dd, C1, 1 J C1P2 = 50.2 Hz, 1 J C1P3 = 50.2 Hz) ppm.

Synthesis of [IrIII{C(CHCO2Et)(dppm)2- κ4P,C,C′,P }(CH2CO2Et)(CO)]Cl2·2CH2Cl2·1.5H2O (7): A solution of complex 5 (0.025 mmol, 29.1 mg) in CH2Cl2 was placed under an atmosphere of CO. After a reaction time of 1 h, complex 7 had formed qu­anti­tatively (0.0250 mmol, 31.1 mg). Single crystals were grown from a solution of methyl­ene chloride, covered with a small amount of ethyl acetate. 31P {1H} NMR (CH2Cl2): δ = −6.5 (ddd, P1, 2 J P1P2 = 14.2 Hz, 4 J P1P3 = 9.5 Hz, 2 J P1P4 = 339.8 Hz), 41.2 (ddd, P2, 2 J P2P3 = 27.7 Hz, 4 J P2P4 = 18.4 Hz), 39.7 (ddd, P3, 2 J P3P4 = 12.3 Hz), −16.4 (ddd, P4) ppm; 13C {1H} NMR (CD2Cl2): δ = 16.1 (ddd, C1, 1JC1P2 = 59.8 Hz, 1 J C1P3 = 49.3 Hz, 2 J C1P4 = 2.7 Hz, 2 J C1C12 = 1.5 Hz), 172.8 (ddd, C12, 2JC12P1 = 8.6 Hz, 2 J C12P4 = 8.6 Hz) ppm.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 6. Diffraction data for all crystals were measured by using multiple scans to increase the number of redundant reflections. We found the data of sufficient quality to proceed without semi-empirical absorption methods.

Table 6. Experimental details.

  4 5 6 7
Crystal data
Chemical formula [IrClH(C55H50O2P4)]Cl·2.75CH2Cl2 [Ir(C4H7O2)Cl(C55H50O2P4)]Cl·CH4O·0.5H2O [IrCl2(C55H50O2P4)]Cl·CH4O·2H2O [Ir(C4H7O2)(C55H50O2P4)(CO)]Cl2·2CH2Cl2·1.5H2O
M r 1364.48 1258.07 1233.45 1441.91
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 233 233 233 233
a, b, c (Å) 12.4425 (2), 22.4020 (3), 22.5393 (3) 12.4253 (3), 13.7081 (4), 17.6780 (6) 11.2371 (2), 12.9144 (2), 19.2371 (3) 11.7326 (2), 13.8815 (2), 22.2615 (3)
α, β, γ (°) 90, 94.826 (1), 90 93.152 (2), 97.960 (2), 103.771 (2) 89.439 (1), 77.863 (1), 83.114 (1) 75.477 (1), 86.508 (1), 65.212 (1)
V3) 6260.26 (16) 2884.18 (15) 2709.27 (8) 3182.38 (9)
Z 4 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.59 2.57 2.78 2.50
Crystal size (mm) 0.11 × 0.08 × 0.05 0.15 × 0.05 × 0.02 0.11 × 0.05 × 0.03 0.31 × 0.23 × 0.19
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD Nonius KappaCCD Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 39699, 11006, 8888 13821, 7453, 6326 17984, 9526, 8083 23329, 12496, 11695
R int 0.045 0.037 0.035 0.024
θmax (°) 25.0 22.4 25.0 26.0
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.112, 1.04 0.044, 0.106, 1.07 0.034, 0.073, 1.05 0.028, 0.070, 1.05
No. of reflections 11006 7453 9526 12496
No. of parameters 711 674 626 751
No. of restraints 2 1 1 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.03, −0.86 0.90, −0.96 0.75, −1.01 0.97, −1.29

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), XP in SHELXTL and SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), (Sheldrick, 2008), publCIF (Westrip, 2010) and CHEMDRAW (Cambridge Soft, 2001).

Unless noted otherwise, H atoms in the four structures were placed geometrically and refined in the riding-model approximation with U iso(H) = 1.2U eq(C) for phenyl and methyl­ene H atoms and 1.5U eq(C) for methyl H atoms.

For compound 4, the two hydrogen atoms bound to the central Ir1 atom and the C4 atom of the eth­oxy­oxoethanyl­idene moiety were discernible from a difference-Fourier map. They were refined with bond-length restraints of 0.96 Å (C4) and 1.60 Å (Ir1) and with individual U iso values. Three of the four methyl­ene chloride solvent mol­ecules are disordered. One solvent mol­ecule (C9, Cl3, Cl4) shows half-occupation, one (C12, Cl9, Cl10) is disordered around an inversion centre (occupancy 0.25) and for one (C11, Cl7, Cl8) the Cl atoms show a positional disorder over two sites (ratio 0.7:0.3). All H atoms of the solvent mol­ecules were omitted from the final model.

The scattering power of the crystal of compound 5 was poor. Hence, it was possible to collect reflections only up to 45°/2θ. The H atom attached to the C4 position was treated as described above. The methanol (C13, O6) and water (O7) solvent mol­ecules are disordered around an inversion centre and were refined with half-occupation. H atoms of the disordered solvent mol­ecules were omitted from the model. Furthermore, one phenyl group shows a 1:1 positional disorder and was refined over two sets of sites (C401–C406; C41A–C46A). All atoms of the disordered phenyl ring were refined isotropically.

In compounds 6 and 7, the H atom attached to the C4 position was treated as described above. For 6, localization of the H atoms of the methanol and water solvent mol­ecules was not possible and hence they were omitted from the model. For 7, H atoms of water mol­ecule O6 were located from a difference-Fourier map and refined with bond-length restraints of 0.84 Å. The O7 atom of the other water mol­ecule was treated as being half-occupied, and its H atoms were omitted from the model. One methyl­ene chloride solvent mol­ecule (C14, Cl5, Cl6) was refined over two sets of sites (ratio 0.65:0.35).

Supplementary Material

Crystal structure: contains datablock(s) global, 4, 5, 6, 7. DOI: 10.1107/S2056989018017024/wm5471sup1.cif

e-75-00012-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989018017024/wm54714sup6.hkl

e-75-00012-4sup6.hkl (873.1KB, hkl)

Structure factors: contains datablock(s) 5. DOI: 10.1107/S2056989018017024/wm54715sup7.hkl

e-75-00012-5sup7.hkl (591.9KB, hkl)

Structure factors: contains datablock(s) 6. DOI: 10.1107/S2056989018017024/wm54716sup8.hkl

e-75-00012-6sup8.hkl (755.9KB, hkl)

Structure factors: contains datablock(s) 7. DOI: 10.1107/S2056989018017024/wm54717sup9.hkl

e-75-00012-7sup9.hkl (990.8KB, hkl)

CCDC references: 1873392, 1873391, 1873390, 1873389

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chloridohydridoiridium(III) chloride methylene chloride 2.75-solvate (4) . Crystal data

[IrClH(C55H50O2P4)]Cl·2.75CH2Cl2 F(000) = 2734
Mr = 1364.48 Dx = 1.448 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.4425 (2) Å Cell parameters from 104186 reflections
b = 22.4020 (3) Å θ = 1.0–25.3°
c = 22.5393 (3) Å µ = 2.59 mm1
β = 94.826 (1)° T = 233 K
V = 6260.26 (16) Å3 Prism, colorless
Z = 4 0.11 × 0.08 × 0.05 mm

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chloridohydridoiridium(III) chloride methylene chloride 2.75-solvate (4) . Data collection

Nonius KappaCCD diffractometer 8888 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
Graphite monochromator θmax = 25.0°, θmin = 1.8°
phi– and ω–scans h = −14→14
39699 measured reflections k = −26→26
11006 independent reflections l = −26→26

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chloridohydridoiridium(III) chloride methylene chloride 2.75-solvate (4) . Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0606P)2 + 10.2768P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
11006 reflections Δρmax = 1.03 e Å3
711 parameters Δρmin = −0.86 e Å3

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chloridohydridoiridium(III) chloride methylene chloride 2.75-solvate (4) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hyrogen atoms at Ir1 and C4 were localized and refined with bond restraints: 96 pm at C4 and 160 pm at Ir1, respectively. There are four solvent molecules into the asymmetric unit, which are partial disordered (C9 occupational disorder with factor 0.5, C11 positional disorder of chlorine atoms wiht ratio 7:3 and C12 occupational disorder with factor 0.25). Hydrogen atoms at solvent were omitted.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chloridohydridoiridium(III) chloride methylene chloride 2.75-solvate (4) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ir1 0.49207 (2) 0.11833 (2) 0.20622 (2) 0.03228 (8)
H1 0.484 (4) 0.1906 (9) 0.209 (2) 0.067 (18)*
P1 0.67637 (10) 0.11984 (5) 0.22113 (6) 0.0370 (3)
P2 0.62189 (10) −0.01107 (5) 0.22879 (6) 0.0365 (3)
P3 0.36683 (10) −0.01314 (5) 0.21373 (5) 0.0326 (3)
P4 0.30844 (10) 0.11776 (5) 0.19399 (6) 0.0322 (3)
Cl1 0.52098 (11) 0.12563 (6) 0.09975 (6) 0.0461 (3)
Cl2 0.98655 (13) 0.01266 (9) 0.20289 (13) 0.1081 (9)
O1 0.3419 (3) 0.04012 (18) 0.33389 (18) 0.0627 (11)
O2 0.4452 (4) 0.11608 (16) 0.36960 (17) 0.0579 (11)
C1 0.4926 (4) 0.02169 (19) 0.2370 (2) 0.0323 (10)
C2 0.7115 (4) 0.0439 (2) 0.1997 (2) 0.0424 (12)
H2A 0.7070 0.0410 0.1562 0.051*
H2B 0.7860 0.0352 0.2148 0.051*
C3 0.2600 (4) 0.0420 (2) 0.2099 (2) 0.0396 (11)
H3A 0.2270 0.0425 0.2479 0.048*
H3B 0.2042 0.0304 0.1788 0.048*
C4 0.4981 (4) 0.0697 (2) 0.2846 (2) 0.0360 (11)
H4 0.571 (2) 0.068 (2) 0.3031 (19) 0.036 (13)*
C5 0.4185 (5) 0.0725 (2) 0.3304 (2) 0.0443 (12)
C7 0.3729 (7) 0.1253 (3) 0.4152 (3) 0.076 (2)
H7A 0.3676 0.0890 0.4392 0.091*
H7B 0.3007 0.1357 0.3975 0.091*
C8 0.4203 (8) 0.1761 (4) 0.4533 (4) 0.118 (3)
H8A 0.3744 0.1842 0.4851 0.177*
H8B 0.4918 0.1650 0.4704 0.177*
H8C 0.4252 0.2115 0.4289 0.177*
C101 0.7549 (4) 0.1701 (2) 0.1780 (2) 0.0463 (13)
C102 0.8362 (7) 0.1526 (4) 0.1455 (5) 0.115 (4)
H102 0.8538 0.1119 0.1438 0.138*
C103 0.8944 (8) 0.1940 (5) 0.1145 (6) 0.149 (5)
H103 0.9491 0.1811 0.0911 0.179*
C104 0.8713 (6) 0.2521 (4) 0.1183 (4) 0.095 (3)
H104 0.9105 0.2800 0.0978 0.114*
C105 0.7917 (8) 0.2712 (3) 0.1516 (4) 0.093 (3)
H105 0.7776 0.3123 0.1549 0.112*
C106 0.7311 (7) 0.2298 (3) 0.1808 (3) 0.080 (2)
H106 0.6740 0.2427 0.2024 0.096*
C107 0.7388 (5) 0.1311 (2) 0.2962 (3) 0.0514 (14)
C108 0.8387 (6) 0.1063 (3) 0.3146 (3) 0.073 (2)
H108 0.8762 0.0827 0.2886 0.088*
C109 0.8822 (8) 0.1176 (4) 0.3736 (5) 0.112 (4)
H109 0.9490 0.1009 0.3874 0.134*
C110 0.8274 (11) 0.1528 (5) 0.4107 (4) 0.115 (4)
H110 0.8576 0.1599 0.4497 0.138*
C111 0.7302 (8) 0.1776 (4) 0.3923 (3) 0.091 (3)
H111 0.6938 0.2020 0.4181 0.110*
C112 0.6863 (6) 0.1664 (3) 0.3353 (3) 0.0651 (17)
H112 0.6190 0.1831 0.3225 0.078*
C201 0.6228 (4) −0.0736 (2) 0.1787 (2) 0.0409 (12)
C202 0.6137 (5) −0.0644 (3) 0.1167 (2) 0.0499 (14)
H202 0.6052 −0.0255 0.1014 0.060*
C203 0.6174 (6) −0.1124 (3) 0.0783 (3) 0.0681 (18)
H203 0.6104 −0.1063 0.0369 0.082*
C204 0.6316 (5) −0.1700 (3) 0.1014 (3) 0.0673 (18)
H204 0.6355 −0.2027 0.0755 0.081*
C205 0.6399 (5) −0.1793 (3) 0.1620 (3) 0.0648 (17)
H205 0.6478 −0.2183 0.1771 0.078*
C206 0.6368 (4) −0.1317 (2) 0.2010 (3) 0.0524 (14)
H206 0.6441 −0.1383 0.2423 0.063*
C207 0.6860 (5) −0.0357 (2) 0.2990 (3) 0.0491 (14)
C208 0.7957 (5) −0.0481 (3) 0.3027 (3) 0.0682 (18)
H208 0.8347 −0.0441 0.2690 0.082*
C209 0.8477 (8) −0.0666 (4) 0.3568 (5) 0.100 (3)
H209 0.9219 −0.0752 0.3592 0.120*
C210 0.7930 (10) −0.0726 (4) 0.4060 (4) 0.106 (4)
H210 0.8299 −0.0842 0.4422 0.127*
C211 0.6813 (9) −0.0614 (3) 0.4032 (3) 0.096 (3)
H211 0.6435 −0.0664 0.4373 0.116*
C212 0.6259 (6) −0.0425 (3) 0.3485 (3) 0.0657 (18)
H212 0.5514 −0.0347 0.3457 0.079*
C301 0.3231 (4) −0.0735 (2) 0.2590 (2) 0.0384 (11)
C302 0.2144 (5) −0.0820 (3) 0.2652 (3) 0.0572 (15)
H302 0.1637 −0.0544 0.2486 0.069*
C303 0.1802 (6) −0.1309 (3) 0.2959 (3) 0.077 (2)
H303 0.1062 −0.1366 0.2996 0.092*
C304 0.2540 (7) −0.1712 (3) 0.3209 (3) 0.078 (2)
H304 0.2303 −0.2040 0.3423 0.094*
C305 0.3607 (6) −0.1639 (3) 0.3150 (3) 0.0711 (19)
H305 0.4110 −0.1917 0.3319 0.085*
C306 0.3953 (5) −0.1149 (2) 0.2835 (3) 0.0554 (15)
H306 0.4692 −0.1100 0.2791 0.067*
C307 0.3642 (4) −0.0446 (2) 0.1398 (2) 0.0356 (11)
C308 0.3715 (5) −0.0068 (2) 0.0913 (2) 0.0494 (13)
H308 0.3852 0.0341 0.0973 0.059*
C309 0.3585 (6) −0.0297 (3) 0.0343 (3) 0.0690 (18)
H309 0.3634 −0.0042 0.0015 0.083*
C310 0.3382 (6) −0.0895 (3) 0.0250 (3) 0.0686 (18)
H310 0.3291 −0.1048 −0.0140 0.082*
C311 0.3314 (6) −0.1269 (3) 0.0729 (3) 0.0625 (17)
H311 0.3179 −0.1678 0.0667 0.075*
C312 0.3444 (5) −0.1046 (2) 0.1300 (2) 0.0472 (13)
H312 0.3397 −0.1305 0.1626 0.057*
C401 0.2343 (4) 0.1642 (2) 0.2433 (2) 0.0402 (11)
C402 0.2883 (5) 0.2051 (2) 0.2807 (2) 0.0483 (13)
H402 0.3637 0.2086 0.2817 0.058*
C403 0.2304 (5) 0.2412 (3) 0.3171 (3) 0.0607 (16)
H403 0.2671 0.2690 0.3426 0.073*
C404 0.1209 (5) 0.2365 (3) 0.3161 (3) 0.0636 (17)
H404 0.0827 0.2606 0.3412 0.076*
C405 0.0667 (5) 0.1966 (3) 0.2782 (4) 0.078 (2)
H405 −0.0088 0.1936 0.2772 0.094*
C406 0.1231 (5) 0.1603 (3) 0.2410 (3) 0.0690 (19)
H406 0.0858 0.1334 0.2147 0.083*
C407 0.2442 (4) 0.1381 (2) 0.1209 (2) 0.0421 (12)
C408 0.2823 (5) 0.1899 (2) 0.0957 (2) 0.0507 (14)
H408 0.3416 0.2100 0.1150 0.061*
C409 0.2344 (6) 0.2122 (3) 0.0426 (3) 0.0676 (18)
H409 0.2597 0.2478 0.0268 0.081*
C410 0.1496 (6) 0.1820 (4) 0.0132 (3) 0.080 (2)
H410 0.1162 0.1971 −0.0227 0.096*
C411 0.1144 (7) 0.1301 (4) 0.0363 (4) 0.093 (3)
H411 0.0587 0.1087 0.0151 0.111*
C412 0.1591 (6) 0.1078 (3) 0.0910 (3) 0.0708 (19)
H412 0.1317 0.0728 0.1072 0.085*
C9 0.250 (3) −0.0515 (13) 0.4305 (9) 0.223 (19) 0.5
Cl3 0.3575 (9) −0.0543 (4) 0.4754 (3) 0.201 (4) 0.5
Cl4 0.1305 (7) −0.0182 (4) 0.4559 (3) 0.167 (3) 0.5
C10 0.5629 (8) 0.2613 (4) 0.0386 (4) 0.112 (3)
Cl5 0.4809 (2) 0.31145 (11) 0.07504 (11) 0.1086 (7)
Cl6 0.6123 (3) 0.29238 (12) −0.02166 (12) 0.1243 (9)
C11 0.9453 (10) −0.1288 (5) 0.1519 (7) 0.139 (4)
Cl7 0.9402 (6) −0.1902 (3) 0.1966 (6) 0.197 (4) 0.7
Cl8 1.0617 (3) −0.1332 (3) 0.1087 (2) 0.1348 (16) 0.7
Cl7A 0.9153 (19) −0.1694 (9) 0.231 (2) 0.31 (2) 0.3
Cl8A 1.0197 (18) −0.1825 (9) 0.1312 (12) 0.239 (10) 0.3
C12 0.951 (5) 0.0067 (16) 0.026 (3) 0.16 (2) 0.25
Cl9 1.0704 (12) −0.0453 (9) 0.0654 (12) 0.238 (11) 0.25
Cl10 0.8652 (16) 0.0098 (9) 0.0607 (12) 0.234 (11) 0.25

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chloridohydridoiridium(III) chloride methylene chloride 2.75-solvate (4) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.03166 (12) 0.02717 (12) 0.03855 (12) 0.00054 (7) 0.00623 (8) 0.00117 (8)
P1 0.0320 (7) 0.0297 (7) 0.0491 (8) −0.0032 (5) 0.0014 (6) 0.0026 (5)
P2 0.0328 (7) 0.0302 (6) 0.0466 (7) 0.0015 (5) 0.0025 (5) 0.0026 (6)
P3 0.0327 (6) 0.0274 (6) 0.0387 (7) −0.0006 (5) 0.0085 (5) 0.0005 (5)
P4 0.0309 (6) 0.0272 (6) 0.0392 (7) 0.0035 (5) 0.0069 (5) −0.0008 (5)
Cl1 0.0470 (7) 0.0514 (8) 0.0414 (7) 0.0001 (6) 0.0130 (6) 0.0066 (6)
Cl2 0.0366 (9) 0.0594 (11) 0.229 (3) −0.0004 (7) 0.0143 (12) −0.0035 (13)
O1 0.071 (3) 0.059 (3) 0.063 (3) −0.014 (2) 0.029 (2) −0.008 (2)
O2 0.082 (3) 0.051 (2) 0.043 (2) −0.0040 (19) 0.017 (2) −0.0143 (18)
C1 0.036 (3) 0.026 (2) 0.035 (3) −0.0005 (19) 0.007 (2) 0.002 (2)
C2 0.030 (3) 0.034 (3) 0.064 (3) 0.000 (2) 0.007 (2) 0.003 (2)
C3 0.032 (3) 0.035 (3) 0.052 (3) 0.001 (2) 0.009 (2) −0.001 (2)
C4 0.037 (3) 0.029 (3) 0.042 (3) 0.000 (2) 0.004 (2) 0.000 (2)
C5 0.054 (3) 0.039 (3) 0.041 (3) 0.002 (3) 0.011 (2) 0.002 (2)
C7 0.105 (6) 0.079 (5) 0.049 (4) 0.004 (4) 0.034 (4) −0.014 (3)
C8 0.153 (9) 0.120 (7) 0.087 (6) −0.003 (6) 0.036 (6) −0.058 (6)
C101 0.036 (3) 0.045 (3) 0.056 (3) −0.006 (2) −0.002 (2) 0.010 (3)
C102 0.087 (6) 0.064 (5) 0.206 (10) 0.008 (4) 0.085 (6) 0.036 (6)
C103 0.112 (8) 0.098 (7) 0.254 (14) 0.014 (6) 0.117 (9) 0.062 (8)
C104 0.063 (5) 0.103 (7) 0.117 (7) −0.036 (5) 0.000 (5) 0.047 (6)
C105 0.128 (7) 0.047 (4) 0.106 (6) −0.020 (4) 0.020 (6) 0.022 (4)
C106 0.112 (6) 0.045 (4) 0.089 (5) −0.006 (4) 0.039 (5) 0.007 (4)
C107 0.050 (3) 0.043 (3) 0.059 (4) −0.015 (3) −0.011 (3) 0.008 (3)
C108 0.063 (4) 0.069 (4) 0.084 (5) −0.009 (3) −0.025 (4) 0.009 (4)
C109 0.095 (7) 0.098 (7) 0.129 (9) −0.027 (5) −0.072 (7) 0.031 (6)
C110 0.149 (10) 0.114 (8) 0.074 (6) −0.053 (7) −0.027 (6) −0.005 (6)
C111 0.115 (7) 0.091 (6) 0.066 (5) −0.045 (5) −0.004 (5) −0.007 (4)
C112 0.076 (4) 0.057 (4) 0.062 (4) −0.022 (3) 0.002 (3) −0.009 (3)
C201 0.032 (3) 0.033 (3) 0.059 (3) 0.001 (2) 0.009 (2) −0.006 (2)
C202 0.057 (4) 0.043 (3) 0.052 (3) −0.001 (3) 0.018 (3) −0.001 (3)
C203 0.071 (4) 0.072 (5) 0.064 (4) −0.007 (3) 0.024 (3) −0.017 (3)
C204 0.066 (4) 0.051 (4) 0.088 (5) −0.004 (3) 0.024 (4) −0.028 (4)
C205 0.058 (4) 0.039 (3) 0.099 (5) 0.003 (3) 0.015 (4) −0.009 (3)
C206 0.041 (3) 0.039 (3) 0.077 (4) 0.002 (2) 0.008 (3) −0.001 (3)
C207 0.055 (3) 0.035 (3) 0.054 (3) 0.002 (2) −0.013 (3) 0.002 (2)
C208 0.055 (4) 0.055 (4) 0.090 (5) 0.005 (3) −0.020 (3) 0.010 (3)
C209 0.089 (6) 0.074 (5) 0.126 (8) 0.009 (4) −0.060 (6) 0.015 (5)
C210 0.154 (9) 0.064 (5) 0.086 (6) 0.037 (5) −0.066 (6) −0.004 (5)
C211 0.171 (9) 0.064 (5) 0.052 (4) 0.025 (5) −0.005 (5) 0.002 (3)
C212 0.092 (5) 0.046 (3) 0.057 (4) 0.016 (3) −0.006 (3) 0.010 (3)
C301 0.047 (3) 0.035 (3) 0.034 (3) −0.005 (2) 0.011 (2) −0.002 (2)
C302 0.053 (4) 0.050 (3) 0.071 (4) −0.005 (3) 0.016 (3) 0.013 (3)
C303 0.076 (5) 0.070 (5) 0.091 (5) −0.016 (4) 0.034 (4) 0.014 (4)
C304 0.102 (6) 0.056 (4) 0.079 (5) −0.018 (4) 0.028 (4) 0.022 (4)
C305 0.093 (5) 0.047 (4) 0.073 (4) 0.003 (4) 0.007 (4) 0.017 (3)
C306 0.064 (4) 0.045 (3) 0.059 (4) 0.002 (3) 0.016 (3) 0.012 (3)
C307 0.034 (3) 0.034 (3) 0.040 (3) 0.002 (2) 0.009 (2) 0.000 (2)
C308 0.068 (4) 0.040 (3) 0.042 (3) −0.002 (3) 0.015 (3) 0.001 (2)
C309 0.103 (5) 0.060 (4) 0.046 (3) −0.008 (4) 0.017 (3) 0.003 (3)
C310 0.094 (5) 0.070 (4) 0.044 (3) −0.005 (4) 0.016 (3) −0.018 (3)
C311 0.082 (5) 0.052 (4) 0.055 (4) −0.014 (3) 0.017 (3) −0.022 (3)
C312 0.058 (3) 0.038 (3) 0.048 (3) −0.003 (2) 0.015 (3) −0.004 (2)
C401 0.041 (3) 0.034 (3) 0.047 (3) 0.001 (2) 0.013 (2) −0.002 (2)
C402 0.047 (3) 0.048 (3) 0.050 (3) 0.008 (3) 0.008 (3) −0.006 (3)
C403 0.064 (4) 0.058 (4) 0.060 (4) 0.013 (3) 0.005 (3) −0.021 (3)
C404 0.072 (4) 0.045 (3) 0.079 (4) 0.008 (3) 0.035 (4) −0.011 (3)
C405 0.053 (4) 0.061 (4) 0.127 (6) −0.003 (3) 0.046 (4) −0.031 (4)
C406 0.049 (4) 0.057 (4) 0.104 (5) −0.011 (3) 0.030 (3) −0.036 (4)
C407 0.039 (3) 0.043 (3) 0.045 (3) 0.010 (2) 0.004 (2) −0.003 (2)
C408 0.056 (3) 0.046 (3) 0.050 (3) 0.008 (3) 0.003 (3) 0.002 (3)
C409 0.079 (5) 0.062 (4) 0.062 (4) 0.013 (4) 0.006 (4) 0.010 (3)
C410 0.087 (5) 0.092 (6) 0.059 (4) 0.013 (4) −0.011 (4) 0.010 (4)
C411 0.076 (5) 0.115 (7) 0.080 (5) −0.014 (5) −0.034 (4) −0.003 (5)
C412 0.062 (4) 0.076 (5) 0.070 (4) −0.010 (3) −0.021 (3) 0.004 (3)
C9 0.41 (4) 0.20 (2) 0.070 (12) −0.24 (3) 0.11 (2) −0.077 (14)
Cl3 0.324 (12) 0.154 (6) 0.121 (5) 0.103 (7) 0.006 (6) −0.008 (5)
Cl4 0.197 (7) 0.205 (7) 0.099 (4) −0.039 (6) 0.008 (4) −0.037 (4)
C10 0.142 (8) 0.072 (5) 0.126 (8) −0.001 (5) 0.032 (6) 0.029 (5)
Cl5 0.1132 (17) 0.1046 (17) 0.1117 (17) −0.0339 (13) 0.0310 (14) −0.0231 (13)
Cl6 0.160 (2) 0.1072 (18) 0.1116 (18) 0.0022 (17) 0.0446 (17) 0.0005 (15)
C11 0.101 (8) 0.117 (9) 0.195 (13) 0.018 (7) −0.007 (8) −0.027 (8)
Cl7 0.103 (5) 0.089 (4) 0.393 (14) −0.018 (3) −0.010 (6) 0.043 (6)
Cl8 0.088 (3) 0.194 (5) 0.118 (3) 0.029 (3) −0.020 (2) −0.020 (3)
Cl7A 0.128 (13) 0.102 (12) 0.69 (7) 0.008 (9) 0.05 (2) −0.04 (2)
Cl8A 0.201 (19) 0.174 (15) 0.32 (3) 0.048 (14) −0.098 (18) −0.041 (16)
C12 0.22 (6) 0.04 (2) 0.22 (6) −0.08 (3) 0.03 (4) −0.05 (3)
Cl9 0.120 (11) 0.208 (18) 0.39 (3) −0.022 (11) 0.010 (14) −0.15 (2)
Cl10 0.159 (14) 0.213 (19) 0.31 (3) 0.077 (14) −0.088 (16) −0.088 (18)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chloridohydridoiridium(III) chloride methylene chloride 2.75-solvate (4) . Geometric parameters (Å, º)

Ir1—C4 2.072 (5) C207—C208 1.390 (8)
Ir1—C1 2.273 (4) C207—C212 1.402 (9)
Ir1—P4 2.2783 (12) C208—C209 1.394 (10)
Ir1—P1 2.2897 (13) C208—H208 0.9400
Ir1—Cl1 2.4619 (13) C209—C210 1.355 (13)
Ir1—H1 1.62 (2) C209—H209 0.9400
P1—C107 1.819 (6) C210—C211 1.408 (13)
P1—C101 1.824 (5) C210—H210 0.9400
P1—C2 1.833 (5) C211—C212 1.426 (9)
P2—C1 1.791 (5) C211—H211 0.9400
P2—C207 1.798 (5) C212—H212 0.9400
P2—C201 1.800 (5) C301—C306 1.374 (8)
P2—C2 1.820 (5) C301—C302 1.384 (7)
P3—C1 1.788 (5) C302—C303 1.380 (9)
P3—C301 1.806 (5) C302—H302 0.9400
P3—C307 1.807 (5) C303—C304 1.376 (10)
P3—C3 1.811 (5) C303—H303 0.9400
P4—C407 1.827 (5) C304—C305 1.356 (10)
P4—C401 1.828 (5) C304—H304 0.9400
P4—C3 1.846 (5) C305—C306 1.396 (8)
O1—C5 1.205 (6) C305—H305 0.9400
O2—C5 1.341 (6) C306—H306 0.9400
O2—C7 1.437 (7) C307—C312 1.383 (7)
C1—C4 1.515 (6) C307—C308 1.391 (7)
C2—H2A 0.9800 C308—C309 1.380 (8)
C2—H2B 0.9800 C308—H308 0.9400
C3—H3A 0.9800 C309—C310 1.376 (9)
C3—H3B 0.9800 C309—H309 0.9400
C4—C5 1.490 (7) C310—C311 1.375 (9)
C4—H4 0.968 (19) C310—H310 0.9400
C7—C8 1.516 (10) C311—C312 1.378 (8)
C7—H7A 0.9800 C311—H311 0.9400
C7—H7B 0.9800 C312—H312 0.9400
C8—H8A 0.9700 C401—C402 1.381 (7)
C8—H8B 0.9700 C401—C406 1.383 (8)
C8—H8C 0.9700 C402—C403 1.395 (8)
C101—C102 1.356 (9) C402—H402 0.9400
C101—C106 1.371 (8) C403—C404 1.364 (9)
C102—C103 1.399 (11) C403—H403 0.9400
C102—H102 0.9400 C404—C405 1.375 (9)
C103—C104 1.337 (13) C404—H404 0.9400
C103—H103 0.9400 C405—C406 1.397 (8)
C104—C105 1.360 (12) C405—H405 0.9400
C104—H104 0.9400 C406—H406 0.9400
C105—C106 1.396 (10) C407—C412 1.385 (8)
C105—H105 0.9400 C407—C408 1.392 (8)
C106—H106 0.9400 C408—C409 1.383 (8)
C107—C112 1.389 (9) C408—H408 0.9400
C107—C108 1.393 (9) C409—C410 1.376 (10)
C108—C109 1.416 (12) C409—H409 0.9400
C108—H108 0.9400 C410—C411 1.362 (11)
C109—C110 1.372 (15) C410—H410 0.9400
C109—H109 0.9400 C411—C412 1.402 (10)
C110—C111 1.364 (14) C411—H411 0.9400
C110—H110 0.9400 C412—H412 0.9400
C111—C112 1.376 (10) C9—Cl3 1.61 (4)
C111—H111 0.9400 C9—Cl4 1.80 (4)
C112—H112 0.9400 C10—Cl6 1.687 (9)
C201—C206 1.399 (7) C10—Cl5 1.766 (10)
C201—C202 1.409 (8) C11—Cl8A 1.61 (2)
C202—C203 1.384 (8) C11—Cl7 1.709 (18)
C202—H202 0.9400 C11—Cl8 1.815 (15)
C203—C204 1.399 (9) C11—Cl7A 2.07 (4)
C203—H203 0.9400 Cl8—Cl9 2.21 (3)
C204—C205 1.377 (10) C12—Cl10 1.37 (5)
C204—H204 0.9400 C12—C12i 1.79 (12)
C205—C206 1.384 (8) C12—Cl9 2.02 (7)
C205—H205 0.9400 C12—Cl9i 2.24 (6)
C206—H206 0.9400 Cl9—C12i 2.24 (6)
C4—Ir1—C1 40.49 (17) C203—C202—H202 119.9
C4—Ir1—P4 93.68 (14) C201—C202—H202 119.9
C1—Ir1—P4 90.52 (12) C202—C203—C204 119.6 (6)
C4—Ir1—P1 85.34 (14) C202—C203—H203 120.2
C1—Ir1—P1 89.54 (12) C204—C203—H203 120.2
P4—Ir1—P1 178.42 (5) C205—C204—C203 120.4 (6)
C4—Ir1—Cl1 150.26 (13) C205—C204—H204 119.8
C1—Ir1—Cl1 111.34 (12) C203—C204—H204 119.8
P4—Ir1—Cl1 96.30 (4) C204—C205—C206 120.6 (6)
P1—Ir1—Cl1 85.15 (5) C204—C205—H205 119.7
C4—Ir1—H1 119.7 (18) C206—C205—H205 119.7
C1—Ir1—H1 159.8 (18) C205—C206—C201 119.9 (6)
P4—Ir1—H1 87.0 (18) C205—C206—H206 120.0
P1—Ir1—H1 92.4 (18) C201—C206—H206 120.0
Cl1—Ir1—H1 88.8 (18) C208—C207—C212 121.2 (6)
C107—P1—C101 101.8 (2) C208—C207—P2 118.4 (5)
C107—P1—C2 106.3 (3) C212—C207—P2 120.5 (5)
C101—P1—C2 106.4 (2) C207—C208—C209 119.6 (8)
C107—P1—Ir1 118.9 (2) C207—C208—H208 120.2
C101—P1—Ir1 120.39 (17) C209—C208—H208 120.2
C2—P1—Ir1 101.87 (16) C210—C209—C208 121.1 (8)
C1—P2—C207 111.7 (3) C210—C209—H209 119.5
C1—P2—C201 115.9 (2) C208—C209—H209 119.5
C207—P2—C201 106.7 (2) C209—C210—C211 120.6 (7)
C1—P2—C2 110.1 (2) C209—C210—H210 119.7
C207—P2—C2 106.6 (3) C211—C210—H210 119.7
C201—P2—C2 105.3 (2) C210—C211—C212 119.6 (8)
C1—P3—C301 117.3 (2) C210—C211—H211 120.2
C1—P3—C307 112.8 (2) C212—C211—H211 120.2
C301—P3—C307 104.2 (2) C207—C212—C211 118.0 (7)
C1—P3—C3 109.7 (2) C207—C212—H212 121.0
C301—P3—C3 106.4 (2) C211—C212—H212 121.0
C307—P3—C3 105.4 (2) C306—C301—C302 118.5 (5)
C407—P4—C401 101.6 (2) C306—C301—P3 121.0 (4)
C407—P4—C3 106.2 (2) C302—C301—P3 120.3 (4)
C401—P4—C3 102.5 (2) C303—C302—C301 120.3 (6)
C407—P4—Ir1 117.78 (17) C303—C302—H302 119.8
C401—P4—Ir1 118.39 (17) C301—C302—H302 119.8
C3—P4—Ir1 108.78 (16) C304—C303—C302 120.2 (7)
C5—O2—C7 116.2 (5) C304—C303—H303 119.9
C4—C1—P3 120.2 (3) C302—C303—H303 119.9
C4—C1—P2 112.1 (3) C305—C304—C303 120.4 (6)
P3—C1—P2 124.2 (3) C305—C304—H304 119.8
C4—C1—Ir1 62.6 (2) C303—C304—H304 119.8
P3—C1—Ir1 110.2 (2) C304—C305—C306 119.4 (7)
P2—C1—Ir1 109.8 (2) C304—C305—H305 120.3
P2—C2—P1 111.5 (3) C306—C305—H305 120.3
P2—C2—H2A 109.3 C301—C306—C305 121.1 (6)
P1—C2—H2A 109.3 C301—C306—H306 119.4
P2—C2—H2B 109.3 C305—C306—H306 119.4
P1—C2—H2B 109.3 C312—C307—C308 119.3 (5)
H2A—C2—H2B 108.0 C312—C307—P3 121.0 (4)
P3—C3—P4 112.7 (3) C308—C307—P3 119.4 (4)
P3—C3—H3A 109.1 C309—C308—C307 119.7 (5)
P4—C3—H3A 109.1 C309—C308—H308 120.1
P3—C3—H3B 109.1 C307—C308—H308 120.1
P4—C3—H3B 109.1 C310—C309—C308 120.6 (6)
H3A—C3—H3B 107.8 C310—C309—H309 119.7
C5—C4—C1 121.8 (4) C308—C309—H309 119.7
C5—C4—Ir1 126.1 (3) C311—C310—C309 119.8 (6)
C1—C4—Ir1 76.9 (3) C311—C310—H310 120.1
C5—C4—H4 111 (3) C309—C310—H310 120.1
C1—C4—H4 105 (3) C310—C311—C312 120.2 (6)
Ir1—C4—H4 111 (3) C310—C311—H311 119.9
O1—C5—O2 123.2 (5) C312—C311—H311 119.9
O1—C5—C4 126.5 (5) C311—C312—C307 120.4 (5)
O2—C5—C4 110.2 (5) C311—C312—H312 119.8
O2—C7—C8 106.0 (6) C307—C312—H312 119.8
O2—C7—H7A 110.5 C402—C401—C406 119.9 (5)
C8—C7—H7A 110.5 C402—C401—P4 120.3 (4)
O2—C7—H7B 110.5 C406—C401—P4 119.7 (4)
C8—C7—H7B 110.5 C401—C402—C403 119.7 (5)
H7A—C7—H7B 108.7 C401—C402—H402 120.2
C7—C8—H8A 109.5 C403—C402—H402 120.2
C7—C8—H8B 109.5 C404—C403—C402 120.7 (6)
H8A—C8—H8B 109.5 C404—C403—H403 119.7
C7—C8—H8C 109.5 C402—C403—H403 119.7
H8A—C8—H8C 109.5 C403—C404—C405 119.9 (5)
H8B—C8—H8C 109.5 C403—C404—H404 120.1
C102—C101—C106 118.7 (6) C405—C404—H404 120.1
C102—C101—P1 124.5 (5) C404—C405—C406 120.4 (6)
C106—C101—P1 116.7 (5) C404—C405—H405 119.8
C101—C102—C103 121.3 (8) C406—C405—H405 119.8
C101—C102—H102 119.4 C401—C406—C405 119.5 (6)
C103—C102—H102 119.4 C401—C406—H406 120.3
C104—C103—C102 119.3 (9) C405—C406—H406 120.3
C104—C103—H103 120.4 C412—C407—C408 118.9 (5)
C102—C103—H103 120.4 C412—C407—P4 125.1 (5)
C103—C104—C105 120.9 (7) C408—C407—P4 116.0 (4)
C103—C104—H104 119.6 C409—C408—C407 121.2 (6)
C105—C104—H104 119.6 C409—C408—H408 119.4
C104—C105—C106 119.8 (7) C407—C408—H408 119.4
C104—C105—H105 120.1 C410—C409—C408 119.8 (7)
C106—C105—H105 120.1 C410—C409—H409 120.1
C101—C106—C105 120.0 (7) C408—C409—H409 120.1
C101—C106—H106 120.0 C411—C410—C409 119.5 (7)
C105—C106—H106 120.0 C411—C410—H410 120.2
C112—C107—C108 119.6 (6) C409—C410—H410 120.2
C112—C107—P1 118.9 (5) C410—C411—C412 121.7 (7)
C108—C107—P1 121.5 (5) C410—C411—H411 119.2
C107—C108—C109 118.0 (8) C412—C411—H411 119.2
C107—C108—H108 121.0 C407—C412—C411 118.9 (7)
C109—C108—H108 121.0 C407—C412—H412 120.5
C110—C109—C108 120.4 (9) C411—C412—H412 120.5
C110—C109—H109 119.8 Cl3—C9—Cl4 118.8 (10)
C108—C109—H109 119.8 Cl6—C10—Cl5 112.1 (5)
C111—C110—C109 121.6 (8) Cl7—C11—Cl8 110.0 (7)
C111—C110—H110 119.2 Cl8A—C11—Cl7A 94.2 (13)
C109—C110—H110 119.2 C11—Cl8—Cl9 105.0 (7)
C110—C111—C112 118.7 (9) Cl10—C12—C12i 169 (4)
C110—C111—H111 120.6 Cl10—C12—Cl9 111 (4)
C112—C111—H111 120.6 C12i—C12—Cl9 72 (4)
C111—C112—C107 121.8 (7) Cl10—C12—Cl9i 117 (4)
C111—C112—H112 119.1 C12i—C12—Cl9i 59 (4)
C107—C112—H112 119.1 Cl9—C12—Cl9i 131 (3)
C206—C201—C202 119.3 (5) C12—Cl9—Cl8 130.1 (14)
C206—C201—P2 120.4 (4) C12—Cl9—C12i 49 (3)
C202—C201—P2 120.2 (4) Cl8—Cl9—C12i 138.4 (11)
C203—C202—C201 120.2 (6)
C301—P3—C1—C4 −82.4 (4) C201—C202—C203—C204 −0.8 (9)
C307—P3—C1—C4 156.4 (3) C202—C203—C204—C205 1.2 (10)
C3—P3—C1—C4 39.2 (4) C203—C204—C205—C206 −1.5 (10)
C301—P3—C1—P2 74.9 (4) C204—C205—C206—C201 1.4 (9)
C307—P3—C1—P2 −46.3 (4) C202—C201—C206—C205 −1.0 (8)
C3—P3—C1—P2 −163.5 (3) P2—C201—C206—C205 −178.5 (4)
C301—P3—C1—Ir1 −151.7 (2) C1—P2—C207—C208 −164.2 (4)
C307—P3—C1—Ir1 87.1 (3) C201—P2—C207—C208 68.2 (5)
C3—P3—C1—Ir1 −30.1 (3) C2—P2—C207—C208 −44.0 (5)
C207—P2—C1—C4 51.6 (4) C1—P2—C207—C212 16.3 (5)
C201—P2—C1—C4 174.1 (3) C201—P2—C207—C212 −111.3 (5)
C2—P2—C1—C4 −66.6 (4) C2—P2—C207—C212 136.5 (5)
C207—P2—C1—P3 −107.3 (3) C212—C207—C208—C209 −1.2 (9)
C201—P2—C1—P3 15.2 (4) P2—C207—C208—C209 179.3 (5)
C2—P2—C1—P3 134.5 (3) C207—C208—C209—C210 −0.2 (12)
C207—P2—C1—Ir1 119.1 (2) C208—C209—C210—C211 1.5 (13)
C201—P2—C1—Ir1 −118.4 (2) C209—C210—C211—C212 −1.4 (12)
C2—P2—C1—Ir1 0.9 (3) C208—C207—C212—C211 1.2 (9)
C1—P2—C2—P1 28.3 (4) P2—C207—C212—C211 −179.3 (5)
C207—P2—C2—P1 −93.0 (3) C210—C211—C212—C207 0.1 (10)
C201—P2—C2—P1 153.9 (3) C1—P3—C301—C306 −39.5 (5)
C107—P1—C2—P2 82.4 (3) C307—P3—C301—C306 86.1 (5)
C101—P1—C2—P2 −169.7 (3) C3—P3—C301—C306 −162.8 (4)
Ir1—P1—C2—P2 −42.7 (3) C1—P3—C301—C302 146.1 (4)
C1—P3—C3—P4 28.1 (4) C307—P3—C301—C302 −88.3 (5)
C301—P3—C3—P4 156.0 (3) C3—P3—C301—C302 22.9 (5)
C307—P3—C3—P4 −93.7 (3) C306—C301—C302—C303 0.4 (9)
C407—P4—C3—P3 114.6 (3) P3—C301—C302—C303 174.9 (5)
C401—P4—C3—P3 −139.3 (3) C301—C302—C303—C304 0.6 (11)
Ir1—P4—C3—P3 −13.1 (3) C302—C303—C304—C305 −1.1 (12)
P3—C1—C4—C5 26.1 (6) C303—C304—C305—C306 0.5 (11)
P2—C1—C4—C5 −133.8 (4) C302—C301—C306—C305 −1.0 (9)
Ir1—C1—C4—C5 124.6 (5) P3—C301—C306—C305 −175.4 (5)
P3—C1—C4—Ir1 −98.6 (3) C304—C305—C306—C301 0.6 (10)
P2—C1—C4—Ir1 101.6 (3) C1—P3—C307—C312 121.4 (4)
C7—O2—C5—O1 −3.8 (8) C301—P3—C307—C312 −7.0 (5)
C7—O2—C5—C4 177.9 (5) C3—P3—C307—C312 −118.9 (4)
C1—C4—C5—O1 −2.7 (8) C1—P3—C307—C308 −65.1 (5)
Ir1—C4—C5—O1 94.4 (6) C301—P3—C307—C308 166.5 (4)
C1—C4—C5—O2 175.6 (4) C3—P3—C307—C308 54.6 (5)
Ir1—C4—C5—O2 −87.3 (5) C312—C307—C308—C309 0.2 (8)
C5—O2—C7—C8 179.9 (6) P3—C307—C308—C309 −173.4 (5)
C107—P1—C101—C102 100.6 (7) C307—C308—C309—C310 0.1 (10)
C2—P1—C101—C102 −10.6 (8) C308—C309—C310—C311 −0.3 (11)
Ir1—P1—C101—C102 −125.5 (7) C309—C310—C311—C312 0.2 (11)
C107—P1—C101—C106 −77.3 (6) C310—C311—C312—C307 0.1 (10)
C2—P1—C101—C106 171.5 (5) C308—C307—C312—C311 −0.3 (8)
Ir1—P1—C101—C106 56.6 (6) P3—C307—C312—C311 173.2 (5)
C106—C101—C102—C103 −0.9 (15) C407—P4—C401—C402 −121.2 (5)
P1—C101—C102—C103 −178.7 (9) C3—P4—C401—C402 129.1 (4)
C101—C102—C103—C104 1.9 (19) Ir1—P4—C401—C402 9.5 (5)
C102—C103—C104—C105 −0.5 (18) C407—P4—C401—C406 55.9 (5)
C103—C104—C105—C106 −1.8 (15) C3—P4—C401—C406 −53.8 (5)
C102—C101—C106—C105 −1.4 (12) Ir1—P4—C401—C406 −173.5 (4)
P1—C101—C106—C105 176.6 (6) C406—C401—C402—C403 1.5 (9)
C104—C105—C106—C101 2.8 (13) P4—C401—C402—C403 178.6 (4)
C101—P1—C107—C112 102.8 (5) C401—C402—C403—C404 0.0 (9)
C2—P1—C107—C112 −146.0 (4) C402—C403—C404—C405 −1.0 (10)
Ir1—P1—C107—C112 −32.0 (5) C403—C404—C405—C406 0.5 (11)
C101—P1—C107—C108 −75.7 (5) C402—C401—C406—C405 −2.0 (10)
C2—P1—C107—C108 35.5 (6) P4—C401—C406—C405 −179.1 (6)
Ir1—P1—C107—C108 149.5 (4) C404—C405—C406—C401 1.0 (11)
C112—C107—C108—C109 1.0 (10) C401—P4—C407—C412 −94.0 (6)
P1—C107—C108—C109 179.5 (5) C3—P4—C407—C412 12.8 (6)
C107—C108—C109—C110 −1.0 (12) Ir1—P4—C407—C412 135.0 (5)
C108—C109—C110—C111 0.2 (15) C401—P4—C407—C408 83.0 (4)
C109—C110—C111—C112 0.6 (14) C3—P4—C407—C408 −170.2 (4)
C110—C111—C112—C107 −0.6 (11) Ir1—P4—C407—C408 −48.0 (4)
C108—C107—C112—C111 −0.2 (9) C412—C407—C408—C409 2.2 (9)
P1—C107—C112—C111 −178.7 (5) P4—C407—C408—C409 −175.0 (5)
C1—P2—C201—C206 −105.6 (4) C407—C408—C409—C410 −1.9 (9)
C207—P2—C201—C206 19.5 (5) C408—C409—C410—C411 −0.7 (11)
C2—P2—C201—C206 132.5 (4) C409—C410—C411—C412 3.0 (13)
C1—P2—C201—C202 77.0 (5) C408—C407—C412—C411 0.1 (10)
C207—P2—C201—C202 −157.9 (4) P4—C407—C412—C411 177.1 (6)
C2—P2—C201—C202 −44.9 (5) C410—C411—C412—C407 −2.7 (13)
C206—C201—C202—C203 0.8 (8) Cl7—C11—Cl8—Cl9 −171.2 (8)
P2—C201—C202—C203 178.2 (5)

Symmetry code: (i) −x+2, −y, −z.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chloridohydridoiridium(III) chloride methylene chloride 2.75-solvate (4) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2B···Cl2 0.98 2.58 3.488 (5) 154
C3—H3A···O1 0.98 2.31 2.892 (7) 117
C3—H3B···Cl2ii 0.98 2.83 3.456 (5) 122

Symmetry code: (ii) x−1, y, z.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chlorido(ethoxyoxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5) . Crystal data

[Ir(C4H7O2)Cl(C55H50O2P4)]Cl·CH4O·0.5H2O Z = 2
Mr = 1258.07 F(000) = 1274
Triclinic, P1 Dx = 1.449 Mg m3
a = 12.4253 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.7081 (4) Å Cell parameters from 57775 reflections
c = 17.6780 (6) Å θ = 1.0–22.5°
α = 93.152 (2)° µ = 2.57 mm1
β = 97.960 (2)° T = 233 K
γ = 103.771 (2)° Plate, colorless
V = 2884.18 (15) Å3 0.15 × 0.05 × 0.02 mm

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chlorido(ethoxyoxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5) . Data collection

Nonius KappaCCD diffractometer 6326 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.037
Graphite monochromator θmax = 22.4°, θmin = 1.9°
phi– and ω–scans h = −13→13
13821 measured reflections k = −14→14
7453 independent reflections l = −18→18

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chlorido(ethoxyoxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5) . Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.047P)2 + 6.9463P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
7453 reflections Δρmax = 0.90 e Å3
674 parameters Δρmin = −0.96 e Å3

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chlorido(ethoxyoxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Small crystal with low diffraction, but good quality. Reflections were collected only until 45 degrees (2Theta). Hydrogen at C4 was found and refined isotropically with bond restraint (d=0.96 angs.). Solvent molecules methanole and water lies nearby an inversion centre and were all refined with multipicity of 0.5 (C12-O5, C13-O6 and O7). Hydrogens of these disordered molecules were not exact logalized and omitted. A 1:1 positional disorder occurs for one phenyl group of the phospane (C401-C406 and C41A-C46A). The distance of the carbon atoms between disordered rings are small and all atoms were refined isotropically.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chlorido(ethoxyoxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ir1 −0.16510 (2) −0.10634 (2) 0.69970 (2) 0.04147 (12)
P1 −0.15686 (15) −0.26886 (16) 0.72460 (11) 0.0454 (5)
P2 −0.35224 (14) −0.24371 (15) 0.79978 (10) 0.0416 (5)
P3 −0.35696 (14) −0.02021 (14) 0.78288 (10) 0.0414 (5)
P4 −0.17014 (15) 0.05959 (16) 0.68972 (11) 0.0474 (5)
Cl1 −0.00070 (14) −0.05642 (16) 0.80140 (11) 0.0558 (5)
Cl2 −0.3358 (4) 0.3182 (3) 0.8216 (2) 0.1433 (14)
C1 −0.3307 (5) −0.1353 (5) 0.7465 (4) 0.0389 (16)
C2 −0.2231 (6) −0.2821 (6) 0.8122 (4) 0.0479 (19)
H2A −0.2378 −0.3526 0.8242 0.057*
H2B −0.1716 −0.2407 0.8555 0.057*
C3 −0.2880 (6) 0.0839 (5) 0.7350 (4) 0.053 (2)
H3A −0.2597 0.1432 0.7722 0.063*
H3B −0.3433 0.0996 0.6954 0.063*
C101 −0.0247 (6) −0.3050 (6) 0.7536 (4) 0.053 (2)
C102 0.0243 (7) −0.3454 (7) 0.6989 (5) 0.073 (3)
H102 −0.0094 −0.3522 0.6473 0.088*
C103 0.1207 (8) −0.3760 (8) 0.7172 (6) 0.088 (3)
H103 0.1516 −0.4045 0.6785 0.106*
C104 0.1718 (7) −0.3654 (8) 0.7907 (7) 0.088 (3)
H104 0.2376 −0.3873 0.8034 0.106*
C105 0.1274 (8) −0.3226 (9) 0.8466 (6) 0.091 (3)
H105 0.1638 −0.3137 0.8977 0.110*
C106 0.0293 (7) −0.2922 (7) 0.8284 (5) 0.073 (3)
H106 −0.0007 −0.2628 0.8671 0.087*
C107 −0.2385 (6) −0.3784 (6) 0.6601 (4) 0.0460 (19)
C108 −0.2860 (5) −0.3683 (6) 0.5870 (4) 0.0445 (18)
H108 −0.2745 −0.3043 0.5684 0.053*
C109 −0.3505 (7) −0.4520 (7) 0.5407 (5) 0.061 (2)
H109 −0.3840 −0.4444 0.4911 0.073*
C110 −0.3662 (7) −0.5465 (7) 0.5666 (5) 0.064 (2)
H110 −0.4097 −0.6031 0.5345 0.077*
C111 −0.3188 (8) −0.5580 (7) 0.6388 (6) 0.069 (2)
H111 −0.3305 −0.6224 0.6568 0.083*
C112 −0.2531 (7) −0.4745 (7) 0.6857 (5) 0.060 (2)
H112 −0.2185 −0.4827 0.7349 0.072*
C201 −0.3904 (6) −0.2312 (5) 0.8937 (4) 0.0448 (18)
C202 −0.5033 (6) −0.2505 (6) 0.9013 (4) 0.053 (2)
H202 −0.5579 −0.2658 0.8570 0.064*
C203 −0.5363 (8) −0.2477 (6) 0.9718 (5) 0.066 (2)
H203 −0.6129 −0.2602 0.9758 0.079*
C204 −0.4576 (8) −0.2267 (7) 1.0364 (5) 0.072 (3)
H204 −0.4804 −0.2267 1.0849 0.086*
C205 −0.3439 (9) −0.2053 (7) 1.0310 (5) 0.074 (3)
H205 −0.2900 −0.1884 1.0756 0.089*
C206 −0.3110 (7) −0.2089 (6) 0.9600 (4) 0.060 (2)
H206 −0.2342 −0.1963 0.9562 0.073*
C207 −0.4620 (6) −0.3491 (6) 0.7494 (4) 0.0446 (18)
C208 −0.5408 (5) −0.3389 (6) 0.6880 (4) 0.0462 (18)
H208 −0.5374 −0.2756 0.6692 0.055*
C209 −0.6234 (6) −0.4213 (7) 0.6548 (5) 0.056 (2)
H209 −0.6767 −0.4145 0.6135 0.068*
C210 −0.6281 (7) −0.5149 (7) 0.6825 (5) 0.070 (3)
H210 −0.6844 −0.5713 0.6593 0.083*
C211 −0.5522 (8) −0.5262 (7) 0.7431 (6) 0.072 (3)
H211 −0.5563 −0.5897 0.7618 0.086*
C212 −0.4681 (7) −0.4419 (6) 0.7769 (5) 0.058 (2)
H212 −0.4154 −0.4487 0.8186 0.069*
C301 −0.5010 (6) −0.0138 (6) 0.7748 (4) 0.0418 (17)
C302 −0.5909 (6) −0.0976 (6) 0.7612 (4) 0.053 (2)
H302 −0.5775 −0.1620 0.7548 0.064*
C303 −0.6999 (6) −0.0886 (7) 0.7567 (5) 0.062 (2)
H303 −0.7600 −0.1465 0.7481 0.074*
C304 −0.7200 (6) 0.0057 (8) 0.7648 (4) 0.060 (2)
H304 −0.7941 0.0123 0.7614 0.072*
C305 −0.6329 (7) 0.0893 (7) 0.7777 (4) 0.057 (2)
H305 −0.6472 0.1534 0.7824 0.068*
C306 −0.5232 (6) 0.0807 (6) 0.7838 (4) 0.052 (2)
H306 −0.4636 0.1389 0.7941 0.063*
C307 −0.3001 (6) 0.0081 (6) 0.8841 (4) 0.0466 (19)
C308 −0.1853 (6) 0.0207 (7) 0.9072 (5) 0.071 (3)
H308 −0.1390 0.0106 0.8712 0.085*
C309 −0.1405 (7) 0.0481 (8) 0.9833 (5) 0.084 (3)
H309 −0.0630 0.0574 0.9987 0.101*
C310 −0.2066 (7) 0.0621 (7) 1.0376 (5) 0.071 (3)
H310 −0.1753 0.0795 1.0895 0.085*
C311 −0.3204 (6) 0.0499 (6) 1.0135 (4) 0.059 (2)
H311 −0.3664 0.0598 1.0497 0.071*
C312 −0.3670 (6) 0.0239 (6) 0.9383 (4) 0.0493 (19)
H312 −0.4443 0.0167 0.9231 0.059*
C407 −0.1952 (5) 0.1127 (6) 0.5980 (4) 0.0473 (19)
C408 −0.2121 (6) 0.0529 (6) 0.5294 (4) 0.056 (2)
H408 −0.2111 −0.0155 0.5295 0.067*
C409 −0.2304 (8) 0.0951 (8) 0.4601 (5) 0.071 (2)
H409 −0.2410 0.0547 0.4137 0.085*
C410 −0.2332 (8) 0.1947 (8) 0.4586 (6) 0.074 (3)
H410 −0.2464 0.2223 0.4117 0.088*
C411 −0.2163 (7) 0.2534 (7) 0.5275 (7) 0.076 (3)
H411 −0.2176 0.3216 0.5269 0.091*
C412 −0.1977 (7) 0.2145 (7) 0.5966 (5) 0.064 (2)
H412 −0.1866 0.2557 0.6427 0.076*
O1 −0.4427 (5) −0.0485 (4) 0.6132 (3) 0.0596 (14)
O2 −0.4118 (4) −0.1706 (4) 0.5351 (3) 0.0514 (13)
O3 −0.1320 (7) −0.1339 (6) 0.4883 (4) 0.100 (2)
O4 −0.0633 (4) −0.2499 (4) 0.5440 (3) 0.0587 (14)
C4 −0.3334 (6) −0.1604 (5) 0.6621 (4) 0.0390 (17)
H4 −0.353 (4) −0.2318 (16) 0.654 (3) 0.011 (13)*
C5 −0.4024 (5) −0.1187 (6) 0.6027 (4) 0.0411 (17)
C6 −0.4691 (7) −0.1344 (7) 0.4686 (4) 0.063 (2)
H6A −0.4417 −0.0612 0.4685 0.075*
H6B −0.5502 −0.1509 0.4686 0.075*
C7 −0.4415 (9) −0.1883 (8) 0.4004 (5) 0.088 (3)
H7A −0.4771 −0.1677 0.3537 0.131*
H7B −0.3609 −0.1714 0.4017 0.131*
H7C −0.4687 −0.2605 0.4018 0.131*
C8 −0.0453 (6) −0.1001 (6) 0.6211 (4) 0.054 (2)
H8A −0.0163 −0.0292 0.6126 0.064*
H8B 0.0179 −0.1237 0.6464 0.064*
C9 −0.0851 (7) −0.1581 (7) 0.5455 (5) 0.059 (2)
C10 −0.0925 (8) −0.3085 (7) 0.4698 (5) 0.074 (3)
H10A −0.0483 −0.2737 0.4330 0.088*
H10B −0.1722 −0.3169 0.4501 0.088*
C11 −0.0689 (8) −0.4077 (7) 0.4797 (6) 0.093 (3)
H11A −0.0879 −0.4481 0.4307 0.140*
H11B 0.0102 −0.3986 0.4989 0.140*
H11C −0.1134 −0.4416 0.5159 0.140*
O5 −0.2422 (14) 0.5220 (9) 0.8989 (9) 0.107 (5) 0.5
C12 −0.190 (5) 0.564 (4) 0.9732 (15) 0.25 (3) 0.5
O6 −0.5573 (15) 0.4914 (9) 1.0173 (8) 0.101 (5) 0.5
C13 −0.665 (6) 0.4857 (18) 0.979 (2) 0.28 (4) 0.5
O7 −0.3475 (17) 0.5078 (11) 1.0734 (10) 0.113 (6) 0.5
C401 −0.0507 (14) 0.1668 (14) 0.7345 (10) 0.039 (5)* 0.5
C402 −0.0572 (18) 0.2344 (16) 0.7933 (12) 0.083 (6)* 0.5
H402 −0.1241 0.2327 0.8130 0.099* 0.5
C403 0.044 (2) 0.3058 (19) 0.8217 (15) 0.108 (7)* 0.5
H403 0.0442 0.3517 0.8633 0.129* 0.5
C404 0.137 (2) 0.3123 (17) 0.7935 (12) 0.085 (6)* 0.5
H404 0.1997 0.3663 0.8120 0.102* 0.5
C405 0.1458 (16) 0.2471 (15) 0.7416 (14) 0.055 (5)* 0.5
H405 0.2133 0.2501 0.7223 0.065* 0.5
C406 0.047 (2) 0.1700 (17) 0.7148 (14) 0.065 (8)* 0.5
H406 0.0528 0.1173 0.6803 0.077* 0.5
C41A −0.0372 (18) 0.1384 (16) 0.7366 (12) 0.055 (7)* 0.5
C42A −0.0192 (18) 0.1861 (15) 0.8085 (12) 0.079 (6)* 0.5
H42A −0.0785 0.1777 0.8373 0.095* 0.5
C43A 0.093 (2) 0.2514 (18) 0.8423 (15) 0.103 (7)* 0.5
H43A 0.1097 0.2786 0.8938 0.123* 0.5
C44A 0.171 (2) 0.2690 (18) 0.7943 (14) 0.083 (6)* 0.5
H44A 0.2410 0.3123 0.8137 0.100* 0.5
C45A 0.1536 (17) 0.2269 (15) 0.7166 (12) 0.062 (6)* 0.5
H45A 0.2095 0.2422 0.6853 0.074* 0.5
C46A 0.0517 (15) 0.1634 (13) 0.6908 (12) 0.037 (5)* 0.5
H46A 0.0380 0.1339 0.6400 0.045* 0.5

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chlorido(ethoxyoxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.02378 (16) 0.0610 (2) 0.03666 (18) 0.00846 (12) 0.00368 (11) −0.00960 (13)
P1 0.0282 (10) 0.0686 (14) 0.0392 (11) 0.0161 (9) 0.0022 (8) −0.0081 (9)
P2 0.0285 (9) 0.0612 (13) 0.0326 (10) 0.0099 (9) 0.0029 (8) −0.0066 (9)
P3 0.0307 (10) 0.0554 (12) 0.0360 (10) 0.0092 (9) 0.0059 (8) −0.0092 (9)
P4 0.0311 (10) 0.0633 (13) 0.0418 (11) 0.0025 (9) 0.0069 (9) −0.0082 (9)
Cl1 0.0271 (9) 0.0823 (14) 0.0511 (12) 0.0104 (9) −0.0032 (8) −0.0146 (10)
Cl2 0.170 (4) 0.105 (3) 0.150 (3) 0.013 (2) 0.049 (3) −0.001 (2)
C1 0.028 (4) 0.055 (4) 0.034 (4) 0.014 (3) 0.001 (3) −0.004 (3)
C2 0.039 (4) 0.070 (5) 0.034 (4) 0.018 (4) 0.000 (3) −0.009 (4)
C3 0.055 (5) 0.049 (5) 0.055 (5) 0.008 (4) 0.025 (4) −0.005 (4)
C101 0.034 (4) 0.075 (6) 0.052 (5) 0.022 (4) 0.001 (4) −0.007 (4)
C102 0.048 (5) 0.117 (8) 0.059 (6) 0.038 (5) −0.002 (4) −0.010 (5)
C103 0.058 (6) 0.124 (9) 0.088 (8) 0.048 (6) 0.001 (6) −0.025 (6)
C104 0.046 (5) 0.113 (9) 0.115 (9) 0.044 (6) 0.001 (6) 0.003 (7)
C105 0.058 (6) 0.137 (10) 0.078 (7) 0.041 (6) −0.018 (5) −0.004 (7)
C106 0.052 (5) 0.110 (8) 0.059 (6) 0.036 (5) −0.003 (5) −0.007 (5)
C107 0.037 (4) 0.055 (5) 0.047 (5) 0.016 (4) 0.006 (4) −0.009 (4)
C108 0.034 (4) 0.056 (5) 0.040 (5) 0.010 (4) 0.003 (3) −0.015 (4)
C109 0.050 (5) 0.076 (7) 0.056 (5) 0.025 (5) 0.006 (4) −0.019 (5)
C110 0.051 (5) 0.068 (7) 0.068 (6) 0.009 (4) 0.009 (5) −0.023 (5)
C111 0.072 (6) 0.055 (6) 0.078 (7) 0.015 (5) 0.010 (5) −0.009 (5)
C112 0.063 (5) 0.071 (6) 0.053 (5) 0.029 (5) 0.012 (4) 0.000 (5)
C201 0.045 (4) 0.058 (5) 0.030 (4) 0.012 (4) 0.004 (3) −0.003 (3)
C202 0.044 (5) 0.075 (6) 0.042 (5) 0.016 (4) 0.008 (4) 0.000 (4)
C203 0.064 (6) 0.081 (6) 0.058 (6) 0.018 (5) 0.027 (5) −0.006 (5)
C204 0.085 (7) 0.077 (6) 0.057 (6) 0.017 (5) 0.034 (6) −0.006 (5)
C205 0.091 (7) 0.098 (7) 0.038 (5) 0.036 (6) 0.006 (5) −0.003 (5)
C206 0.059 (5) 0.080 (6) 0.044 (5) 0.023 (5) 0.008 (4) −0.004 (4)
C207 0.035 (4) 0.052 (5) 0.044 (4) 0.007 (3) 0.009 (4) −0.011 (4)
C208 0.031 (4) 0.058 (5) 0.045 (4) 0.006 (4) 0.003 (4) −0.013 (4)
C209 0.038 (4) 0.072 (6) 0.053 (5) 0.003 (4) 0.013 (4) −0.012 (4)
C210 0.056 (6) 0.077 (7) 0.060 (6) −0.011 (5) 0.012 (5) −0.018 (5)
C211 0.071 (6) 0.063 (6) 0.079 (7) 0.007 (5) 0.020 (6) 0.004 (5)
C212 0.056 (5) 0.056 (6) 0.057 (5) 0.005 (4) 0.008 (4) 0.008 (4)
C301 0.035 (4) 0.058 (5) 0.034 (4) 0.016 (4) 0.006 (3) −0.002 (3)
C302 0.039 (4) 0.065 (5) 0.056 (5) 0.013 (4) 0.011 (4) −0.008 (4)
C303 0.028 (4) 0.089 (7) 0.058 (5) 0.001 (4) 0.001 (4) −0.006 (5)
C304 0.032 (4) 0.106 (7) 0.048 (5) 0.027 (5) 0.008 (4) 0.000 (5)
C305 0.050 (5) 0.080 (6) 0.050 (5) 0.034 (5) 0.010 (4) 0.001 (4)
C306 0.047 (5) 0.071 (6) 0.039 (4) 0.017 (4) 0.005 (4) −0.005 (4)
C307 0.036 (4) 0.064 (5) 0.037 (4) 0.010 (4) 0.007 (3) −0.011 (4)
C308 0.036 (5) 0.110 (7) 0.060 (6) 0.020 (5) −0.003 (4) −0.031 (5)
C309 0.041 (5) 0.136 (9) 0.062 (6) 0.025 (5) −0.017 (5) −0.045 (6)
C310 0.056 (5) 0.108 (7) 0.045 (5) 0.027 (5) −0.005 (4) −0.028 (5)
C311 0.045 (5) 0.089 (6) 0.042 (5) 0.019 (4) 0.006 (4) −0.012 (4)
C312 0.034 (4) 0.073 (5) 0.038 (4) 0.014 (4) 0.003 (3) −0.011 (4)
C407 0.023 (4) 0.061 (5) 0.057 (5) 0.006 (3) 0.010 (3) 0.002 (4)
C408 0.051 (5) 0.070 (6) 0.046 (5) 0.012 (4) 0.011 (4) 0.000 (4)
C409 0.074 (6) 0.085 (7) 0.055 (6) 0.019 (5) 0.019 (5) 0.002 (5)
C410 0.070 (6) 0.092 (8) 0.066 (6) 0.026 (6) 0.019 (5) 0.022 (6)
C411 0.060 (6) 0.069 (6) 0.106 (9) 0.022 (5) 0.018 (6) 0.022 (6)
C412 0.053 (5) 0.070 (6) 0.066 (6) 0.019 (4) 0.002 (4) −0.008 (5)
O1 0.066 (4) 0.072 (4) 0.054 (3) 0.038 (3) 0.015 (3) 0.004 (3)
O2 0.055 (3) 0.064 (3) 0.035 (3) 0.022 (3) −0.004 (2) −0.006 (2)
O3 0.144 (7) 0.126 (6) 0.052 (4) 0.081 (6) 0.010 (4) −0.003 (4)
O4 0.052 (3) 0.072 (4) 0.051 (3) 0.016 (3) 0.009 (3) −0.008 (3)
C4 0.038 (4) 0.045 (5) 0.034 (4) 0.010 (3) 0.012 (3) −0.008 (3)
C5 0.029 (4) 0.058 (5) 0.038 (4) 0.011 (4) 0.007 (3) 0.002 (4)
C6 0.050 (5) 0.097 (7) 0.042 (5) 0.023 (5) −0.002 (4) 0.016 (4)
C7 0.101 (8) 0.117 (8) 0.039 (5) 0.022 (7) 0.001 (5) 0.008 (5)
C8 0.039 (4) 0.066 (5) 0.054 (5) 0.012 (4) 0.008 (4) −0.017 (4)
C9 0.044 (5) 0.076 (6) 0.059 (6) 0.019 (4) 0.014 (4) −0.007 (5)
C10 0.073 (6) 0.088 (7) 0.057 (6) 0.019 (5) 0.016 (5) −0.024 (5)
C11 0.080 (7) 0.079 (7) 0.116 (9) 0.011 (6) 0.029 (6) −0.037 (6)
O5 0.156 (15) 0.052 (8) 0.109 (12) 0.022 (9) 0.004 (10) 0.027 (8)
C12 0.49 (8) 0.31 (5) 0.030 (15) 0.29 (6) −0.03 (3) 0.00 (2)
O6 0.182 (18) 0.053 (8) 0.064 (10) 0.025 (10) 0.004 (10) 0.029 (7)
C13 0.59 (10) 0.038 (13) 0.09 (2) −0.02 (3) −0.21 (4) 0.016 (15)
O7 0.164 (16) 0.067 (10) 0.078 (11) −0.018 (10) 0.002 (11) −0.006 (9)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chlorido(ethoxyoxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5) . Geometric parameters (Å, º)

Ir1—C4 2.046 (7) C304—H304 0.9400
Ir1—C8 2.163 (7) C305—C306 1.385 (10)
Ir1—C1 2.279 (6) C305—H305 0.9400
Ir1—P4 2.306 (2) C306—H306 0.9400
Ir1—P1 2.318 (2) C307—C312 1.392 (9)
Ir1—Cl1 2.4607 (18) C307—C308 1.395 (10)
P1—C107 1.831 (7) C308—C309 1.378 (11)
P1—C101 1.840 (7) C308—H308 0.9400
P1—C2 1.850 (7) C309—C310 1.380 (11)
P2—C1 1.788 (7) C309—H309 0.9400
P2—C2 1.794 (7) C310—C311 1.385 (11)
P2—C201 1.799 (7) C310—H310 0.9400
P2—C207 1.823 (7) C311—C312 1.366 (10)
P3—C1 1.789 (7) C311—H311 0.9400
P3—C301 1.799 (7) C312—H312 0.9400
P3—C3 1.800 (7) C407—C408 1.388 (10)
P3—C307 1.816 (7) C407—C412 1.404 (11)
P4—C41A 1.80 (2) C408—C409 1.396 (11)
P4—C407 1.832 (8) C408—H408 0.9400
P4—C3 1.850 (7) C409—C410 1.375 (12)
P4—C401 1.871 (18) C409—H409 0.9400
C1—C4 1.507 (9) C410—C411 1.385 (13)
C2—H2A 0.9800 C410—H410 0.9400
C2—H2B 0.9800 C411—C412 1.372 (12)
C3—H3A 0.9800 C411—H411 0.9400
C3—H3B 0.9800 C412—H412 0.9400
C101—C102 1.371 (10) O1—C5 1.203 (8)
C101—C106 1.378 (11) O2—C5 1.332 (8)
C102—C103 1.364 (11) O2—C6 1.461 (8)
C102—H102 0.9400 O3—C9 1.199 (10)
C103—C104 1.350 (13) O4—C9 1.348 (10)
C103—H103 0.9400 O4—C10 1.453 (9)
C104—C105 1.366 (13) C4—C5 1.488 (10)
C104—H104 0.9400 C4—H4 0.947 (19)
C105—C106 1.382 (12) C6—C7 1.500 (11)
C105—H105 0.9400 C6—H6A 0.9800
C106—H106 0.9400 C6—H6B 0.9800
C107—C108 1.373 (10) C7—H7A 0.9700
C107—C112 1.395 (11) C7—H7B 0.9700
C108—C109 1.380 (10) C7—H7C 0.9700
C108—H108 0.9400 C8—C9 1.475 (11)
C109—C110 1.377 (12) C8—H8A 0.9800
C109—H109 0.9400 C8—H8B 0.9800
C110—C111 1.363 (12) C10—C11 1.472 (13)
C110—H110 0.9400 C10—H10A 0.9800
C111—C112 1.388 (12) C10—H10B 0.9800
C111—H111 0.9400 C11—H11A 0.9700
C112—H112 0.9400 C11—H11B 0.9700
C201—C202 1.391 (10) C11—H11C 0.9700
C201—C206 1.393 (10) O5—C12 1.41 (3)
C202—C203 1.366 (10) O6—C13 1.39 (6)
C202—H202 0.9400 O6—O6i 1.60 (3)
C203—C204 1.366 (12) C13—O7i 0.96 (5)
C203—H203 0.9400 O7—C13i 0.96 (5)
C204—C205 1.390 (12) C401—C406 1.30 (3)
C204—H204 0.9400 C401—C402 1.38 (3)
C205—C206 1.375 (11) C402—C403 1.40 (3)
C205—H205 0.9400 C402—H402 0.9400
C206—H206 0.9400 C403—C404 1.32 (3)
C207—C212 1.376 (10) C403—H403 0.9400
C207—C208 1.394 (10) C404—C405 1.28 (3)
C208—C209 1.371 (10) C404—H404 0.9400
C208—H208 0.9400 C405—C406 1.42 (3)
C209—C210 1.389 (12) C405—H405 0.9400
C209—H209 0.9400 C406—H406 0.9400
C210—C211 1.368 (12) C41A—C42A 1.36 (3)
C210—H210 0.9400 C41A—C46A 1.45 (3)
C211—C212 1.400 (12) C42A—C43A 1.49 (3)
C211—H211 0.9400 C42A—H42A 0.9400
C212—H212 0.9400 C43A—C44A 1.36 (3)
C301—C302 1.382 (10) C43A—H43A 0.9400
C301—C306 1.393 (10) C44A—C45A 1.43 (3)
C302—C303 1.381 (10) C44A—H44A 0.9400
C302—H302 0.9400 C45A—C46A 1.36 (3)
C303—C304 1.378 (11) C45A—H45A 0.9400
C303—H303 0.9400 C46A—H46A 0.9400
C304—C305 1.359 (11)
C4—Ir1—C8 120.8 (3) C306—C301—P3 118.3 (6)
C4—Ir1—C1 40.3 (2) C303—C302—C301 121.4 (8)
C8—Ir1—C1 161.1 (3) C303—C302—H302 119.3
C4—Ir1—P4 93.6 (2) C301—C302—H302 119.3
C8—Ir1—P4 93.0 (2) C304—C303—C302 119.6 (8)
C1—Ir1—P4 89.61 (18) C304—C303—H303 120.2
C4—Ir1—P1 88.5 (2) C302—C303—H303 120.2
C8—Ir1—P1 91.2 (2) C305—C304—C303 120.1 (7)
C1—Ir1—P1 88.02 (18) C305—C304—H304 120.0
P4—Ir1—P1 173.53 (7) C303—C304—H304 120.0
C4—Ir1—Cl1 152.49 (19) C304—C305—C306 120.7 (8)
C8—Ir1—Cl1 85.9 (2) C304—C305—H305 119.7
C1—Ir1—Cl1 112.78 (17) C306—C305—H305 119.7
P4—Ir1—Cl1 91.38 (7) C305—C306—C301 120.2 (8)
P1—Ir1—Cl1 84.00 (7) C305—C306—H306 119.9
C107—P1—C101 101.9 (3) C301—C306—H306 119.9
C107—P1—C2 103.5 (3) C312—C307—C308 119.4 (7)
C101—P1—C2 102.5 (3) C312—C307—P3 121.5 (5)
C107—P1—Ir1 121.5 (3) C308—C307—P3 118.9 (5)
C101—P1—Ir1 123.4 (3) C309—C308—C307 119.2 (7)
C2—P1—Ir1 100.7 (3) C309—C308—H308 120.4
C1—P2—C2 107.0 (3) C307—C308—H308 120.4
C1—P2—C201 118.4 (3) C308—C309—C310 121.7 (8)
C2—P2—C201 106.6 (3) C308—C309—H309 119.2
C1—P2—C207 112.4 (3) C310—C309—H309 119.2
C2—P2—C207 108.0 (3) C309—C310—C311 118.3 (7)
C201—P2—C207 104.0 (3) C309—C310—H310 120.9
C1—P3—C301 117.2 (3) C311—C310—H310 120.9
C1—P3—C3 110.5 (3) C312—C311—C310 121.4 (7)
C301—P3—C3 105.7 (4) C312—C311—H311 119.3
C1—P3—C307 110.7 (3) C310—C311—H311 119.3
C301—P3—C307 105.7 (3) C311—C312—C307 120.0 (7)
C3—P3—C307 106.5 (4) C311—C312—H312 120.0
C41A—P4—C407 104.1 (7) C307—C312—H312 120.0
C41A—P4—C3 111.6 (7) C408—C407—C412 119.5 (7)
C407—P4—C3 100.5 (3) C408—C407—P4 120.4 (6)
C407—P4—C401 96.0 (6) C412—C407—P4 120.1 (6)
C3—P4—C401 102.3 (6) C407—C408—C409 119.4 (8)
C41A—P4—Ir1 108.0 (7) C407—C408—H408 120.3
C407—P4—Ir1 123.5 (3) C409—C408—H408 120.3
C3—P4—Ir1 108.9 (2) C410—C409—C408 121.2 (8)
C401—P4—Ir1 122.0 (6) C410—C409—H409 119.4
C4—C1—P2 113.5 (5) C408—C409—H409 119.4
C4—C1—P3 121.9 (5) C409—C410—C411 118.6 (9)
P2—C1—P3 120.6 (4) C409—C410—H410 120.7
C4—C1—Ir1 61.5 (3) C411—C410—H410 120.7
P2—C1—Ir1 112.4 (3) C412—C411—C410 121.7 (9)
P3—C1—Ir1 111.3 (3) C412—C411—H411 119.2
P2—C2—P1 111.0 (4) C410—C411—H411 119.2
P2—C2—H2A 109.4 C411—C412—C407 119.5 (8)
P1—C2—H2A 109.4 C411—C412—H412 120.2
P2—C2—H2B 109.4 C407—C412—H412 120.2
P1—C2—H2B 109.4 C5—O2—C6 116.8 (6)
H2A—C2—H2B 108.0 C9—O4—C10 115.6 (7)
P3—C3—P4 113.8 (4) C5—C4—C1 121.8 (6)
P3—C3—H3A 108.8 C5—C4—Ir1 126.1 (5)
P4—C3—H3A 108.8 C1—C4—Ir1 78.2 (4)
P3—C3—H3B 108.8 C5—C4—H4 110 (3)
P4—C3—H3B 108.8 C1—C4—H4 106 (3)
H3A—C3—H3B 107.7 Ir1—C4—H4 111 (3)
C102—C101—C106 117.6 (7) O1—C5—O2 124.9 (6)
C102—C101—P1 119.2 (6) O1—C5—C4 125.8 (6)
C106—C101—P1 123.2 (6) O2—C5—C4 109.4 (6)
C103—C102—C101 121.9 (9) O2—C6—C7 104.9 (6)
C103—C102—H102 119.1 O2—C6—H6A 110.8
C101—C102—H102 119.1 C7—C6—H6A 110.8
C104—C103—C102 120.2 (9) O2—C6—H6B 110.8
C104—C103—H103 119.9 C7—C6—H6B 110.8
C102—C103—H103 119.9 H6A—C6—H6B 108.8
C103—C104—C105 119.7 (8) C6—C7—H7A 109.5
C103—C104—H104 120.2 C6—C7—H7B 109.5
C105—C104—H104 120.2 H7A—C7—H7B 109.5
C104—C105—C106 120.3 (9) C6—C7—H7C 109.5
C104—C105—H105 119.9 H7A—C7—H7C 109.5
C106—C105—H105 119.9 H7B—C7—H7C 109.5
C101—C106—C105 120.3 (8) C9—C8—Ir1 117.5 (5)
C101—C106—H106 119.8 C9—C8—H8A 107.9
C105—C106—H106 119.8 Ir1—C8—H8A 107.9
C108—C107—C112 119.1 (7) C9—C8—H8B 107.9
C108—C107—P1 121.5 (6) Ir1—C8—H8B 107.9
C112—C107—P1 119.4 (6) H8A—C8—H8B 107.2
C107—C108—C109 120.1 (8) O3—C9—O4 118.8 (8)
C107—C108—H108 119.9 O3—C9—C8 128.8 (9)
C109—C108—H108 119.9 O4—C9—C8 112.4 (8)
C110—C109—C108 120.6 (8) O4—C10—C11 108.2 (8)
C110—C109—H109 119.7 O4—C10—H10A 110.1
C108—C109—H109 119.7 C11—C10—H10A 110.1
C111—C110—C109 120.0 (8) O4—C10—H10B 110.1
C111—C110—H110 120.0 C11—C10—H10B 110.1
C109—C110—H110 120.0 H10A—C10—H10B 108.4
C110—C111—C112 119.9 (9) C10—C11—H11A 109.5
C110—C111—H111 120.0 C10—C11—H11B 109.5
C112—C111—H111 120.0 H11A—C11—H11B 109.5
C111—C112—C107 120.1 (8) C10—C11—H11C 109.5
C111—C112—H112 119.9 H11A—C11—H11C 109.5
C107—C112—H112 119.9 H11B—C11—H11C 109.5
C202—C201—C206 118.4 (7) C13—O6—O6i 128 (3)
C202—C201—P2 119.3 (5) O7i—C13—O6 103 (7)
C206—C201—P2 122.2 (6) C406—C401—C402 118 (2)
C203—C202—C201 121.3 (8) C406—C401—P4 117.2 (16)
C203—C202—H202 119.4 C402—C401—P4 123.9 (14)
C201—C202—H202 119.4 C401—C402—C403 115 (2)
C204—C203—C202 119.8 (8) C401—C402—H402 122.5
C204—C203—H203 120.1 C403—C402—H402 122.5
C202—C203—H203 120.1 C404—C403—C402 124 (2)
C203—C204—C205 120.5 (8) C404—C403—H403 118.1
C203—C204—H204 119.7 C402—C403—H403 118.1
C205—C204—H204 119.7 C405—C404—C403 122 (2)
C206—C205—C204 119.5 (9) C405—C404—H404 119.2
C206—C205—H205 120.2 C403—C404—H404 119.2
C204—C205—H205 120.2 C404—C405—C406 116 (2)
C205—C206—C201 120.5 (8) C404—C405—H405 122.1
C205—C206—H206 119.8 C406—C405—H405 122.1
C201—C206—H206 119.8 C401—C406—C405 125 (2)
C212—C207—C208 119.7 (7) C401—C406—H406 117.7
C212—C207—P2 116.7 (6) C405—C406—H406 117.7
C208—C207—P2 123.5 (6) C42A—C41A—C46A 118 (2)
C209—C208—C207 120.1 (8) C42A—C41A—P4 124.6 (17)
C209—C208—H208 120.0 C46A—C41A—P4 117.3 (15)
C207—C208—H208 120.0 C41A—C42A—C43A 121 (2)
C208—C209—C210 119.8 (8) C41A—C42A—H42A 119.5
C208—C209—H209 120.1 C43A—C42A—H42A 119.5
C210—C209—H209 120.1 C44A—C43A—C42A 116 (2)
C211—C210—C209 121.0 (8) C44A—C43A—H43A 122.1
C211—C210—H210 119.5 C42A—C43A—H43A 122.1
C209—C210—H210 119.5 C43A—C44A—C45A 125 (2)
C210—C211—C212 119.0 (9) C43A—C44A—H44A 117.4
C210—C211—H211 120.5 C45A—C44A—H44A 117.4
C212—C211—H211 120.5 C46A—C45A—C44A 116 (2)
C207—C212—C211 120.4 (8) C46A—C45A—H45A 122.1
C207—C212—H212 119.8 C44A—C45A—H45A 122.1
C211—C212—H212 119.8 C45A—C46A—C41A 124 (2)
C302—C301—C306 118.1 (6) C45A—C46A—H46A 118.0
C302—C301—P3 123.6 (5) C41A—C46A—H46A 118.0
C2—P2—C1—C4 77.0 (5) C307—P3—C301—C302 −106.7 (6)
C201—P2—C1—C4 −162.8 (5) C1—P3—C301—C306 −163.7 (5)
C207—P2—C1—C4 −41.4 (5) C3—P3—C301—C306 −40.2 (6)
C2—P2—C1—P3 −124.9 (4) C307—P3—C301—C306 72.5 (6)
C201—P2—C1—P3 −4.7 (5) C306—C301—C302—C303 −0.2 (11)
C207—P2—C1—P3 116.6 (4) P3—C301—C302—C303 179.0 (6)
C2—P2—C1—Ir1 9.6 (4) C301—C302—C303—C304 1.0 (12)
C201—P2—C1—Ir1 129.8 (3) C302—C303—C304—C305 −0.5 (12)
C207—P2—C1—Ir1 −108.9 (3) C303—C304—C305—C306 −0.9 (12)
C301—P3—C1—C4 79.1 (6) C304—C305—C306—C301 1.7 (11)
C3—P3—C1—C4 −42.0 (6) C302—C301—C306—C305 −1.2 (10)
C307—P3—C1—C4 −159.7 (5) P3—C301—C306—C305 179.6 (6)
C301—P3—C1—P2 −77.1 (5) C1—P3—C307—C312 −124.5 (6)
C3—P3—C1—P2 161.8 (4) C301—P3—C307—C312 3.4 (7)
C307—P3—C1—P2 44.1 (5) C3—P3—C307—C312 115.5 (7)
C301—P3—C1—Ir1 147.9 (3) C1—P3—C307—C308 59.7 (8)
C3—P3—C1—Ir1 26.9 (4) C301—P3—C307—C308 −172.4 (7)
C307—P3—C1—Ir1 −90.8 (4) C3—P3—C307—C308 −60.4 (8)
C1—P2—C2—P1 −39.1 (5) C312—C307—C308—C309 0.3 (14)
C201—P2—C2—P1 −166.6 (4) P3—C307—C308—C309 176.2 (8)
C207—P2—C2—P1 82.2 (5) C307—C308—C309—C310 0.8 (16)
C107—P1—C2—P2 −77.5 (5) C308—C309—C310—C311 −1.2 (16)
C101—P1—C2—P2 176.8 (4) C309—C310—C311—C312 0.5 (14)
Ir1—P1—C2—P2 48.8 (4) C310—C311—C312—C307 0.6 (13)
C1—P3—C3—P4 −21.3 (6) C308—C307—C312—C311 −1.0 (12)
C301—P3—C3—P4 −149.0 (4) P3—C307—C312—C311 −176.8 (6)
C307—P3—C3—P4 98.9 (4) C41A—P4—C407—C408 123.0 (9)
C41A—P4—C3—P3 −112.8 (8) C3—P4—C407—C408 −121.4 (6)
C407—P4—C3—P3 137.3 (4) C401—P4—C407—C408 134.9 (8)
C401—P4—C3—P3 −124.2 (7) Ir1—P4—C407—C408 −0.3 (7)
Ir1—P4—C3—P3 6.2 (5) C41A—P4—C407—C412 −57.1 (9)
C107—P1—C101—C102 45.5 (8) C3—P4—C407—C412 58.5 (6)
C2—P1—C101—C102 152.5 (7) C401—P4—C407—C412 −45.2 (8)
Ir1—P1—C101—C102 −95.6 (7) Ir1—P4—C407—C412 179.6 (5)
C107—P1—C101—C106 −135.4 (8) C412—C407—C408—C409 0.4 (11)
C2—P1—C101—C106 −28.4 (9) P4—C407—C408—C409 −179.6 (6)
Ir1—P1—C101—C106 83.6 (8) C407—C408—C409—C410 −0.6 (12)
C106—C101—C102—C103 2.6 (15) C408—C409—C410—C411 0.6 (13)
P1—C101—C102—C103 −178.3 (8) C409—C410—C411—C412 −0.4 (14)
C101—C102—C103—C104 −1.2 (17) C410—C411—C412—C407 0.2 (13)
C102—C103—C104—C105 −0.9 (18) C408—C407—C412—C411 −0.2 (11)
C103—C104—C105—C106 1.4 (17) P4—C407—C412—C411 179.9 (6)
C102—C101—C106—C105 −2.0 (15) P2—C1—C4—C5 130.9 (6)
P1—C101—C106—C105 178.9 (8) P3—C1—C4—C5 −26.8 (9)
C104—C105—C106—C101 0.0 (17) Ir1—C1—C4—C5 −125.4 (7)
C101—P1—C107—C108 −126.6 (6) P2—C1—C4—Ir1 −103.7 (4)
C2—P1—C107—C108 127.3 (6) P3—C1—C4—Ir1 98.5 (5)
Ir1—P1—C107—C108 15.5 (7) C6—O2—C5—O1 4.3 (10)
C101—P1—C107—C112 53.6 (6) C6—O2—C5—C4 −175.0 (6)
C2—P1—C107—C112 −52.5 (6) C1—C4—C5—O1 15.8 (11)
Ir1—P1—C107—C112 −164.3 (5) Ir1—C4—C5—O1 −83.0 (8)
C112—C107—C108—C109 2.2 (10) C1—C4—C5—O2 −164.9 (6)
P1—C107—C108—C109 −177.6 (5) Ir1—C4—C5—O2 96.2 (6)
C107—C108—C109—C110 −1.3 (11) C5—O2—C6—C7 165.9 (7)
C108—C109—C110—C111 0.7 (12) C10—O4—C9—O3 4.3 (11)
C109—C110—C111—C112 −1.0 (12) C10—O4—C9—C8 −175.6 (7)
C110—C111—C112—C107 2.0 (12) Ir1—C8—C9—O3 84.8 (11)
C108—C107—C112—C111 −2.6 (11) Ir1—C8—C9—O4 −95.3 (7)
P1—C107—C112—C111 177.2 (6) C9—O4—C10—C11 −177.0 (7)
C1—P2—C201—C202 90.5 (7) O6i—O6—C13—O7i 2 (4)
C2—P2—C201—C202 −149.0 (6) C407—P4—C401—C406 −79.1 (17)
C207—P2—C201—C202 −35.1 (7) C3—P4—C401—C406 178.8 (16)
C1—P2—C201—C206 −93.7 (7) Ir1—P4—C401—C406 57.0 (18)
C2—P2—C201—C206 26.8 (8) C407—P4—C401—C402 109.3 (17)
C207—P2—C201—C206 140.8 (7) C3—P4—C401—C402 7.2 (19)
C206—C201—C202—C203 0.1 (12) Ir1—P4—C401—C402 −114.6 (17)
P2—C201—C202—C203 176.1 (6) C406—C401—C402—C403 5 (3)
C201—C202—C203—C204 −0.7 (13) P4—C401—C402—C403 176.6 (16)
C202—C203—C204—C205 1.8 (14) C401—C402—C403—C404 3 (4)
C203—C204—C205—C206 −2.4 (14) C402—C403—C404—C405 −6 (4)
C204—C205—C206—C201 1.8 (13) C403—C404—C405—C406 2 (4)
C202—C201—C206—C205 −0.7 (12) C402—C401—C406—C405 −10 (3)
P2—C201—C206—C205 −176.5 (7) P4—C401—C406—C405 178.3 (17)
C1—P2—C207—C212 166.0 (5) C404—C405—C406—C401 6 (3)
C2—P2—C207—C212 48.1 (6) C407—P4—C41A—C42A 126.6 (19)
C201—P2—C207—C212 −64.8 (6) C3—P4—C41A—C42A 19 (2)
C1—P2—C207—C208 −16.9 (7) Ir1—P4—C41A—C42A −101 (2)
C2—P2—C207—C208 −134.7 (6) C407—P4—C41A—C46A −44.6 (16)
C201—P2—C207—C208 112.4 (6) C3—P4—C41A—C46A −152.1 (13)
C212—C207—C208—C209 −0.5 (10) Ir1—P4—C41A—C46A 88.2 (15)
P2—C207—C208—C209 −177.6 (5) C46A—C41A—C42A—C43A −8 (3)
C207—C208—C209—C210 −0.2 (10) P4—C41A—C42A—C43A −179.0 (17)
C208—C209—C210—C211 0.7 (12) C41A—C42A—C43A—C44A 7 (3)
C209—C210—C211—C212 −0.6 (13) C42A—C43A—C44A—C45A −3 (4)
C208—C207—C212—C211 0.6 (11) C43A—C44A—C45A—C46A −1 (3)
P2—C207—C212—C211 177.9 (6) C44A—C45A—C46A—C41A 1 (3)
C210—C211—C212—C207 −0.1 (12) C42A—C41A—C46A—C45A 4 (3)
C1—P3—C301—C302 17.1 (7) P4—C41A—C46A—C45A 175.7 (16)
C3—P3—C301—C302 140.7 (6)

