Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jan 1;75(Pt 1):43–48. doi: 10.1107/S2056989018017322

Crystal structure and Hirshfeld surface analysis of 4-allyl-6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine

Selma Bourichi a, Youssef Kandri Rodi a, Tuncer Hökelek b, Amal Haoudi a,*, Catherine Renard c, Frédéric Capet c
PMCID: PMC6323872  PMID: 30713731

The imidazo[4,5-b]pyridine unit is planar, while the phenyl and allyl substituents are rotated a little out of this plane. In the crystal, mol­ecules are linked via pairs of the weak inter­molecular C—H⋯N hydrogen bonds, forming inversion dimers with Inline graphic(20) ring motifs. The dimers are further connected by π–π stacking inter­actions between the imidazo[4,5-b]pyridine ring systems.

Keywords: crystal structure; imidazo[4,5-b]pyridine; Hirshfeld surface

Abstract

The title compound, C15H11BrClN3, is built up from a planar imidazo[4,5-b]pyridine unit linked to phenyl and allyl substituents. The allyl substituent is rotated significantly out of the imidazo[4,5-b]pyridine plane, while the benzene ring is inclined by 3.84 (6)° to the ring system. In the crystal, mol­ecules are linked via a pair of weak inter­molecular C—H⋯N hydrogen bonds, forming an inversion dimer with an R 2 2(20) ring motif. The dimers are further connected by π–π stacking inter­actions between the imidazo[4,5-b]pyridine ring systems [centroid–centroid distances = 3.7161 (13) and 3.8478 (13) Å]. The important contributions to the Hirshfeld surface are H⋯H (35.9%), H⋯Cl/Cl⋯H (15.0%), H⋯C/C⋯H (12.4%), H⋯Br/Br⋯H (10.8%), H⋯N/N⋯H (7.5%), C⋯Br/Br⋯C (5.9%), C⋯C (5.5%) and C⋯N/N⋯C (4.0%) contacts.

Chemical context  

Heterocyclic ring systems having an imidazo[4,5-b]pyridine unit can be considered as structural analogues of purines and have shown diverse biological activity depending on the substituents of the heterocyclic ring. Their activities include anti­cancer (Zhiqiang et al., 2005), tuberculostatic (Bukowski & Janowiec, 1989) and anti­mitotic (Parthiban et al., 2006) actions. Some imidazo[4,5-b]pyridine derivatives have also been reported as corrosion inhibitors for steel in acidic medium (Bouayad et al., 2018; Sikine et al., 2016), and some of them can be used to treat peptic ulcers, diabetes and mental illness (Scribner et al., 2007; Liang et al., 2007).graphic file with name e-75-00043-scheme1.jpg

As a continuation of our research work devoted to the development of substituted imidazo[4,5-b]pyridine derivatives (Bourichi et al., 2016; Ouzidan et al., 2010a ,b ,c ), we report herein the synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis of the title compound, a new imidazo[4,5-b]pyridine derivative, which was obtained by the reaction of allyl bromide with 6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide under mild conditions.

Structural commentary  

The title compound is built up from an imidazo[4,5-b]pyridine unit linked to phenyl and allyl substituents (Fig. 1). The imidazo[4,5-b]pyridine ring system is planar, with a maximum deviation of 0.016 (2) Å for atom C12. The ring system is inclined by 3.84 (6)° to the benzene C1–C6 ring, with the N2—C7—C6—C1 torsion angle being 3.3 (3)°. The allyl substituent is nearly perpendicular to the imidazo[4,5-b]pyridine plane, as indicated by the C8—N3—C13—C14 torsion angle of −97.3 (2)°. Atoms C6 and C13 are 0.038 (2) and 0.014 (2) Å, respectively, away from the imidazo[4,5-b]pyridine plane.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked via a pair of weak inter­molecular C—H⋯N hydrogen bonds [C15—H15A⋯N1i; symmetry code: (i) −x, −y + 1, −z + 1; Table 1], forming an inversion dimer with an Inline graphic(20) ring motif (Fig. 2). The dimers are further connected by π–π stacking inter­actions between the imidazo[4,5-b]pyridine ring systems. The centroid–cen­troid distances, Cg1⋯Cg1ii and Cg1⋯Cg2i [symmetry code: (ii) −x + 1, −y + 1, −z + 1], are 3.7161 (13) and 3.8478 (13) Å, respectively, where Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and N3/C8–C12 rings, respectively.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N1i 0.93 2.59 3.454 (4) 155

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A part of the packing diagram of the title compound, viewed down [010]. The weak inter­molecular C—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity.

Database survey  

A non-para-substituated analogue, namely 4-allyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine monohydrate, has been reported (Ouzidan et al., 2010c ), and three similar structures, 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al., 2010b ), 4-benzyl-6-bromo-2-meth­oxy­phenyl-4H-imidazo[4,5-b]pyridine monohydrate (Ouzidan et al., 2010a ) and 4-benzyl-6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine (Bourichi et al., 2017), have been also reported.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 3), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near atoms N1 and H15A indicate their roles as the respective donors and/or acceptors in the dominant C—H⋯N hydrogen bond (Table 1). The shape index (Fig. 4) clearly suggests that there are π–π inter­actions, which are shown as adjacent red and blue triangles. The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C, C⋯ N/N⋯C, C⋯Cl/Cl⋯C, N⋯Br/Br⋯N and N⋯N contacts (McKinnon et al., 2007) are illustrated in Figs. 5(a)–(l), together with their relative contributions to the Hirshfeld surface. The contributions are 35.9, 15.0, 12.4, 10.8, 7.5, 5.9, 5.5, 4.0, 1.5, 1.2 and 0.2%, respectively, for H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C, C⋯N/N⋯C, C⋯Cl/Cl⋯C, N⋯Br/Br⋯N and N⋯N contacts. The most important inter­action is H⋯H (35.9%), which is reflected as widely scattered points of high density due to the large hydrogen content of the mol­ecule [Fig. 5(b)]. The spike with the tip at d e = d i = 1.16 Å is due to the short inter­atomic H⋯H contacts. The H⋯Cl/Cl⋯H contacts (15.0%) have a nearly symmetrical distribution of points and a pair of spikes with tips at d e + d i = 2.67 Å [Fig. 5(c)]. In the absence of C—H ⋯ π inter­actions, the H⋯C/C⋯H contacts (12.4%) also have a nearly symmetrical distribution of points with tips at d e + d i = 2.79 Å [Fig. 5(d)]. The H⋯Br/Br⋯H contacts (10.8%) have a symmetrical distribution of points and a pair of spikes with tips at d e + d i = 3.00 Å [Fig. 5(e)]. A pair of spikes with tips at d e + d i = 2.42 Å (Fig. 5 f) in the H⋯N/N⋯H contacts (7.5%) arises from the C—H⋯N hydrogen bond (Table 1). The C⋯Br/Br⋯C contacts (5.9%) have a pair of wings with tips at d e + d i ∼ 3.62 Å [Fig. 5 (g)]. The C⋯C contacts (5.5%) have an arrow-shaped distribution of points with the tip at d e = d i = 1.75 Å [Fig. 5(h)]. The C⋯N/N⋯C contacts (4.0%) have wide spikes with tips at d e + d i = 3.44 Å [Fig. 5(i)]. The HS representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C and C⋯N/N⋯C contacts [Figs. 6(a)–(h)].

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1373 to 1.1294 a.u.

Figure 4.

Figure 4

Hirshfeld surface of the title compound plotted over shape index.

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for the title compound, showing (a) all contacts, and delineated into (b) H⋯H, (c) H⋯Cl/Cl⋯H, (d) H⋯C/C⋯H, (e) H⋯Br/Br⋯H, (f) H⋯N/N⋯H, (g) C⋯Br/Br⋯C, (h) C⋯C, (i) C⋯N/N⋯C, (j) C⋯Cl/Cl⋯C, (k) N⋯Br/Br⋯N and (l) N⋯N contacts. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Figure 6.

Figure 6

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯Cl/Cl⋯H, (c) H⋯C/C⋯H, (d) H⋯Br/Br⋯H, (e) H⋯N/N⋯H, (f) C⋯Br/Br⋯C, (g) C⋯C and (h) C⋯N/N⋯C contacts.

Synthesis and crystallization  

A mixture of 6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine (0.2 g, 0.65 mmol) dissolved in 25 ml of N,N-di­methyl­formamide (DMF) and potassium carbonate (0.13 g, 0.92 mmol) was stirred for 5 min, and then to a mixture of tetra-n-butyl­ammonium bromide (0.032 g, 0.1 mmol) and allyl bromide (0.094 g, 0.77 mmol) was added. Stirring was continued for 6 h at room temperature. After removing the salts by filtration, DMF was evaporated under reduced pressure, and the solid obtained was dissolved in di­chloro­methane. The residue was extracted with distilled water and the resulting mixture was chromatographed on a silica-gel column (eluent = ethyl acetate–hexane, 1:3 v/v). Brown single crystals suitable for X-ray diffraction were obtained by evaporation of an ethyl acetate–hexane (1:3 v/v) solution.

Refinement  

Crystal data, data collection and refinement details are summarized in Table 2. All H atoms were positioned geometrically, with C—H = 0.93 or 0.97 Å, and constrained to ride on their parent C atoms, with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C15H11BrClN3
M r 348.63
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 7.6218 (5), 8.5238 (5), 11.1093 (7)
α, β, γ (°) 95.739 (3), 98.880 (3), 94.979 (3)
V3) 705.66 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.09
Crystal size (mm) 0.3 × 0.23 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.591, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31084, 4288, 3226
R int 0.033
(sin θ/λ)max−1) 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.089, 1.03
No. of reflections 4288
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.47

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018017322/is5505sup1.cif

e-75-00043-sup1.cif (904.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017322/is5505Isup2.hkl

e-75-00043-Isup2.hkl (341.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018017322/is5505Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018017322/is5505Isup4.cml

CCDC reference: 1883384

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The support of Tulane University for the Tulane Crystallography Laboratory is gratefully acknowledged.

supplementary crystallographic information

Crystal data

C15H11BrClN3 Z = 2
Mr = 348.63 F(000) = 348
Triclinic, P1 Dx = 1.641 Mg m3
a = 7.6218 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5238 (5) Å Cell parameters from 9961 reflections
c = 11.1093 (7) Å θ = 2.4–25.8°
α = 95.739 (3)° µ = 3.09 mm1
β = 98.880 (3)° T = 296 K
γ = 94.979 (3)° Plate, colourless
V = 705.66 (8) Å3 0.3 × 0.23 × 0.06 mm

Data collection

Bruker APEX-II CCD diffractometer 3226 reflections with I > 2σ(I)
φ and ω scans Rint = 0.033
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 30.5°, θmin = 1.9°
Tmin = 0.591, Tmax = 0.746 h = −10→10
31084 measured reflections k = −12→12
4288 independent reflections l = −15→15

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2342P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
4288 reflections Δρmax = 0.57 e Å3
181 parameters Δρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.17874 (3) 1.01452 (2) 0.68946 (2) 0.05997 (10)
Cl1 0.27559 (10) −0.20635 (8) 0.05226 (6) 0.07320 (19)
N1 0.1843 (2) 0.4932 (2) 0.37610 (15) 0.0451 (4)
N2 0.3231 (2) 0.36057 (19) 0.53108 (14) 0.0408 (3)
N3 0.3389 (2) 0.57048 (19) 0.69517 (14) 0.0416 (3)
C1 0.3258 (3) 0.0867 (2) 0.36107 (18) 0.0460 (4)
H1 0.3669 0.0842 0.4441 0.055*
C2 0.3317 (3) −0.0449 (3) 0.27905 (19) 0.0502 (5)
H2 0.3753 −0.1360 0.3063 0.060*
C3 0.2715 (3) −0.0391 (3) 0.15560 (19) 0.0506 (5)
C4 0.2054 (3) 0.0941 (3) 0.11321 (19) 0.0538 (5)
H4 0.1664 0.0962 0.0299 0.065*
C5 0.1979 (3) 0.2241 (3) 0.19575 (19) 0.0493 (5)
H5 0.1515 0.3137 0.1678 0.059*
C6 0.2590 (3) 0.2232 (2) 0.32120 (17) 0.0420 (4)
C7 0.2538 (2) 0.3616 (2) 0.40937 (17) 0.0400 (4)
C8 0.2942 (2) 0.5038 (2) 0.57750 (16) 0.0390 (4)
C9 0.2078 (3) 0.5896 (2) 0.48503 (17) 0.0408 (4)
C10 0.1670 (3) 0.7408 (2) 0.51508 (19) 0.0453 (4)
H10 0.1095 0.7982 0.4567 0.054*
C11 0.2162 (3) 0.8041 (2) 0.63802 (19) 0.0444 (4)
C12 0.3010 (3) 0.7204 (2) 0.72501 (18) 0.0452 (4)
H12 0.3328 0.7673 0.8056 0.054*
C13 0.4300 (3) 0.4809 (3) 0.78916 (18) 0.0489 (5)
H13A 0.5192 0.5528 0.8446 0.059*
H13B 0.4916 0.4010 0.7491 0.059*
C14 0.3080 (3) 0.4023 (3) 0.8615 (2) 0.0550 (5)
H14 0.3600 0.3461 0.9228 0.066*
C15 0.1374 (4) 0.4035 (3) 0.8484 (3) 0.0709 (7)
H15A 0.0789 0.4579 0.7884 0.085*
H15B 0.0727 0.3499 0.8990 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05960 (16) 0.03754 (12) 0.08491 (19) 0.00970 (9) 0.01673 (12) 0.00593 (10)
Cl1 0.0863 (5) 0.0732 (4) 0.0594 (3) 0.0184 (3) 0.0175 (3) −0.0136 (3)
N1 0.0482 (9) 0.0466 (9) 0.0414 (8) 0.0074 (7) 0.0058 (7) 0.0105 (7)
N2 0.0446 (9) 0.0398 (8) 0.0399 (8) 0.0079 (7) 0.0079 (7) 0.0090 (6)
N3 0.0486 (9) 0.0397 (8) 0.0383 (8) 0.0076 (7) 0.0078 (7) 0.0100 (6)
C1 0.0462 (11) 0.0510 (11) 0.0425 (10) 0.0094 (9) 0.0090 (8) 0.0066 (8)
C2 0.0508 (12) 0.0515 (12) 0.0511 (11) 0.0131 (9) 0.0133 (9) 0.0050 (9)
C3 0.0479 (11) 0.0554 (12) 0.0489 (11) 0.0053 (9) 0.0158 (9) −0.0042 (9)
C4 0.0542 (12) 0.0648 (14) 0.0407 (10) 0.0030 (10) 0.0055 (9) 0.0041 (9)
C5 0.0487 (11) 0.0521 (12) 0.0464 (10) 0.0054 (9) 0.0033 (9) 0.0092 (9)
C6 0.0370 (9) 0.0468 (11) 0.0426 (9) 0.0016 (8) 0.0086 (8) 0.0058 (8)
C7 0.0369 (9) 0.0427 (10) 0.0419 (9) 0.0040 (8) 0.0082 (7) 0.0094 (8)
C8 0.0390 (9) 0.0395 (9) 0.0410 (9) 0.0042 (7) 0.0095 (7) 0.0117 (7)
C9 0.0394 (10) 0.0421 (10) 0.0441 (9) 0.0056 (8) 0.0096 (8) 0.0145 (8)
C10 0.0441 (10) 0.0407 (10) 0.0546 (11) 0.0079 (8) 0.0094 (9) 0.0182 (9)
C11 0.0436 (10) 0.0347 (9) 0.0584 (11) 0.0048 (8) 0.0161 (9) 0.0094 (8)
C12 0.0508 (11) 0.0403 (10) 0.0458 (10) 0.0038 (8) 0.0130 (9) 0.0054 (8)
C13 0.0532 (12) 0.0523 (12) 0.0416 (10) 0.0121 (9) 0.0019 (9) 0.0107 (9)
C14 0.0662 (15) 0.0521 (12) 0.0472 (11) 0.0093 (10) 0.0024 (10) 0.0170 (9)
C15 0.0673 (17) 0.0755 (18) 0.0765 (17) 0.0097 (13) 0.0144 (13) 0.0348 (14)

Geometric parameters (Å, º)

Br1—C11 1.886 (2) C6—C1 1.395 (3)
Cl1—C3 1.744 (2) C6—C5 1.401 (3)
N1—C7 1.342 (3) C7—C6 1.464 (3)
N1—C9 1.371 (3) C8—C9 1.431 (3)
N2—C7 1.375 (2) C9—C10 1.373 (3)
N2—C8 1.327 (2) C10—H10 0.9300
N3—C8 1.352 (2) C11—C10 1.399 (3)
N3—C12 1.355 (3) C11—C12 1.373 (3)
N3—C13 1.477 (2) C12—H12 0.9300
C1—H1 0.9300 C13—H13A 0.9700
C1—C2 1.381 (3) C13—H13B 0.9700
C2—H2 0.9300 C13—C14 1.480 (3)
C2—C3 1.384 (3) C14—H14 0.9300
C4—H4 0.9300 C14—C15 1.287 (4)
C4—C3 1.378 (3) C15—H15A 0.9300
C5—H5 0.9300 C15—H15B 0.9300
C5—C4 1.377 (3)
Br1···C14i 3.624 (2) N3···H15A 2.5350
Br1···C15i 3.660 (3) C1···C11ii 3.532 (3)
Br1···C2ii 3.677 (2) C1···C12ii 3.472 (3)
Br1···C6iii 3.729 (2) C5···C13ii 3.595 (3)
Br1···H10iv 3.1682 C6···C12ii 3.470 (3)
Cl1···H12v 2.8304 C7···C8ii 3.512 (3)
Cl1···H14vi 3.1002 C7···C10iii 3.499 (3)
Cl1···H15Bvii 2.9750 C8···C15 3.559 (4)
N3···C6ii 3.437 (3) C9···C9iii 3.473 (3)
N1···H5 2.6087 C12···C15 3.378 (3)
N1···H15Aiii 2.5889 C5···H13Aii 2.8677
N2···H13B 2.5360 C12···H15A 2.8971
N2···H1 2.5251 H12···H13A 2.4427
C7—N1—C9 102.65 (16) N2—C8—C9 111.53 (16)
C8—N2—C7 101.17 (15) N3—C8—C9 120.81 (17)
C8—N3—C12 119.16 (16) N1—C9—C8 107.12 (17)
C8—N3—C13 120.08 (16) N1—C9—C10 132.60 (18)
C12—N3—C13 120.76 (16) C10—C9—C8 120.27 (18)
C6—C1—H1 119.5 C9—C10—C11 116.59 (18)
C2—C1—C6 120.95 (19) C9—C10—H10 121.7
C2—C1—H1 119.5 C11—C10—H10 121.7
C1—C2—H2 120.5 C10—C11—Br1 120.71 (15)
C1—C2—C3 118.9 (2) C12—C11—Br1 117.03 (16)
C3—C2—H2 120.5 C12—C11—C10 122.18 (18)
C4—C3—Cl1 119.49 (17) N3—C12—C11 120.99 (18)
C4—C3—C2 121.6 (2) N3—C12—H12 119.5
C2—C3—Cl1 118.93 (18) C11—C12—H12 119.5
C5—C4—H4 120.4 N3—C13—H13A 108.8
C5—C4—C3 119.2 (2) N3—C13—H13B 108.8
C3—C4—H4 120.4 N3—C13—C14 113.74 (18)
C6—C5—H5 119.5 H13A—C13—H13B 107.7
C4—C5—C6 120.9 (2) C14—C13—H13A 108.8
C4—C5—H5 119.5 C14—C13—H13B 108.8
C1—C6—C7 120.23 (17) C13—C14—H14 116.6
C1—C6—C5 118.48 (19) C15—C14—C13 126.8 (2)
C5—C6—C7 121.28 (18) C15—C14—H14 116.6
N2—C7—C6 120.09 (17) C14—C15—H15A 120.0
N1—C7—N2 117.53 (17) C14—C15—H15B 120.0
N1—C7—C6 122.39 (17) H15A—C15—H15B 120.0
N2—C8—N3 127.66 (17)
C9—N1—C7—N2 −0.3 (2) C6—C5—C4—C3 1.1 (3)
C9—N1—C7—C6 −179.75 (17) C5—C6—C1—C2 0.0 (3)
C7—N1—C9—C8 0.5 (2) C7—C6—C1—C2 −179.96 (19)
C7—N1—C9—C10 179.6 (2) C1—C6—C5—C4 −0.8 (3)
C8—N2—C7—N1 0.0 (2) C7—C6—C5—C4 179.11 (19)
C8—N2—C7—C6 179.45 (17) N1—C7—C6—C1 −177.28 (18)
C7—N2—C8—N3 −178.58 (19) N1—C7—C6—C5 2.8 (3)
C7—N2—C8—C9 0.3 (2) N2—C7—C6—C1 3.3 (3)
C12—N3—C8—N2 178.81 (19) N2—C7—C6—C5 −176.66 (18)
C12—N3—C8—C9 0.0 (3) N2—C8—C9—N1 −0.5 (2)
C13—N3—C8—N2 −0.5 (3) N2—C8—C9—C10 −179.82 (17)
C13—N3—C8—C9 −179.29 (18) N3—C8—C9—N1 178.47 (17)
C8—N3—C12—C11 0.8 (3) N3—C8—C9—C10 −0.8 (3)
C13—N3—C12—C11 −179.93 (19) N1—C9—C10—C11 −178.3 (2)
C8—N3—C13—C14 −97.3 (2) C8—C9—C10—C11 0.8 (3)
C12—N3—C13—C14 83.4 (2) C12—C11—C10—C9 0.0 (3)
C6—C1—C2—C3 0.6 (3) Br1—C11—C10—C9 176.73 (14)
C1—C2—C3—Cl1 −178.98 (17) Br1—C11—C12—N3 −177.67 (15)
C1—C2—C3—C4 −0.4 (3) C10—C11—C12—N3 −0.8 (3)
C5—C4—C3—Cl1 178.14 (17) N3—C13—C14—C15 1.2 (4)
C5—C4—C3—C2 −0.5 (3)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) −x, −y+2, −z+1; (v) x, y−1, z−1; (vi) −x+1, −y, −z+1; (vii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15A···N1iii 0.93 2.59 3.454 (4) 155

Symmetry code: (iii) −x, −y+1, −z+1.

Funding Statement

This work was funded by National Science Foundation, MRI grant 1228232. Hacettepe University Scientific Research Project Unit grant 013 D04 602 004.

References

  1. Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22–34.
  2. Bourichi, S., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170899.
  3. Bourichi, S., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160763.
  4. Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2015). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bukowski, L. & Janowiec, M. (1989). Pharmazie, 44, 267–269. [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Liang, G. B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558–3561. [DOI] [PubMed]
  9. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  10. Ouzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o947. [DOI] [PMC free article] [PubMed]
  11. Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o946. [DOI] [PMC free article] [PubMed]
  12. Ouzidan, Y., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010c). Acta Cryst. E66, o1903. [DOI] [PMC free article] [PubMed]
  13. Parthiban, S., Kabilan, G. & Aridoss, S. (2006). Eur. J. Med. Chem. 41, 268–275. [DOI] [PubMed]
  14. Scribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2007). Eur. J. Med. Chem. 42, 1334–1357. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632.
  18. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  21. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  22. Zhiqiang, G., John Tellew, E., Raymond Gross, S., Brian, D., Jonathan, G., Haddach, M., Kiankarimi, M., Lanier, M. & Bin-Feng, L. (2005). J. Med. Chem. 48, 5104–5107. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018017322/is5505sup1.cif

e-75-00043-sup1.cif (904.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017322/is5505Isup2.hkl

e-75-00043-Isup2.hkl (341.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018017322/is5505Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018017322/is5505Isup4.cml

CCDC reference: 1883384

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES