Table 4. The accuracy of SVM with different kernel functions for the threshold and region based technique for the DDSM dataset.
Numbers in red indicate the best values between the several techniques.
SVM Kernel functions | Threshold + region based segmentation technique | |||||
---|---|---|---|---|---|---|
Accuracy | AUC | Sensitivity | Specificity | Precision | F1 score | |
Linear | 80.5% | 0.88 | 0.774 | 0.842 | 0.86 | 0.815 |
Quadratic | 80.1% | 0.87 | 0.772 | 0.833 | 0.85 | 0.809 |
Cubic | 78.3% | 0.85 | 0.764 | 0.797 | 0.81 | 0.786 |
Fine Gaussian | 54% | 0.7 | 0.51 | 0.833 | 0.99 | 0.673 |
Medium Gaussian | 79.1% | 0.86 | 0.756 | 0.820 | 0.84 | 0.796 |
Coarse Gaussian | 77.2% | 0.85 | 0.736 | 0.813 | 0.84 | 0.785 |