Symmetry code: (i) −x−1, −y+1, −z+2.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')chlorido(ethoxyoxoethanido)iridium(III) chloride–methanol–water (1/1/0.5) (5) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O5ii 0.98 2.22 3.139 (15) 156
C3—H3A···Cl2 0.98 2.91 3.693 (8) 137
C3—H3B···O1 0.98 2.40 2.895 (10) 111
C102—H102···O4 0.94 2.48 3.263 (11) 141
C212—H212···O5ii 0.94 2.54 3.445 (18) 163
C306—H306···Cl2 0.94 2.57 3.491 (9) 167
C308—H308···Cl1 0.94 2.56 3.464 (8) 162
C408—H408···O3 0.94 2.23 3.046 (10) 145

Symmetry code: (ii) x, y−1, z.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')dichloridoiridium(III) chloride–methanol–water (1/1/2) (6) . Crystal data

[IrCl2(C55H50O2P4)]Cl·CH4O·2H2O Z = 2
Mr = 1233.45 F(000) = 1244
Triclinic, P1 Dx = 1.512 Mg m3
a = 11.2371 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.9144 (2) Å Cell parameters from 58878 reflections
c = 19.2371 (3) Å θ = 1.0–25.3°
α = 89.439 (1)° µ = 2.78 mm1
β = 77.863 (1)° T = 233 K
γ = 83.114 (1)° Prism, light yellow
V = 2709.27 (8) Å3 0.11 × 0.05 × 0.03 mm

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')dichloridoiridium(III) chloride–methanol–water (1/1/2) (6) . Data collection

Nonius KappaCCD diffractometer 8083 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.035
Graphite monochromator θmax = 25.0°, θmin = 1.9°
phi– and ω–scans h = −13→13
17984 measured reflections k = −15→15
9526 independent reflections l = −22→22

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')dichloridoiridium(III) chloride–methanol–water (1/1/2) (6) . Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0253P)2 + 3.0412P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
9526 reflections Δρmax = 0.75 e Å3
626 parameters Δρmin = −1.01 e Å3

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')dichloridoiridium(III) chloride–methanol–water (1/1/2) (6) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atom at C4 found and refined isotropically with bond restraint (d = 96 pm). Hydrogens at solvent water and methanol could not be exact localized and were omitted.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')dichloridoiridium(III) chloride–methanol–water (1/1/2) (6) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.20012 (2) 0.37531 (2) 0.74968 (2) 0.02861 (6)
P1 0.20027 (9) 0.20029 (8) 0.72614 (6) 0.0298 (2)
P2 0.46847 (9) 0.22736 (8) 0.70579 (6) 0.0308 (2)
P3 0.46936 (10) 0.46722 (9) 0.73724 (6) 0.0317 (2)
P4 0.20277 (10) 0.55291 (8) 0.76838 (6) 0.0324 (2)
Cl1 −0.01947 (9) 0.39399 (9) 0.79680 (6) 0.0416 (3)
Cl2 0.16469 (10) 0.43456 (9) 0.63301 (5) 0.0412 (3)
Cl3 0.44061 (18) 0.83094 (12) 0.72218 (9) 0.0876 (5)
O1 0.3698 (3) 0.1714 (3) 0.85456 (16) 0.0483 (8)
O2 0.2473 (3) 0.2825 (2) 0.93555 (14) 0.0423 (7)
C1 0.3924 (4) 0.3490 (3) 0.7501 (2) 0.0316 (9)
C2 0.3590 (4) 0.1363 (3) 0.7100 (2) 0.0347 (10)
H2A 0.3676 0.0870 0.7482 0.042*
H2B 0.3767 0.0966 0.6651 0.042*
C3 0.3579 (4) 0.5712 (3) 0.7202 (2) 0.0351 (10)
H3A 0.3597 0.5738 0.6691 0.042*
H3B 0.3792 0.6379 0.7348 0.042*
C4 0.3107 (4) 0.3481 (3) 0.8234 (2) 0.0306 (9)
H4 0.313 (3) 0.406 (2) 0.8533 (16) 0.021 (9)*
C5 0.3146 (4) 0.2571 (4) 0.8709 (2) 0.0355 (10)
C6 0.2445 (5) 0.2004 (4) 0.9893 (2) 0.0522 (13)
H6A 0.3261 0.1823 0.9996 0.063*
H6B 0.2181 0.1375 0.9721 0.063*
C7 0.1549 (5) 0.2435 (4) 1.0549 (2) 0.0625 (15)
H7A 0.1501 0.1916 1.0918 0.094*
H7B 0.1820 0.3056 1.0712 0.094*
H7C 0.0746 0.2610 1.0438 0.094*
C101 0.1249 (4) 0.1183 (3) 0.7955 (2) 0.0318 (9)
C102 0.0582 (4) 0.1593 (3) 0.8602 (2) 0.0379 (10)
H102 0.0496 0.2317 0.8689 0.046*
C103 0.0044 (4) 0.0949 (4) 0.9122 (2) 0.0486 (12)
H103 −0.0408 0.1236 0.9560 0.058*
C104 0.0168 (5) −0.0112 (4) 0.9002 (3) 0.0498 (12)
H104 −0.0205 −0.0547 0.9356 0.060*
C105 0.0834 (5) −0.0537 (4) 0.8366 (3) 0.0516 (13)
H105 0.0928 −0.1262 0.8286 0.062*
C106 0.1362 (4) 0.0110 (3) 0.7848 (3) 0.0434 (11)
H106 0.1809 −0.0181 0.7411 0.052*
C107 0.1414 (4) 0.1673 (3) 0.6485 (2) 0.0378 (10)
C108 0.0346 (4) 0.2249 (4) 0.6382 (3) 0.0497 (12)
H108 −0.0046 0.2783 0.6709 0.060*
C109 −0.0149 (5) 0.2047 (5) 0.5806 (3) 0.0643 (15)
H109 −0.0866 0.2452 0.5736 0.077*
C110 0.0406 (6) 0.1255 (5) 0.5335 (3) 0.0779 (19)
H110 0.0062 0.1109 0.4947 0.093*
C111 0.1454 (7) 0.0682 (5) 0.5430 (3) 0.088 (2)
H111 0.1836 0.0144 0.5104 0.106*
C112 0.1964 (5) 0.0885 (4) 0.6006 (3) 0.0651 (16)
H112 0.2687 0.0483 0.6068 0.078*
C201 0.5972 (4) 0.1633 (3) 0.7380 (2) 0.0353 (10)
C202 0.6859 (4) 0.2193 (4) 0.7544 (2) 0.0464 (12)
H202 0.6763 0.2924 0.7511 0.056*
C203 0.7880 (4) 0.1694 (5) 0.7753 (3) 0.0574 (14)
H203 0.8472 0.2080 0.7868 0.069*
C204 0.8020 (5) 0.0625 (5) 0.7790 (3) 0.0674 (16)
H204 0.8720 0.0279 0.7925 0.081*
C205 0.7154 (5) 0.0058 (4) 0.7634 (3) 0.0660 (16)
H205 0.7256 −0.0672 0.7668 0.079*
C206 0.6130 (4) 0.0555 (4) 0.7425 (3) 0.0504 (12)
H206 0.5541 0.0162 0.7314 0.061*
C207 0.5223 (4) 0.2456 (3) 0.6120 (2) 0.0345 (10)
C208 0.4374 (4) 0.2733 (3) 0.5700 (2) 0.0411 (11)
H208 0.3542 0.2910 0.5912 0.049*
C209 0.4752 (5) 0.2748 (4) 0.4969 (2) 0.0530 (13)
H209 0.4176 0.2930 0.4685 0.064*
C210 0.5969 (5) 0.2499 (4) 0.4655 (3) 0.0602 (14)
H210 0.6220 0.2506 0.4158 0.072*
C211 0.6822 (5) 0.2238 (4) 0.5066 (3) 0.0619 (15)
H211 0.7656 0.2085 0.4849 0.074*
C212 0.6456 (4) 0.2203 (4) 0.5801 (2) 0.0470 (12)
H212 0.7036 0.2009 0.6081 0.056*
C301 0.6002 (4) 0.4688 (3) 0.6643 (2) 0.0342 (10)
C302 0.5845 (4) 0.4801 (3) 0.5945 (2) 0.0401 (11)
H302 0.5055 0.4828 0.5849 0.048*
C303 0.6836 (4) 0.4873 (4) 0.5395 (3) 0.0511 (13)
H303 0.6725 0.4945 0.4925 0.061*
C304 0.7992 (5) 0.4838 (4) 0.5537 (3) 0.0596 (14)
H304 0.8667 0.4888 0.5160 0.072*
C305 0.8176 (4) 0.4733 (4) 0.6219 (3) 0.0570 (14)
H305 0.8971 0.4704 0.6307 0.068*
C306 0.7178 (4) 0.4669 (4) 0.6779 (2) 0.0430 (11)
H306 0.7295 0.4614 0.7248 0.052*
C307 0.5217 (4) 0.4991 (4) 0.8154 (2) 0.0411 (11)
C308 0.5459 (4) 0.4239 (4) 0.8648 (2) 0.0504 (13)
H308 0.5278 0.3555 0.8601 0.060*
C309 0.5969 (5) 0.4504 (5) 0.9211 (3) 0.0668 (16)
H309 0.6150 0.3997 0.9540 0.080*
C310 0.6206 (6) 0.5507 (6) 0.9284 (3) 0.082 (2)
H310 0.6544 0.5684 0.9668 0.098*
C311 0.5960 (6) 0.6261 (5) 0.8810 (3) 0.0756 (18)
H311 0.6119 0.6948 0.8874 0.091*
C312 0.5475 (5) 0.6009 (4) 0.8232 (3) 0.0577 (14)
H312 0.5323 0.6519 0.7899 0.069*
C401 0.1033 (4) 0.6511 (3) 0.7316 (2) 0.0416 (11)
C402 −0.0197 (5) 0.6456 (5) 0.7435 (4) 0.085 (2)
H402 −0.0531 0.5918 0.7714 0.103*
C403 −0.0963 (6) 0.7187 (5) 0.7150 (5) 0.105 (3)
H403 −0.1804 0.7123 0.7221 0.126*
C404 −0.0511 (7) 0.7988 (5) 0.6771 (3) 0.0805 (19)
H404 −0.1032 0.8469 0.6569 0.097*
C405 0.0713 (7) 0.8101 (4) 0.6681 (3) 0.0760 (19)
H405 0.1023 0.8673 0.6431 0.091*
C406 0.1491 (5) 0.7372 (4) 0.6958 (3) 0.0628 (15)
H406 0.2324 0.7458 0.6906 0.075*
C407 0.1915 (4) 0.5998 (3) 0.8588 (2) 0.0380 (10)
C408 0.1376 (4) 0.5429 (4) 0.9163 (2) 0.0441 (11)
H408 0.1069 0.4805 0.9082 0.053*
C409 0.1289 (4) 0.5774 (4) 0.9851 (3) 0.0510 (13)
H409 0.0932 0.5382 1.0236 0.061*
C410 0.1727 (4) 0.6695 (4) 0.9971 (3) 0.0531 (13)
H410 0.1668 0.6932 1.0439 0.064*
C411 0.2245 (4) 0.7260 (4) 0.9410 (3) 0.0520 (13)
H411 0.2535 0.7890 0.9494 0.062*
C412 0.2349 (4) 0.6920 (4) 0.8722 (2) 0.0442 (11)
H412 0.2715 0.7316 0.8341 0.053*
C8 0.3855 (8) −0.1059 (8) 1.0516 (4) 0.124 (3)
O3 0.4612 (6) −0.1618 (6) 0.9936 (4) 0.156 (3)
O4 0.3991 (6) −0.0653 (4) 0.8766 (3) 0.127 (2)
O5 0.5148 (8) 0.9672 (4) 0.5852 (4) 0.171 (3)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')dichloridoiridium(III) chloride–methanol–water (1/1/2) (6) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.02499 (9) 0.03004 (10) 0.03009 (10) −0.00432 (6) −0.00380 (6) 0.00424 (6)
P1 0.0260 (6) 0.0305 (6) 0.0336 (6) −0.0062 (5) −0.0062 (5) 0.0035 (5)
P2 0.0254 (6) 0.0334 (6) 0.0328 (6) −0.0032 (5) −0.0043 (4) 0.0021 (5)
P3 0.0293 (6) 0.0358 (6) 0.0300 (6) −0.0091 (5) −0.0036 (5) 0.0019 (5)
P4 0.0310 (6) 0.0299 (6) 0.0332 (6) −0.0039 (5) 0.0000 (5) 0.0030 (5)
Cl1 0.0270 (5) 0.0447 (7) 0.0494 (7) −0.0032 (5) −0.0003 (5) 0.0070 (5)
Cl2 0.0394 (6) 0.0490 (7) 0.0335 (6) 0.0004 (5) −0.0074 (5) 0.0092 (5)
Cl3 0.1165 (14) 0.0610 (10) 0.0883 (11) −0.0425 (10) −0.0108 (10) 0.0024 (8)
O1 0.048 (2) 0.044 (2) 0.0483 (19) 0.0049 (16) −0.0053 (15) 0.0074 (15)
O2 0.0508 (19) 0.0459 (19) 0.0287 (16) −0.0077 (15) −0.0043 (14) 0.0107 (13)
C1 0.030 (2) 0.030 (2) 0.034 (2) −0.0041 (18) −0.0044 (18) 0.0008 (18)
C2 0.030 (2) 0.033 (2) 0.040 (2) −0.0042 (19) −0.0038 (19) 0.0006 (19)
C3 0.038 (2) 0.029 (2) 0.036 (2) −0.0079 (19) −0.0013 (19) 0.0037 (18)
C4 0.032 (2) 0.034 (2) 0.027 (2) −0.0089 (19) −0.0041 (18) 0.0009 (18)
C5 0.029 (2) 0.046 (3) 0.034 (2) −0.009 (2) −0.0101 (19) 0.003 (2)
C6 0.058 (3) 0.061 (3) 0.039 (3) −0.011 (3) −0.011 (2) 0.023 (2)
C7 0.076 (4) 0.075 (4) 0.039 (3) −0.028 (3) −0.006 (3) 0.012 (3)
C101 0.025 (2) 0.030 (2) 0.042 (2) −0.0065 (18) −0.0106 (19) 0.0082 (19)
C102 0.036 (2) 0.038 (3) 0.040 (3) −0.004 (2) −0.010 (2) 0.004 (2)
C103 0.052 (3) 0.054 (3) 0.040 (3) −0.013 (2) −0.007 (2) 0.011 (2)
C104 0.053 (3) 0.053 (3) 0.046 (3) −0.015 (3) −0.013 (2) 0.022 (2)
C105 0.058 (3) 0.035 (3) 0.061 (3) −0.007 (2) −0.009 (3) 0.015 (2)
C106 0.041 (3) 0.036 (3) 0.050 (3) −0.002 (2) −0.003 (2) 0.006 (2)
C107 0.039 (3) 0.038 (3) 0.040 (2) −0.011 (2) −0.012 (2) 0.003 (2)
C108 0.037 (3) 0.062 (3) 0.052 (3) −0.005 (2) −0.015 (2) −0.002 (2)
C109 0.053 (3) 0.079 (4) 0.070 (4) −0.006 (3) −0.034 (3) −0.004 (3)
C110 0.095 (5) 0.077 (4) 0.078 (4) −0.010 (4) −0.056 (4) −0.009 (4)
C111 0.120 (6) 0.070 (4) 0.086 (5) 0.010 (4) −0.060 (4) −0.038 (4)
C112 0.082 (4) 0.051 (3) 0.069 (4) 0.010 (3) −0.039 (3) −0.017 (3)
C201 0.030 (2) 0.038 (3) 0.034 (2) 0.002 (2) −0.0022 (18) 0.0012 (19)
C202 0.040 (3) 0.047 (3) 0.056 (3) −0.014 (2) −0.016 (2) 0.010 (2)
C203 0.037 (3) 0.073 (4) 0.068 (3) −0.007 (3) −0.025 (3) 0.012 (3)
C204 0.041 (3) 0.076 (4) 0.086 (4) 0.009 (3) −0.028 (3) 0.021 (3)
C205 0.051 (3) 0.044 (3) 0.104 (5) 0.008 (3) −0.025 (3) 0.007 (3)
C206 0.034 (3) 0.042 (3) 0.077 (4) −0.002 (2) −0.016 (2) 0.000 (2)
C207 0.034 (2) 0.033 (2) 0.034 (2) −0.0073 (19) −0.0010 (19) 0.0009 (18)
C208 0.040 (3) 0.041 (3) 0.041 (3) −0.005 (2) −0.006 (2) 0.002 (2)
C209 0.062 (3) 0.060 (3) 0.038 (3) −0.003 (3) −0.014 (2) 0.007 (2)
C210 0.069 (4) 0.070 (4) 0.035 (3) −0.001 (3) 0.001 (3) 0.003 (3)
C211 0.046 (3) 0.082 (4) 0.047 (3) −0.001 (3) 0.009 (3) −0.001 (3)
C212 0.033 (3) 0.060 (3) 0.044 (3) −0.004 (2) −0.001 (2) 0.001 (2)
C301 0.029 (2) 0.034 (2) 0.038 (2) −0.0064 (19) −0.0035 (19) 0.0058 (19)
C302 0.034 (2) 0.047 (3) 0.036 (3) −0.006 (2) −0.0008 (19) 0.006 (2)
C303 0.047 (3) 0.060 (3) 0.039 (3) 0.003 (2) 0.001 (2) 0.010 (2)
C304 0.042 (3) 0.073 (4) 0.051 (3) 0.000 (3) 0.013 (2) 0.009 (3)
C305 0.028 (3) 0.067 (4) 0.070 (4) −0.007 (2) 0.002 (2) 0.013 (3)
C306 0.033 (2) 0.050 (3) 0.049 (3) −0.013 (2) −0.011 (2) 0.012 (2)
C307 0.032 (2) 0.052 (3) 0.039 (3) −0.013 (2) −0.003 (2) −0.006 (2)
C308 0.045 (3) 0.071 (4) 0.039 (3) −0.021 (3) −0.011 (2) 0.002 (2)
C309 0.055 (3) 0.111 (5) 0.041 (3) −0.025 (3) −0.019 (3) 0.011 (3)
C310 0.077 (4) 0.126 (6) 0.052 (4) −0.040 (4) −0.021 (3) −0.014 (4)
C311 0.076 (4) 0.083 (5) 0.079 (4) −0.036 (4) −0.026 (3) −0.021 (4)
C312 0.056 (3) 0.060 (3) 0.059 (3) −0.017 (3) −0.012 (3) −0.011 (3)
C401 0.046 (3) 0.035 (3) 0.040 (3) 0.003 (2) −0.005 (2) 0.003 (2)
C402 0.047 (3) 0.053 (4) 0.157 (7) −0.003 (3) −0.027 (4) 0.045 (4)
C403 0.061 (4) 0.060 (4) 0.197 (9) 0.000 (3) −0.041 (5) 0.035 (5)
C404 0.084 (5) 0.065 (4) 0.086 (5) 0.031 (4) −0.025 (4) 0.011 (3)
C405 0.099 (5) 0.050 (4) 0.064 (4) 0.014 (3) 0.001 (3) 0.022 (3)
C406 0.068 (4) 0.051 (3) 0.060 (3) 0.000 (3) 0.004 (3) 0.013 (3)
C407 0.036 (2) 0.036 (3) 0.040 (3) −0.005 (2) −0.001 (2) 0.002 (2)
C408 0.046 (3) 0.041 (3) 0.040 (3) −0.009 (2) 0.003 (2) −0.001 (2)
C409 0.047 (3) 0.056 (3) 0.044 (3) −0.009 (3) 0.006 (2) 0.004 (2)
C410 0.048 (3) 0.065 (4) 0.041 (3) −0.002 (3) −0.001 (2) −0.009 (3)
C411 0.051 (3) 0.050 (3) 0.055 (3) −0.011 (2) −0.006 (2) −0.013 (3)
C412 0.044 (3) 0.041 (3) 0.044 (3) −0.007 (2) 0.000 (2) 0.001 (2)
C8 0.114 (7) 0.164 (9) 0.085 (6) 0.000 (6) −0.011 (5) −0.033 (6)
O3 0.119 (5) 0.197 (7) 0.158 (6) 0.022 (5) −0.060 (4) −0.045 (5)
O4 0.188 (6) 0.105 (4) 0.098 (4) −0.055 (4) −0.035 (4) 0.022 (3)
O5 0.305 (10) 0.074 (4) 0.157 (6) 0.004 (5) −0.112 (6) −0.028 (4)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')dichloridoiridium(III) chloride–methanol–water (1/1/2) (6) . Geometric parameters (Å, º)

Ir1—C4 2.076 (4) C203—H203 0.9400
Ir1—C1 2.149 (4) C204—C205 1.369 (7)
Ir1—P1 2.3093 (11) C204—H204 0.9400
Ir1—P4 2.3298 (11) C205—C206 1.381 (7)
Ir1—Cl1 2.4268 (10) C205—H205 0.9400
Ir1—Cl2 2.4597 (10) C206—H206 0.9400
P1—C101 1.825 (4) C207—C208 1.389 (6)
P1—C107 1.830 (4) C207—C212 1.394 (6)
P1—C2 1.838 (4) C208—C209 1.382 (6)
P2—C2 1.790 (4) C208—H208 0.9400
P2—C207 1.800 (4) C209—C210 1.374 (7)
P2—C201 1.801 (4) C209—H209 0.9400
P2—C1 1.822 (4) C210—C211 1.376 (7)
P3—C307 1.793 (4) C210—H210 0.9400
P3—C3 1.800 (4) C211—C212 1.389 (6)
P3—C301 1.809 (4) C211—H211 0.9400
P3—C1 1.833 (4) C212—H212 0.9400
P4—C407 1.821 (4) C301—C302 1.395 (6)
P4—C401 1.825 (4) C301—C306 1.397 (6)
P4—C3 1.835 (4) C302—C303 1.378 (6)
O1—C5 1.213 (5) C302—H302 0.9400
O2—C5 1.333 (5) C303—C304 1.378 (7)
O2—C6 1.472 (5) C303—H303 0.9400
C1—C4 1.513 (5) C304—C305 1.373 (7)
C2—H2A 0.9800 C304—H304 0.9400
C2—H2B 0.9800 C305—C306 1.392 (6)
C3—H3A 0.9800 C305—H305 0.9400
C3—H3B 0.9800 C306—H306 0.9400
C4—C5 1.483 (6) C307—C308 1.396 (7)
C4—H4 0.954 (18) C307—C312 1.397 (7)
C6—C7 1.504 (7) C308—C309 1.391 (7)
C6—H6A 0.9800 C308—H308 0.9400
C6—H6B 0.9800 C309—C310 1.368 (9)
C7—H7A 0.9700 C309—H309 0.9400
C7—H7B 0.9700 C310—C311 1.371 (9)
C7—H7C 0.9700 C310—H310 0.9400
C101—C102 1.385 (6) C311—C312 1.394 (7)
C101—C106 1.389 (6) C311—H311 0.9400
C102—C103 1.382 (6) C312—H312 0.9400
C102—H102 0.9400 C401—C402 1.364 (7)
C103—C104 1.379 (7) C401—C406 1.396 (7)
C103—H103 0.9400 C402—C403 1.388 (8)
C104—C105 1.373 (7) C402—H402 0.9400
C104—H104 0.9400 C403—C404 1.346 (9)
C105—C106 1.378 (6) C403—H403 0.9400
C105—H105 0.9400 C404—C405 1.375 (9)
C106—H106 0.9400 C404—H404 0.9400
C107—C112 1.376 (7) C405—C406 1.387 (8)
C107—C108 1.383 (6) C405—H405 0.9400
C108—C109 1.381 (7) C406—H406 0.9400
C108—H108 0.9400 C407—C412 1.386 (6)
C109—C110 1.373 (8) C407—C408 1.393 (6)
C109—H109 0.9400 C408—C409 1.380 (6)
C110—C111 1.358 (8) C408—H408 0.9400
C110—H110 0.9400 C409—C410 1.380 (7)
C111—C112 1.391 (7) C409—H409 0.9400
C111—H111 0.9400 C410—C411 1.364 (7)
C112—H112 0.9400 C410—H410 0.9400
C201—C206 1.386 (6) C411—C412 1.376 (6)
C201—C202 1.387 (6) C411—H411 0.9400
C202—C203 1.381 (6) C412—H412 0.9400
C202—H202 0.9400 C8—O3 1.400 (9)
C203—C204 1.373 (8)
C4—Ir1—C1 41.94 (15) C107—C112—C111 120.2 (5)
C4—Ir1—P1 93.94 (12) C107—C112—H112 119.9
C1—Ir1—P1 90.24 (11) C111—C112—H112 119.9
C4—Ir1—P4 87.46 (12) C206—C201—C202 118.8 (4)
C1—Ir1—P4 89.52 (11) C206—C201—P2 119.9 (3)
P1—Ir1—P4 177.61 (4) C202—C201—P2 121.1 (3)
C4—Ir1—Cl1 116.21 (11) C203—C202—C201 121.0 (5)
C1—Ir1—Cl1 158.13 (11) C203—C202—H202 119.5
P1—Ir1—Cl1 90.79 (4) C201—C202—H202 119.5
P4—Ir1—Cl1 90.32 (4) C204—C203—C202 119.1 (5)
C4—Ir1—Cl2 151.91 (11) C204—C203—H203 120.5
C1—Ir1—Cl2 111.50 (11) C202—C203—H203 120.5
P1—Ir1—Cl2 95.28 (4) C205—C204—C203 120.8 (5)
P4—Ir1—Cl2 82.61 (4) C205—C204—H204 119.6
Cl1—Ir1—Cl2 90.15 (4) C203—C204—H204 119.6
C101—P1—C107 103.22 (19) C204—C205—C206 120.3 (5)
C101—P1—C2 101.10 (19) C204—C205—H205 119.9
C107—P1—C2 105.4 (2) C206—C205—H205 119.9
C101—P1—Ir1 119.47 (14) C205—C206—C201 120.0 (5)
C107—P1—Ir1 116.96 (15) C205—C206—H206 120.0
C2—P1—Ir1 108.79 (13) C201—C206—H206 120.0
C2—P2—C207 104.15 (19) C208—C207—C212 119.6 (4)
C2—P2—C201 107.7 (2) C208—C207—P2 119.1 (3)
C207—P2—C201 106.31 (19) C212—C207—P2 120.8 (3)
C2—P2—C1 109.35 (19) C209—C208—C207 120.0 (4)
C207—P2—C1 111.24 (19) C209—C208—H208 120.0
C201—P2—C1 117.21 (19) C207—C208—H208 120.0
C307—P3—C3 109.2 (2) C210—C209—C208 120.2 (5)
C307—P3—C301 105.7 (2) C210—C209—H209 119.9
C3—P3—C301 105.53 (19) C208—C209—H209 119.9
C307—P3—C1 111.0 (2) C209—C210—C211 120.4 (5)
C3—P3—C1 106.85 (19) C209—C210—H210 119.8
C301—P3—C1 118.24 (19) C211—C210—H210 119.8
C407—P4—C401 103.8 (2) C210—C211—C212 120.2 (5)
C407—P4—C3 105.7 (2) C210—C211—H211 119.9
C401—P4—C3 104.1 (2) C212—C211—H211 119.9
C407—P4—Ir1 118.43 (14) C211—C212—C207 119.5 (5)
C401—P4—Ir1 121.43 (15) C211—C212—H212 120.2
C3—P4—Ir1 101.43 (14) C207—C212—H212 120.2
C5—O2—C6 116.4 (4) C302—C301—C306 119.1 (4)
C4—C1—P2 120.5 (3) C302—C301—P3 120.6 (3)
C4—C1—P3 111.2 (3) C306—C301—P3 120.1 (3)
P2—C1—P3 119.9 (2) C303—C302—C301 120.5 (4)
C4—C1—Ir1 66.5 (2) C303—C302—H302 119.7
P2—C1—Ir1 113.31 (19) C301—C302—H302 119.7
P3—C1—Ir1 113.9 (2) C302—C303—C304 119.7 (5)
P2—C2—P1 112.6 (2) C302—C303—H303 120.2
P2—C2—H2A 109.1 C304—C303—H303 120.2
P1—C2—H2A 109.1 C305—C304—C303 121.2 (4)
P2—C2—H2B 109.1 C305—C304—H304 119.4
P1—C2—H2B 109.1 C303—C304—H304 119.4
H2A—C2—H2B 107.8 C304—C305—C306 119.6 (5)
P3—C3—P4 111.4 (2) C304—C305—H305 120.2
P3—C3—H3A 109.3 C306—C305—H305 120.2
P4—C3—H3A 109.3 C305—C306—C301 119.9 (4)
P3—C3—H3B 109.3 C305—C306—H306 120.1
P4—C3—H3B 109.3 C301—C306—H306 120.1
H3A—C3—H3B 108.0 C308—C307—C312 119.7 (4)
C5—C4—C1 122.7 (4) C308—C307—P3 122.1 (4)
C5—C4—Ir1 126.2 (3) C312—C307—P3 118.0 (4)
C1—C4—Ir1 71.6 (2) C309—C308—C307 120.0 (5)
C5—C4—H4 104 (2) C309—C308—H308 120.0
C1—C4—H4 115 (2) C307—C308—H308 120.0
Ir1—C4—H4 116 (2) C310—C309—C308 119.6 (6)
O1—C5—O2 123.9 (4) C310—C309—H309 120.2
O1—C5—C4 126.0 (4) C308—C309—H309 120.2
O2—C5—C4 110.1 (4) C309—C310—C311 121.4 (5)
O2—C6—C7 106.7 (4) C309—C310—H310 119.3
O2—C6—H6A 110.4 C311—C310—H310 119.3
C7—C6—H6A 110.4 C310—C311—C312 120.1 (6)
O2—C6—H6B 110.4 C310—C311—H311 120.0
C7—C6—H6B 110.4 C312—C311—H311 120.0
H6A—C6—H6B 108.6 C311—C312—C307 119.2 (5)
C6—C7—H7A 109.5 C311—C312—H312 120.4
C6—C7—H7B 109.5 C307—C312—H312 120.4
H7A—C7—H7B 109.5 C402—C401—C406 118.5 (5)
C6—C7—H7C 109.5 C402—C401—P4 120.1 (4)
H7A—C7—H7C 109.5 C406—C401—P4 121.2 (4)
H7B—C7—H7C 109.5 C401—C402—C403 120.8 (6)
C102—C101—C106 118.1 (4) C401—C402—H402 119.6
C102—C101—P1 122.0 (3) C403—C402—H402 119.6
C106—C101—P1 119.9 (3) C404—C403—C402 120.6 (6)
C103—C102—C101 120.6 (4) C404—C403—H403 119.7
C103—C102—H102 119.7 C402—C403—H403 119.7
C101—C102—H102 119.7 C403—C404—C405 119.9 (6)
C104—C103—C102 120.1 (5) C403—C404—H404 120.1
C104—C103—H103 119.9 C405—C404—H404 120.1
C102—C103—H103 119.9 C404—C405—C406 120.2 (6)
C105—C104—C103 120.2 (4) C404—C405—H405 119.9
C105—C104—H104 119.9 C406—C405—H405 119.9
C103—C104—H104 119.9 C405—C406—C401 119.8 (6)
C104—C105—C106 119.3 (5) C405—C406—H406 120.1
C104—C105—H105 120.3 C401—C406—H406 120.1
C106—C105—H105 120.3 C412—C407—C408 118.6 (4)
C105—C106—C101 121.6 (4) C412—C407—P4 121.5 (3)
C105—C106—H106 119.2 C408—C407—P4 120.0 (3)
C101—C106—H106 119.2 C409—C408—C407 120.5 (4)
C112—C107—C108 118.7 (4) C409—C408—H408 119.7
C112—C107—P1 123.8 (4) C407—C408—H408 119.7
C108—C107—P1 117.5 (3) C408—C409—C410 119.9 (5)
C109—C108—C107 120.7 (5) C408—C409—H409 120.1
C109—C108—H108 119.7 C410—C409—H409 120.1
C107—C108—H108 119.7 C411—C410—C409 119.9 (5)
C110—C109—C108 120.0 (5) C411—C410—H410 120.1
C110—C109—H109 120.0 C409—C410—H410 120.1
C108—C109—H109 120.0 C410—C411—C412 120.9 (5)
C111—C110—C109 119.9 (5) C410—C411—H411 119.6
C111—C110—H110 120.0 C412—C411—H411 119.6
C109—C110—H110 120.0 C411—C412—C407 120.3 (4)
C110—C111—C112 120.5 (6) C411—C412—H412 119.9
C110—C111—H111 119.8 C407—C412—H412 119.9
C112—C111—H111 119.8
C2—P2—C1—C4 48.9 (4) P2—C201—C202—C203 −176.4 (4)
C207—P2—C1—C4 163.4 (3) C201—C202—C203—C204 0.8 (8)
C201—P2—C1—C4 −74.0 (4) C202—C203—C204—C205 −1.0 (9)
C2—P2—C1—P3 −165.7 (2) C203—C204—C205—C206 1.0 (9)
C207—P2—C1—P3 −51.2 (3) C204—C205—C206—C201 −0.6 (9)
C201—P2—C1—P3 71.4 (3) C202—C201—C206—C205 0.4 (7)
C2—P2—C1—Ir1 −26.5 (3) P2—C201—C206—C205 176.3 (4)
C207—P2—C1—Ir1 88.0 (2) C2—P2—C207—C208 53.0 (4)
C201—P2—C1—Ir1 −149.5 (2) C201—P2—C207—C208 166.7 (3)
C307—P3—C1—C4 41.4 (3) C1—P2—C207—C208 −64.7 (4)
C3—P3—C1—C4 −77.6 (3) C2—P2—C207—C212 −119.3 (4)
C301—P3—C1—C4 163.7 (3) C201—P2—C207—C212 −5.6 (4)
C307—P3—C1—P2 −107.0 (3) C1—P2—C207—C212 123.0 (4)
C3—P3—C1—P2 134.1 (2) C212—C207—C208—C209 0.6 (7)
C301—P3—C1—P2 15.4 (3) P2—C207—C208—C209 −171.8 (4)
C307—P3—C1—Ir1 114.1 (2) C207—C208—C209—C210 −0.6 (7)
C3—P3—C1—Ir1 −4.9 (3) C208—C209—C210—C211 −0.5 (8)
C301—P3—C1—Ir1 −123.6 (2) C209—C210—C211—C212 1.5 (9)
C207—P2—C2—P1 −98.2 (2) C210—C211—C212—C207 −1.5 (8)
C201—P2—C2—P1 149.2 (2) C208—C207—C212—C211 0.5 (7)
C1—P2—C2—P1 20.8 (3) P2—C207—C212—C211 172.7 (4)
C101—P1—C2—P2 −133.9 (2) C307—P3—C301—C302 −159.6 (4)
C107—P1—C2—P2 118.9 (2) C3—P3—C301—C302 −44.0 (4)
Ir1—P1—C2—P2 −7.3 (3) C1—P3—C301—C302 75.4 (4)
C307—P3—C3—P4 −87.5 (3) C307—P3—C301—C306 15.4 (4)
C301—P3—C3—P4 159.3 (2) C3—P3—C301—C306 131.0 (4)
C1—P3—C3—P4 32.7 (3) C1—P3—C301—C306 −109.6 (4)
C407—P4—C3—P3 81.0 (3) C306—C301—C302—C303 1.2 (7)
C401—P4—C3—P3 −170.0 (2) P3—C301—C302—C303 176.2 (4)
Ir1—P4—C3—P3 −43.2 (2) C301—C302—C303—C304 −0.3 (7)
P2—C1—C4—C5 17.6 (5) C302—C303—C304—C305 0.0 (8)
P3—C1—C4—C5 −130.5 (3) C303—C304—C305—C306 −0.6 (8)
Ir1—C1—C4—C5 121.8 (4) C304—C305—C306—C301 1.5 (8)
P2—C1—C4—Ir1 −104.1 (3) C302—C301—C306—C305 −1.8 (7)
P3—C1—C4—Ir1 107.8 (2) P3—C301—C306—C305 −176.9 (4)
C6—O2—C5—O1 1.6 (6) C3—P3—C307—C308 141.9 (4)
C6—O2—C5—C4 −178.7 (3) C301—P3—C307—C308 −105.0 (4)
C1—C4—C5—O1 −9.5 (6) C1—P3—C307—C308 24.3 (4)
Ir1—C4—C5—O1 80.8 (5) C3—P3—C307—C312 −43.2 (4)
C1—C4—C5—O2 170.8 (3) C301—P3—C307—C312 69.9 (4)
Ir1—C4—C5—O2 −98.9 (4) C1—P3—C307—C312 −160.7 (4)
C5—O2—C6—C7 −174.9 (4) C312—C307—C308—C309 −0.7 (7)
C107—P1—C101—C102 −126.3 (3) P3—C307—C308—C309 174.1 (4)
C2—P1—C101—C102 124.8 (3) C307—C308—C309—C310 1.3 (8)
Ir1—P1—C101—C102 5.6 (4) C308—C309—C310—C311 −0.5 (10)
C107—P1—C101—C106 55.4 (4) C309—C310—C311—C312 −0.9 (10)
C2—P1—C101—C106 −53.5 (4) C310—C311—C312—C307 1.6 (9)
Ir1—P1—C101—C106 −172.7 (3) C308—C307—C312—C311 −0.7 (7)
C106—C101—C102—C103 −0.3 (6) P3—C307—C312—C311 −175.8 (4)
P1—C101—C102—C103 −178.6 (3) C407—P4—C401—C402 −84.0 (5)
C101—C102—C103—C104 0.2 (7) C3—P4—C401—C402 165.6 (5)
C102—C103—C104—C105 0.4 (7) Ir1—P4—C401—C402 52.5 (5)
C103—C104—C105—C106 −0.9 (7) C407—P4—C401—C406 90.9 (4)
C104—C105—C106—C101 0.7 (7) C3—P4—C401—C406 −19.6 (4)
C102—C101—C106—C105 −0.1 (6) Ir1—P4—C401—C406 −132.7 (4)
P1—C101—C106—C105 178.2 (4) C406—C401—C402—C403 6.0 (10)
C101—P1—C107—C112 −89.9 (5) P4—C401—C402—C403 −178.9 (6)
C2—P1—C107—C112 15.7 (5) C401—C402—C403—C404 −2.5 (12)
Ir1—P1—C107—C112 136.7 (4) C402—C403—C404—C405 −1.7 (12)
C101—P1—C107—C108 89.5 (4) C403—C404—C405—C406 2.2 (10)
C2—P1—C107—C108 −164.9 (4) C404—C405—C406—C401 1.4 (9)
Ir1—P1—C107—C108 −43.8 (4) C402—C401—C406—C405 −5.5 (8)
C112—C107—C108—C109 −0.9 (8) P4—C401—C406—C405 179.6 (4)
P1—C107—C108—C109 179.7 (4) C401—P4—C407—C412 −65.3 (4)
C107—C108—C109—C110 1.3 (9) C3—P4—C407—C412 43.9 (4)
C108—C109—C110—C111 −1.1 (10) Ir1—P4—C407—C412 156.7 (3)
C109—C110—C111—C112 0.6 (11) C401—P4—C407—C408 114.3 (4)
C108—C107—C112—C111 0.4 (8) C3—P4—C407—C408 −136.5 (4)
P1—C107—C112—C111 179.8 (5) Ir1—P4—C407—C408 −23.8 (4)
C110—C111—C112—C107 −0.3 (11) C412—C407—C408—C409 −0.7 (7)
C2—P2—C201—C206 16.9 (4) P4—C407—C408—C409 179.8 (4)
C207—P2—C201—C206 −94.3 (4) C407—C408—C409—C410 0.7 (7)
C1—P2—C201—C206 140.7 (4) C408—C409—C410—C411 −0.1 (8)
C2—P2—C201—C202 −167.2 (4) C409—C410—C411—C412 −0.6 (8)
C207—P2—C201—C202 81.6 (4) C410—C411—C412—C407 0.6 (7)
C1—P2—C201—C202 −43.5 (4) C408—C407—C412—C411 0.0 (7)
C206—C201—C202—C203 −0.4 (7) P4—C407—C412—C411 179.6 (4)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')dichloridoiridium(III) chloride–methanol–water (1/1/2) (6) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O1 0.98 2.33 2.852 (5) 112
C2—H2B···O5i 0.98 2.45 3.320 (8) 148
C3—H3B···Cl3 0.98 2.66 3.589 (4) 158
C6—H6A···O3ii 0.98 2.40 3.369 (8) 169
C102—H102···Cl1 0.94 2.63 3.343 (4) 133
C108—H108···Cl1 0.94 2.82 3.671 (5) 151
C206—H206···Cl3i 0.94 2.87 3.742 (5) 156
C208—H208···Cl2 0.94 2.64 3.487 (5) 150
C312—H312···Cl3 0.94 2.84 3.749 (6) 164
C402—H402···Cl1 0.94 2.59 3.398 (6) 144
C406—H406···Cl3 0.94 2.88 3.757 (6) 156
C412—H412···Cl3 0.94 2.95 3.870 (5) 167

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z+2.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')carbonyl(ethoxyoxoethanide)iridium(III) dichloride–methylene chloride–water (1/2/1.5) (7) . Crystal data

[Ir(C4H7O2)(C55H50O2P4)(CO)]Cl2·2CH2Cl2·1.5H2O Z = 2
Mr = 1441.91 F(000) = 1454
Triclinic, P1 Dx = 1.505 Mg m3
a = 11.7326 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.8815 (2) Å Cell parameters from 109564 reflections
c = 22.2615 (3) Å θ = 1.0–27.4°
α = 75.477 (1)° µ = 2.50 mm1
β = 86.508 (1)° T = 233 K
γ = 65.212 (1)° Prism, yellow
V = 3182.38 (9) Å3 0.31 × 0.23 × 0.19 mm

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')carbonyl(ethoxyoxoethanide)iridium(III) dichloride–methylene chloride–water (1/2/1.5) (7) . Data collection

Nonius KappaCCD diffractometer 11695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
Graphite monochromator θmax = 26.0°, θmin = 1.9°
phi– and ω–scans h = −14→14
23329 measured reflections k = −17→16
12496 independent reflections l = −26→27

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')carbonyl(ethoxyoxoethanide)iridium(III) dichloride–methylene chloride–water (1/2/1.5) (7) . Refinement

Refinement on F2 3 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.026P)2 + 5.2527P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
12496 reflections Δρmax = 0.97 e Å3
751 parameters Δρmin = −1.29 e Å3

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')carbonyl(ethoxyoxoethanide)iridium(III) dichloride–methylene chloride–water (1/2/1.5) (7) . Special details

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces in a good approximation semi-empirical absorptions methods (absorption correction programs like SORTAV lead to no better data sets).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen at C4 was found and refined isotropically with bond restraint (d=96pm). Hydrogens at water O6 were found and refined isotropically with bond restraints (d=84pm). The water molecule O7 was half occupied and hydrogen of it were omitted. The chlorine atoms at solvent dichloromethane CL5-C14-Cl6 were positional disordered in ratio around 2:1 (CL5-6: Cl5A-6A). C14=C14A with equal coordinates and displacement parameters for hydrogen calculation.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')carbonyl(ethoxyoxoethanide)iridium(III) dichloride–methylene chloride–water (1/2/1.5) (7) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ir1 0.18100 (2) 0.32675 (2) 0.19059 (2) 0.02360 (4)
P1 −0.01647 (7) 0.32287 (7) 0.20407 (4) 0.02798 (16)
P2 0.08519 (8) 0.24968 (7) 0.33707 (4) 0.02951 (17)
P3 0.36173 (7) 0.23582 (6) 0.31877 (3) 0.02553 (16)
P4 0.38428 (7) 0.32406 (6) 0.18358 (3) 0.02485 (15)
O1 0.2405 (2) 0.4989 (2) 0.30318 (12) 0.0441 (6)
O2 0.0747 (2) 0.60098 (18) 0.23599 (11) 0.0398 (6)
O3 0.2584 (3) 0.4317 (3) 0.02412 (12) 0.0555 (7)
O4 0.1299 (3) 0.3486 (2) 0.02816 (11) 0.0512 (7)
O5 0.2606 (3) 0.1321 (2) 0.13439 (14) 0.0542 (7)
C1 0.1994 (3) 0.2948 (2) 0.29337 (13) 0.0258 (6)
C2 0.0016 (3) 0.2266 (3) 0.28035 (14) 0.0322 (7)
H2A −0.0816 0.2349 0.2950 0.039*
H2B 0.0475 0.1515 0.2761 0.039*
C3 0.4342 (3) 0.3087 (3) 0.26346 (13) 0.0275 (6)
H3A 0.5259 0.2688 0.2690 0.033*
H3B 0.4109 0.3813 0.2707 0.033*
C4 0.1312 (3) 0.4148 (2) 0.26037 (13) 0.0264 (6)
H4 0.0434 (18) 0.441 (3) 0.2635 (15) 0.030 (9)*
C5 0.1589 (3) 0.5053 (3) 0.26978 (15) 0.0320 (7)
C6 0.0842 (4) 0.7004 (3) 0.2418 (2) 0.0530 (10)
H6A 0.1702 0.6939 0.2351 0.064*
H6B 0.0618 0.7123 0.2833 0.064*
C7 −0.0043 (6) 0.7923 (4) 0.1938 (3) 0.093 (2)
H7A −0.0011 0.8601 0.1960 0.140*
H7B 0.0190 0.7795 0.1530 0.140*
H7C −0.0889 0.7977 0.2010 0.140*
C8 0.1075 (3) 0.4468 (3) 0.10236 (14) 0.0334 (7)
H8A 0.0184 0.4633 0.0967 0.040*
H8B 0.1127 0.5147 0.1041 0.040*
C9 0.1736 (3) 0.4113 (3) 0.04821 (14) 0.0368 (7)
C10 0.1946 (5) 0.3027 (4) −0.0222 (2) 0.0668 (13)
H10A 0.2829 0.2543 −0.0095 0.080*
H10B 0.1916 0.3612 −0.0584 0.080*
C11 0.1298 (7) 0.2398 (5) −0.0379 (3) 0.099 (2)
H11A 0.1708 0.2076 −0.0717 0.149*
H11B 0.1335 0.1821 −0.0018 0.149*
H11C 0.0426 0.2885 −0.0505 0.149*
C12 0.2317 (3) 0.2051 (3) 0.15415 (15) 0.0331 (7)
C101 −0.0676 (3) 0.2706 (3) 0.14917 (15) 0.0335 (7)
C102 −0.0305 (4) 0.1594 (3) 0.15564 (19) 0.0524 (10)
H102 0.0193 0.1079 0.1906 0.063*
C103 −0.0678 (5) 0.1250 (4) 0.1099 (2) 0.0660 (13)
H103 −0.0443 0.0498 0.1144 0.079*
C104 −0.1382 (5) 0.1990 (4) 0.0586 (2) 0.0607 (12)
H104 −0.1625 0.1743 0.0280 0.073*
C105 −0.1736 (4) 0.3080 (4) 0.05112 (18) 0.0506 (10)
H105 −0.2219 0.3583 0.0155 0.061*
C106 −0.1383 (3) 0.3449 (3) 0.09598 (16) 0.0416 (8)
H106 −0.1622 0.4203 0.0906 0.050*
C107 −0.1551 (3) 0.4470 (3) 0.20753 (15) 0.0343 (7)
C108 −0.1557 (3) 0.5505 (3) 0.19268 (16) 0.0397 (8)
H108 −0.0819 0.5588 0.1798 0.048*
C109 −0.2639 (4) 0.6416 (3) 0.1967 (2) 0.0544 (10)
H109 −0.2636 0.7114 0.1869 0.065*
C110 −0.3727 (4) 0.6289 (4) 0.2153 (2) 0.0639 (12)
H110 −0.4463 0.6903 0.2186 0.077*
C111 −0.3735 (4) 0.5262 (4) 0.2292 (2) 0.0586 (11)
H111 −0.4478 0.5183 0.2416 0.070*
C112 −0.2664 (3) 0.4361 (3) 0.22511 (17) 0.0454 (9)
H112 −0.2678 0.3667 0.2341 0.055*
C201 0.1375 (3) 0.1290 (3) 0.40066 (14) 0.0360 (7)
C202 0.1785 (4) 0.0254 (3) 0.39114 (18) 0.0494 (9)
H202 0.1838 0.0162 0.3505 0.059*
C203 0.2117 (5) −0.0648 (4) 0.4412 (2) 0.0710 (14)
H203 0.2409 −0.1352 0.4344 0.085*
C204 0.2025 (5) −0.0524 (4) 0.5010 (2) 0.0754 (15)
H204 0.2255 −0.1142 0.5348 0.091*
C205 0.1602 (5) 0.0495 (4) 0.51097 (19) 0.0699 (14)
H205 0.1536 0.0576 0.5519 0.084*
C206 0.1266 (4) 0.1415 (4) 0.46165 (17) 0.0538 (10)
H206 0.0968 0.2116 0.4690 0.065*
C207 −0.0190 (3) 0.3598 (3) 0.36982 (15) 0.0404 (8)
C208 0.0283 (4) 0.4210 (4) 0.39200 (18) 0.0542 (10)
H208 0.1143 0.4053 0.3896 0.065*
C209 −0.0505 (6) 0.5050 (5) 0.4177 (2) 0.0834 (17)
H209 −0.0180 0.5465 0.4327 0.100*
C210 −0.1743 (7) 0.5277 (6) 0.4213 (3) 0.100 (2)
H210 −0.2280 0.5860 0.4379 0.121*
C211 −0.2220 (5) 0.4656 (6) 0.4006 (3) 0.100 (2)
H211 −0.3078 0.4811 0.4043 0.119*
C212 −0.1449 (4) 0.3800 (4) 0.37442 (19) 0.0615 (12)
H212 −0.1773 0.3375 0.3604 0.074*
C301 0.3972 (3) 0.2405 (3) 0.39562 (14) 0.0319 (7)
C302 0.3965 (4) 0.1578 (3) 0.44585 (16) 0.0452 (9)
H302 0.3775 0.1016 0.4394 0.054*
C303 0.4237 (5) 0.1584 (4) 0.50518 (18) 0.0617 (12)
H303 0.4215 0.1033 0.5392 0.074*
C304 0.4536 (5) 0.2385 (4) 0.51477 (18) 0.0635 (13)
H304 0.4723 0.2378 0.5554 0.076*
C305 0.4568 (4) 0.3201 (4) 0.46571 (19) 0.0589 (11)
H305 0.4781 0.3747 0.4727 0.071*
C306 0.4285 (4) 0.3214 (3) 0.40556 (17) 0.0444 (9)
H306 0.4305 0.3770 0.3718 0.053*
C307 0.4396 (3) 0.0935 (2) 0.31728 (14) 0.0294 (6)
C308 0.3872 (3) 0.0411 (3) 0.28949 (16) 0.0382 (8)
H308 0.3039 0.0785 0.2728 0.046*
C309 0.4580 (4) −0.0664 (3) 0.28642 (19) 0.0503 (9)
H309 0.4217 −0.1023 0.2686 0.060*
C310 0.5809 (4) −0.1206 (3) 0.3093 (2) 0.0522 (10)
H310 0.6287 −0.1930 0.3063 0.063*
C311 0.6345 (4) −0.0693 (3) 0.33646 (18) 0.0451 (9)
H311 0.7187 −0.1065 0.3517 0.054*
C312 0.5640 (3) 0.0370 (3) 0.34124 (15) 0.0362 (7)
H312 0.5999 0.0712 0.3607 0.043*
C401 0.4056 (3) 0.4445 (3) 0.13947 (14) 0.0298 (6)
C402 0.3124 (3) 0.5476 (3) 0.13833 (16) 0.0397 (8)
H402 0.2396 0.5549 0.1605 0.048*
C403 0.3264 (4) 0.6402 (3) 0.10452 (19) 0.0488 (9)
H403 0.2632 0.7101 0.1040 0.059*
C404 0.4319 (4) 0.6305 (3) 0.07180 (18) 0.0481 (9)
H404 0.4409 0.6936 0.0491 0.058*
C405 0.5241 (4) 0.5287 (3) 0.07225 (18) 0.0478 (9)
H405 0.5961 0.5221 0.0496 0.057*
C406 0.5115 (3) 0.4355 (3) 0.10599 (16) 0.0394 (8)
H406 0.5752 0.3660 0.1062 0.047*
C407 0.5050 (3) 0.2106 (3) 0.15751 (15) 0.0316 (7)
C408 0.4890 (4) 0.1989 (3) 0.09900 (18) 0.0458 (9)
H408 0.4177 0.2500 0.0735 0.055*
C409 0.5773 (4) 0.1125 (4) 0.0779 (2) 0.0590 (11)
H409 0.5663 0.1051 0.0381 0.071*
C410 0.6809 (5) 0.0375 (4) 0.1154 (2) 0.0652 (13)
H410 0.7395 −0.0225 0.1016 0.078*
C411 0.6996 (4) 0.0494 (4) 0.1723 (2) 0.0665 (13)
H411 0.7718 −0.0017 0.1972 0.080*
C412 0.6133 (4) 0.1358 (3) 0.19386 (18) 0.0474 (9)
H412 0.6276 0.1443 0.2329 0.057*
Cl1 −0.26323 (9) 0.19319 (10) 0.33214 (5) 0.0573 (3)
Cl2 0.17302 (11) −0.07900 (9) 0.26051 (5) 0.0607 (3)
C13 0.3341 (7) 0.8877 (5) 0.1243 (3) 0.097 (2)
H13A 0.2976 0.9296 0.1555 0.117*
H13B 0.3525 0.8108 0.1435 0.117*
Cl3 0.4728 (3) 0.8992 (2) 0.10094 (13) 0.1458 (8)
Cl4 0.2257 (2) 0.93632 (14) 0.06158 (9) 0.1169 (6)
C14 −0.7130 (7) 0.6657 (5) 0.3733 (3) 0.0917 (19) 0.65
H14A −0.7622 0.7437 0.3543 0.110* 0.65
H14B −0.7438 0.6236 0.3546 0.110* 0.65
Cl5 −0.7328 (5) 0.6391 (3) 0.45165 (15) 0.1329 (15) 0.65
Cl6 −0.5546 (6) 0.6307 (7) 0.3585 (4) 0.167 (3) 0.65
C14A −0.7130 (7) 0.6657 (5) 0.3733 (3) 0.0917 (19) 0.35
H14C −0.7144 0.6199 0.3465 0.110* 0.35
H14D −0.7421 0.7406 0.3471 0.110* 0.35
Cl5A −0.832 (3) 0.6662 (17) 0.4298 (7) 0.355 (14) 0.35
Cl6A −0.5736 (14) 0.6287 (15) 0.3920 (10) 0.276 (12) 0.35
O6 −0.0892 (5) −0.0527 (5) 0.3189 (3) 0.1181 (17)
H6OA −0.013 (3) −0.063 (6) 0.316 (4) 0.13 (3)*
H6OB −0.133 (5) 0.012 (2) 0.323 (3) 0.078 (19)*
O7 −1.0377 (12) 0.7546 (9) 0.4039 (6) 0.141 (4) 0.5

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')carbonyl(ethoxyoxoethanide)iridium(III) dichloride–methylene chloride–water (1/2/1.5) (7) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.02408 (6) 0.02543 (7) 0.02014 (6) −0.01177 (5) −0.00110 (4) −0.00062 (4)
P1 0.0247 (4) 0.0330 (4) 0.0248 (4) −0.0140 (3) −0.0033 (3) −0.0001 (3)
P2 0.0283 (4) 0.0362 (4) 0.0228 (4) −0.0159 (3) 0.0004 (3) −0.0008 (3)
P3 0.0255 (4) 0.0285 (4) 0.0210 (3) −0.0125 (3) −0.0025 (3) −0.0003 (3)
P4 0.0235 (4) 0.0255 (4) 0.0236 (4) −0.0111 (3) 0.0011 (3) −0.0013 (3)
O1 0.0451 (14) 0.0380 (13) 0.0475 (14) −0.0129 (11) −0.0168 (12) −0.0114 (11)
O2 0.0393 (13) 0.0257 (11) 0.0495 (14) −0.0082 (10) −0.0123 (11) −0.0071 (10)
O3 0.0543 (17) 0.077 (2) 0.0410 (14) −0.0398 (16) 0.0130 (13) −0.0048 (13)
O4 0.0694 (19) 0.0627 (17) 0.0328 (13) −0.0365 (15) 0.0086 (12) −0.0165 (12)
O5 0.0646 (19) 0.0441 (15) 0.0625 (18) −0.0250 (14) 0.0087 (14) −0.0249 (14)
C1 0.0271 (15) 0.0310 (15) 0.0190 (13) −0.0142 (13) 0.0007 (11) −0.0018 (11)
C2 0.0299 (16) 0.0413 (18) 0.0273 (15) −0.0217 (14) −0.0020 (12) 0.0010 (13)
C3 0.0251 (15) 0.0302 (15) 0.0267 (15) −0.0138 (12) −0.0009 (12) −0.0017 (12)
C4 0.0233 (15) 0.0288 (15) 0.0230 (14) −0.0083 (12) −0.0001 (11) −0.0041 (12)
C5 0.0318 (17) 0.0286 (16) 0.0303 (16) −0.0083 (13) 0.0024 (13) −0.0066 (13)
C6 0.060 (3) 0.0301 (18) 0.067 (3) −0.0143 (18) −0.015 (2) −0.0126 (18)
C7 0.098 (4) 0.032 (2) 0.134 (5) −0.011 (2) −0.055 (4) −0.008 (3)
C8 0.0356 (17) 0.0345 (17) 0.0230 (15) −0.0131 (14) −0.0050 (13) 0.0037 (12)
C9 0.0389 (19) 0.0400 (18) 0.0230 (15) −0.0151 (15) −0.0038 (13) 0.0052 (13)
C10 0.086 (4) 0.071 (3) 0.039 (2) −0.024 (3) 0.003 (2) −0.022 (2)
C11 0.161 (7) 0.079 (4) 0.070 (4) −0.053 (4) 0.006 (4) −0.034 (3)
C12 0.0338 (17) 0.0349 (17) 0.0302 (16) −0.0163 (14) −0.0016 (13) −0.0033 (14)
C101 0.0306 (16) 0.0398 (18) 0.0325 (16) −0.0190 (14) −0.0019 (13) −0.0043 (14)
C102 0.062 (3) 0.045 (2) 0.052 (2) −0.026 (2) −0.0127 (19) −0.0044 (18)
C103 0.085 (3) 0.051 (3) 0.075 (3) −0.038 (2) −0.009 (3) −0.018 (2)
C104 0.070 (3) 0.069 (3) 0.056 (3) −0.035 (2) −0.013 (2) −0.022 (2)
C105 0.051 (2) 0.065 (3) 0.041 (2) −0.028 (2) −0.0091 (17) −0.0112 (18)
C106 0.042 (2) 0.045 (2) 0.0369 (18) −0.0198 (17) −0.0063 (15) −0.0058 (15)
C107 0.0288 (16) 0.0409 (18) 0.0290 (16) −0.0123 (14) −0.0037 (13) −0.0045 (13)
C108 0.0335 (18) 0.0423 (19) 0.0357 (18) −0.0115 (15) −0.0036 (14) −0.0031 (15)
C109 0.048 (2) 0.044 (2) 0.059 (2) −0.0092 (18) −0.0060 (19) −0.0071 (19)
C110 0.038 (2) 0.062 (3) 0.070 (3) 0.000 (2) 0.002 (2) −0.018 (2)
C111 0.032 (2) 0.070 (3) 0.068 (3) −0.017 (2) 0.0058 (19) −0.016 (2)
C112 0.0328 (18) 0.055 (2) 0.047 (2) −0.0175 (17) 0.0020 (15) −0.0099 (17)
C201 0.0348 (17) 0.0460 (19) 0.0253 (15) −0.0225 (15) −0.0028 (13) 0.0055 (14)
C202 0.063 (3) 0.045 (2) 0.0362 (19) −0.0252 (19) −0.0037 (17) 0.0026 (16)
C203 0.103 (4) 0.043 (2) 0.056 (3) −0.030 (3) −0.008 (3) 0.010 (2)
C204 0.096 (4) 0.068 (3) 0.046 (3) −0.038 (3) −0.009 (2) 0.024 (2)
C205 0.093 (4) 0.084 (4) 0.026 (2) −0.042 (3) −0.002 (2) 0.008 (2)
C206 0.068 (3) 0.060 (3) 0.0281 (18) −0.028 (2) −0.0005 (17) 0.0002 (17)
C207 0.0394 (19) 0.047 (2) 0.0286 (16) −0.0144 (16) 0.0083 (14) −0.0062 (15)
C208 0.068 (3) 0.058 (3) 0.041 (2) −0.029 (2) 0.0203 (19) −0.0191 (19)
C209 0.114 (5) 0.075 (4) 0.065 (3) −0.035 (3) 0.033 (3) −0.041 (3)
C210 0.090 (5) 0.094 (5) 0.096 (5) −0.004 (4) 0.031 (4) −0.055 (4)
C211 0.050 (3) 0.133 (6) 0.085 (4) 0.001 (3) 0.020 (3) −0.049 (4)
C212 0.040 (2) 0.087 (3) 0.048 (2) −0.016 (2) 0.0090 (18) −0.021 (2)
C301 0.0282 (16) 0.0372 (17) 0.0246 (15) −0.0097 (13) −0.0045 (12) −0.0037 (13)
C302 0.052 (2) 0.051 (2) 0.0295 (17) −0.0227 (18) −0.0041 (15) −0.0013 (16)
C303 0.080 (3) 0.070 (3) 0.0256 (18) −0.028 (3) −0.0077 (19) 0.0006 (18)
C304 0.070 (3) 0.077 (3) 0.030 (2) −0.015 (2) −0.0125 (19) −0.016 (2)
C305 0.068 (3) 0.059 (3) 0.048 (2) −0.020 (2) −0.019 (2) −0.018 (2)
C306 0.050 (2) 0.043 (2) 0.0374 (19) −0.0162 (17) −0.0116 (16) −0.0079 (16)
C307 0.0285 (16) 0.0286 (15) 0.0273 (15) −0.0121 (13) 0.0013 (12) −0.0001 (12)
C308 0.0355 (18) 0.0368 (18) 0.0402 (18) −0.0157 (15) −0.0040 (14) −0.0036 (15)
C309 0.058 (2) 0.040 (2) 0.056 (2) −0.0215 (19) −0.0046 (19) −0.0138 (18)
C310 0.055 (2) 0.0330 (19) 0.058 (2) −0.0088 (18) 0.0016 (19) −0.0101 (17)
C311 0.0363 (19) 0.0384 (19) 0.047 (2) −0.0077 (16) −0.0011 (16) −0.0004 (16)
C312 0.0350 (18) 0.0348 (17) 0.0353 (17) −0.0149 (14) −0.0019 (14) −0.0014 (14)
C401 0.0338 (16) 0.0315 (16) 0.0240 (14) −0.0170 (13) −0.0024 (12) 0.0003 (12)
C402 0.043 (2) 0.0355 (18) 0.0407 (19) −0.0199 (16) 0.0069 (15) −0.0046 (15)
C403 0.056 (2) 0.0312 (18) 0.055 (2) −0.0185 (17) −0.0004 (19) −0.0017 (16)
C404 0.061 (2) 0.045 (2) 0.043 (2) −0.035 (2) 0.0030 (18) 0.0031 (16)
C405 0.050 (2) 0.054 (2) 0.045 (2) −0.0336 (19) 0.0110 (17) −0.0024 (17)
C406 0.0371 (18) 0.0406 (19) 0.0423 (19) −0.0222 (16) 0.0083 (15) −0.0041 (15)
C407 0.0310 (16) 0.0291 (16) 0.0339 (16) −0.0144 (13) 0.0082 (13) −0.0047 (13)
C408 0.040 (2) 0.051 (2) 0.048 (2) −0.0175 (17) 0.0072 (16) −0.0195 (18)
C409 0.065 (3) 0.064 (3) 0.062 (3) −0.032 (2) 0.021 (2) −0.035 (2)
C410 0.063 (3) 0.044 (2) 0.075 (3) −0.007 (2) 0.021 (2) −0.025 (2)
C411 0.054 (3) 0.048 (2) 0.064 (3) 0.004 (2) 0.011 (2) −0.006 (2)
C412 0.038 (2) 0.045 (2) 0.041 (2) −0.0052 (16) 0.0055 (16) −0.0030 (16)
Cl1 0.0438 (5) 0.0810 (7) 0.0495 (5) −0.0391 (5) −0.0037 (4) 0.0043 (5)
Cl2 0.0611 (6) 0.0621 (6) 0.0573 (6) −0.0275 (5) −0.0059 (5) −0.0071 (5)
C13 0.154 (6) 0.068 (3) 0.083 (4) −0.052 (4) −0.001 (4) −0.031 (3)
Cl3 0.153 (2) 0.1225 (17) 0.162 (2) −0.0639 (16) 0.0071 (17) −0.0252 (15)
Cl4 0.1430 (17) 0.0734 (10) 0.1140 (14) −0.0276 (10) 0.0145 (12) −0.0223 (9)
C14 0.123 (5) 0.071 (4) 0.082 (4) −0.041 (4) −0.031 (4) −0.012 (3)
Cl5 0.222 (5) 0.0797 (17) 0.0748 (18) −0.050 (2) 0.002 (2) −0.0040 (14)
Cl6 0.092 (3) 0.148 (4) 0.213 (6) −0.023 (3) 0.027 (3) −0.016 (4)
C14A 0.123 (5) 0.071 (4) 0.082 (4) −0.041 (4) −0.031 (4) −0.012 (3)
Cl5A 0.63 (4) 0.40 (2) 0.173 (13) −0.38 (3) −0.003 (18) −0.010 (14)
Cl6A 0.169 (13) 0.207 (13) 0.47 (3) −0.030 (9) −0.151 (16) −0.171 (18)
O6 0.084 (4) 0.102 (4) 0.173 (5) −0.049 (3) 0.035 (4) −0.031 (4)
O7 0.137 (10) 0.108 (8) 0.188 (12) −0.055 (7) 0.021 (9) −0.049 (8)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')carbonyl(ethoxyoxoethanide)iridium(III) dichloride–methylene chloride–water (1/2/1.5) (7) . Geometric parameters (Å, º)

Ir1—C12 1.910 (3) C203—H203 0.9400
Ir1—C4 2.119 (3) C204—C205 1.361 (7)
Ir1—C8 2.177 (3) C204—H204 0.9400
Ir1—C1 2.225 (3) C205—C206 1.385 (6)
Ir1—P1 2.3393 (8) C205—H205 0.9400
Ir1—P4 2.3658 (8) C206—H206 0.9400
P1—C101 1.811 (3) C207—C208 1.382 (6)
P1—C107 1.822 (3) C207—C212 1.385 (6)
P1—C2 1.839 (3) C208—C209 1.381 (6)
P2—C201 1.800 (3) C208—H208 0.9400
P2—C207 1.802 (4) C209—C210 1.353 (9)
P2—C2 1.810 (3) C209—H209 0.9400
P2—C1 1.837 (3) C210—C211 1.380 (10)
P3—C1 1.791 (3) C210—H210 0.9400
P3—C3 1.798 (3) C211—C212 1.398 (7)
P3—C307 1.804 (3) C211—H211 0.9400
P3—C301 1.808 (3) C212—H212 0.9400
P4—C407 1.820 (3) C301—C306 1.387 (5)
P4—C401 1.821 (3) C301—C302 1.390 (5)
P4—C3 1.840 (3) C302—C303 1.381 (5)
O1—C5 1.208 (4) C302—H302 0.9400
O2—C5 1.340 (4) C303—C304 1.364 (7)
O2—C6 1.468 (4) C303—H303 0.9400
O3—C9 1.205 (4) C304—C305 1.374 (7)
O4—C9 1.348 (4) C304—H304 0.9400
O4—C10 1.446 (5) C305—C306 1.393 (5)
O5—C12 1.120 (4) C305—H305 0.9400
C1—C4 1.515 (4) C306—H306 0.9400
C2—H2A 0.9800 C307—C308 1.392 (5)
C2—H2B 0.9800 C307—C312 1.398 (4)
C3—H3A 0.9800 C308—C309 1.388 (5)
C3—H3B 0.9800 C308—H308 0.9400
C4—C5 1.488 (4) C309—C310 1.376 (6)
C4—H4 0.942 (18) C309—H309 0.9400
C6—C7 1.479 (6) C310—C311 1.381 (6)
C6—H6A 0.9800 C310—H310 0.9400
C6—H6B 0.9800 C311—C312 1.384 (5)
C7—H7A 0.9700 C311—H311 0.9400
C7—H7B 0.9700 C312—H312 0.9400
C7—H7C 0.9700 C401—C402 1.385 (5)
C8—C9 1.470 (5) C401—C406 1.386 (5)
C8—H8A 0.9800 C402—C403 1.386 (5)
C8—H8B 0.9800 C402—H402 0.9400
C10—C11 1.485 (8) C403—C404 1.371 (6)
C10—H10A 0.9800 C403—H403 0.9400
C10—H10B 0.9800 C404—C405 1.371 (6)
C11—H11A 0.9700 C404—H404 0.9400
C11—H11B 0.9700 C405—C406 1.385 (5)
C11—H11C 0.9700 C405—H405 0.9400
C101—C102 1.388 (5) C406—H406 0.9400
C101—C106 1.394 (5) C407—C408 1.385 (5)
C102—C103 1.389 (6) C407—C412 1.395 (5)
C102—H102 0.9400 C408—C409 1.383 (5)
C103—C104 1.363 (6) C408—H408 0.9400
C103—H103 0.9400 C409—C410 1.373 (7)
C104—C105 1.359 (6) C409—H409 0.9400
C104—H104 0.9400 C410—C411 1.359 (7)
C105—C106 1.384 (5) C410—H410 0.9400
C105—H105 0.9400 C411—C412 1.380 (6)
C106—H106 0.9400 C411—H411 0.9400
C107—C108 1.389 (5) C412—H412 0.9400
C107—C112 1.398 (5) C13—Cl3 1.736 (8)
C108—C109 1.383 (5) C13—Cl4 1.746 (7)
C108—H108 0.9400 C13—H13A 0.9800
C109—C110 1.386 (7) C13—H13B 0.9800
C109—H109 0.9400 C14—Cl5 1.713 (7)
C110—C111 1.385 (7) C14—Cl6 1.745 (10)
C110—H110 0.9400 C14—H14A 0.9800
C111—C112 1.370 (6) C14—H14B 0.9800
C111—H111 0.9400 C14A—Cl6A 1.545 (15)
C112—H112 0.9400 C14A—Cl5A 1.82 (2)
C201—C202 1.381 (5) C14A—H14C 0.9800
C201—C206 1.403 (5) C14A—H14D 0.9800
C202—C203 1.380 (5) O6—H6OA 0.85 (2)
C202—H202 0.9400 O6—H6OB 0.845 (19)
C203—C204 1.377 (7)
C12—Ir1—C4 158.78 (12) C112—C111—H111 119.9
C12—Ir1—C8 93.36 (13) C110—C111—H111 119.9
C4—Ir1—C8 106.70 (12) C111—C112—C107 120.2 (4)
C12—Ir1—C1 118.82 (12) C111—C112—H112 119.9
C4—Ir1—C1 40.72 (11) C107—C112—H112 119.9
C8—Ir1—C1 147.39 (12) C202—C201—C206 119.1 (3)
C12—Ir1—P1 88.65 (10) C202—C201—P2 121.8 (3)
C4—Ir1—P1 85.11 (9) C206—C201—P2 118.9 (3)
C8—Ir1—P1 88.50 (9) C203—C202—C201 120.2 (4)
C1—Ir1—P1 87.22 (8) C203—C202—H202 119.9
C12—Ir1—P4 91.76 (10) C201—C202—H202 119.9
C4—Ir1—P4 93.24 (8) C204—C203—C202 120.5 (5)
C8—Ir1—P4 95.09 (9) C204—C203—H203 119.7
C1—Ir1—P4 89.41 (8) C202—C203—H203 119.7
P1—Ir1—P4 176.35 (3) C205—C204—C203 119.9 (4)
C101—P1—C107 102.78 (15) C205—C204—H204 120.1
C101—P1—C2 106.38 (15) C203—C204—H204 120.1
C107—P1—C2 105.77 (15) C204—C205—C206 120.9 (4)
C101—P1—Ir1 116.72 (11) C204—C205—H205 119.6
C107—P1—Ir1 120.29 (11) C206—C205—H205 119.6
C2—P1—Ir1 103.76 (10) C205—C206—C201 119.4 (4)
C201—P2—C207 105.53 (16) C205—C206—H206 120.3
C201—P2—C2 107.18 (15) C201—C206—H206 120.3
C207—P2—C2 110.99 (17) C208—C207—C212 120.6 (4)
C201—P2—C1 120.40 (15) C208—C207—P2 119.7 (3)
C207—P2—C1 107.20 (16) C212—C207—P2 119.7 (3)
C2—P2—C1 105.50 (14) C209—C208—C207 120.2 (5)
C1—P3—C3 106.12 (14) C209—C208—H208 119.9
C1—P3—C307 111.84 (14) C207—C208—H208 119.9
C3—P3—C307 107.34 (14) C210—C209—C208 120.1 (6)
C1—P3—C301 117.32 (14) C210—C209—H209 120.0
C3—P3—C301 108.18 (15) C208—C209—H209 120.0
C307—P3—C301 105.63 (15) C209—C210—C211 120.3 (5)
C407—P4—C401 104.51 (14) C209—C210—H210 119.9
C407—P4—C3 105.94 (15) C211—C210—H210 119.9
C401—P4—C3 103.41 (14) C210—C211—C212 121.1 (5)
C407—P4—Ir1 116.18 (11) C210—C211—H211 119.5
C401—P4—Ir1 119.97 (11) C212—C211—H211 119.5
C3—P4—Ir1 105.34 (10) C207—C212—C211 117.7 (5)
C5—O2—C6 116.8 (3) C207—C212—H212 121.1
C9—O4—C10 116.1 (3) C211—C212—H212 121.1
C4—C1—P3 121.7 (2) C306—C301—C302 119.5 (3)
C4—C1—P2 108.3 (2) C306—C301—P3 122.3 (3)
P3—C1—P2 122.16 (16) C302—C301—P3 118.2 (3)
C4—C1—Ir1 65.88 (15) C303—C302—C301 119.8 (4)
P3—C1—Ir1 110.27 (14) C303—C302—H302 120.1
P2—C1—Ir1 115.59 (14) C301—C302—H302 120.1
P2—C2—P1 111.79 (17) C304—C303—C302 120.5 (4)
P2—C2—H2A 109.3 C304—C303—H303 119.8
P1—C2—H2A 109.3 C302—C303—H303 119.8
P2—C2—H2B 109.3 C303—C304—C305 120.7 (4)
P1—C2—H2B 109.3 C303—C304—H304 119.6
H2A—C2—H2B 107.9 C305—C304—H304 119.6
P3—C3—P4 110.67 (16) C304—C305—C306 119.6 (4)
P3—C3—H3A 109.5 C304—C305—H305 120.2
P4—C3—H3A 109.5 C306—C305—H305 120.2
P3—C3—H3B 109.5 C301—C306—C305 119.9 (4)
P4—C3—H3B 109.5 C301—C306—H306 120.1
H3A—C3—H3B 108.1 C305—C306—H306 120.1
C5—C4—C1 125.7 (3) C308—C307—C312 119.2 (3)
C5—C4—Ir1 131.9 (2) C308—C307—P3 124.0 (2)
C1—C4—Ir1 73.40 (16) C312—C307—P3 116.5 (2)
C5—C4—H4 104 (2) C309—C308—C307 119.9 (3)
C1—C4—H4 112 (2) C309—C308—H308 120.1
Ir1—C4—H4 108 (2) C307—C308—H308 120.1
O1—C5—O2 122.8 (3) C310—C309—C308 120.4 (4)
O1—C5—C4 127.9 (3) C310—C309—H309 119.8
O2—C5—C4 109.2 (3) C308—C309—H309 119.8
O2—C6—C7 106.6 (3) C309—C310—C311 120.3 (4)
O2—C6—H6A 110.4 C309—C310—H310 119.8
C7—C6—H6A 110.4 C311—C310—H310 119.8
O2—C6—H6B 110.4 C310—C311—C312 119.9 (3)
C7—C6—H6B 110.4 C310—C311—H311 120.0
H6A—C6—H6B 108.6 C312—C311—H311 120.0
C6—C7—H7A 109.5 C311—C312—C307 120.2 (3)
C6—C7—H7B 109.5 C311—C312—H312 119.9
H7A—C7—H7B 109.5 C307—C312—H312 119.9
C6—C7—H7C 109.5 C402—C401—C406 119.1 (3)
H7A—C7—H7C 109.5 C402—C401—P4 119.2 (2)
H7B—C7—H7C 109.5 C406—C401—P4 121.7 (3)
C9—C8—Ir1 114.1 (2) C401—C402—C403 120.0 (3)
C9—C8—H8A 108.7 C401—C402—H402 120.0
Ir1—C8—H8A 108.7 C403—C402—H402 120.0
C9—C8—H8B 108.7 C404—C403—C402 120.4 (4)
Ir1—C8—H8B 108.7 C404—C403—H403 119.8
H8A—C8—H8B 107.6 C402—C403—H403 119.8
O3—C9—O4 122.3 (3) C405—C404—C403 120.0 (3)
O3—C9—C8 126.2 (3) C405—C404—H404 120.0
O4—C9—C8 111.5 (3) C403—C404—H404 120.0
O4—C10—C11 107.2 (5) C404—C405—C406 120.2 (4)
O4—C10—H10A 110.3 C404—C405—H405 119.9
C11—C10—H10A 110.3 C406—C405—H405 119.9
O4—C10—H10B 110.3 C405—C406—C401 120.3 (3)
C11—C10—H10B 110.3 C405—C406—H406 119.9
H10A—C10—H10B 108.5 C401—C406—H406 119.9
C10—C11—H11A 109.5 C408—C407—C412 118.9 (3)
C10—C11—H11B 109.5 C408—C407—P4 118.6 (3)
H11A—C11—H11B 109.5 C412—C407—P4 122.6 (3)
C10—C11—H11C 109.5 C409—C408—C407 120.4 (4)
H11A—C11—H11C 109.5 C409—C408—H408 119.8
H11B—C11—H11C 109.5 C407—C408—H408 119.8
O5—C12—Ir1 177.9 (3) C410—C409—C408 119.7 (4)
C102—C101—C106 119.1 (3) C410—C409—H409 120.2
C102—C101—P1 122.4 (3) C408—C409—H409 120.2
C106—C101—P1 118.2 (3) C411—C410—C409 120.6 (4)
C101—C102—C103 119.3 (4) C411—C410—H410 119.7
C101—C102—H102 120.4 C409—C410—H410 119.7
C103—C102—H102 120.4 C410—C411—C412 120.5 (4)
C104—C103—C102 120.7 (4) C410—C411—H411 119.7
C104—C103—H103 119.6 C412—C411—H411 119.7
C102—C103—H103 119.6 C411—C412—C407 119.8 (4)
C105—C104—C103 120.7 (4) C411—C412—H412 120.1
C105—C104—H104 119.7 C407—C412—H412 120.1
C103—C104—H104 119.7 Cl3—C13—Cl4 111.3 (4)
C104—C105—C106 120.0 (4) Cl3—C13—H13A 109.4
C104—C105—H105 120.0 Cl4—C13—H13A 109.4
C106—C105—H105 120.0 Cl3—C13—H13B 109.4
C105—C106—C101 120.2 (4) Cl4—C13—H13B 109.4
C105—C106—H106 119.9 H13A—C13—H13B 108.0
C101—C106—H106 119.9 Cl5—C14—Cl6 110.5 (4)
C108—C107—C112 119.1 (3) Cl5—C14—H14A 109.6
C108—C107—P1 123.4 (3) Cl6—C14—H14A 109.6
C112—C107—P1 117.5 (3) Cl5—C14—H14B 109.6
C109—C108—C107 120.7 (4) Cl6—C14—H14B 109.6
C109—C108—H108 119.7 H14A—C14—H14B 108.1
C107—C108—H108 119.7 Cl6A—C14A—Cl5A 123.0 (11)
C108—C109—C110 119.4 (4) Cl6A—C14A—H14C 106.6
C108—C109—H109 120.3 Cl5A—C14A—H14C 106.6
C110—C109—H109 120.3 Cl6A—C14A—H14D 106.6
C111—C110—C109 120.3 (4) Cl5A—C14A—H14D 106.6
C111—C110—H110 119.9 H14C—C14A—H14D 106.5
C109—C110—H110 119.9 H6OA—O6—H6OB 109 (7)
C112—C111—C110 120.3 (4)
C3—P3—C1—C4 −32.3 (3) C1—P2—C201—C206 101.9 (3)
C307—P3—C1—C4 −149.1 (2) C206—C201—C202—C203 −1.9 (6)
C301—P3—C1—C4 88.7 (3) P2—C201—C202—C203 −176.6 (4)
C3—P3—C1—P2 −177.92 (18) C201—C202—C203—C204 1.0 (8)
C307—P3—C1—P2 65.3 (2) C202—C203—C204—C205 0.1 (9)
C301—P3—C1—P2 −56.9 (2) C203—C204—C205—C206 −0.4 (9)
C3—P3—C1—Ir1 41.19 (18) C204—C205—C206—C201 −0.5 (8)
C307—P3—C1—Ir1 −75.56 (17) C202—C201—C206—C205 1.6 (6)
C301—P3—C1—Ir1 162.17 (14) P2—C201—C206—C205 176.5 (4)
C201—P2—C1—C4 −159.6 (2) C201—P2—C207—C208 91.7 (3)
C207—P2—C1—C4 −39.2 (2) C2—P2—C207—C208 −152.5 (3)
C2—P2—C1—C4 79.2 (2) C1—P2—C207—C208 −37.7 (3)
C201—P2—C1—P3 −10.0 (3) C201—P2—C207—C212 −86.1 (3)
C207—P2—C1—P3 110.4 (2) C2—P2—C207—C212 29.7 (4)
C2—P2—C1—P3 −131.2 (2) C1—P2—C207—C212 144.4 (3)
C201—P2—C1—Ir1 128.96 (17) C212—C207—C208—C209 −1.7 (6)
C207—P2—C1—Ir1 −110.60 (17) P2—C207—C208—C209 −179.5 (4)
C2—P2—C1—Ir1 7.8 (2) C207—C208—C209—C210 0.1 (8)
C201—P2—C2—P1 −163.12 (18) C208—C209—C210—C211 1.4 (10)
C207—P2—C2—P1 82.1 (2) C209—C210—C211—C212 −1.4 (11)
C1—P2—C2—P1 −33.7 (2) C208—C207—C212—C211 1.6 (6)
C101—P1—C2—P2 167.17 (18) P2—C207—C212—C211 179.4 (4)
C107—P1—C2—P2 −84.0 (2) C210—C211—C212—C207 −0.1 (9)
Ir1—P1—C2—P2 43.49 (19) C1—P3—C301—C306 −96.7 (3)
C1—P3—C3—P4 −45.4 (2) C3—P3—C301—C306 23.2 (3)
C307—P3—C3—P4 74.32 (19) C307—P3—C301—C306 137.9 (3)
C301—P3—C3—P4 −172.12 (15) C1—P3—C301—C302 85.3 (3)
C407—P4—C3—P3 −94.87 (18) C3—P3—C301—C302 −154.8 (3)
C401—P4—C3—P3 155.50 (17) C307—P3—C301—C302 −40.1 (3)
Ir1—P4—C3—P3 28.78 (17) C306—C301—C302—C303 1.6 (6)
P3—C1—C4—C5 −30.3 (4) P3—C301—C302—C303 179.7 (3)
P2—C1—C4—C5 119.4 (3) C301—C302—C303—C304 −1.3 (7)
Ir1—C1—C4—C5 −130.1 (3) C302—C303—C304—C305 0.2 (8)
P3—C1—C4—Ir1 99.8 (2) C303—C304—C305—C306 0.4 (7)
P2—C1—C4—Ir1 −110.49 (16) C302—C301—C306—C305 −1.0 (6)
C6—O2—C5—O1 −0.8 (5) P3—C301—C306—C305 −179.0 (3)
C6—O2—C5—C4 177.3 (3) C304—C305—C306—C301 0.0 (6)
C1—C4—C5—O1 2.1 (5) C1—P3—C307—C308 10.8 (3)
Ir1—C4—C5—O1 −97.9 (4) C3—P3—C307—C308 −105.2 (3)
C1—C4—C5—O2 −175.9 (3) C301—P3—C307—C308 139.5 (3)
Ir1—C4—C5—O2 84.2 (3) C1—P3—C307—C312 −174.7 (2)
C5—O2—C6—C7 171.6 (4) C3—P3—C307—C312 69.3 (3)
C10—O4—C9—O3 2.9 (5) C301—P3—C307—C312 −46.0 (3)
C10—O4—C9—C8 −175.7 (3) C312—C307—C308—C309 0.6 (5)
Ir1—C8—C9—O3 −95.1 (4) P3—C307—C308—C309 175.0 (3)
Ir1—C8—C9—O4 83.4 (3) C307—C308—C309—C310 −1.7 (6)
C9—O4—C10—C11 −178.5 (4) C308—C309—C310—C311 1.1 (6)
C107—P1—C101—C102 −143.3 (3) C309—C310—C311—C312 0.5 (6)
C2—P1—C101—C102 −32.4 (4) C310—C311—C312—C307 −1.6 (5)
Ir1—P1—C101—C102 82.8 (3) C308—C307—C312—C311 1.0 (5)
C107—P1—C101—C106 42.1 (3) P3—C307—C312—C311 −173.8 (3)
C2—P1—C101—C106 153.0 (3) C407—P4—C401—C402 166.4 (3)
Ir1—P1—C101—C106 −91.8 (3) C3—P4—C401—C402 −82.9 (3)
C106—C101—C102—C103 −1.9 (6) Ir1—P4—C401—C402 34.0 (3)
P1—C101—C102—C103 −176.5 (4) C407—P4—C401—C406 −12.3 (3)
C101—C102—C103—C104 1.2 (7) C3—P4—C401—C406 98.4 (3)
C102—C103—C104—C105 −0.1 (8) Ir1—P4—C401—C406 −144.8 (2)
C103—C104—C105—C106 −0.1 (7) C406—C401—C402—C403 −0.6 (5)
C104—C105—C106—C101 −0.6 (6) P4—C401—C402—C403 −179.4 (3)
C102—C101—C106—C105 1.6 (6) C401—C402—C403—C404 0.3 (6)
P1—C101—C106—C105 176.4 (3) C402—C403—C404—C405 0.2 (6)
C101—P1—C107—C108 −121.0 (3) C403—C404—C405—C406 −0.4 (6)
C2—P1—C107—C108 127.6 (3) C404—C405—C406—C401 0.1 (6)
Ir1—P1—C107—C108 10.8 (3) C402—C401—C406—C405 0.4 (5)
C101—P1—C107—C112 57.8 (3) P4—C401—C406—C405 179.1 (3)
C2—P1—C107—C112 −53.6 (3) C401—P4—C407—C408 −73.7 (3)
Ir1—P1—C107—C112 −170.4 (2) C3—P4—C407—C408 177.4 (3)
C112—C107—C108—C109 1.7 (5) Ir1—P4—C407—C408 60.9 (3)
P1—C107—C108—C109 −179.5 (3) C401—P4—C407—C412 105.6 (3)
C107—C108—C109—C110 −0.5 (6) C3—P4—C407—C412 −3.3 (3)
C108—C109—C110—C111 −0.6 (7) Ir1—P4—C407—C412 −119.8 (3)
C109—C110—C111—C112 0.5 (7) C412—C407—C408—C409 2.0 (6)
C110—C111—C112—C107 0.8 (6) P4—C407—C408—C409 −178.7 (3)
C108—C107—C112—C111 −1.8 (5) C407—C408—C409—C410 0.4 (7)
P1—C107—C112—C111 179.3 (3) C408—C409—C410—C411 −2.1 (7)
C207—P2—C201—C202 155.4 (3) C409—C410—C411—C412 1.3 (8)
C2—P2—C201—C202 37.0 (3) C410—C411—C412—C407 1.2 (7)
C1—P2—C201—C202 −83.3 (3) C408—C407—C412—C411 −2.8 (6)
C207—P2—C201—C206 −19.4 (3) P4—C407—C412—C411 177.9 (3)
C2—P2—C201—C206 −137.7 (3)

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}(ethoxyoxoethanylidene)methane-κ4P,C,C',P')carbonyl(ethoxyoxoethanide)iridium(III) dichloride–methylene chloride–water (1/2/1.5) (7) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···Cl1 0.98 2.48 3.421 (3) 162
C3—H3A···Cl1i 0.98 2.59 3.488 (3) 152
C3—H3B···O1 0.98 2.21 2.968 (4) 134
C102—H102···Cl2 0.94 2.61 3.505 (4) 160
C108—H108···O2 0.94 2.61 3.313 (4) 132
C112—H112···Cl1 0.94 2.80 3.595 (4) 143
C202—H202···Cl2 0.94 2.70 3.574 (4) 156
C212—H212···Cl1 0.94 2.80 3.733 (5) 173
C306—H306···O1 0.94 2.47 3.061 (4) 121
C312—H312···Cl1i 0.94 2.73 3.503 (4) 140
C402—H402···O2 0.94 2.47 3.375 (4) 162
C408—H408···O3 0.94 2.44 3.326 (5) 156
C412—H412···Cl1i 0.94 2.97 3.866 (4) 161
C13—H13A···O5ii 0.98 2.58 3.194 (6) 121
C13—H13A···Cl2ii 0.98 2.68 3.500 (7) 141
C14—H14A···Cl2iii 0.98 2.65 3.553 (6) 153
C14—H14B···O1iv 0.98 2.37 3.327 (6) 164
C14A—H14C···O1iv 0.98 2.38 3.327 (6) 163
C14A—H14D···Cl2iii 0.98 2.59 3.553 (6) 168
O6—H6OA···Cl2 0.85 (2) 2.39 (4) 3.178 (5) 154 (7)
O6—H6OB···Cl1 0.85 (2) 2.39 (2) 3.239 (6) 178 (6)

Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x−1, y+1, z; (iv) x−1, y, z.

References

  1. Cambridge Soft (2001). CHEMDRAW. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
  2. Cohen, R., Rybtchinski, B., Gandelman, M., Rozenberg, H., Martin, J. M. L. & Milstein, D. (2003). J. Am. Chem. Soc. 125, 6532–6546. [DOI] [PubMed]
  3. Jones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307–2308.
  4. Liu, G. & Yan, H. (2015). Organometallics, 34, 591–598.
  5. Malisch, W., Grün, K., Fried, A., Reich, W., Pfister, H., Huttner, G. & Zsolnai, L. (1998). J. Organomet. Chem. 566, 271–276.
  6. Nomura, M., Fujita-Takayama, C., Sugiyama, T. & Kajitani, M. (2011). J. Organomet. Chem. 696, 4018–4038.
  7. Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Petz, W. & Frenking, G. (2010). Editors. Carbodiphosphoranes and Related Ligands, Vol. 30. Berlin Heidelberg: Springer-Verlag.
  10. Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503–3514. [DOI] [PubMed]
  11. Schlapp-Hackl, I., Pauer, B., Falschlunger, C., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2018). Acta Cryst. E74, 1643–1647. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Strecker, B., Hörlin, G., Schulz, M. & Werner, H. (1991). Chem. Ber. 124, 285–294.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Zhang, J., Barakat, K. A., Cundari, T. R., Gunnoe, T. B., Boyle, P. D., Petersen, J. L. & Day, C. S. (2005). Inorg. Chem. 44, 8379–8390. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 4, 5, 6, 7. DOI: 10.1107/S2056989018017024/wm5471sup1.cif

e-75-00012-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989018017024/wm54714sup6.hkl

e-75-00012-4sup6.hkl (873.1KB, hkl)

Structure factors: contains datablock(s) 5. DOI: 10.1107/S2056989018017024/wm54715sup7.hkl

e-75-00012-5sup7.hkl (591.9KB, hkl)

Structure factors: contains datablock(s) 6. DOI: 10.1107/S2056989018017024/wm54716sup8.hkl

e-75-00012-6sup8.hkl (755.9KB, hkl)

Structure factors: contains datablock(s) 7. DOI: 10.1107/S2056989018017024/wm54717sup9.hkl

e-75-00012-7sup9.hkl (990.8KB, hkl)

CCDC references: 1873392, 1873391, 1873390, 1873389

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES