Sr2PdO3 adopts the Sr2CuO3 structure type. In comparison with previous determinations, the present redetermination results in improved precision of the structural parameters.
Keywords: crystal structure, K2NiF4 structure, Sr2CuO3 structure type, linear chain compound
Abstract
The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970 ▸). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971 ▸). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002 ▸). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.
Chemical context
Low-dimensional transition-metal oxides with chain structures have received attention since they can enable interesting physical phenomena such as spin 1/2 antiferromagnetic Heisenberg coupling (Motoyama et al., 1996 ▸; Takigawa et al., 1996 ▸), superconductivity (Hiroi et al., 1993 ▸), ultrafast non-linear optical response (Ogasawara et al., 2000 ▸) or even glucose sensing (El-Ads et al., 2016 ▸). The particularly relevant sub-family based on square-planar MO4 (M = divalent metal) primary building units is dominated by oxidocuprates(II), while the chemistry of respective palladates(II), showing the same preference for a square-planar coordination by oxygen, is much less explored.
Here we address Sr2PdO3, which has previously been obtained as a microcrystalline material (Wasel-Nielen & Hoppe, 1970 ▸; Muller & Roy, 1971 ▸; Nagata et al., 2002 ▸). Based on evaluations of powder X-ray diffractograms, Sr2PdO3 was identified as being isostructural with Sr2CuO3 (Teske & Müller-Buschbaum, 1969 ▸; Weller & Lines, 1989 ▸) and Sr2FeO3 (Tassel et al., 2013 ▸). However, structural details derived from the given atomic parameters have only been reported with large uncertainties (Muller & Roy, 1971 ▸; Nagata et al., 2002 ▸). Therefore, a redetermination of Sr2PdO3 based on single crystal X-ray data seemed appropriate.
Structural commentary
The crystal structure of Sr2PdO3 is essentially the same as determined previously (Wasel-Nielen & Hoppe, 1970 ▸; Muller & Roy, 1971 ▸; Nagata et al., 2002 ▸). The lattice parameters (Table 1 ▸) are almost identical to those in the previous reports but with higher precision. The PdII atom occupies the 2d crystallographic sites with mmm site symmetry. We would like to point out that we chose a different cell setting as compared to all the previous reports, where the PdII atom was chosen to be located at the cell origin (site 2a; 0, 0, 0; hence the different site designations). The PdII atom forms distorted PdO4 square planes, which are linked by sharing oxygen atoms in the trans-position to form infinite chains extending along the b-axis direction as shown in Fig. 1 ▸. Corresponding to this connectivity pattern, the Pd—O bond lengths are longer for the shared oxygen atoms, 2.052 (2) Å, and shorter for the terminal ones, 1.9911 (2) Å. The Sr atom is situated at the 4j Wyckoff site having mm2 site symmetry. It is seven-coordinate in a monocapped trigonal–prismatic fashion by oxygen with three different bond lengths (Table 1 ▸, Fig. 2 ▸). In addition to the square-planar first coordination of PdII with oxygen, the second consists of eight SrII atoms present at the corner of a cuboid with dimension 3.5342 (2) × 3.7887 (2) × 3.9822 (3) Å3 (Fig. 2 ▸). Of the two kinds of oxygen atoms, both surrounded by six metal ions that form distorted octahedra, O1 is coordinated by one PdII atom [2.052 (2) Å] and five SrII atoms with one short [2.474 (2) Å] and four long distances [2.6668 (2) Å] (Fig. 3 ▸). O2 is connected to four equidistant SrII [2.5906 (3) Å] and two PdII atoms [1.9911 (2) Å] (Fig. 3 ▸). In our current structure determination, much more precise values of the cell parameters along with the z parameters of Sr and O1 have been determined, consequently, yielding very precise values for the bond lengths (see Table 1 ▸). The quality of the current refinement is also clearly reflected by better reliability factors (see Table 2 ▸) as compared to the previous refinements. The atomic arrangement described here is same as provided by Wasel-Nielen & Hoppe (1970 ▸).
Table 1. Comparison of lattice parameters and bond lengths (Å) in Sr2PdO3 determined in different studies.
| 1970 worka | 1971 workb | 2002 workc | This work | |
|---|---|---|---|---|
| a | 3.977 | 3.97 | 3.985 | 3.5342 (2) |
| b | 3.53 | 3.544 | 3.539 | 3.9822 (3) |
| c | 12.82 | 12.84 | 12.847 | 12.8414 (8) |
| Pd—O1 (×2) | 2.08 | 2.045 | 2.068 | 2.052 (2) |
| Pd—O2 (×2) | 1.99 | 1.985 | 1.993 | 1.9911 (1) |
| Sr—O1 | 2.45 | 2.504 | 2.467 | 2.474 (2) |
| Sr—O1 (×4) | 2.67 | 2.668 | 2.671 | 2.6668 (2) |
| Sr—O2 (×2) | 2.58 | 2.57 | 2.588 | 2.5906 (3) |
Figure 1.
Crystal structure of Sr2PdO3 viewed along the a axis (left) and along the b axis (right).
Figure 2.
Coordination around the SrII (left) and PdII atoms (right). All atoms are drawn with displacement ellipsoids at the 80% probability level. Distances are in Å.
Figure 3.
Coordination polyhedra of two types of oxygen atoms, O1 (left) and O2 (right). All atoms are drawn with displacement ellipsoids at the 80% probability level. Distances are in Å.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | Sr2PdO3 |
| M r | 329.64 |
| Crystal system, space group | Orthorhombic, I m m m |
| Temperature (K) | 296 |
| a, b, c (Å) | 3.5342 (2), 3.9822 (3), 12.8414 (8) |
| V (Å3) | 180.73 (2) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 34.15 |
| Crystal size (mm) | 0.18 × 0.16 × 0.12 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2009 ▸) |
| T min, T max | 0.062, 0.102 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 8304, 178, 176 |
| R int | 0.035 |
| (sin θ/λ)max (Å−1) | 0.702 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.009, 0.021, 1.27 |
| No. of reflections | 178 |
| No. of parameters | 16 |
| Δρmax, Δρmin (e Å−3) | 0.43, −0.51 |
The structural features discussed above are closely related to those of the K2NiF4 type of structure, which is regarded as the prototype structure for all the high Tc cuprates. K2NiF4 consists of layers of corner-shared NiF6 octahedra extending in the ab plane. One can derive the Sr2PdO3 structure from the K2NiF4 structure by systematically removing the bridging F atoms from the NiF6 octahedra lying in the a-axis direction (Fig. 4 ▸). This would reduce the dimensionality of the layer, resulting in linear chains of square planes connected by edges along only one direction.
Figure 4.
Interconversion of the Sr2PdO3 and K2NiF4 structures.
Synthesis and crystallization
Millimeter-sized block-shaped crystals of dark-yellow colour with composition Sr2PdO3 as confirmed by SEM–EDS, were obtained from a mixture of different phases while attempting to synthesize SrPd3O4 using a KOH flux (Smallwood et al., 2000 ▸). SrCO3 and Pd metal powder were mixed in the molar ratio of 2:3, placed in an alumina crucible, and 15 grams of KOH pellets were added on top. The crucible was heated in a muffle furnace to 1023 K in 24 h with a 6 h dwell time. The furnace was then cooled slowly to 873 K over 125 h after which it was switched off and allowed to cool naturally. The product was washed several times with water to remove the solidified flux and subsequently rinsed with ethanol.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018017176/wm5474sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017176/wm5474Isup2.hkl
CCDC reference: 1882781
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| Sr2PdO3 | Dx = 6.057 Mg m−3 |
| Mr = 329.64 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Immm | Cell parameters from 1490 reflections |
| a = 3.5342 (2) Å | θ = 3.2–29.9° |
| b = 3.9822 (3) Å | µ = 34.15 mm−1 |
| c = 12.8414 (8) Å | T = 296 K |
| V = 180.73 (2) Å3 | Block, yellow-brown |
| Z = 2 | 0.18 × 0.16 × 0.12 mm |
| F(000) = 292 |
Data collection
| Bruker APEXII CCD diffractometer | 176 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.035 |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 29.9°, θmin = 3.2° |
| Tmin = 0.062, Tmax = 0.102 | h = −4→4 |
| 8304 measured reflections | k = −5→5 |
| 178 independent reflections | l = −18→18 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0092P)2 + 0.2817P] where P = (Fo2 + 2Fc2)/3 |
| R[F2 > 2σ(F2)] = 0.009 | (Δ/σ)max < 0.001 |
| wR(F2) = 0.021 | Δρmax = 0.43 e Å−3 |
| S = 1.27 | Δρmin = −0.51 e Å−3 |
| 178 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 16 parameters | Extinction coefficient: 0.0059 (5) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Pd1 | 0.5000 | 0.0000 | 0.5000 | 0.00493 (11) | |
| Sr1 | 0.5000 | 0.0000 | 0.14752 (2) | 0.00656 (11) | |
| O1 | 0.5000 | 0.0000 | 0.34021 (18) | 0.0085 (5) | |
| O2 | 0.5000 | 0.5000 | 0.5000 | 0.0128 (8) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Pd1 | 0.00765 (19) | 0.00396 (17) | 0.00320 (18) | 0.000 | 0.000 | 0.000 |
| Sr1 | 0.00752 (17) | 0.00760 (16) | 0.00456 (17) | 0.000 | 0.000 | 0.000 |
| O1 | 0.0117 (13) | 0.0101 (12) | 0.0037 (11) | 0.000 | 0.000 | 0.000 |
| O2 | 0.021 (2) | 0.0035 (15) | 0.0134 (18) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º)
| Pd1—O2i | 1.9911 (1) | Sr1—O1ix | 2.6668 (2) |
| Pd1—O2 | 1.9911 (1) | Sr1—O1vii | 2.6668 (2) |
| Pd1—O1 | 2.052 (2) | Sr1—Pd1xi | 3.2674 (2) |
| Pd1—O1ii | 2.052 (2) | Sr1—Pd1xii | 3.2674 (2) |
| Pd1—Sr1iii | 3.2674 (2) | Sr1—Pd1xiii | 3.2674 (2) |
| Pd1—Sr1iv | 3.2674 (2) | Sr1—Pd1xiv | 3.2674 (2) |
| Pd1—Sr1v | 3.2674 (2) | Sr1—Sr1xv | 3.5342 (2) |
| Pd1—Sr1vi | 3.2674 (2) | O1—Sr1viii | 2.6668 (2) |
| Pd1—Sr1vii | 3.2674 (2) | O1—Sr1iii | 2.6668 (2) |
| Pd1—Sr1viii | 3.2674 (2) | O1—Sr1vii | 2.6668 (2) |
| Pd1—Sr1ix | 3.2674 (2) | O1—Sr1ix | 2.6668 (2) |
| Pd1—Sr1x | 3.2674 (2) | O2—Pd1xvi | 1.9911 (1) |
| Sr1—O1 | 2.474 (2) | O2—Sr1ix | 2.5906 (3) |
| Sr1—O2xi | 2.5906 (3) | O2—Sr1iv | 2.5906 (3) |
| Sr1—O2xii | 2.5906 (3) | O2—Sr1viii | 2.5906 (3) |
| Sr1—O1viii | 2.6668 (2) | O2—Sr1vi | 2.5906 (3) |
| Sr1—O1iii | 2.6668 (2) | ||
| O2i—Pd1—O2 | 180.0 | O1—Sr1—O1vii | 86.61 (5) |
| O2i—Pd1—O1 | 90.0 | O2xi—Sr1—O1vii | 119.68 (4) |
| O2—Pd1—O1 | 90.0 | O2xii—Sr1—O1vii | 65.87 (4) |
| O2i—Pd1—O1ii | 90.0 | O1viii—Sr1—O1vii | 96.597 (9) |
| O2—Pd1—O1ii | 90.0 | O1iii—Sr1—O1vii | 83.000 (8) |
| O1—Pd1—O1ii | 180.0 | O1ix—Sr1—O1vii | 173.22 (10) |
| O2i—Pd1—Sr1iii | 52.455 (3) | O1—Sr1—Pd1xi | 125.435 (5) |
| O2—Pd1—Sr1iii | 127.545 (3) | O2xi—Sr1—Pd1xi | 37.546 (3) |
| O1—Pd1—Sr1iii | 54.565 (5) | O2xii—Sr1—Pd1xi | 86.845 (8) |
| O1ii—Pd1—Sr1iii | 125.435 (5) | O1viii—Sr1—Pd1xi | 147.95 (5) |
| O2i—Pd1—Sr1iv | 127.545 (3) | O1iii—Sr1—Pd1xi | 38.82 (5) |
| O2—Pd1—Sr1iv | 52.455 (3) | O1ix—Sr1—Pd1xi | 97.52 (3) |
| O1—Pd1—Sr1iv | 125.435 (5) | O1vii—Sr1—Pd1xi | 86.43 (3) |
| O1ii—Pd1—Sr1iv | 54.565 (5) | O1—Sr1—Pd1xii | 125.435 (5) |
| Sr1iii—Pd1—Sr1iv | 180.0 | O2xi—Sr1—Pd1xii | 86.845 (8) |
| O2i—Pd1—Sr1v | 52.455 (4) | O2xii—Sr1—Pd1xii | 37.546 (3) |
| O2—Pd1—Sr1v | 127.545 (3) | O1viii—Sr1—Pd1xii | 97.52 (3) |
| O1—Pd1—Sr1v | 125.435 (5) | O1iii—Sr1—Pd1xii | 86.43 (3) |
| O1ii—Pd1—Sr1v | 54.565 (5) | O1ix—Sr1—Pd1xii | 147.95 (5) |
| Sr1iii—Pd1—Sr1v | 70.871 (10) | O1vii—Sr1—Pd1xii | 38.82 (5) |
| Sr1iv—Pd1—Sr1v | 109.129 (10) | Pd1xi—Sr1—Pd1xii | 65.481 (6) |
| O2i—Pd1—Sr1vi | 127.545 (3) | O1—Sr1—Pd1xiii | 125.435 (5) |
| O2—Pd1—Sr1vi | 52.455 (4) | O2xi—Sr1—Pd1xiii | 86.845 (9) |
| O1—Pd1—Sr1vi | 125.435 (5) | O2xii—Sr1—Pd1xiii | 37.546 (3) |
| O1ii—Pd1—Sr1vi | 54.565 (5) | O1viii—Sr1—Pd1xiii | 38.82 (5) |
| Sr1iii—Pd1—Sr1vi | 114.520 (6) | O1iii—Sr1—Pd1xiii | 147.95 (5) |
| Sr1iv—Pd1—Sr1vi | 65.480 (6) | O1ix—Sr1—Pd1xiii | 86.43 (3) |
| Sr1v—Pd1—Sr1vi | 75.090 (7) | O1vii—Sr1—Pd1xiii | 97.52 (3) |
| O2i—Pd1—Sr1vii | 52.455 (3) | Pd1xi—Sr1—Pd1xiii | 109.130 (10) |
| O2—Pd1—Sr1vii | 127.545 (3) | Pd1xii—Sr1—Pd1xiii | 75.091 (7) |
| O1—Pd1—Sr1vii | 54.565 (5) | O1—Sr1—Pd1xiv | 125.435 (5) |
| O1ii—Pd1—Sr1vii | 125.435 (5) | O2xi—Sr1—Pd1xiv | 37.546 (3) |
| Sr1iii—Pd1—Sr1vii | 65.480 (5) | O2xii—Sr1—Pd1xiv | 86.845 (8) |
| Sr1iv—Pd1—Sr1vii | 114.520 (6) | O1viii—Sr1—Pd1xiv | 86.43 (3) |
| Sr1v—Pd1—Sr1vii | 104.910 (7) | O1iii—Sr1—Pd1xiv | 97.52 (3) |
| Sr1vi—Pd1—Sr1vii | 180.0 | O1ix—Sr1—Pd1xiv | 38.82 (5) |
| O2i—Pd1—Sr1viii | 127.545 (3) | O1vii—Sr1—Pd1xiv | 147.95 (5) |
| O2—Pd1—Sr1viii | 52.455 (3) | Pd1xi—Sr1—Pd1xiv | 75.091 (7) |
| O1—Pd1—Sr1viii | 54.565 (5) | Pd1xii—Sr1—Pd1xiv | 109.130 (10) |
| O1ii—Pd1—Sr1viii | 125.435 (5) | Pd1xiii—Sr1—Pd1xiv | 65.481 (6) |
| Sr1iii—Pd1—Sr1viii | 109.129 (10) | O1—Sr1—Sr1xv | 90.0 |
| Sr1iv—Pd1—Sr1viii | 70.871 (10) | O2xi—Sr1—Sr1xv | 133.011 (5) |
| Sr1v—Pd1—Sr1viii | 180.0 | O2xii—Sr1—Sr1xv | 46.991 (5) |
| Sr1vi—Pd1—Sr1viii | 104.910 (7) | O1viii—Sr1—Sr1xv | 48.500 (3) |
| Sr1vii—Pd1—Sr1viii | 75.090 (7) | O1iii—Sr1—Sr1xv | 131.500 (4) |
| O2i—Pd1—Sr1ix | 127.545 (4) | O1ix—Sr1—Sr1xv | 131.500 (4) |
| O2—Pd1—Sr1ix | 52.455 (3) | O1vii—Sr1—Sr1xv | 48.500 (4) |
| O1—Pd1—Sr1ix | 54.565 (5) | Pd1xi—Sr1—Sr1xv | 122.741 (3) |
| O1ii—Pd1—Sr1ix | 125.435 (5) | Pd1xii—Sr1—Sr1xv | 57.260 (3) |
| Sr1iii—Pd1—Sr1ix | 75.090 (7) | Pd1xiii—Sr1—Sr1xv | 57.260 (3) |
| Sr1iv—Pd1—Sr1ix | 104.910 (7) | Pd1xiv—Sr1—Sr1xv | 122.741 (3) |
| Sr1v—Pd1—Sr1ix | 114.520 (6) | Pd1—O1—Sr1 | 180.0 |
| Sr1vi—Pd1—Sr1ix | 70.871 (10) | Pd1—O1—Sr1viii | 86.61 (5) |
| Sr1vii—Pd1—Sr1ix | 109.129 (10) | Sr1—O1—Sr1viii | 93.39 (5) |
| Sr1viii—Pd1—Sr1ix | 65.480 (6) | Pd1—O1—Sr1iii | 86.61 (5) |
| O2i—Pd1—Sr1x | 52.455 (3) | Sr1—O1—Sr1iii | 93.39 (5) |
| O2—Pd1—Sr1x | 127.545 (3) | Sr1viii—O1—Sr1iii | 173.23 (10) |
| O1—Pd1—Sr1x | 125.435 (5) | Pd1—O1—Sr1vii | 86.61 (5) |
| O1ii—Pd1—Sr1x | 54.565 (5) | Sr1—O1—Sr1vii | 93.39 (5) |
| Sr1iii—Pd1—Sr1x | 104.910 (7) | Sr1viii—O1—Sr1vii | 96.597 (9) |
| Sr1iv—Pd1—Sr1x | 75.090 (7) | Sr1iii—O1—Sr1vii | 83.001 (8) |
| Sr1v—Pd1—Sr1x | 65.480 (5) | Pd1—O1—Sr1ix | 86.61 (5) |
| Sr1vi—Pd1—Sr1x | 109.129 (10) | Sr1—O1—Sr1ix | 93.39 (5) |
| Sr1vii—Pd1—Sr1x | 70.871 (10) | Sr1viii—O1—Sr1ix | 83.001 (8) |
| Sr1viii—Pd1—Sr1x | 114.520 (6) | Sr1iii—O1—Sr1ix | 96.597 (9) |
| Sr1ix—Pd1—Sr1x | 180.0 | Sr1vii—O1—Sr1ix | 173.23 (10) |
| O1—Sr1—O2xi | 136.990 (5) | Pd1xvi—O2—Pd1 | 180.0 |
| O1—Sr1—O2xii | 136.990 (5) | Pd1xvi—O2—Sr1ix | 90.0 |
| O2xi—Sr1—O2xii | 86.020 (11) | Pd1—O2—Sr1ix | 90.0 |
| O1—Sr1—O1viii | 86.61 (5) | Pd1xvi—O2—Sr1iv | 90.0 |
| O2xi—Sr1—O1viii | 119.68 (4) | Pd1—O2—Sr1iv | 90.0 |
| O2xii—Sr1—O1viii | 65.87 (4) | Sr1ix—O2—Sr1iv | 180.0 |
| O1—Sr1—O1iii | 86.61 (5) | Pd1xvi—O2—Sr1viii | 90.0 |
| O2xi—Sr1—O1iii | 65.87 (4) | Pd1—O2—Sr1viii | 90.0 |
| O2xii—Sr1—O1iii | 119.68 (4) | Sr1ix—O2—Sr1viii | 86.018 (11) |
| O1viii—Sr1—O1iii | 173.22 (10) | Sr1iv—O2—Sr1viii | 93.982 (11) |
| O1—Sr1—O1ix | 86.61 (5) | Pd1xvi—O2—Sr1vi | 90.0 |
| O2xi—Sr1—O1ix | 65.87 (4) | Pd1—O2—Sr1vi | 90.0 |
| O2xii—Sr1—O1ix | 119.68 (4) | Sr1ix—O2—Sr1vi | 93.982 (11) |
| O1viii—Sr1—O1ix | 83.000 (8) | Sr1iv—O2—Sr1vi | 86.018 (11) |
| O1iii—Sr1—O1ix | 96.597 (9) | Sr1viii—O2—Sr1vi | 180.0 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z+1; (iii) −x+1/2, −y−1/2, −z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x−1/2, y−1/2, z+1/2; (vi) x−1/2, y+1/2, z+1/2; (vii) −x+3/2, −y−1/2, −z+1/2; (viii) −x+3/2, −y+1/2, −z+1/2; (ix) −x+1/2, −y+1/2, −z+1/2; (x) x+1/2, y−1/2, z+1/2; (xi) x−1/2, y−1/2, z−1/2; (xii) x+1/2, y−1/2, z−1/2; (xiii) x+1/2, y+1/2, z−1/2; (xiv) x−1/2, y+1/2, z−1/2; (xv) x+1, y, z; (xvi) x, y+1, z.
References
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Ads, E. H., Galal, A. & Atta, N. F. (2016). RSC Adv. 6, 16183–16196.
- Hiroi, Z., Takano, M., Azuma, M. & Takeda, Y. (1993). Nature, 364, 315–317.
- Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 3212–3215. [DOI] [PubMed]
- Muller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28–38.
- Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50–56.
- Ogasawara, T., Ashida, M., Motoyama, N., Eisaki, H., Uchida, S., Tokura, Y., Ghosh, H., Shukla, A., Mazumdar, S. & Kuwata-Gonokami, M. (2000). Phys. Rev. Lett. 85, 2204–2207. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Smallwood, P. L., Smith, M. D. & zur Loye, H. C. (2000). J. Cryst. Growth, 216, 299–303.
- Takigawa, M., Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 4612–4615. [DOI] [PubMed]
- Tassel, C., Seinberg, L., Hayashi, N., Ganesanpotti, S., Ajiro, Y., Kobayashi, Y. & Kageyama, H. (2013). Inorg. Chem. 52, 6096–6102. [DOI] [PubMed]
- Teske, C. L. & Müller-Buschbaum, Hk. (1969). Z. Anorg. Allg. Chem. 371, 325–332.
- Wasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209–213.
- Weller, M. T. & Lines, D. R. (1989). J. Solid State Chem. 82, 21–29.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018017176/wm5474sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018017176/wm5474Isup2.hkl
CCDC reference: 1882781
Additional supporting information: crystallographic information; 3D view; checkCIF report




