Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jan 1;75(Pt 1):71–74. doi: 10.1107/S2056989018017590

Crystal structure and Hirshfeld surface analysis of 5-[(5-nitro-1H-indazol-1-yl)meth­yl]-3-phenyl-4,5-di­hydro­isoxazole

Mohammed Boulhaoua a,*, Sevgi Kansiz b, Mohamed El Hafi a, Sanae Lahmidi a, Necmi Dege b, Mohammed Benchidmi a, Joel T Mague c
PMCID: PMC6323876  PMID: 30713737

In the title compound the indazole portion is planar and the nitro group and the pendant phenyl ring are coplanar within 7°. Oblique stacks along the a-axis direction are formed by π–π-stacking inter­actions between the indazole unit and the pendant phenyl rings of adjacent mol­ecules. The stacks are linked into pairs through C—H⋯O hydrogen bonds.

Keywords: crystal structure, indazole, oxazole, hydrogen bond, π–π-stacking, Hirshfeld surface analysis

Abstract

In the title compound, C17H14N4O3, the indazole unit is planar to within 0.0171 (10) Å and makes dihedral angles of 6.50 (6) and 6.79 (4)°, respectively, with the nitro and pendant phenyl groups. The conformation of the oxazole ring is best described as an envelope. In the crystal, oblique stacks along the a-axis direction are formed by π–π stacking inter­actions between the indazole unit and the pendant phenyl rings of adjacent mol­ecules. The stacks are linked into pairs through C—H⋯O hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (36.3%), O⋯H/H⋯O (23.4%), C⋯H/H⋯C (13.4%) and N⋯H/H⋯N (11.4%) inter­actions.

Chemical context  

Indazole derivatives are of pharmaceutical inter­est in a variety of therapeutic areas. They exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), anti­arrhythmic and analgesic activities (Mosti et al., 2000), and anti­tumor activity and anti­hypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). The present work is a continuation of an investigation of indazole derivatives published by our team (Boulhaoua et al., 2015). In this context, we synthesized the title compound by reaction of benzaldoxime with 1-allyl-5-nitro-1H-indazole in a biphasic medium (water–chloro­form). We report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.graphic file with name e-75-00071-scheme1.jpg

Structural commentary  

In the title compound (Fig. 1), the indazole portion is planar to within 0.0171 (10) Å (r.m.s. deviation = 0.0095) with atom C6 the furthest from the mean plane. The nitro group is twisted out of this plane by 6.50 (6)° while the pendant phenyl group makes a dihedral angle of 6.79 (4)° with the plane of the indazole unit. A puckering analysis of the oxazole ring gave parameters Q(2) = 0.1499 (12) Å and φ(2) = 325.7 (5)° with the conformation best described as an envelope on C9.

Figure 1.

Figure 1

The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

Supra­molecular features  

In the crystal, the mol­ecules form oblique stacks along the a-axis direction through π–π-stacking inter­actions (Fig. 2) between the five-membered ring of the indazole unit (N1/N2/C1/C6/C7; centroid Cg2) and the pendant phenyl ring (C12–C17; centroid Cg4) of an adjacent mol­ecule [Cg2⋯Cg4(x, Inline graphic − y, −Inline graphic + z) = 3.7302 (7) Å; dihedral angle = 3.00 (6)°] and between the six-membered ring of the indazole unit (C1–C6; centroid Cg3) and the pendant phenyl ring of a second neighbour [Cg3⋯Cg4(−1 + x, Inline graphic − y, −Inline graphic + z) = 3.8286 (7) Å; dihedral angle = 3.65 (6)°]. These stacks are associated into pairs through C7—H7⋯O1 hydrogen bonds (Table 1 and Figs. 2 and 3).

Figure 2.

Figure 2

Detail of the inter­molecular C—H⋯O hydrogen bonds (black dashed lines) and π–π-stacking inter­actions (orange dashed lines) [symmetry codes: (i) −x + 1, y − Inline graphic, −z + Inline graphic; (ii) −x + 1, y + Inline graphic, −z + Inline graphic; (iii) x, −y + Inline graphic, z − Inline graphic; (iv) x − 1, −y + Inline graphic, z − Inline graphic; Cg2, Cg3 and Cg4 are the centroids of the C1/C6/C7/N1/N2, C1–C6 and C12–C17 rings, respectively].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.959 (16) 2.467 (16) 3.3877 (14) 160.9 (13)

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

Packing viewed along the a-axis direction. A portion of the inter­molecular inter­actions, depicted as in Fig. 2, is shown.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.39, updates August 2018; Groom et al., 2016) for the 1-methyl-5-nitro-1H-indazole skeleton yielded six hits. In all of these compounds, the indazole rings are planar as in the title compound. In the crystals of all six compounds, mol­ecules are linked by C—H⋯O hydrogen bonds, similar to what is observed in the crystal of the title compound. The N—O bond lengths vary from ca 1.213–1.236 Å and the Caromatic—NO2 bond lengths vary from ca 1.456–1.465 Å. In the title compound, the corresponding bond lengths are 1.229 (2), 1.238 (1) and 1.457 (2) Å, respectively. The Caromatic-bound nitro group and indazole ring are inclined to each other by a dihedral angle of 4.0 (2)° in AKEFIH (Boulhaoua, El Hafi et al., 2016b ), 7.0 (9)° in APALOU (Boulhaoua, Essaghouani et al., 2016), 4.6 (4)° in KEHTEZ (Boulhaoua et al., 2017), 19.2 (2)° in PUVSOO (Zaleski et al., 1998), 1.9 (9)° in UJUJOA (Boulhaoua, El Hafi et al., 2016a ) and 7.9 (5)° in UJUKOB (Boulhaoua, Abdelahi et al., 2016), compared to 6.5 (6)° in the title compound. Therefore, the various geometrical parameters for the title compound are typical for 1-methyl-5-nitro-1H-indazoles.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface analysis was carried out by using CrystalExplorer17.5 (Turner et al., 2017). The d norm representation of the Hirshfeld surface reveals the close contacts of the hydrogen-bond donors and acceptors and other close contacts are also evident. The mol­ecular Hirshfeld surfaces were performed using a standard (high) surface resolution with the three-dimensional d norm surfaces mapped over a fixed colour scale of −0.191 (red) to 1.051 (blue) Å. The red spots on the surface indicate the inter­molecular contacts involved in the hydrogen bonds. In Fig. 4, the identified red spot is attributed to the H⋯O close contacts which are due to the C—H⋯O hydrogen bonds (Table 1).

Figure 4.

Figure 4

Hirshfeld surface mapped over d norm to visualize the inter­molecular inter­actions.

Fig. 5 shows the two-dimensional fingerprint plot for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The O⋯H/H⋯O contacts (23.4%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, d e + d i ∼2.3 Å are shown two symmetrical points at the top, bottom left and right, which are characteristic of C—H⋯O hydrogen bond. The (d i, d e) points associated with he H⋯H contacts in this study (36.3%) are characterized by an end point that points to the origin and corresponds to d i = d e = 1.08 Å. C⋯H/H⋯C and N⋯H/H⋯N inter­actions (13.4% and 11.4%, respectively) are represented by two symmetrical wings on the left and right sides. In addition, the C⋯C (7.5%), C⋯N/N⋯C (4.7%), O⋯C/C⋯O (2.2%) and O⋯N/N⋯O (0.9%) contacts contribute to the Hirshfeld surface.

Figure 5.

Figure 5

The fingerprint plot for the title compound.

A view of the three-dimensional Hirshfeld surface of the title compound plotted over mol­ecular electrostatic potential in the range −0.0698 to 0.0535 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 6. The C—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

Figure 6.

Figure 6

A view of the three-dimensional Hirshfeld surface plotted over mol­ecular electrostatic potential in the range −0.0698 to 0.0535 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory.

Synthesis and crystallization  

To a solution of 1-allyl-5-nitro-1H-indazole (0.5 g, 2.46 mmol) and benzaldoxime (4.9 mmol, 0.6 g) in chloro­form (20 mL), a solution of sodium hypochlorite 24% (10 mL) was added dropwise to the mixture and stirred at 273 K for 4h. The resulting mixture was washed with water, dried over MgSO4 and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexa­ne/ethyl acetate (v/v = 80/20) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 65%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference-Fourier map and freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C17H14N4O3
M r 322.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.8595 (4), 11.8831 (7), 15.5716 (9)
β (°) 101.853 (1)
V3) 1423.30 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.35 × 0.32 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.90, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 26832, 3807, 3116
R int 0.032
(sin θ/λ)max−1) 0.684
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.120, 1.05
No. of reflections 3807
No. of parameters 273
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.49, −0.20

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018017590/dx2013sup1.cif

e-75-00071-sup1.cif (809.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017590/dx2013Isup2.hkl

e-75-00071-Isup2.hkl (303.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018017590/dx2013Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018017590/dx2013Isup4.cml

CCDC reference: 1884538

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

Crystal data

C17H14N4O3 F(000) = 672
Mr = 322.32 Dx = 1.504 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.8595 (4) Å Cell parameters from 9953 reflections
b = 11.8831 (7) Å θ = 2.7–29.1°
c = 15.5716 (9) Å µ = 0.11 mm1
β = 101.853 (1)° T = 100 K
V = 1423.30 (14) Å3 Block, colourless
Z = 4 0.35 × 0.32 × 0.17 mm

Data collection

Bruker SMART APEX CCD diffractometer 3807 independent reflections
Radiation source: fine-focus sealed tube 3116 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 8.3333 pixels mm-1 θmax = 29.1°, θmin = 2.2°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −16→16
Tmin = 0.90, Tmax = 0.98 l = −21→21
26832 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.120 All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.3982P] where P = (Fo2 + 2Fc2)/3
3807 reflections (Δ/σ)max < 0.001
273 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.65493 (11) 0.74043 (7) 0.41423 (5) 0.0191 (2)
O2 0.30551 (13) 0.88196 (8) −0.02290 (6) 0.0285 (2)
O3 0.20589 (12) 0.71575 (8) −0.06215 (6) 0.0245 (2)
N1 0.69220 (13) 0.46778 (8) 0.25680 (7) 0.0185 (2)
N2 0.72589 (12) 0.57977 (8) 0.27365 (6) 0.0158 (2)
N3 0.74782 (13) 0.82212 (8) 0.47244 (7) 0.0174 (2)
N4 0.30425 (13) 0.77874 (9) −0.01243 (7) 0.0189 (2)
C1 0.63510 (14) 0.64559 (10) 0.20885 (7) 0.0144 (2)
C2 0.62565 (15) 0.76290 (10) 0.19937 (8) 0.0169 (2)
H2 0.685 (2) 0.8130 (14) 0.2417 (11) 0.031 (4)*
C3 0.51782 (15) 0.80431 (10) 0.12540 (8) 0.0168 (2)
H3 0.504 (2) 0.8820 (14) 0.1145 (10) 0.024 (4)*
C4 0.42155 (14) 0.73017 (10) 0.06319 (7) 0.0161 (2)
C5 0.42849 (14) 0.61464 (10) 0.07119 (8) 0.0158 (2)
H5 0.357 (2) 0.5659 (14) 0.0287 (10) 0.028 (4)*
C6 0.53865 (14) 0.57188 (9) 0.14574 (8) 0.0152 (2)
C7 0.58181 (15) 0.46238 (10) 0.18078 (8) 0.0182 (2)
H7 0.542 (2) 0.3910 (13) 0.1558 (10) 0.025 (4)*
C8 0.84131 (15) 0.61131 (10) 0.35495 (7) 0.0171 (2)
H8A 0.9079 (18) 0.6778 (12) 0.3442 (9) 0.016 (3)*
H8B 0.9229 (18) 0.5481 (12) 0.3686 (9) 0.016 (3)*
C9 0.74607 (15) 0.63288 (10) 0.42928 (8) 0.0168 (2)
H9 0.6526 (19) 0.5757 (13) 0.4289 (10) 0.020 (4)*
C10 0.87110 (16) 0.64689 (10) 0.51745 (8) 0.0174 (2)
H10A 0.992 (2) 0.6201 (13) 0.5155 (10) 0.023 (4)*
H10B 0.829 (2) 0.6065 (13) 0.5660 (11) 0.023 (4)*
C11 0.86519 (14) 0.77242 (10) 0.52933 (7) 0.0153 (2)
C12 0.97578 (14) 0.83461 (10) 0.60166 (7) 0.0155 (2)
C13 0.96755 (15) 0.95199 (10) 0.60656 (8) 0.0184 (2)
H13 0.890 (2) 0.9941 (14) 0.5607 (11) 0.028 (4)*
C14 1.06651 (16) 1.00864 (11) 0.67741 (8) 0.0213 (3)
H14 1.060 (2) 1.0871 (16) 0.6806 (11) 0.035 (5)*
C15 1.17610 (16) 0.94898 (11) 0.74367 (8) 0.0214 (3)
H15 1.249 (2) 0.9886 (15) 0.7961 (11) 0.034 (4)*
C16 1.18699 (16) 0.83273 (11) 0.73863 (8) 0.0199 (2)
H16 1.256 (2) 0.7904 (14) 0.7837 (10) 0.026 (4)*
C17 1.08704 (15) 0.77535 (10) 0.66777 (8) 0.0177 (2)
H17 1.0992 (19) 0.6917 (13) 0.6650 (10) 0.024 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0189 (4) 0.0187 (4) 0.0176 (4) 0.0040 (3) −0.0014 (3) −0.0028 (3)
O2 0.0362 (6) 0.0189 (5) 0.0263 (5) 0.0060 (4) −0.0030 (4) 0.0037 (4)
O3 0.0237 (5) 0.0280 (5) 0.0183 (4) −0.0012 (4) −0.0041 (4) −0.0007 (4)
N1 0.0223 (5) 0.0131 (5) 0.0202 (5) −0.0003 (4) 0.0045 (4) −0.0004 (4)
N2 0.0183 (5) 0.0132 (5) 0.0147 (5) 0.0014 (3) 0.0008 (4) −0.0005 (3)
N3 0.0181 (5) 0.0178 (5) 0.0157 (5) 0.0010 (4) 0.0021 (4) −0.0012 (4)
N4 0.0194 (5) 0.0205 (5) 0.0159 (5) 0.0032 (4) 0.0016 (4) 0.0003 (4)
C1 0.0145 (5) 0.0151 (5) 0.0135 (5) 0.0005 (4) 0.0026 (4) −0.0004 (4)
C2 0.0187 (5) 0.0146 (5) 0.0165 (5) −0.0003 (4) 0.0017 (4) −0.0022 (4)
C3 0.0181 (5) 0.0141 (5) 0.0181 (6) 0.0015 (4) 0.0035 (4) 0.0002 (4)
C4 0.0146 (5) 0.0196 (5) 0.0135 (5) 0.0024 (4) 0.0018 (4) 0.0010 (4)
C5 0.0144 (5) 0.0178 (5) 0.0150 (5) −0.0008 (4) 0.0024 (4) −0.0023 (4)
C6 0.0147 (5) 0.0150 (5) 0.0162 (5) −0.0010 (4) 0.0044 (4) −0.0019 (4)
C7 0.0195 (6) 0.0148 (5) 0.0203 (6) −0.0016 (4) 0.0038 (4) −0.0013 (4)
C8 0.0162 (5) 0.0184 (5) 0.0148 (5) 0.0019 (4) −0.0010 (4) −0.0008 (4)
C9 0.0180 (5) 0.0147 (5) 0.0169 (5) 0.0015 (4) 0.0016 (4) 0.0011 (4)
C10 0.0216 (6) 0.0150 (5) 0.0148 (5) 0.0027 (4) 0.0018 (4) 0.0004 (4)
C11 0.0165 (5) 0.0151 (5) 0.0147 (5) 0.0011 (4) 0.0039 (4) 0.0011 (4)
C12 0.0148 (5) 0.0175 (5) 0.0145 (5) 0.0008 (4) 0.0037 (4) 0.0013 (4)
C13 0.0174 (5) 0.0171 (5) 0.0201 (6) 0.0007 (4) 0.0022 (4) 0.0021 (4)
C14 0.0214 (6) 0.0175 (6) 0.0245 (6) −0.0020 (4) 0.0034 (5) −0.0012 (5)
C15 0.0202 (6) 0.0259 (6) 0.0179 (6) −0.0036 (5) 0.0033 (5) −0.0020 (5)
C16 0.0188 (6) 0.0256 (6) 0.0146 (5) 0.0005 (5) 0.0016 (4) 0.0033 (4)
C17 0.0193 (6) 0.0178 (5) 0.0160 (6) 0.0023 (4) 0.0039 (4) 0.0025 (4)

Geometric parameters (Å, º)

O1—N3 1.4230 (13) C8—C9 1.5238 (16)
O1—C9 1.4603 (14) C8—H8A 0.981 (15)
O2—N4 1.2377 (14) C8—H8B 0.982 (15)
O3—N4 1.2294 (13) C9—C10 1.5245 (17)
N1—C7 1.3176 (16) C9—H9 1.000 (15)
N1—N2 1.3716 (13) C10—C11 1.5050 (15)
N2—C1 1.3577 (14) C10—H10A 1.006 (16)
N2—C8 1.4472 (15) C10—H10B 1.007 (16)
N3—C11 1.2840 (15) C11—C12 1.4724 (16)
N4—C4 1.4573 (15) C12—C17 1.3966 (15)
C1—C2 1.4022 (16) C12—C13 1.3991 (16)
C1—C6 1.4147 (15) C13—C14 1.3866 (17)
C2—C3 1.3734 (16) C13—H13 0.976 (16)
C2—H2 0.940 (17) C14—C15 1.3943 (18)
C3—C4 1.4093 (16) C14—H14 0.936 (19)
C3—H3 0.941 (16) C15—C16 1.3873 (18)
C4—C5 1.3785 (16) C15—H15 1.011 (18)
C5—C6 1.3936 (16) C16—C17 1.3941 (17)
C5—H5 0.967 (17) C16—H16 0.941 (16)
C6—C7 1.4248 (16) C17—H17 1.000 (16)
C7—H7 0.959 (16)
N3—O1—C9 108.92 (8) H8A—C8—H8B 107.8 (11)
C7—N1—N2 106.54 (9) O1—C9—C8 109.07 (9)
C1—N2—N1 111.44 (9) O1—C9—C10 104.66 (9)
C1—N2—C8 129.81 (10) C8—C9—C10 112.09 (10)
N1—N2—C8 118.70 (9) O1—C9—H9 105.0 (9)
C11—N3—O1 109.12 (9) C8—C9—H9 110.8 (9)
O3—N4—O2 122.78 (10) C10—C9—H9 114.6 (9)
O3—N4—C4 118.64 (10) C11—C10—C9 100.86 (9)
O2—N4—C4 118.56 (10) C11—C10—H10A 111.8 (9)
N2—C1—C2 131.25 (11) C9—C10—H10A 112.0 (9)
N2—C1—C6 106.53 (10) C11—C10—H10B 110.9 (9)
C2—C1—C6 122.22 (10) C9—C10—H10B 111.9 (9)
C3—C2—C1 117.05 (11) H10A—C10—H10B 109.2 (13)
C3—C2—H2 119.7 (10) N3—C11—C12 121.64 (10)
C1—C2—H2 123.2 (10) N3—C11—C10 114.02 (10)
C2—C3—C4 120.28 (11) C12—C11—C10 124.27 (10)
C2—C3—H3 122.1 (10) C17—C12—C13 119.43 (11)
C4—C3—H3 117.6 (10) C17—C12—C11 119.51 (10)
C5—C4—C3 123.69 (11) C13—C12—C11 121.03 (10)
C5—C4—N4 118.31 (10) C14—C13—C12 120.18 (11)
C3—C4—N4 117.97 (10) C14—C13—H13 119.8 (10)
C4—C5—C6 116.40 (10) C12—C13—H13 120.0 (10)
C4—C5—H5 121.9 (10) C13—C14—C15 120.15 (12)
C6—C5—H5 121.6 (10) C13—C14—H14 119.8 (11)
C5—C6—C1 120.36 (10) C15—C14—H14 120.0 (11)
C5—C6—C7 135.26 (11) C16—C15—C14 120.02 (12)
C1—C6—C7 104.35 (10) C16—C15—H15 118.5 (10)
N1—C7—C6 111.14 (10) C14—C15—H15 121.4 (10)
N1—C7—H7 120.5 (9) C15—C16—C17 120.03 (11)
C6—C7—H7 128.3 (9) C15—C16—H16 121.5 (10)
N2—C8—C9 112.99 (10) C17—C16—H16 118.4 (10)
N2—C8—H8A 108.6 (8) C16—C17—C12 120.17 (11)
C9—C8—H8A 110.9 (8) C16—C17—H17 118.5 (9)
N2—C8—H8B 104.8 (8) C12—C17—H17 121.3 (9)
C9—C8—H8B 111.4 (8)
C7—N1—N2—C1 0.80 (13) C1—C6—C7—N1 0.01 (13)
C7—N1—N2—C8 178.51 (10) C1—N2—C8—C9 86.13 (14)
C9—O1—N3—C11 −10.56 (12) N1—N2—C8—C9 −91.08 (12)
N1—N2—C1—C2 178.29 (11) N3—O1—C9—C8 −104.57 (10)
C8—N2—C1—C2 0.9 (2) N3—O1—C9—C10 15.55 (11)
N1—N2—C1—C6 −0.80 (12) N2—C8—C9—O1 −73.99 (12)
C8—N2—C1—C6 −178.17 (11) N2—C8—C9—C10 170.59 (9)
N2—C1—C2—C3 −179.03 (11) O1—C9—C10—C11 −13.98 (11)
C6—C1—C2—C3 −0.06 (16) C8—C9—C10—C11 104.09 (10)
C1—C2—C3—C4 0.43 (16) O1—N3—C11—C12 −176.33 (9)
C2—C3—C4—C5 −0.33 (17) O1—N3—C11—C10 0.66 (13)
C2—C3—C4—N4 177.74 (10) C9—C10—C11—N3 8.74 (13)
O3—N4—C4—C5 5.90 (15) C9—C10—C11—C12 −174.36 (10)
O2—N4—C4—C5 −175.49 (10) N3—C11—C12—C17 172.37 (11)
O3—N4—C4—C3 −172.27 (10) C10—C11—C12—C17 −4.30 (16)
O2—N4—C4—C3 6.33 (16) N3—C11—C12—C13 −5.78 (17)
C3—C4—C5—C6 −0.17 (17) C10—C11—C12—C13 177.55 (11)
N4—C4—C5—C6 −178.23 (10) C17—C12—C13—C14 −1.29 (17)
C4—C5—C6—C1 0.53 (16) C11—C12—C13—C14 176.86 (10)
C4—C5—C6—C7 178.17 (12) C12—C13—C14—C15 0.67 (18)
N2—C1—C6—C5 178.75 (10) C13—C14—C15—C16 0.31 (18)
C2—C1—C6—C5 −0.44 (17) C14—C15—C16—C17 −0.66 (18)
N2—C1—C6—C7 0.47 (12) C15—C16—C17—C12 0.03 (17)
C2—C1—C6—C7 −178.72 (10) C13—C12—C17—C16 0.95 (17)
N2—N1—C7—C6 −0.48 (13) C11—C12—C17—C16 −177.23 (10)
C5—C6—C7—N1 −177.89 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1i 0.959 (16) 2.467 (16) 3.3877 (14) 160.9 (13)

Symmetry code: (i) −x+1, y−1/2, −z+1/2.

References

  1. Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. [DOI] [PubMed]
  2. Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. [DOI] [PubMed]
  3. Boulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485.
  4. Boulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780–o781. [DOI] [PMC free article] [PubMed]
  5. Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016a). IUCrData, 1, x160480.
  6. Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016b). IUCrData, 1, x160567.
  7. Boulhaoua, M., Essaghouani, A., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160939.
  8. Boulhaoua, M., Essaghouani, A., Lahmidi, S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171091.
  9. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  10. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963–972. [DOI] [PubMed]
  13. Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.
  18. Zaleski, J., Daszkiewicz, Z. & Kyziol, J. (1998). Acta Cryst. C54, 1687–1689.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018017590/dx2013sup1.cif

e-75-00071-sup1.cif (809.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017590/dx2013Isup2.hkl

e-75-00071-Isup2.hkl (303.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018017590/dx2013Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018017590/dx2013Isup4.cml

CCDC reference: 1884538

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES