Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2019 Jan 7;7(1):e01209. doi: 10.1002/aps3.1209

Development and characterization of EST‐SSR markers for Vitex negundo var. heterophylla (Lamiaceae)

Lele Liu 1, Jingwen Wang 1, Meiqi Yin 1, Xiao Guo 2, Yunfei Cai 3, Ning Du 1, Xiaona Yu 1, Weihua Guo 1,
PMCID: PMC6342176  PMID: 30693155

Abstract

Premise of the Study

Vitex negundo var. heterophylla (Lamiaceae) is a dominant shrub in the warm temperate zone of northern China. Expressed sequence tag–simple sequence repeat (EST‐SSR) markers were developed to investigate its genetic diversity and structure.

Methods and Results

We detected 12,075 SSRs in V. negundo var. heterophylla using transcriptome sequencing. Primer pairs for 100 SSR loci were designed and amplified in three populations of V. negundo var. heterophylla. Sixty loci were amplified, of which 14 were polymorphic. The number of alleles per locus ranged from two to 15, and levels of observed and expected heterozygosity ranged from 0.241 to 0.828 and from 0.426 to 0.873, respectively. All primer pairs amplified PCR products from V. rotundifolia but only four of them amplified products from Leonurus japonicus.

Conclusions

The identified EST‐SSR markers will be useful for future molecular and reproductive ecology studies of V. negundo var. heterophylla and V. rotundifolia.

Keywords: expressed sequence tag–simple sequence repeat (EST‐SSR) markers, Lamiaceae, transcriptome sequencing, Vitex negundo var. heterophylla, Vitex rotundifolia


Vitex negundo L. var. heterophylla (Franch.) Rehder (Lamiaceae) is a deciduous shrub species that is widely distributed in the hilly areas of northern China. It exhibits a range of morphological and physiological adaptations to abiotic environmental factors, such as water and light regimes (Du et al., 2010, 2012, 2017), that are under the control of genetic and epigenetic mechanisms (Liu et al., 2018). This has allowed colonization of a broad range of habitats, including woodland, bush, and roadsides. Only a few genetic studies of V. negundo have been reported, and these have been based on random amplified polymorphic DNA (RAPD) (Su et al., 2003; Zhang et al., 2007) and amplified fragment length polymorphism (AFLP) markers (Liu et al., 2018). Notably, no studies using codominant genetic markers are currently available. In V. rotundifolia L. f. (Lamiaceae), an endangered coastal species, genomic simple sequence repeat (gSSR) markers have been reported (Ohtsuki et al., 2014). Here, we sequenced the transcriptome and developed expressed sequence tag–SSR (EST‐SSR) markers for V. negundo var. heterophylla. These markers will be useful for further reproductive and evolutionary ecology studies of V. negundo var. heterophylla and can also provide information for revegetation and management programs.

METHODS AND RESULTS

Two V. negundo var. heterophylla individuals were sampled for transcriptome sequencing from Fohui Mountain in Jinan, Shandong Province, China (Appendix 1). RNA was extracted from collected leaves using the RNAprep Pure Plant kit (Tiangen, Beijing, China), and mRNA was isolated from total RNA using the NEBNext Ultra RNA Library Prep Kit (New England Biolabs, Ipswich, Massachusetts, USA). After ultrasonic fragmentation, mRNA was converted to double‐stranded cDNA using the same kit. Purification and size selection were conducted using AMPure XP Beads (Beckman Coulter, Brea, California, USA). Finally, DNA fragments of approximately 400 bp in length were sequenced using an Illumina HiSeq instrument (Illumina, San Diego, California, USA). The raw data were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (accession no. PRJNA491662). The raw sequences were filtered by removing adapters and low‐quality reads (quality score < 30), resulting in 45.568 and 43.082 million clean reads, from the two libraries, respectively. These reads were de novo assembled using Trinity (Grabherr et al., 2011) into 52,072 unigenes, with an N50 length of 1414 bp. The putative functions of EST‐SSR sequences were determined by BLASTX against the NCBI non‐redundant protein (nr) database. We detected 12,075 SSR loci from these unigenes using MISA (Thiel et al., 2003), consisting of 4242 mononucleotide SSRs and 7833 di‐, tri‐, tetra‐, penta‐, and hexanucleotide SSRs. Primers were designed using Primer3 (Untergasser et al., 2012).

Fresh leaves were collected from three populations of V. negundo var. heterophylla in Shandong Province, China (Appendix 1), and genomic DNA was extracted from dried leaf tissue using the cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987). Initially, we used 100 primer pairs with high dinucleotide or trinucleotide repeat motifs to amplify products from six individuals belonging to three populations. PCR amplification was performed in a final volume of 20 μL, containing 3 ng of template DNA, 2 μL of 10× buffer (with Mg2+; Tiangen), 1 μL of dNTPs (2.5 mM each), 1 μL of each primer (5 μM), and 1 unit of Taq polymerase (Tiangen). The PCR program consisted of an initial denaturation step at 95°C for 5 min; followed by 35 cycles of denaturation at 95°C for 30 s, annealing at an appropriate temperature for 1 min, and extension at 72°C for 45 s; followed by a final extension step at 72°C for 7 min and 65°C for 30 s. The PCR products were fractionated by electrophoresis using both 2% agarose gels and 6% polyacrylamide gels with a 1‐kbp DNA Ladder Marker (Tiangen) as a reference. In total, 52 primer pairs amplified detectable products, of which 14 pairs showed polymorphism among the six tested samples (Table 1; see monomorphic loci in Appendix 2). The putative functions of EST‐SSR sequences were determined by BLASTX against the NCBI nr database.

Table 1.

Characteristics of 14 polymorphic EST‐SSR markers developed for Vitex negundo var. heterophylla

Locus Primer sequences (5′–3′) Repeat motif T a (°C) Expected allele size (bp) Allele size range (bp) Putative function [Organism] E‐value GenBank accession no.
V02 F: AGCAGGGAGAGGAAGAGGAG (TGG)13 58 172 156–187 No hit MH825839
R: ACCAACCCCACTCAGCTAGA
V07 F: CCTCTGCTGCGCATGTCTAT (AG)16 56 125 107–133 Serine hydroxymethyltransferase, mitochondrial [Erythranthe guttatus] 8.90E‐114 MH825840
R: TAAGGGGCTTGCCAATGGAG
V15 F: CAACAGAGAGGGCGTCAAGT (AT)6 56 220 206–237 No hit MH825841
R: GGGGAGTGTCGAAGTGGAAG
V25 F: ACAGCAGCCATTCAGACTGT (GT)16 58 236 207–253 No hit MH825842
R: CGTTGCATTCGGCCATTCAA
V30 F: GCAAGGCGAAGAATACAGCG (TGC)5 56 191 189–205 ABC transporter G family member 11 [Sesamum indicum] 6.20E‐172 MH825843
G: GTCGGGAGGGACTGAGTAGT
V49 F: CCGTTCGCTGTTGCTTGTAC (AG)14 56 215 200–242 No hit MH825844
R: CCTCAGCAGTTTGGACGTCT
V55 F: GCAAGCTCCTCCTTCCTTGA (CTC)10 56 198 276–206 Probable protein S‐acyltransferase 12 isoform X3 [Sesamum indicum] 6.90E‐99 MH825845
R: ACCGAGGAAGTTGAGTGCAG
V59 F: AGCTGAATGGCAACCTTCGA (GAT)7 56 238 224–237 Intracellular protein transport protein USO1‐like [Sesamum indicum] 8.80E‐78 MH825846
R: ACGAGGTCCTCTAGTGCCTT
V70 F: TGTTGGCCGATCAGCTGATT (GCT)7 56 144 133–153 Hypothetical protein MIMGU_mgv1a000263mg [Erythranthe guttata] 1.00E‐146 MH825847
R: GCAGCAGCCTTCCATTATGC
V76 F: TGACGCTCTCGATCCAACTT (AG)15 56 121 94–128 Uncharacterized protein At4g26450 [Sesamum indicum] 5.50E‐52 MH825848
R: GCCTTGGCCATCATTTCAGC
V95 F: CGAGTATACGCAGGCGAACT (GCC)7 56 253 242–266 Zinc finger protein 8 [Erythranthe guttatus] 6.10E‐13 MH825849
R: GCTTGGCTGATGCACATGTT
V97 F: GTCACCACTCACCGGCAATA (CA)12 56 229 211–239 Uncharacterized protein LOC105175071 [Sesamum indicum] 2.90E‐40 MH825850
R: GGCGCGTCATGGTATAAGGA
V99 F: ACGACGAGCTCGAACATGAA (GTG)8 56 161 155–173 Transcription factor bHLH63 [Sesamum indicum] 5.50E‐52 MH825851
R: GATACGCAGCAGCAGAGGAT
V100 F: CTGCCACCACCTCCATTTCT (CAA)8 56 220 211–235 d‐3‐phosphoglycerate dehydrogenase 2, chloroplastic‐like [Sesamum indicum] 1.20E‐293 MH825852
R: TCGGAATCCTTCACCAGCAC

T a = annealing temperature.

The 14 primer pairs were then used with all 83 samples from the three populations to evaluate the overall level of polymorphism. The forward primers were 5′ end‐labeled with FAM dye, and final products were fractionated using an ABI 3730XL DNA capillary sequencer (Applied Biosystems, Foster City, California, USA) with a LIZ 500 Internal Size standard (Applied Biosystems). GenAlEx version 6.5 (Peakall and Smouse, 2012) was used to calculate the number of alleles, observed heterozygosity, and expected heterozygosity for each locus. GENEPOP software (version 4.7.0; Rousset, 2008) was used to investigate linkage disequilibrium and to determine deviation from Hardy–Weinberg equilibrium. The number of alleles per locus ranged from two to 15, the levels of observed heterozygosity ranged from 0.241 to 0.828, and the levels of expected heterozygosity ranged from 0.426 to 0.873 (Table 2). Significant linkage disequilibrium was detected between loci V15 and V30 (P = 0.0109) and loci V25 and V70 (P = 0.0266). Loci V97 and V100 showed significant deviation from Hardy–Weinberg equilibrium in two populations (P < 0.001; Table 2).

Table 2.

Genetic variation in the 14 polymorphic EST‐SSR markers in three Vitex negundo var. heterophylla populations.*

Locus Population A (n = 29) Population B (n = 28) Population C (n = 26)
A H o H e A H o H e A H o H e
V02 7 0.655 0.746 8 0.786 0.815 9 0.692 0.844
V07 7 0.759 0.804 7 0.714 0.751 8 0.692 0.834
V15 7 0.536 0.573 8 0.500 0.670 6 0.615 0.698
V25 15 0.828 0.873 12 0.714 0.865 13 0.692 0.719
V30 4 0.655 0.624 5 0.500 0.466 5 0.577 0.679
V49 10 0.586 0.757 10 0.714 0.836 11 0.538 0.771
V55 7 0.759 0.687 9 0.714 0.733 7 0.538 0.562
V59 3 0.621 0.540 3 0.500 0.517 3 0.538 0.514
V70 6 0.828 0.719 8 0.714 0.746 6 0.731 0.724
V76 12 0.690 0.699 11 0.786 0.811 8 0.615 0.754
V95 6 0.379 0.479 7 0.643 0.629 10 0.500 0.509
V97 8 0.345 0.717a 9 0.393 0.790a 8 0.385 0.798
V99 4 0.241 0.456 5 0.536 0.573 2 0.385 0.426
V100 8 0.724 0.744a 6 0.357 0.651a 8 0.500 0.743

A = number of alleles; H e = expected heterozygosity; H o = observed heterozygosity; n = sample size.

*

Locality and voucher information are provided in Appendix 1.

a

Significant deviation from Hardy–Weinberg equilibrium (P < 0.001).

To test the transferability of the 14 primers between taxa, they were used with DNA samples from V. rotundifolia and Leonurus japonicus Houtt. (Lamiaceae). All primer pairs successfully amplified products from V. rotundifolia, but only four primer pairs amplified products from some L. japonicus individuals (Table 3).

Table 3.

Cross‐amplification of 14 polymorphic EST‐SSR markers developed for Vitex negundo var. heterophylla in V. rotundifolia and Leonurus japonicus.a

Locus Vitex rotundifolia (n = 13)b Leonurus japonicus (n = 8)
V02 169, 172, 175, 187
V07 117, 123
V15 208, 233*
V25 225, 227, 229* *
V30 191, 193, 195
V49 200, 210, 214
V55 176, 179, 185
V59 224, 234, 237
V70 140, 149
V76 110, 112, 122, 128 *
V95 245, 248, 254 *
V97 211, 221, 223, 227* *
V99 167, 170, 173
V100 211, 214, 217, 220, 226, 229
*

= primers amplified products in some individuals; — = primers did not amplify in any of the individuals; n = number of individuals.

a

Locality and voucher information are provided in Appendix 1.

b

Numbers represent the PCR product size.

CONCLUSIONS

We assembled 52,072 unigenes of V. negundo var. heterophylla following transcriptome sequencing and used this data set to develop 14 novel polymorphic EST‐SSR primer pairs. All of these primers amplified products in the related species V. rotundifolia. These markers represent a useful resource for reproductive and genetic ecology studies of this species and may provide a valuable tool for revegetation and management in northern China.

AUTHOR CONTRIBUTIONS

W.G., L.L., and Y.C. conceived and designed the experiments. L.L., J.W., M.Y., X.G., X.Y., and N.D. contributed to sample collection. L.L. and J.W. performed the molecular laboratory work. L.L., J.W., M.Y., and Y.C. participated in data pre‐processing. L.L., Y.C., N.D., X.Y., and W.G. analyzed the data. L.L. drafted the manuscript and all authors participated in manuscript modifications and gave final approval for publication.

DATA ACCESSIBILITY

All sequence information was uploaded to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (accession no. PRJNA491662); primer sequences were uploaded to GenBank (accession no. MH825839MH825852 and MH892533MH892570; Table 1 and Appendix 2).

ACKNOWLEDGMENTS

The authors thank Dr. Shuping Zhang for field assistance and Prof. Fengning Xiang for technical guidance. This work was supported by the National Natural Science Foundation of China (no. 31470402, 31770361), the Basic Work of the Ministry of Science and Technology of China (no. 2015FY1103003‐02), and the Fundamental Research Funds of Shandong University (no. 2017GN0018). The authors also thank PlantScribe (www.plantscribe.com) for editing this manuscript.

APPENDIX 1. Voucher information for Vitex negundo var. heterophylla, V. rotundifolia, and Leonurus japonicus individuals used in this study.

Species Population N Collection localitya Geographic coordinates Voucher specimenb
Vitex negundo L. var. heterophylla (Franch.) Rehder A 29 Fanggan 36.4317°N, 117.4516°E 01611001
Vitex negundo var. heterophylla B 28 Mengshan 35.5376°N, 117.9895°E 01611002
Vitex negundo var. heterophylla C 26 Yaoxiang 36.3213°N, 117.1200°E 01611003
Vitex negundo var. heterophylla 2 Jinan 36.6317°N, 117.0347°E 01709001c01709002d
Vitex rotundifolia L. f. 13 Muping 37.4574°N, 121.6826°E 01801001
Leonurus japonicus Houtt. 8 Jinan 36.7239°N, 117.0207°E 01801002
a

Collection localities are in Shandong Province, China.

b

All voucher specimens were collected by Lelel Liu and are deposited in the Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University (JSPC), Qingdao, China. The sample with irregularly pinnatifid leaflets (c) and the sample with slightly incised leaflets (d) were used for transcriptome sequencing.

APPENDIX 2. Characteristics of the 38 monomorphic EST‐SSR markers developed for Vitex negundo var. heterophylla.

Locus Primer sequences (5′–3′) Repeat motif T a (°C) Allele size (bp) Putative function [Organism] E‐value GenBank accession no.
V3 F: CGATGATGCCCCCACTAGTC (TC)15 56 150 Unnamed protein product [Coffea canephora] 2.80E‐17 MH892533
R: TCCGCAGATGGCCTGTTATC
V4 F: TCTCTCTTCTCTCCTCCGCC (CAA)6 56 207 Uncharacterized protein LOC105175754 [Sesamum indicum] 1.50E‐60 MH892534
R: GGGTCTTCGGAAATGGGGTT
V8 F: ACGCGAACCTGTGAAGATGT (CT)12 56 171 Hypothetical protein M569_03371, partial [Genlisea aurea] 2.50E‐56 MH892535
R: GAAACAAGGAAGCGACGCTC
V11 F: TGATGCCATGGTAGCAACGA (AAG)9 56 248 G‐type lectin S‐receptor‐like serine/threonine‐protein kinase At4g27290 [Sesamum indicum] 1.20E‐15 MH892536
R: GTTCGAACTTCCCACCGGAT
V13 F: TAAGACTCCCACTGCAAGCG (CCA)5 56 212 Uncharacterized protein LOC105974765 [Erythranthe guttatus] 3.20E‐50 MH892537
R: GAATGTGGCAGGTGGATCCA
V18 F: GGAACACGTGATTGGGGTTC (TC)16 56 193 No hit MH892538
R: AGACGGGCGAAAAACTCCAA
V21 F: CCGGAAAAAGCAGTAACCGC (CT)13 56 209 Unnamed protein product [Vitis vinifera] 5.10E‐06 MH892539
R: ATCACCAGCAACTGCCATCA
V26 F: CAGCAGCCCCAAATTTGCAA (GGC)8 56 241 26S proteasome subunit RPT2B [Arabidopsis thaliana] 5.10E‐06 MH892540
R: GAGCTGGTCCTAATCGGCAA
V27 F: AGTCTGTGCCTTGTTGCTGA (TG)11 56 243 Uncharacterized protein LOC105158430 [Sesamum indicum] 2.40E‐65 MH892541
R: ACTTTGCACCCCTCAATCCA
V33 F: GACGTCCCCATTCGGAACTC (CT)17 56 258 No hit MH892542
R: GCTTCTCCACTCGACTGTCA
V36 F: TACGCCTATGTTTGTGGCCA (AG)10 56 182 Pentatricopeptide repeat‐containing protein At5g67570, chloroplastic [Sesamum indicum] 7.00E‐118 MH892543
R: TTATGAGCTAGCTCGCTGCC
V41 F: CGGCCGGAGCAAGAAGATAT (GA)10 56 245 Myosin‐14 [Sesamum indicum] 2.90E‐127 MH892544
R: CTCTCTTGCCGGAGCTTCAT
V43 F: AGCAAGCCGGAATGAATCGA (AAC)7 56 221 Transcription factor GTE7‐like [Sesamum indicum] 1.50E‐111 MH892545
R: TGGACGTCTGGTTGAACGAG
V47 F: TGGAAGCCTGTGTTGTGTGA (GA)17 56 152 Haloacid dehalogenase‐like hydrolase domain‐containing protein SGPP [Erythranthe guttatus] 9.90E‐75 MH892546
R: AGTTCCGTCAAGCGAGGAAG
V48 F: CCACAAATGCAGCGAGTTCA (CAG)8 56 103 Unnamed protein product [Coffea canephora] 9.90E‐198 MH892547
R: TTCCAGATGCAGGCTGTAGC
V50 F: CCACTAATCGCAACAGCAGC (TC)13 56 258 Phospholipase SGR2‐like isoform X1 [Sesamum indicum] 3.60E‐187 MH892548
R: GGTAGCACATGGCCATCAGT
V51 F: CCGGTTTGGAGTTTGCCTTG (GGC)7 56 165 Uncharacterized protein LOC105172005 isoform X1 [Sesamum indicum] 2.10E‐83 MH892549
R: AGCACACAGATCACCGATGG
V52 F: CCAGCGCAAGACGTACTACT (AG)38 56 260 Uncharacterized protein LOC105171026 [Sesamum indicum] 1.30E‐36 MH892550
R: CTCTCAGCTCGTTGGCAGAA
V53 F: AACACCGGCGAGTTGAGTAG (AG)14 56 115 Hypothetical protein POPTR_0007s12520g [Populus trichocarpa] 7.10E‐33 MH892551
R: ACAGTCACAGTGTGGCACAT
V54 F: CGCCTCTCACAGTCATACCG (TG)15 56 149 No hit MH892552
R: CTCAAGTCTCAGCCACGCA
V56 F: ACCATTTGCTTCGCATACGC (GGA)7 56 135 No hit MH892553
R: CACATGGTCGAAGCCTAGCA
V58 F: AAGCTGCTGCCACCATTGTA (GTT)7 56 269 Protein E6‐like [Sesamum indicum] 2.00E‐24 MH892554
R: AACAGCTACGGCCTTTACGG
V61 F: GGCTCAGAAGGCCAAGACAT (GA)11 56 159 Galacturonokinase [Sesamum indicum] 5.10E‐165 MH892555
R: TCTTCAACGCAACTCCACCA
V63 F: CCATGACGTCGGAGGAGATG (AG)11 56 275 Uncharacterized protein LOC105970868 [Erythranthe guttatus] 8.20E‐51 MH892556
R: TCTCGTCCAAACACGCCATT
V64 F: ACGACCTGGATTTCGACCAC (AG)11 56 168 No hit MH892557
R: GCACGCACACACAACACAAT
V66 F: TCTTGATCAGCTGCCACCAG (TCA)8 56 234 Uncharacterized protein LOC105157368 [Sesamum indicum] 1.10E‐31 MH892558
R: GAGCTTGGTTAGTGGCGAGA
V71 F: CACTCCGACCACTTGAAGCT (TC)13 56 162 Protein IQ‐DOMAIN 32‐like [Sesamum indicum] 5.90E‐60 MH892559
R: GTGAAGCGAGGAGACCAACA
V72 F: TCAAGCGGCTCGTATGAGTC (TC)13 56 123 Uncharacterized protein LOC105170218 [Sesamum indicum] 1.30E‐74 MH892560
R: CATCACCGGCGAAACAACTG
V82 F: GCAAGAGCCTAGTCGAGCTT (ATG)9 56 248 RNA exonuclease 3 [Gossypium arboreum] 1.90E‐22 MH892561
R: AGTCCATGCCTCCGACAAAT
V83 F: TCCACCACCACTCAAAGACG (CT)17 56 139 Protein GAR2 isoform X1 [Sesamum indicum] 7.90E‐98 MH892562
R: CCTGCCAACTCTCATTCCGT
V84 F: CAGTGAAGAGCGCAGGAAGA (GCG)8 56 183 Uncharacterized protein LOC105176253 isoform X1 [Sesamum indicum] 2.00E‐253 MH892563
R: CCTCCTCTCGCTTCCATCAC
V88 F: TTGGTCCTGCAAGCATAGCA (AG)23 56 189 No hit MH892564
R: TGCCAACCGGTTCTAAGTCA
V89 F: TCGCGTAGTCCAGCTTCTTC (AG)11 56 149 Reactive oxygen species modulator 1‐like [Sesamum indicum] 1.90E‐20 MH892565
R: ATAAACAGCACCAACAGCGC
V90 F: ACGAGTCGCCATTGTCGATT (GT)16 56 151 Probable leucine‐rich repeat receptor‐like protein kinase At1g35710 [Sesamum indicum] 1.60E‐185 MH892566
R: CGTCTCCAACTCGACTGCTT
V92 F: GGAAATCAGTTGCCTTGCCG (AGC)7 56 186 E3 ubiquitin‐protein ligase RGLG2‐like, partial [Pyrus ×bretschneideri] 1.60E‐87 MH892567
R: GCAAGTCATGTGTCCACAGC
V93 F: CAAGTAATCGCCGTGAACCG (CGC)7 56 251 Uncharacterized protein LOC105173283 [Sesamum indicum] 6.30E‐51 MH892568
R: ACTTCACTCTGCCGCATCTC
V94 F: CGGAGAAAGCCATGCACATG (GAA)8 56 226 Hypothetical protein MIMGU_MGV1A020013MG [Erythranthe guttata] 1.90E‐18 MH892569
R: TCGTATCAGGAGCAGAGCCA
V96 F: AGGCACGAAAGCAAGAGTGT (GGC)7 56 177 Uncharacterized protein LOC105968457 [Erythranthe guttatus] 3.80E‐40 MH892570
R: GAGTCGCCTCCTCCAATCTG

T a = annealing temperature.

Liu, L. , Wang J., Yin M., Guo X., Cai Y., Du N., Yu X., and Guo W.. 2019. Development and characterization of EST‐SSR markers for Vitex negundo var. heterophylla (Lamiaceae). Applications in Plant Sciences 7(1): e1209.

LITERATURE CITED

  1. Doyle, J. J. , and Doyle J. L.. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15. [Google Scholar]
  2. Du, N. , Guo W., Zhang X., and Wang R.. 2010. Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiologiae Plantarum 32: 839–848. [Google Scholar]
  3. Du, N. , Wang R., Liu J., Zhang X., Tan X., Wang W., Chen H., and Guo W.. 2012. Morphological response of Vitex negundo var. heterophylla and Ziziphus jujuba var. spinosa to the combined impact of drought and shade. Agroforestry Systems 87: 403–416. [Google Scholar]
  4. Du, N. , Tan X., Li Q., Liu X., Zhang W., Wang R., Liu J., and Guo W.. 2017. Dominance of an alien shrub Rhus typhina over a native shrub Vitex negundo var. heterophylla under variable water supply patterns. PLoS ONE 12: e0176491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grabherr, M. G. , Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X., et al. 2011. Full‐length transcriptome assembly from RNA‐Seq data without a reference genome. Nature Biotechnology 29: 644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Liu, L. , Du N., Pei C., Guo X., and Guo W.. 2018. Genetic and epigenetic variations associated with adaptation to heterogeneous habitat conditions in a deciduous shrub. Ecology and Evolution 8: 2594–2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ohtsuki, T. , Shoda T., Kaneko Y., and Setoguchi H.. 2014. Development of microsatellite markers for Vitex rotundifolia (Verbenaceae), an endangered coastal plant in Lake Biwa, Japan. Applications in Plant Sciences 2: 1300100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Peakall, R. , and Smouse P. E.. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28: 2537–2539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rousset, F. 2008. GENEPOP'007: A complete re‐implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106. [DOI] [PubMed] [Google Scholar]
  10. Su, H. , Qu L.‐J., He K., Zhang Z., Wang J., Chen Z., and Gu H.. 2003. The Great Wall of China: A physical barrier to gene flow? Heredity 90: 212–219. [DOI] [PubMed] [Google Scholar]
  11. Thiel, T. , Michalek W., Varshney R. K., and Graner A.. 2003. Exploiting EST databases for the development and characterization of gene‐derived SSR‐markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411–422. [DOI] [PubMed] [Google Scholar]
  12. Untergasser, A. , Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., and Rozen S. G.. 2012. Primer3—New capabilities and interfaces. Nucleic Acids Research 40: e115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zhang, Z.‐Y. , Zheng X.‐M., and Ge S.. 2007. Population genetic structure of Vitex negundo (Verbenaceae) in Three‐Gorge Area of the Yangtze River: The riverine barrier to seed dispersal in plants. Biochemical Systematics and Ecology 35: 506–516. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All sequence information was uploaded to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (accession no. PRJNA491662); primer sequences were uploaded to GenBank (accession no. MH825839MH825852 and MH892533MH892570; Table 1 and Appendix 2).


Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES