Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jan 1;75(Pt 1):30–32. doi: 10.1107/S2056989018017176

Redetermination of Sr2PdO3 from single-crystal X-ray data

Gohil S Thakur a,*, Hans Reuter b, Claudia Felser a, Martin Jansen a,c
PMCID: PMC6323883  PMID: 30713728

Sr2PdO3 adopts the Sr2CuO3 structure type. In comparison with previous determinations, the present redetermination results in improved precision of the structural parameters.

Keywords: crystal structure, K2NiF4 structure, Sr2CuO3 structure type, linear chain compound

Abstract

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the ortho­rhom­bic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes inter­spersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.

Chemical context  

Low-dimensional transition-metal oxides with chain structures have received attention since they can enable inter­esting physical phenomena such as spin 1/2 anti­ferromagnetic Heisenberg coupling (Motoyama et al., 1996; Takigawa et al., 1996), superconductivity (Hiroi et al., 1993), ultrafast non-linear optical response (Ogasawara et al., 2000) or even glucose sensing (El-Ads et al., 2016). The particularly relevant sub-family based on square-planar MO4 (M = divalent metal) primary building units is dominated by oxidocuprates(II), while the chemistry of respective palladates(II), showing the same preference for a square-planar coordination by oxygen, is much less explored.

Here we address Sr2PdO3, which has previously been obtained as a microcrystalline material (Wasel-Nielen & Hoppe, 1970; Muller & Roy, 1971; Nagata et al., 2002). Based on evaluations of powder X-ray diffractograms, Sr2PdO3 was identified as being isostructural with Sr2CuO3 (Teske & Müller-Buschbaum, 1969; Weller & Lines, 1989) and Sr2FeO3 (Tassel et al., 2013). However, structural details derived from the given atomic parameters have only been reported with large uncertainties (Muller & Roy, 1971; Nagata et al., 2002). Therefore, a redetermination of Sr2PdO3 based on single crystal X-ray data seemed appropriate.

Structural commentary  

The crystal structure of Sr2PdO3 is essentially the same as determined previously (Wasel-Nielen & Hoppe, 1970; Muller & Roy, 1971; Nagata et al., 2002). The lattice parameters (Table 1) are almost identical to those in the previous reports but with higher precision. The PdII atom occupies the 2d crystallographic sites with mmm site symmetry. We would like to point out that we chose a different cell setting as compared to all the previous reports, where the PdII atom was chosen to be located at the cell origin (site 2a; 0, 0, 0; hence the different site designations). The PdII atom forms distorted PdO4 square planes, which are linked by sharing oxygen atoms in the trans-position to form infinite chains extending along the b-axis direction as shown in Fig. 1. Corresponding to this connectivity pattern, the Pd—O bond lengths are longer for the shared oxygen atoms, 2.052 (2) Å, and shorter for the terminal ones, 1.9911 (2) Å. The Sr atom is situated at the 4j Wyckoff site having mm2 site symmetry. It is seven-coordinate in a monocapped trigonal–prismatic fashion by oxygen with three different bond lengths (Table 1, Fig. 2). In addition to the square-planar first coordination of PdII with oxygen, the second consists of eight SrII atoms present at the corner of a cuboid with dimension 3.5342 (2) × 3.7887 (2) × 3.9822 (3) Å3 (Fig. 2). Of the two kinds of oxygen atoms, both surrounded by six metal ions that form distorted octa­hedra, O1 is coordinated by one PdII atom [2.052 (2) Å] and five SrII atoms with one short [2.474 (2) Å] and four long distances [2.6668 (2) Å] (Fig. 3). O2 is connected to four equidistant SrII [2.5906 (3) Å] and two PdII atoms [1.9911 (2) Å] (Fig. 3). In our current structure determination, much more precise values of the cell parameters along with the z parameters of Sr and O1 have been determined, consequently, yielding very precise values for the bond lengths (see Table 1). The quality of the current refinement is also clearly reflected by better reliability factors (see Table 2) as compared to the previous refinements. The atomic arrangement described here is same as provided by Wasel-Nielen & Hoppe (1970).

Table 1. Comparison of lattice parameters and bond lengths (Å) in Sr2PdO3 determined in different studies.

  1970 worka 1971 workb 2002 workc This work
a 3.977 3.97 3.985 3.5342 (2)
b 3.53 3.544 3.539 3.9822 (3)
c 12.82 12.84 12.847 12.8414 (8)
Pd—O1 (×2) 2.08 2.045 2.068 2.052 (2)
Pd—O2 (×2) 1.99 1.985 1.993 1.9911 (1)
Sr—O1 2.45 2.504 2.467 2.474 (2)
Sr—O1 (×4) 2.67 2.668 2.671 2.6668 (2)
Sr—O2 (×2) 2.58 2.57 2.588 2.5906 (3)

References: (a) Wasel-Nielen & Hoppe (1970); (b) Muller & Roy (1971); (c) Nagata et al. (2002).

Figure 1.

Figure 1

Crystal structure of Sr2PdO3 viewed along the a axis (left) and along the b axis (right).

Figure 2.

Figure 2

Coordination around the SrII (left) and PdII atoms (right). All atoms are drawn with displacement ellipsoids at the 80% probability level. Distances are in Å.

Figure 3.

Figure 3

Coordination polyhedra of two types of oxygen atoms, O1 (left) and O2 (right). All atoms are drawn with displacement ellipsoids at the 80% probability level. Distances are in Å.

Table 2. Experimental details.

Crystal data
Chemical formula Sr2PdO3
M r 329.64
Crystal system, space group Orthorhombic, I m m m
Temperature (K) 296
a, b, c (Å) 3.5342 (2), 3.9822 (3), 12.8414 (8)
V3) 180.73 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 34.15
Crystal size (mm) 0.18 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.062, 0.102
No. of measured, independent and observed [I > 2σ(I)] reflections 8304, 178, 176
R int 0.035
(sin θ/λ)max−1) 0.702
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.009, 0.021, 1.27
No. of reflections 178
No. of parameters 16
Δρmax, Δρmin (e Å−3) 0.43, −0.51

Computer programs: APEX2 and, SAINT (Bruker, 2009), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006).

The structural features discussed above are closely related to those of the K2NiF4 type of structure, which is regarded as the prototype structure for all the high Tc cuprates. K2NiF4 consists of layers of corner-shared NiF6 octa­hedra extending in the ab plane. One can derive the Sr2PdO3 structure from the K2NiF4 structure by systematically removing the bridging F atoms from the NiF6 octa­hedra lying in the a-axis direction (Fig. 4). This would reduce the dimensionality of the layer, resulting in linear chains of square planes connected by edges along only one direction.

Figure 4.

Figure 4

Inter­conversion of the Sr2PdO3 and K2NiF4 structures.

Synthesis and crystallization  

Millimeter-sized block-shaped crystals of dark-yellow colour with composition Sr2PdO3 as confirmed by SEM–EDS, were obtained from a mixture of different phases while attempting to synthesize SrPd3O4 using a KOH flux (Smallwood et al., 2000). SrCO3 and Pd metal powder were mixed in the molar ratio of 2:3, placed in an alumina crucible, and 15 grams of KOH pellets were added on top. The crucible was heated in a muffle furnace to 1023 K in 24 h with a 6 h dwell time. The furnace was then cooled slowly to 873 K over 125 h after which it was switched off and allowed to cool naturally. The product was washed several times with water to remove the solidified flux and subsequently rinsed with ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018017176/wm5474sup1.cif

e-75-00030-sup1.cif (257.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017176/wm5474Isup2.hkl

e-75-00030-Isup2.hkl (17.6KB, hkl)

CCDC reference: 1882781

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

Sr2PdO3 Dx = 6.057 Mg m3
Mr = 329.64 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Immm Cell parameters from 1490 reflections
a = 3.5342 (2) Å θ = 3.2–29.9°
b = 3.9822 (3) Å µ = 34.15 mm1
c = 12.8414 (8) Å T = 296 K
V = 180.73 (2) Å3 Block, yellow-brown
Z = 2 0.18 × 0.16 × 0.12 mm
F(000) = 292

Data collection

Bruker APEXII CCD diffractometer 176 reflections with I > 2σ(I)
φ and ω scans Rint = 0.035
Absorption correction: multi-scan (SADABS; Bruker, 2009) θmax = 29.9°, θmin = 3.2°
Tmin = 0.062, Tmax = 0.102 h = −4→4
8304 measured reflections k = −5→5
178 independent reflections l = −18→18

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0092P)2 + 0.2817P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.009 (Δ/σ)max < 0.001
wR(F2) = 0.021 Δρmax = 0.43 e Å3
S = 1.27 Δρmin = −0.51 e Å3
178 reflections Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
16 parameters Extinction coefficient: 0.0059 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.5000 0.0000 0.5000 0.00493 (11)
Sr1 0.5000 0.0000 0.14752 (2) 0.00656 (11)
O1 0.5000 0.0000 0.34021 (18) 0.0085 (5)
O2 0.5000 0.5000 0.5000 0.0128 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.00765 (19) 0.00396 (17) 0.00320 (18) 0.000 0.000 0.000
Sr1 0.00752 (17) 0.00760 (16) 0.00456 (17) 0.000 0.000 0.000
O1 0.0117 (13) 0.0101 (12) 0.0037 (11) 0.000 0.000 0.000
O2 0.021 (2) 0.0035 (15) 0.0134 (18) 0.000 0.000 0.000

Geometric parameters (Å, º)

Pd1—O2i 1.9911 (1) Sr1—O1ix 2.6668 (2)
Pd1—O2 1.9911 (1) Sr1—O1vii 2.6668 (2)
Pd1—O1 2.052 (2) Sr1—Pd1xi 3.2674 (2)
Pd1—O1ii 2.052 (2) Sr1—Pd1xii 3.2674 (2)
Pd1—Sr1iii 3.2674 (2) Sr1—Pd1xiii 3.2674 (2)
Pd1—Sr1iv 3.2674 (2) Sr1—Pd1xiv 3.2674 (2)
Pd1—Sr1v 3.2674 (2) Sr1—Sr1xv 3.5342 (2)
Pd1—Sr1vi 3.2674 (2) O1—Sr1viii 2.6668 (2)
Pd1—Sr1vii 3.2674 (2) O1—Sr1iii 2.6668 (2)
Pd1—Sr1viii 3.2674 (2) O1—Sr1vii 2.6668 (2)
Pd1—Sr1ix 3.2674 (2) O1—Sr1ix 2.6668 (2)
Pd1—Sr1x 3.2674 (2) O2—Pd1xvi 1.9911 (1)
Sr1—O1 2.474 (2) O2—Sr1ix 2.5906 (3)
Sr1—O2xi 2.5906 (3) O2—Sr1iv 2.5906 (3)
Sr1—O2xii 2.5906 (3) O2—Sr1viii 2.5906 (3)
Sr1—O1viii 2.6668 (2) O2—Sr1vi 2.5906 (3)
Sr1—O1iii 2.6668 (2)
O2i—Pd1—O2 180.0 O1—Sr1—O1vii 86.61 (5)
O2i—Pd1—O1 90.0 O2xi—Sr1—O1vii 119.68 (4)
O2—Pd1—O1 90.0 O2xii—Sr1—O1vii 65.87 (4)
O2i—Pd1—O1ii 90.0 O1viii—Sr1—O1vii 96.597 (9)
O2—Pd1—O1ii 90.0 O1iii—Sr1—O1vii 83.000 (8)
O1—Pd1—O1ii 180.0 O1ix—Sr1—O1vii 173.22 (10)
O2i—Pd1—Sr1iii 52.455 (3) O1—Sr1—Pd1xi 125.435 (5)
O2—Pd1—Sr1iii 127.545 (3) O2xi—Sr1—Pd1xi 37.546 (3)
O1—Pd1—Sr1iii 54.565 (5) O2xii—Sr1—Pd1xi 86.845 (8)
O1ii—Pd1—Sr1iii 125.435 (5) O1viii—Sr1—Pd1xi 147.95 (5)
O2i—Pd1—Sr1iv 127.545 (3) O1iii—Sr1—Pd1xi 38.82 (5)
O2—Pd1—Sr1iv 52.455 (3) O1ix—Sr1—Pd1xi 97.52 (3)
O1—Pd1—Sr1iv 125.435 (5) O1vii—Sr1—Pd1xi 86.43 (3)
O1ii—Pd1—Sr1iv 54.565 (5) O1—Sr1—Pd1xii 125.435 (5)
Sr1iii—Pd1—Sr1iv 180.0 O2xi—Sr1—Pd1xii 86.845 (8)
O2i—Pd1—Sr1v 52.455 (4) O2xii—Sr1—Pd1xii 37.546 (3)
O2—Pd1—Sr1v 127.545 (3) O1viii—Sr1—Pd1xii 97.52 (3)
O1—Pd1—Sr1v 125.435 (5) O1iii—Sr1—Pd1xii 86.43 (3)
O1ii—Pd1—Sr1v 54.565 (5) O1ix—Sr1—Pd1xii 147.95 (5)
Sr1iii—Pd1—Sr1v 70.871 (10) O1vii—Sr1—Pd1xii 38.82 (5)
Sr1iv—Pd1—Sr1v 109.129 (10) Pd1xi—Sr1—Pd1xii 65.481 (6)
O2i—Pd1—Sr1vi 127.545 (3) O1—Sr1—Pd1xiii 125.435 (5)
O2—Pd1—Sr1vi 52.455 (4) O2xi—Sr1—Pd1xiii 86.845 (9)
O1—Pd1—Sr1vi 125.435 (5) O2xii—Sr1—Pd1xiii 37.546 (3)
O1ii—Pd1—Sr1vi 54.565 (5) O1viii—Sr1—Pd1xiii 38.82 (5)
Sr1iii—Pd1—Sr1vi 114.520 (6) O1iii—Sr1—Pd1xiii 147.95 (5)
Sr1iv—Pd1—Sr1vi 65.480 (6) O1ix—Sr1—Pd1xiii 86.43 (3)
Sr1v—Pd1—Sr1vi 75.090 (7) O1vii—Sr1—Pd1xiii 97.52 (3)
O2i—Pd1—Sr1vii 52.455 (3) Pd1xi—Sr1—Pd1xiii 109.130 (10)
O2—Pd1—Sr1vii 127.545 (3) Pd1xii—Sr1—Pd1xiii 75.091 (7)
O1—Pd1—Sr1vii 54.565 (5) O1—Sr1—Pd1xiv 125.435 (5)
O1ii—Pd1—Sr1vii 125.435 (5) O2xi—Sr1—Pd1xiv 37.546 (3)
Sr1iii—Pd1—Sr1vii 65.480 (5) O2xii—Sr1—Pd1xiv 86.845 (8)
Sr1iv—Pd1—Sr1vii 114.520 (6) O1viii—Sr1—Pd1xiv 86.43 (3)
Sr1v—Pd1—Sr1vii 104.910 (7) O1iii—Sr1—Pd1xiv 97.52 (3)
Sr1vi—Pd1—Sr1vii 180.0 O1ix—Sr1—Pd1xiv 38.82 (5)
O2i—Pd1—Sr1viii 127.545 (3) O1vii—Sr1—Pd1xiv 147.95 (5)
O2—Pd1—Sr1viii 52.455 (3) Pd1xi—Sr1—Pd1xiv 75.091 (7)
O1—Pd1—Sr1viii 54.565 (5) Pd1xii—Sr1—Pd1xiv 109.130 (10)
O1ii—Pd1—Sr1viii 125.435 (5) Pd1xiii—Sr1—Pd1xiv 65.481 (6)
Sr1iii—Pd1—Sr1viii 109.129 (10) O1—Sr1—Sr1xv 90.0
Sr1iv—Pd1—Sr1viii 70.871 (10) O2xi—Sr1—Sr1xv 133.011 (5)
Sr1v—Pd1—Sr1viii 180.0 O2xii—Sr1—Sr1xv 46.991 (5)
Sr1vi—Pd1—Sr1viii 104.910 (7) O1viii—Sr1—Sr1xv 48.500 (3)
Sr1vii—Pd1—Sr1viii 75.090 (7) O1iii—Sr1—Sr1xv 131.500 (4)
O2i—Pd1—Sr1ix 127.545 (4) O1ix—Sr1—Sr1xv 131.500 (4)
O2—Pd1—Sr1ix 52.455 (3) O1vii—Sr1—Sr1xv 48.500 (4)
O1—Pd1—Sr1ix 54.565 (5) Pd1xi—Sr1—Sr1xv 122.741 (3)
O1ii—Pd1—Sr1ix 125.435 (5) Pd1xii—Sr1—Sr1xv 57.260 (3)
Sr1iii—Pd1—Sr1ix 75.090 (7) Pd1xiii—Sr1—Sr1xv 57.260 (3)
Sr1iv—Pd1—Sr1ix 104.910 (7) Pd1xiv—Sr1—Sr1xv 122.741 (3)
Sr1v—Pd1—Sr1ix 114.520 (6) Pd1—O1—Sr1 180.0
Sr1vi—Pd1—Sr1ix 70.871 (10) Pd1—O1—Sr1viii 86.61 (5)
Sr1vii—Pd1—Sr1ix 109.129 (10) Sr1—O1—Sr1viii 93.39 (5)
Sr1viii—Pd1—Sr1ix 65.480 (6) Pd1—O1—Sr1iii 86.61 (5)
O2i—Pd1—Sr1x 52.455 (3) Sr1—O1—Sr1iii 93.39 (5)
O2—Pd1—Sr1x 127.545 (3) Sr1viii—O1—Sr1iii 173.23 (10)
O1—Pd1—Sr1x 125.435 (5) Pd1—O1—Sr1vii 86.61 (5)
O1ii—Pd1—Sr1x 54.565 (5) Sr1—O1—Sr1vii 93.39 (5)
Sr1iii—Pd1—Sr1x 104.910 (7) Sr1viii—O1—Sr1vii 96.597 (9)
Sr1iv—Pd1—Sr1x 75.090 (7) Sr1iii—O1—Sr1vii 83.001 (8)
Sr1v—Pd1—Sr1x 65.480 (5) Pd1—O1—Sr1ix 86.61 (5)
Sr1vi—Pd1—Sr1x 109.129 (10) Sr1—O1—Sr1ix 93.39 (5)
Sr1vii—Pd1—Sr1x 70.871 (10) Sr1viii—O1—Sr1ix 83.001 (8)
Sr1viii—Pd1—Sr1x 114.520 (6) Sr1iii—O1—Sr1ix 96.597 (9)
Sr1ix—Pd1—Sr1x 180.0 Sr1vii—O1—Sr1ix 173.23 (10)
O1—Sr1—O2xi 136.990 (5) Pd1xvi—O2—Pd1 180.0
O1—Sr1—O2xii 136.990 (5) Pd1xvi—O2—Sr1ix 90.0
O2xi—Sr1—O2xii 86.020 (11) Pd1—O2—Sr1ix 90.0
O1—Sr1—O1viii 86.61 (5) Pd1xvi—O2—Sr1iv 90.0
O2xi—Sr1—O1viii 119.68 (4) Pd1—O2—Sr1iv 90.0
O2xii—Sr1—O1viii 65.87 (4) Sr1ix—O2—Sr1iv 180.0
O1—Sr1—O1iii 86.61 (5) Pd1xvi—O2—Sr1viii 90.0
O2xi—Sr1—O1iii 65.87 (4) Pd1—O2—Sr1viii 90.0
O2xii—Sr1—O1iii 119.68 (4) Sr1ix—O2—Sr1viii 86.018 (11)
O1viii—Sr1—O1iii 173.22 (10) Sr1iv—O2—Sr1viii 93.982 (11)
O1—Sr1—O1ix 86.61 (5) Pd1xvi—O2—Sr1vi 90.0
O2xi—Sr1—O1ix 65.87 (4) Pd1—O2—Sr1vi 90.0
O2xii—Sr1—O1ix 119.68 (4) Sr1ix—O2—Sr1vi 93.982 (11)
O1viii—Sr1—O1ix 83.000 (8) Sr1iv—O2—Sr1vi 86.018 (11)
O1iii—Sr1—O1ix 96.597 (9) Sr1viii—O2—Sr1vi 180.0

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z+1; (iii) −x+1/2, −y−1/2, −z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x−1/2, y−1/2, z+1/2; (vi) x−1/2, y+1/2, z+1/2; (vii) −x+3/2, −y−1/2, −z+1/2; (viii) −x+3/2, −y+1/2, −z+1/2; (ix) −x+1/2, −y+1/2, −z+1/2; (x) x+1/2, y−1/2, z+1/2; (xi) x−1/2, y−1/2, z−1/2; (xii) x+1/2, y−1/2, z−1/2; (xiii) x+1/2, y+1/2, z−1/2; (xiv) x−1/2, y+1/2, z−1/2; (xv) x+1, y, z; (xvi) x, y+1, z.

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. El-Ads, E. H., Galal, A. & Atta, N. F. (2016). RSC Adv. 6, 16183–16196.
  4. Hiroi, Z., Takano, M., Azuma, M. & Takeda, Y. (1993). Nature, 364, 315–317.
  5. Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 3212–3215. [DOI] [PubMed]
  6. Muller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28–38.
  7. Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50–56.
  8. Ogasawara, T., Ashida, M., Motoyama, N., Eisaki, H., Uchida, S., Tokura, Y., Ghosh, H., Shukla, A., Mazumdar, S. & Kuwata-Gonokami, M. (2000). Phys. Rev. Lett. 85, 2204–2207. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Smallwood, P. L., Smith, M. D. & zur Loye, H. C. (2000). J. Cryst. Growth, 216, 299–303.
  12. Takigawa, M., Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 4612–4615. [DOI] [PubMed]
  13. Tassel, C., Seinberg, L., Hayashi, N., Ganesanpotti, S., Ajiro, Y., Kobayashi, Y. & Kageyama, H. (2013). Inorg. Chem. 52, 6096–6102. [DOI] [PubMed]
  14. Teske, C. L. & Müller-Buschbaum, Hk. (1969). Z. Anorg. Allg. Chem. 371, 325–332.
  15. Wasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209–213.
  16. Weller, M. T. & Lines, D. R. (1989). J. Solid State Chem. 82, 21–29.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018017176/wm5474sup1.cif

e-75-00030-sup1.cif (257.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017176/wm5474Isup2.hkl

e-75-00030-Isup2.hkl (17.6KB, hkl)

CCDC reference: 1882781

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES