Abstract
Saussurea is one of the most species-rich genera in the family Asteraceae, where some have a complex evolutionary history, including radiation and convergent evolution, and the identification of these species is notoriously difficult. This genus contains many plants with medical uses, and thus an objective identification method is urgently needed. Saussurea subg. Amphilaena is one of the four subgenera of Saussurea and it is particularly rich in medical resources, where 15/39 species are used in medicine. To test the application of DNA barcodes in this subgenus, five candidates were sequenced and analyzed using 131 individuals representing 15 medical plants and four additional species from this subgenus. Our results suggested that internal transcribed spacer (ITS) + rbcL or ITS + rbcL + psbA-trnH could distinguish all of the species, while the ITS alone could identify all of the 15 medical plants. However, the species identification rates based on plastid barcodes were low, i.e., 0% to 36% when analyzed individually, and 63% when all four loci were combined. Thus, we recommend using ITS + rbcL as the DNA barcode for S. subg. Amphilaena or the ITS alone for medical plants. Possible taxonomic problems and substitutes for medicinal plant materials are also discussed.
Keywords: Saussurea subg. Amphilaenais, Medical plant, Taxonomic problem, DNA barcoding, Substitute
Introduction
Saussurea is one of the most species-rich genera in Asteraceae and the taxonomic identification of these species is notoriously difficult (Lipschitz, 1979). Recent radiation, widespread hybridization, and convergent evolution have combined to make the delimitation of these species extremely complicated (Wang et al., 2009). Among the 289 recognized species in the “Flora of China” (FOC), many are very challenging to differentiate, with one or several morphologically similar species (Shi & Raab-Straube, 2011). For example, about nine current widely accepted species are suspected to be conspecific with S. taraxacifolia (Chen, 2015). Since the publication of FOC, the newly described species have totaled more than 60 species (Chen, 2015; Wang et al., 2014; Xu, Hao & Xia, 2014; Chen & Wang, 2018), with an average of 10 species every year, which is a far higher number than that of other genera. These new species have mostly been separated from the known species and at least 10 of them bear the prefix “pseudo” to indicate their similarity in terms of morphology (Chen, 2014; Chen & Yuan, 2015; Wang et al., 2014).
This taxonomic problem particularly affects S. subg. Amphilaena, which is one of the four subgenera of Saussurea, where these species are defined mainly based on the self-transparent and colorful bract that subtends the synflorescence (Fig. 1) (Lipschitz, 1979; Raab-Straube, 2017). This character is a well-known adaptation to high altitudes and it occurs in a number of angiosperm genera from different families (Omori, Takayama & Fls, 2000). Within S. subg. Amphilaena, it has also been documented that this character was derived multiple times and some of the species showing very high similarity, such as S. involucrata and S. obvolata, are actually distantly related according to molecular phylogeny (Wang et al., 2009). In addition, this subgenus is considered to be a result of a recent radiation in the Qinghai–Tibet Plateau where 35 of the total number of 38 species have been recorded (Raab-Straube, 2017). This type of process usually produces many closely related species where one species might resemble several other species, thereby yielding a number of complexes (Simões et al., 2016).
Complex taxonomy undoubtedly causes problems with identification, and among the 38 species recognized in the latest monograph, at least 13 species are widely misidentified. For example, S. orgaadayi was long misidentified as S. involucrata (Smirnov, 2004), although both species were described many years ago and the latter is one of the most famous plants in China because of its beauty and usage in traditional Chinese medicine (Chik et al., 2015). In addition, eight species within the S. obvallata complex have been recognized as single species since the establishment of S. obvallata (Raab-Straube, 2017).
Evidently, misidentification can lead to a misunderstanding of biodiversity. In some cases, these errors can even be deadly harmful for humans given that many Saussurea species are used in medicine (Chik et al., 2015; Li, Zhu & Cai, 2000; Yang et al., 2005). In addition to S. involucrata, 14 other species have been formally recorded as medically useful in S. subg. Amphilaena (Table 1) (Cao et al., 2016; Chen, Pei & Zhao, 2010; Jiang, Luo & Xu, 2010; Li, 1999). However, the authentication of species is time-consuming and it requires a specialist taxonomist in most cases. Moreover, some species are found only in areas that are difficult to access, possibly because of their excessive consumption. For example, S. involucrata is currently listed as second-class protected plants due to over-exploitation (Fu & Jin, 1992), while S. wettsteiniana and S. velutina are both endemic to a few mountains in Sichuan, China, and they are difficult to obtain due to their restricted distributions (Shi & Raab-Straube, 2011). Thus, possible substitutes for these species are urgently needed to be ascertained.
Table 1. List of medicinal plants within Saussurea subg. Amphilaena.
Species | Reference |
---|---|
S. involuvcrata | Chen, Pei & Zhao (2010) and Chik et al. (2015) |
S. globosa | Cao et al. (2016) and Li (1999) |
S. wettsteiniana | Jiang, Luo & Xu (2010) |
S. polycolea | Jiang, Luo & Xu (2010) and Li (1999) |
S. uniflora | Jiang, Luo & Xu (2010) and Li (1999) |
S. velutina | Jiang, Luo & Xu (2010) |
S. phaeantha | Cao et al. (2016) and Li (1999) |
S. orgaadayi | Shi & Raab-Straube (2011) |
S. tangutica | Cao et al. (2016) and Li, Zhu & Cai (2000) |
S. bracteata | Li (1999) |
S. erubescens | Cao et al. (2016) and Li (1999) |
S. nigrescens | Cao et al. (2016) and Li (1999) |
S. iodostegia | Cao et al. (2016) and Li (1999) |
S. glandulosissima | Cao et al. (2016), Li (1999) and Yang et al. (2005) |
S. sikkimensis | Cao et al. (2016), Li (1999) and Yang et al. (2005) |
DNA barcoding is a rapid and reliable technique for identifying species based on variations in the sequence of short standard DNA regions. Phylogenetic studies based on these fragments can also help to identify substitute plants. However, the selection of the fragments used for DNA barcoding is a controversial problem. The Plant Working Group of the Consortium for the Barcode of Life (CBOL) proposed using a combination of rbcL and matK as a “core barcode” for identifying land plants (Hollingsworth et al., 2009). Subsequently, trnH-psbA and the nuclear ribosomal internal transcribed spacer (ITS) were proposed as supplementary barcodes for land plants (Kress et al., 2005; Li et al., 2011). In addition, trnK was found to outperform matK in some studies (Cao et al., 2010; Müller & Borsch, 2005).
Previously, the sequences used in DNA barcodes for Saussurea species have been rather limited and only five species have been reported with DNA sequences. Among these species, none have been reported more than two populations, which is obviously insufficient for DNA barcode studies (Wang et al., 2009). Thus, in this study, we performed extensive investigations in the field, and we sequenced five DNA barcode candidates in chloroplasts (matK, trnH-psbA, trnK, and rbcL) and the nuclear ITS. Our main aims were: (i) to evaluate the application of these DNA barcodes in S. subg. Amphilaena; (ii) to develop an objective method for identifying medically important Saussurea species; and (iii) to explore the possible taxonomic problems and potential substitutes for some rare herbs.
Materials and Methods
Taxon sampling
In total, 20 species were sampled in the present study, including 18 from the 38 species recognized in the latest monograph on S. subg. Amphilaena (Raab-Straube, 2017), one recently published species, S. bogedaensis (Chen & Wang, 2018), and a Jurinea species, which was selected as an outgroup according to a previous study (Wang et al., 2009). Photos of some species are presented in Fig. 1. Our sample focus on medical resources and 15 species formally recorded in the medical literature were included in the analyses (Table 1). For most of the species in the ingroup, we collected from two or more populations, with more than three individuals from each population. In total, we collected 132 individuals and their details are listed in Table 2.
Table 2. The name, locality, voucher and GenBank accession number for the samples used in this study.
Species | Locality (All from China) | Voucher/Individual | Latitude (°) | Longitude (°) | Altitude (m) | GenBank accession number (ITS, matK, rbcL, trnK, trnH-psbA) | ||||
---|---|---|---|---|---|---|---|---|---|---|
S. bogedaensis | Qitai, Xinjiang | WYJ201607018b, 140 | 43.45321 | 89.55213 | 3,471 | MH003705 | MH070617 | MH070870 | MH070996 | MH070743 |
S. bogedaensis | Qitai, Xinjiang | WYJ201607018a, 167 | 43.45321 | 89.55213 | 3,471 | MH003706 | MH070618 | MH070871 | MH070997 | MH070744 |
S. bogedaensis | Qitai, Xinjiang | WYJ201607018, 378 | 43.45321 | 89.55213 | 3,471 | MH003707 | MH070619 | MH070872 | MH070998 | MH070745 |
S. bogedaensis | Qitai, Xinjiang | WYJ201308006, 38 | 43.44370 | 89.58167 | 3,386 | MH003708 | MH070620 | MH070873 | MH070999 | MH070746 |
S. bogedaensis | Qitai, Xinjiang | WYJ201308006, 39 | 43.44370 | 89.58167 | 3,386 | MH003709 | MH070621 | MH070874 | MH071000 | MH070747 |
S. bogedaensis | Qitai, Xinjiang | WYJ201308006, 40 | 43.44370 | 89.58167 | 3,386 | MH003710 | MH070622 | MH070875 | MH071001 | MH070748 |
S. bracteata | Qumalai, Qinghai | WYJ201207537, 114 | 34.84716 | 94.94569 | 4,621 | MH003711 | MH070623 | MH070876 | MH071002 | MH070749 |
S. bracteata | Cuomei, Xizang | WYJ201607213, 151 | 28.51474 | 91.45611 | 4,934 | MH003712 | MH070624 | MH070877 | MH071003 | MH070750 |
S. bracteata | Cuomei, Xizang | WYJ201607213, 153 | 28.51474 | 91.45611 | 4,934 | MH003713 | MH070625 | MH070878 | MH071004 | MH070751 |
S. bracteata | Yushu, Qinghai | WYJ201607043, 160 | 35.05681 | 93.01225 | 4,644 | MH003714 | MH070626 | MH070879 | MH071005 | MH070752 |
S. bracteata | Yushu, Qinghai | WYJ201607043, 161 | 35.05681 | 93.01225 | 4,644 | MH003715 | MH070627 | MH070880 | MH071006 | MH070753 |
S. bracteata | Yushu, Qinghai | WYJ201607043, 162 | 35.05681 | 93.01225 | 4,644 | MH003716 | MH070628 | MH070881 | MH071007 | MH070754 |
S. bracteata | Jilong, Xizang | WYJ201607099, 173 | 28.93494 | 85.39376 | 5,108 | MH003717 | MH070629 | MH070882 | MH071008 | MH070755 |
S. bracteata | Jilong, Xizang | WYJ201607099, 174 | 28.93494 | 85.39376 | 5,108 | MH003718 | MH070630 | MH070883 | MH071009 | MH070756 |
S. bracteata | Jilong, Xizang | WYJ201607099, 175 | 28.93494 | 85.39376 | 5,108 | MH003719 | MH070631 | MH070884 | MH071010 | MH070757 |
S. bracteata | Geermu, Qinghai | WYJ201607053f, 204 | 32.98834 | 91.98589 | 5,120 | MH003720 | MH070632 | MH070885 | MH071011 | MH070758 |
S. bracteata | Geermu, Qinghai | WYJ201607041, 248 | 35.51127 | 93.72552 | 4,525 | MH003721 | MH070633 | MH070886 | MH071012 | MH070759 |
S. bracteata | Geermu, Qinghai | WYJ201607041, 249 | 35.51127 | 93.72552 | 4,525 | MH003722 | MH070634 | MH070887 | MH071013 | MH070760 |
S. erubescens | Luqu, Gansu | sn110814017, 123 | 34.59103 | 102.48699 | 3,345 | MH003723 | MH070635 | MH070888 | MH071014 | MH070761 |
S. erubescens | Luqu, Gansu | sn110814018, 124 | 34.59121 | 102.48657 | 3,367 | MH003724 | MH070636 | MH070889 | MH071015 | MH070762 |
S. erubescens | Luqu, Gansu | sn110814017, 353 | 34.59103 | 102.48699 | 3,345 | MH003725 | MH070637 | MH070890 | MH071016 | MH070763 |
S. erubescens | Luqu, Gansu | sn110815020, 355 | 33.59203 | 101.48659 | 3,451 | MH003726 | MH070638 | MH070891 | MH071017 | MH070764 |
S. erubescens | Xiahe, Gansu | Ikeda200713210, 371 | 35.20252 | 102.52181 | 3,342 | MH003727 | MH070639 | MH070892 | MH071018 | MH070765 |
S. globosa | Aba, Sicuan | WYJ-2011-175, 109 | 33.63526 | 102.35556 | 3,470 | MH003728 | MH070640 | MH070893 | MH071019 | MH070766 |
S. globosa | Baoxing, Sicuan | WYJ201607422, 168 | 30.49153 | 102.48188 | 3,992 | MH003729 | MH070641 | MH070894 | MH071020 | MH070767 |
S. globosa | Kangding, Sicuan | WYJ201209151, 318 | 30.05441 | 101.96308 | 3,841 | MH003730 | MH070642 | MH070895 | MH071021 | MH070768 |
S. globosa | Kangding, Sicuan | WYJ201209158, 329 | 30.05564 | 101.97304 | 3,864 | MH003731 | MH070643 | MH070896 | MH071022 | MH070769 |
S. globosa | Kangding, Sicuan | WYJ201209157, 331 | 30.13242 | 101.56306 | 3,974 | MH003732 | MH070644 | MH070897 | MH071023 | MH070770 |
S. globosa | – | – | – | – | – | EF420926 | – | – | – | – |
S. globosa | Xiangcheng, Sicuan | WYJ201209234, 337 | 28.93118 | 99.79842 | 3,764 | MH003733 | – | – | – | – |
S. globosa | Xiangcheng, Sicuan | WYJ-2011-069, 80 | 28.53118 | 99.45658 | 3,835 | MH003734 | MH070645 | MH070898 | MH071024 | MH070771 |
S. globosa | Xiangcheng, Sicuan | WYJ-2011-069, 81 | 28.53118 | 99.45658 | 3,835 | MH003735 | MH070646 | MH070899 | MH071025 | MH070772 |
S. involucrata | Urumqi, Xinjiang | WYJ201607025a, 163 | 43.10847 | 86.84220 | 3,564 | MH003736 | MH070647 | MH070900 | MH071026 | MH070773 |
S. involucrata | Urumqi, Xinjiang | WYJ201607025c, 165 | 43.10847 | 86.84220 | 3,564 | MH003737 | MH070648 | MH070901 | MH071027 | MH070774 |
S. involucrata | Tekesi, Xinjiang | WYJ201308184, 24 | 43.09915 | 82.68382 | 3,678 | MH003738 | MH070649 | MH070902 | MH071028 | MH070775 |
S. involucrata | Tekesi, Xinjiang | WYJ201308184, 26 | 43.09915 | 82.68382 | 3,678 | MH003739 | MH070650 | MH070903 | MH071029 | MH070776 |
S. involucrata | Urumqi, Xinjiang | WYJ201308203, 372 | 43.11985 | 86.82125 | 3,768 | MH003740 | MH070651 | MH070904 | MH071030 | MH070777 |
S. involucrata | Urumqi, Xinjiang | WYJ201308203, 374 | 43.11985 | 86.82125 | 3,768 | MH003741 | MH070652 | MH070905 | MH071031 | MH070778 |
S. involucrata | Xinyuan, Xinjiang | WYJ201308188, 390 | 43.33469 | 84.01032 | 3,543 | MH003742 | MH070653 | MH070906 | MH071032 | MH070779 |
S. involucrata | Urumqi, Xinjiang | WYJ201308203, 41 | 43.11985 | 86.82125 | 3,768 | MH003743 | MH070654 | MH070907 | MH071033 | MH070780 |
S. involucrata | Xinyuan, Xinjiang | WYJ201308188, 47 | 43.33469 | 84.01032 | 3,543 | MH003744 | MH070655 | MH070908 | MH071034 | MH070781 |
S. involucrata | Xinyuan, Xinjiang | WYJ201308188, 48 | 43.33469 | 84.01032 | 3,543 | MH003745 | MH070656 | MH070909 | MH071035 | MH070782 |
S. involucrata | Dushanzi, Xinjiang | WYJ201308131, 61 | 43.77545 | 84.45615 | 2,684 | MH003746 | MH070657 | MH070910 | MH071036 | MH070783 |
S. involucrata | Dushanzi, Xinjiang | WYJ201308131, 63 | 43.77545 | 84.45615 | 2,684 | MH003747 | MH070658 | MH070911 | MH071037 | MH070784 |
S. iodostegia | Datong, Shanxi | WYJ201507117, 107 | 39.05578 | 113.65927 | 2,514 | MH003748 | MH070659 | MH070912 | MH071038 | MH070785 |
S. iodostegia | Datong, Shanxi | WYJ201507117, 108 | 39.05578 | 113.65927 | 2,514 | MH003749 | MH070660 | MH070913 | MH071039 | MH070786 |
S. iodostegia | Weixian, Hebei | WYJ201309004, 20 | 39.91413 | 114.96546 | 2,237 | MH003750 | MH070661 | MH070914 | MH071040 | MH070787 |
S. iodostegia | Weixian, Hebei | WYJ201309004, 21 | 39.91413 | 114.96546 | 2,237 | MH003751 | MH070662 | MH070915 | MH071041 | MH070788 |
S. iodostegia | Weixian, Hebei | WYJ201309004, 22 | 39.91413 | 114.96546 | 2,237 | MH003752 | MH070663 | MH070916 | MH071042 | MH070789 |
S. iodostegia | Mentougou, Beijing | WYJ201507105, 27 | 40.03633 | 115.47206 | 2,048 | MH003753 | MH070664 | MH070917 | MH071043 | MH070790 |
S. iodostegia | Mentougou, Beijing | WYJ201507105, 28 | 40.03633 | 115.47206 | 2,048 | MH003754 | MH070665 | MH070918 | MH071044 | MH070791 |
S. iodostegia | Mentougou, Beijing | WYJ201507105, 29 | 40.03633 | 115.47206 | 2,048 | MH003755 | MH070666 | MH070919 | MH071045 | MH070792 |
S. luae | Linzhi, Xizang | WYJ201607286a, 271 | 29.59022 | 94.59631 | 4,121 | MH003756 | – | – | – | – |
S. luae | Linzhi, Xizang | WYJ201607286a, 272 | 29.59022 | 94.59631 | 4,121 | MH003757 | – | – | – | – |
S. luae | Linzhi, Xizang | WYJ201607286b, 273 | 29.59022 | 94.59631 | 4,121 | MH003758 | MH070667 | MH070920 | MH071046 | MH070793 |
S. luae | Linzhi, Xizang | WYJ201607286c, 283 | 29.59022 | 94.59631 | 4,121 | MH003759 | – | – | – | – |
S. luae | Linzhi, Xizang | LJQ2620, 316 | 28.48051 | 93.36541 | 4,225 | MH003760 | MH070668 | MH070921 | MH071047 | MH070794 |
S. nigrescens | Tianzhu, Gansu | LJQ1480, 314 | 36.41075 | 102.45620 | 1,900 | MH003761 | MH070669 | MH070922 | MH071048 | MH070795 |
S. nigrescens | Sunan, Gansu | LJQ1517, 315 | 37.23345 | 102.32444 | 2,651 | MH003762 | MH070670 | MH070923 | MH071049 | MH070796 |
S. nigrescens | Huangyuan, Qinghai | Liu1603, 320 | 36.20387 | 98.14870 | 3,700 | MH003763 | MH070671 | MH070924 | MH071050 | MH070797 |
S. nigrescens | Huangzhong, Qinghai | WYJ200611, 347 | 36.50087 | 101.57164 | 3,641 | MH003764 | MH070672 | MH070925 | MH071051 | MH070798 |
S. nigrescens | Menyuan, Qinghai | LJQ-QLS-2008-0065, 82 | 37.37502 | 101.62422 | 2,654 | MH003765 | MH070673 | MH070926 | MH071052 | MH070799 |
S. nigrescens | Menyuan, Qinghai | LJQ-QLS-2008-0065, 83 | 37.37502 | 101.62422 | 2,654 | MH003766 | MH070674 | MH070927 | MH071053 | MH070800 |
S. nigrescens | Menyuan, Qinghai | LJQ-QLS-2008-0065, 84 | 37.37502 | 101.62422 | 2,654 | MH003767 | MH070675 | MH070928 | MH071054 | MH070801 |
S. glandulosissima | Chayu, Xizang | WYJ201607321, 257 | 29.32542 | 97.134728 | 3,949 | MH003768 | MH070676 | MH070929 | MH071055 | MH070802 |
S. glandulosissima | Linzhi, Xizang | WYJ201607298, 264 | 29.627012 | 94.635744 | 4,433 | MH003769 | MH070677 | MH070930 | MH071056 | MH070803 |
S. glandulosissima | Linzhi, Xizang | WYJ201607298, 379 | 29.627012 | 94.635744 | 4,433 | MH003770 | MH070678 | MH070931 | MH071057 | MH070804 |
S. glandulosissima | Chayu, Xizang | WYJ201607321, 382 | 29.32542 | 97.134728 | 3,949 | MH003771 | MH070679 | MH070932 | MH071058 | MH070805 |
S. glandulosissima | Chayu, Xizang | WYJ201607321, 383 | 29.32542 | 97.134728 | 3,949 | MH003772 | MH070680 | MH070933 | MH071059 | MH070806 |
S. orgaadayi | Altay, Xinjiang | WYJ201308041, 11 | 47.21846 | 89.87999 | 3,541 | MH003773 | MH070681 | MH070934 | MH071060 | MH070807 |
S. orgaadayi | Altay, Xinjiang | WYJ201308041, 12 | 47.21846 | 89.87999 | 3,541 | MH003774 | MH070682 | MH070935 | MH071061 | MH070808 |
S. orgaadayi | Altay, Xinjiang | WYJ201308041, 360 | 47.21846 | 89.87999 | 3,541 | MH003775 | MH070683 | MH070936 | MH071062 | MH070809 |
S. phaeantha | Xiaojing, Sicuan | WYJ201209126, 1 | 30.99918 | 102.3644 | 3,642 | MH003776 | MH070684 | MH070937 | MH071063 | MH070810 |
S. phaeantha | Xiaojing, Sicuan | WYJ201209126, 2 | 30.99918 | 102.3644 | 3,642 | MH003779 | MH070687 | MH070940 | MH071066 | MH070813 |
S. phaeantha | Qilian, Gansu | WYJ201607014, 195 | 38.60685 | 99.48221 | 4,096 | MH003777 | MH070685 | MH070938 | MH071064 | MH070811 |
S. phaeantha | Qilian, Gansu | WYJ201607014, 196 | 38.60685 | 99.48221 | 4,096 | MH003778 | MH070686 | MH070939 | MH071065 | MH070812 |
S. phaeantha | Maqin, Qinghai | LJQ1718, 317 | 34.47733 | 100.23956 | 3,210 | MH003780 | MH070688 | MH070941 | MH071067 | MH070814 |
S. phaeantha | Xinghai, Qinghai | sn110718001, 349 | 35.58868 | 99.98818 | 2,654 | MH003781 | MH070689 | MH070942 | MH071068 | MH070815 |
S. phaeantha | Xinghai, Qinghai | sn120811001, 351 | 34.32412 | 99.35641 | 2,641 | MH003782 | MH070690 | MH070943 | MH071069 | MH070816 |
S. phaeantha | Xinghai, Qinghai | sn120801130, 354 | 35.38821 | 99.78935 | 2,684 | MH003783 | – | – | – | MH070817 |
S. polycolea | Linzhi, Xizang | WYJ201607292, 229 | 29.62701 | 94.63574 | 4,433 | MH003784 | MH070691 | MH070944 | MH071070 | MH070818 |
S. polycolea | Linzhi, Xizang | WYJ201607292, 230 | 29.62701 | 94.63574 | 4,433 | MH003785 | MH070692 | MH070945 | MH071071 | MH070819 |
S. polycolea | Linzhi, Xizang | WYJ201607292, 231 | 29.62701 | 94.63574 | 4,433 | MH003786 | MH070693 | MH070946 | MH071072 | MH070820 |
S. polycolea | Langxian, Xizang | WYJ201607279, 269 | 28.883036 | 93.356181 | 4,472 | MH003787 | MH070694 | MH070947 | MH071073 | MH070821 |
S. polycolea | Langxian, Xizang | WYJ201607279, 270 | 28.883036 | 93.356181 | 4,472 | MH003788 | MH070695 | MH070948 | MH071074 | MH070822 |
S. polycolea | Linzhi, Xizang | Liu07257, 334 | 29.62201 | 94.63554 | 4,231 | MH003789 | MH070696 | MH070949 | MH071075 | MH070823 |
S. pubifolia | Jiacha, Xizang | WYJ201607272a, 206 | 29.03175 | 92.35724 | 4,796 | MH003790 | MH070697 | MH070950 | MH071076 | MH070824 |
S. pubifolia | Jiacha, Xizang | WYJ201607272b, 207 | 29.03175 | 92.35724 | 4,796 | MH003791 | MH070698 | MH070951 | MH071077 | MH070825 |
S. pubifolia | Jiacha, Xizang | WYJ201607272c, 208 | 29.03175 | 92.35724 | 4,796 | MH003792 | MH070699 | MH070952 | MH071078 | MH070826 |
S. pubifolia | Jiacha, Xizang | WYJ-2011-057, 94 | 29.02165 | 92.35714 | 4,786 | MH003793 | MH070700 | MH070953 | MH071079 | MH070827 |
S. sikkimensis | Cuona, Xizang | WYJ201607242, 156 | 27.92057 | 91.84863 | 3,970 | MH003794 | MH070701 | MH070954 | MH071080 | MH070828 |
S. sikkimensis | Yadong, Xizang | WYJ201607150e, 186 | 27.48592 | 88.90708 | 4,102 | MH003795 | MH070702 | MH070955 | MH071081 | MH070829 |
S. sikkimensis | Yadong, Xizang | WYJ201607150c, 187 | 27.48592 | 88.90708 | 4,102 | MH003796 | MH070703 | MH070956 | MH071082 | MH070830 |
S. sikkimensis | Yadong, Xizang | WYJ201607150f, 385 | 27.48592 | 88.90708 | 4,102 | MH003797 | MH070704 | MH070957 | MH071083 | MH070831 |
S. sikkimensis | Yadong, Xizang | WYJ201607150 h, 386 | 27.48592 | 88.90708 | 4,102 | MH003798 | MH070705 | MH070958 | MH071084 | MH070832 |
S. sikkimensis | Cuona, Xizang | WYJ201607242, 388 | 27.92057 | 91.84863 | 3,970 | MH003799 | MH070706 | MH070959 | MH071085 | MH070833 |
S. sikkimensis | Cuona, Xizang | WYJ201607242, 389 | 27.92057 | 91.84863 | 3,970 | MH003800 | MH070707 | MH070960 | MH071086 | MH070834 |
S. tangutica | Qilian, Gansu | WYJ201607013, 226 | 38.60685 | 99.48221 | 4,096 | MH003801 | MH070708 | MH070961 | MH071087 | MH070835 |
S. tangutica | Qilian, Gansu | WYJ201607013, 228 | 38.60685 | 99.48221 | 4,096 | MH003802 | MH070709 | MH070962 | MH071088 | MH070836 |
S. tangutica | Zhiduo, Qinghai | WYJ201207279, 328 | 33.85203 | 95.61335 | 3,948 | MH003803 | MH070710 | MH070963 | MH071089 | MH070837 |
S. tangutica | Kangding, Sicuan | sn120801019, 332 | 30.05093 | 101.96437 | 3,987 | MH003804 | MH070711 | MH070964 | MH071090 | MH070838 |
S. tangutica | Kangding, Sicuan | sn120801019, 335 | 30.05093 | 101.96437 | 3,987 | MH003805 | MH070712 | MH070965 | MH071091 | MH070839 |
S. tangutica | Zhiduo, Qinghai | WYJ201207279, 340 | 33.85203 | 95.61335 | 3,948 | MH003806 | MH070713 | MH070966 | MH071092 | MH070840 |
S. uniflora | Cuona, Xizang | WYJ201607254, 142 | 27.765831 | 91.90194 | 4,138 | MH003807 | MH070714 | MH070967 | MH071093 | MH070841 |
S. uniflora | Cuona, Xizang | WYJ201607254, 143 | 27.765831 | 91.90194 | 4,138 | MH003808 | MH070715 | MH070968 | MH071094 | MH070842 |
S. uniflora | Cuona, Xizang | WYJ201607254, 144 | 27.765831 | 91.90194 | 4,138 | MH003809 | MH070716 | MH070969 | MH071095 | MH070843 |
S. uniflora | Yadong, Xizang | WYJ201607151c, 145 | 27.48592 | 88.90708 | 4,102 | MH003810 | MH070717 | MH070970 | MH071096 | MH070844 |
S. uniflora | Yadong, Xizang | WYJ201607151a, 146 | 27.48592 | 88.90708 | 4,102 | MH003811 | MH070718 | MH070971 | MH071097 | MH070845 |
S. uniflora | Yadong, Xizang | WYJ201607151b, 147 | 27.48592 | 88.90708 | 4,102 | MH003812 | – | – | – | – |
S. uniflora | Cuona, Xizang | WYJ201607243, 197 | 27.92057 | 91.84863 | 3,970 | MH003813 | MH070719 | MH070972 | MH071098 | MH070846 |
S. veitchiana | Xinglong, Hebei | WYJ201507098, 302 | 40.59808 | 117.47655 | 2,032 | MH003814 | MH070720 | MH070973 | MH071099 | MH070847 |
S. veitchiana | Xinglong, Hebei | WYJ201507098, 303 | 40.59808 | 117.47655 | 2,032 | MH003815 | MH070721 | MH070974 | MH071100 | MH070848 |
S. veitchiana | Nuanchuan, Henan | WYJ201507135, 52 | 33.67057 | 111.79417 | 1,651 | MH003816 | MH070722 | MH070975 | MH071101 | MH070849 |
S. veitchiana | Nuanchuan, Henan | WYJ201507135, 53 | 33.67057 | 111.79417 | 1,651 | MH003817 | MH070723 | MH070976 | MH071102 | MH070850 |
S. veitchiana | Nuanchuan, Henan | WYJ201507135, 54 | 33.67057 | 111.79417 | 1,651 | MH003818 | MH070724 | MH070977 | MH071103 | MH070851 |
S. veitchiana | Nuanchuan, Henan | WYJ201507135, 55 | 33.67057 | 111.79417 | 1,651 | MH003819 | MH070725 | MH070978 | MH071104 | MH070852 |
S. veitchiana | Shenlongjia, Hubei | WYJ201507160, 57 | 31.43997 | 110.307149 | 3,098 | MH003820 | MH070726 | MH070979 | MH071105 | MH070853 |
S. veitchiana | Shenlongjia, Hubei | WYJ201507160, 58 | 31.43997 | 110.307149 | 3,098 | MH003821 | MH070727 | MH070980 | MH071106 | MH070854 |
S. veitchiana | Shenlongjia, Hubei | WYJ201507160, 59 | 31.43997 | 110.307149 | 3,098 | MH003822 | MH070728 | MH070981 | MH071107 | MH070855 |
S. veitchiana | Wuxi, Chongqing | WYJ201507184, 64 | 31.43791 | 109.15498 | 1,795 | MH003823 | MH070729 | MH070982 | MH071108 | MH070856 |
S. veitchiana | Wuxi, Chongqing | WYJ201507184, 65 | 31.43791 | 109.15498 | 1,795 | MH003824 | MH070730 | MH070983 | MH071109 | MH070857 |
S. veitchiana | Wuxi, Chongqing | WYJ201507184, 66 | 31.43791 | 109.15498 | 1,795 | MH003825 | MH070731 | MH070984 | MH071110 | MH070858 |
S. veitchiana | Wuxi, Chongqing | WYJ201507184, 67 | 31.43791 | 109.15498 | 1,795 | MH003826 | MH070732 | MH070985 | MH071111 | MH070859 |
S. velutina | Xiaojin, Sichuan | WYJ201209124, 339 | 30.99441 | 102.82915 | 4,000 | MH003827 | MH070733 | MH070986 | MH071112 | MH070860 |
S. velutina | Xiaojin, Sichuan | WYJ201209124, 342 | 30.99441 | 102.82915 | 4,000 | MH003828 | MH070734 | MH070987 | MH071113 | MH070861 |
S. velutina | Xiaojin, Sichuan | WYJ201209124, 76 | 30.99441 | 102.82915 | 4,000 | MH003829 | MH070735 | MH070988 | MH071114 | MH070862 |
S. velutina | Xiaojin, Sichuan | WYJ201209124, 77 | 30.99441 | 102.82915 | 4,000 | MH003830 | MH070736 | MH070989 | MH071115 | MH070863 |
S. velutina | Xiaojin, Sichuan | WYJ201209124, 78 | 30.99441 | 102.82915 | 4,000 | MH003831 | MH070737 | MH070990 | MH071116 | MH070864 |
S. wettsteiniana | Mianning, Sichuan | WYJ201607408a, 176 | 29.00106 | 102.14985 | 3,381 | MH003832 | MH070738 | MH070991 | MH071117 | MH070865 |
S. wettsteiniana | Mianning, Sichuan | WYJ201607408b, 177 | 29.00106 | 102.14985 | 3,381 | MH003833 | MH070739 | MH070992 | MH071118 | MH070866 |
S. wettsteiniana | Mianning, Sichuan | WYJ201607402, 178 | 29.00106 | 102.14985 | 3,381 | MH003834 | MH070740 | MH070993 | MH071119 | MH070867 |
S. wettsteiniana | Mianning, Sichuan | WYJ201607402, 284 | 29.00106 | 102.14985 | 3,381 | MH003835 | MH070741 | MH070994 | MH071120 | MH070868 |
Jurinea multiflora | Tuoli, Xinjiang | WYJ201308102, 377 | 45.73564 | 83.14712 | 1,753 | MH003704 | MH070616 | MH070869 | MH070995 | MH070742 |
DNA extraction, PCR amplification, and sequencing
Genomic DNA was extracted from dried leaves in silica gel using the CTAB method (Doyle, 1987). Five regions (rbcL, matK, trnH-psbA, trnK, and ITS) (Berends, Jones & Mullet, 1990; Ford et al., 2009; Olmstead et al., 1992; Sang, Crawford & Stuessy, 1997; White et al., 1990), were amplified and sequenced using the primers listed in Table 3. A PCR reaction mixture comprising 25 µL was prepared and amplified according to the procedure described by Wang et al. (2009). The PCR products were sent to the Beijing Genomics Institute for commercial sequencing. Sequences were aligned using CLUSTALX v.2.1 (Thompson et al., 1997) with the default settings and adjusted manually with Bioedit v.7.0.5 (Hall, 1999). All of the sequences were registered in GenBank (Table 2).
Table 3. List of the primers used in this study.
Primer | Fragment | Sequence(5′–3′) | Reference |
---|---|---|---|
ITS4 | ITS | TCCTCCGCTTATTGATATGC | White et al. (1990) |
ITS1 | ITS | AGAAGTCGTAACAAGGTTTCCGTAGG | White et al. (1990) |
trnK(UUU) | trnK | TTAAAAGCCGAGTACTCTACC | Berends, Jones & Mullet (1990) |
rps16 | trnK | AAAGTGGGTTTTTATGATCC | Berends, Jones & Mullet (1990) |
psbA | psbA | GTTATGCATGAACGTAATGCTC | Sang, Crawford & Stuessy (1997) |
trnH | psbA | CGCGCATGGTGGATTCACAATCC | Sang, Crawford & Stuessy (1997) |
matK-xf | matK | TAATTTACGATCAATTCATTC | Ford et al. (2009) |
matK-5r | matK | GTTCTAGCACAAGAAAGTCG | Ford et al. (2009) |
rbcL1 | rbcL | ATGTCACCACAAACAGAGACTAAAGC | Olmstead et al. (1992) |
rbcL911 | rbcL | TTTCTTCGCATGTACCCGC | Olmstead et al. (1992) |
Data analysis
We constructed 31 datasets for ITS, psbA-trn H, matK, and trnK, either individually or in different combinations. For the combination of ITS and each chloroplast loci, incongruence length difference (ILD) was preferred to test the incongruence (Farris et al., 1995) using PAUP version 4b10 (Swofford, 2003). For each dataset, the inter- and intraspecific genetic divergences were calculated as described by Meyer & Paulay (2005) and used to determine whether a barcoding gap was present. For each dataset, best close match (BCM) and two tree-based methods comprising neighbor-joining (NJ) and Bayesian inference (BI) were employed to analyze the five single markers and their different combinations. BCM analysis was conducted using the SPIDER package in R (Brown et al., 2012). NJ trees were constructed using PAUP with the Kimura two-parameter model (Swofford, 2003). Support for nodes was assessed based on 100,000 bootstrap replicates. BI analysis was implemented using MrBayes on XSEDE (v3.2.6) (Ronquist et al., 2012) and the optimal models for each marker were determined according to Akaike’s information criterion with jModelTest2 in XSEDE (v2.1.6) (Darriba et al., 2012). Species were considered to be identified successfully if individual samples of a species clustered in species-specific monophyletic clades.
Results
The PCR amplification ranged from about 73% (trnK) to 93% (ITS), while sequencing success rates from about 95% for the three chloroplast loci to 100% for the ITS, as shown in Table 4. The length after alignment, the variable sites, the interspecific or intraspecific genetic distance for each locus as well as the p values of ILD test between ITS and each chloroplast locus are also listed in Table 4. The mean intraspecific genetic distances for each species based on ITS and the four cp markers combined are listed in Table 5, and those for the mean interspecific genetic distances are shown in Table 6. The distributions of the intraspecific and interspecific distances for each species based on the five separate markers are shown in Fig. 2. In general, the mean interspecific distances were higher than the intraspecific distances for the five markers. However, the ranges of the intra- and interspecific distances overlapped for all the barcodes tested in this study.
Table 4. List of statistics information of five DNA barcodes and the result of incongruence length difference (ILD) analysis between ITS and each chloroplast locus.
DNA region | ITS | trnH-psbA | matK | rbcL | trnK |
---|---|---|---|---|---|
PCR success (%) | 92.7 | 77 | 89.6 | 91.6 | 72.9 |
Sequencing success (%) | 100 | 96.18 | 95.42 | 95.42 | 95.42 |
Aligned sequence length (bp) | 656 | 444 | 711 | 634 | 656 |
No. indel (length in bp) | 3 (1) | 5 (1–3) | 0 | 0 | 4 (1) |
No. variated sites | 111 | 22 | 18 | 8 | 28 |
No. sampled species (individual) | 19 (131) | 19 (131) | 19 (131) | 19 (131) | 19 (131) |
Interspecific distance mean (range) (%) | 0.011 (0-0.028) | 0.004(0–0.028) | 0.003(0–0.008) | 0.002(0–0.006) | 0.004(0–0.012) |
Intraspecific distance mean (range) (%) | 0.001(0–0.005) | 0.002(0–0.021) | 0.001(0–0.006) | 0.001(0–0.006) | 0.001(0–0.009) |
p values of ILD test between ITS | – | 0.02 | 0.001 | 0.12 | 0.001 |
Table 5. Mean intraspecies distance (%) of ITS and the combined sequences of four chloroplast loci for each species.
Species | ITS | Chloroplast |
---|---|---|
S. bogedaensis | 0.0 | 0.02 |
S. bracteata | 0.0 | 0.00 |
S. erubescens | 0.0 | 0.00 |
S. glandulosissima | 0.1 | 0.07 |
S. globosa | 0.2 | 0.04 |
S. involucrata | 0.2 | 0.06 |
S. iodostegia | 0.0 | 0.05 |
S. luae | 0.0 | 0.29 |
S. nigrescens | 0.0 | 0.00 |
S. orgaadayi | 0.0 | 0.00 |
S. phaeantha | 0.4 | 0.04 |
S. polycolea | 0.0 | 0.07 |
S. pubifolia | 0.0 | 0.00 |
S. sikkimensis | 0.2 | 0.06 |
S. tangutica | 0.1 | 0.46 |
S. uniflora | 0.1 | 0.15 |
S. veitchiana | 0.1 | 0.39 |
S. velutina | 0.0 | 0.21 |
S. wettsteiniana | 0.0 | 0.00 |
Table 6. The pairwise distances (%) of ITS (lower left) and the combined chloroplast loci (upper right) from 19 species of Saussurea.
CP ITS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.30 | 0.26 | 0.28 | 0.22 | 0.62 | 0.32 | 0.34 | 0.28 | 0.22 | 0.28 | 0.34 | 0.30 | 0.41 | 0.46 | 0.34 | 0.55 | 0.34 | 0.26 | |
2 | 1.92 | 0.04 | 0.06 | 0.17 | 0.57 | 0.19 | 0.29 | 0.22 | 0.16 | 0.06 | 0.12 | 0.00 | 0.35 | 0.35 | 0.23 | 0.50 | 0.16 | 0.21 | |
3 | 1.52 | 2.77 | 0.02 | 0.13 | 0.53 | 0.14 | 0.25 | 0.18 | 0.12 | 0.02 | 0.08 | 0.04 | 0.31 | 0.31 | 0.19 | 0.46 | 0.12 | 0.16 | |
4 | 1.53 | 2.88 | 0.61 | 0.15 | 0.55 | 0.17 | 0.27 | 0.20 | 0.15 | 0.05 | 0.10 | 0.06 | 0.34 | 0.33 | 0.22 | 0.48 | 0.15 | 0.19 | |
5 | 0.93 | 2.58 | 2.14 | 2.14 | 0.48 | 0.19 | 0.21 | 0.14 | 0.09 | 0.15 | 0.20 | 0.17 | 0.27 | 0.33 | 0.21 | 0.42 | 0.20 | 0.13 | |
6 | 1.96 | 3.33 | 1.85 | 1.60 | 2.47 | 0.59 | 0.53 | 0.54 | 0.49 | 0.55 | 0.60 | 0.57 | 0.51 | 0.71 | 0.55 | 0.37 | 0.57 | 0.53 | |
7 | 1.07 | 0.72 | 1.90 | 1.78 | 1.72 | 2.31 | 0.31 | 0.18 | 0.19 | 0.17 | 0.21 | 0.19 | 0.37 | 0.39 | 0.25 | 0.52 | 0.23 | 0.23 | |
8 | 1.83 | 3.19 | 1.72 | 1.47 | 2.34 | 0.34 | 2.12 | 0.26 | 0.21 | 0.27 | 0.32 | 0.29 | 0.31 | 0.45 | 0.22 | 0.32 | 0.19 | 0.25 | |
9 | 1.35 | 2.69 | 1.56 | 1.31 | 1.92 | 1.74 | 1.69 | 1.60 | 0.14 | 0.20 | 0.24 | 0.22 | 0.33 | 0.34 | 0.22 | 0.47 | 0.26 | 0.18 | |
10 | 1.41 | 3.08 | 2.30 | 2.35 | 2.02 | 2.28 | 2.21 | 2.17 | 2.16 | 0.15 | 0.20 | 0.16 | 0.27 | 0.32 | 0.21 | 0.42 | 0.20 | 0.12 | |
11 | 1.53 | 2.84 | 1.60 | 1.45 | 2.14 | 1.92 | 1.84 | 1.78 | 1.31 | 2.34 | 0.10 | 0.06 | 0.34 | 0.33 | 0.22 | 0.48 | 0.15 | 0.19 | |
12 | 1.09 | 2.42 | 1.36 | 1.06 | 1.69 | 1.48 | 1.43 | 1.35 | 0.87 | 1.89 | 0.89 | 0.12 | 0.37 | 0.37 | 0.26 | 0.53 | 0.20 | 0.24 | |
13 | 1.61 | 1.32 | 2.22 | 2.23 | 2.26 | 3.00 | 0.23 | 2.84 | 2.37 | 2.76 | 2.51 | 2.10 | 0.35 | 0.35 | 0.23 | 0.50 | 0.16 | 0.21 | |
14 | 1.11 | 2.44 | 1.34 | 1.08 | 1.71 | 1.49 | 1.38 | 1.36 | 0.71 | 1.91 | 1.07 | 0.64 | 2.12 | 0.51 | 0.34 | 0.48 | 0.35 | 0.31 | |
15 | 1.63 | 2.98 | 1.58 | 1.59 | 1.47 | 2.57 | 2.01 | 2.42 | 2.06 | 2.67 | 2.20 | 1.78 | 2.32 | 1.81 | 0.42 | 0.65 | 0.40 | 0.35 | |
16 | 1.00 | 2.33 | 1.27 | 0.97 | 1.44 | 1.38 | 1.34 | 1.26 | 0.78 | 1.80 | 0.96 | 0.53 | 2.01 | 0.55 | 1.70 | 0.46 | 0.24 | 0.25 | |
17 | 2.10 | 3.48 | 2.06 | 1.74 | 2.62 | 1.52 | 2.36 | 1.30 | 1.72 | 2.93 | 2.02 | 1.62 | 2.81 | 1.64 | 2.50 | 1.53 | 0.45 | 0.46 | |
18 | 2.21 | 2.91 | 2.49 | 2.50 | 2.50 | 2.94 | 2.04 | 2.80 | 2.31 | 3.04 | 2.50 | 2.05 | 2.59 | 2.07 | 2.66 | 1.96 | 3.09 | 0.24 | |
19 | 1.73 | 3.05 | 1.88 | 1.70 | 2.35 | 1.80 | 1.85 | 1.69 | 1.19 | 2.39 | 1.65 | 1.25 | 2.77 | 1.09 | 2.45 | 1.16 | 2.27 | 2.71 |
The discriminatory powers of all the loci both individually and in different combinations based on the three methods are listed in Table 7 (Figs. S1–S59). In general, BCM achieved higher success rates, followed by NJ and BI, but there were a few exceptions. Among the results obtained with a single barcode, ITS (84.2–93.2%) had the highest species discriminatory power, followed by trnK (15.8–36%), matK (10.5–16.8%), and trnH-psbA (5.2–27%). Among the combinations of two barcodes, ITS + rbcL had the highest discriminatory success (89.5–100%), whereas that of matK and rbcL, which was suggested as the core barcode by CBOL (CBOL Plant Working Group, 2009), was only 10.5–25.6%. The three-region combination of ITS + rbcL + trnH-psbA recovered the highest number of monophyletic species (18) in the NJ tree (94.7%). Only five species were successfully discriminated (26.3%) by either the NJ or BI trees using the combination of all four cp markers, i.e., matK + rbcL + trnH-psbA + trnK.
Table 7. Species resolution using the Best Close Match method and the tree-based method with five barcodes and their combinations.
Sequences | Number | Best close match (%) | BI (%) | NJ (%) | ||||
---|---|---|---|---|---|---|---|---|
Correct | Ambiguous | Incorrect | No match | Threshold | ||||
ITS | 132 | 93.2 | 6.8 | 0.0 | 0.0 | 0.45 | 84.2 | 84.2 |
trnK | 125 | 36.0 | 61.6 | 2.4 | 0.0 | 0.91 | 15.8 | 15.8 |
matK | 125 | 16.8 | 83.2 | 0.0 | 0.0 | 0.56 | 10.5 | 10.5 |
psbA | 126 | 27.0 | 71.4 | 0.8 | 0.8 | 1.12 | 5.2 | 5.2 |
rbcL | 125 | 12.0 | 88.0 | 0.0 | 0.0 | 0.63 | 0.0 | 0.0 |
ITS+trnK | 125 | 98.4 | 0.0 | 1.6 | 0.0 | 0.53 | 79.0 | 84.2 |
ITS+matk | 125 | 96.0 | 3.2 | 0.8 | 0.0 | 0.36 | 79.0 | 84.2 |
ITS+psbA | 126 | 96.0 | 4.0 | 0.0 | 0.0 | 0.54 | 84.2 | 89.5 |
ITS+rbcL | 125 | 100.0 | 0.0 | 0.0 | 0.0 | 0.38 | 89.5 | 89.5 |
trnK+matK | 125 | 52.0 | 45.6 | 2.4 | 0.0 | 0.72 | 26.3 | 26.3 |
trnK+psbA | 125 | 52.0 | 44.8 | 3.2 | 0.0 | 0.99 | 21.1 | 21.1 |
trnK+rbcL | 125 | 37.6 | 60.8 | 1.6 | 0.0 | 0.77 | 15.8 | 15.8 |
matK+psbA | 125 | 49.6 | 48.8 | 1.6 | 0.0 | 0.77 | 21.1 | 15.8 |
matK+rbcL | 125 | 25.6 | 74.4 | 0.0 | 0.0 | 0.59 | 10.5 | 10.5 |
psbA+rbcL | 125 | 30.4 | 68.8 | 0.8 | 0.0 | 0.83 | 10.5 | 5.2 |
ITS+matK+psbA | 125 | 96.0 | 3.2 | 0.8 | 0.0 | 0.54 | 68.4 | 89.5 |
ITS+trnK+matK | 125 | 98.4 | 0.0 | 1.6 | 0.0 | 0.54 | 73.7 | 89.5 |
ITS+trnK+rbcL | 125 | 98.4 | 0.0 | 1.6 | 0.0 | 0.51 | 84.2 | 89.5 |
ITS+matK+rbcL | 125 | 99.2 | 0.0 | 0.8 | 0.0 | 0.39 | 79.0 | 89.5 |
ITS+rbcL+psbA | 125 | 100.0 | 0.0 | 0.0 | 0.0 | 0.57 | 79.0 | 94.7 |
ITS+trnK+psbA | 125 | 98.4 | 0.0 | 1.6 | 0.0 | 0.68 | 79.0 | 89.5 |
trnK+matK+rbcL | 125 | 52.0 | 45.6 | 2.4 | 0.0 | 0.69 | 26.3 | 26.3 |
trnK+matK+psbA | 125 | 63.2 | 35.2 | 1.6 | 0.0 | 0.82 | 26.3 | 26.3 |
matK+psbA+rbcL | 125 | 49.6 | 49.6 | 0.8 | 0.0 | 0.72 | 21.1 | 21.1 |
rbcL+trnK+psbA | 125 | 55.2 | 41.6 | 3.2 | 0.0 | 0.86 | 15.8 | 21.1 |
ITS+matK+psbA+rbcL | 125 | 99.2 | 0.0 | 0.8 | 0.0 | 0.57 | 68.4 | 84.2 |
ITS+matK+psbA+trnK | 125 | 98.4 | 0.0 | 1.6 | 0.0 | 0.64 | 73.7 | 84.2 |
ITS+matK+rbcL+trnK | 125 | 98.4 | 0.0 | 1.6 | 0.0 | 0.52 | 73.7 | 84.2 |
ITS+rbcL+trnK+psbA | 125 | 98.4 | 0.0 | 1.6 | 0.0 | 0.66 | 79.0 | 84.2 |
trnK+matK+psbA+rbcL | 125 | 63.2 | 35.2 | 1.6 | 0.0 | 0.77 | 26.3 | 26.3 |
ITS+trnK+matK+psbA+rbcL | 125 | 98.4 | 0.0 | 1.6 | 0.0 | 0.64 | 79.0 | 84.2 |
Discussion
Proposed DNA barcodes for S. subg. Amphilaena
Among the fragments tested in the present study, ITS obtained a much higher success rate compared with the other loci. In addition, all of the combinations without ITS yielded much lower success rates, regardless of the method used (Table 7). Moreover, the rate of successful PCR (92.7%) was more or less higher for ITS than the other fragments (72.9–91.6%). It has also been reported that this fragment is highly efficient in other Asteraceae genera (Gao et al., 2010; Gong et al., 2016). However, an intrinsic problem with this fragment is that an individual may have undergone recent hybridization, thereby resulting in multiple mosaic sites (Li et al., 2011). In S. subg. Amphilaena, two species failed to form monophyletic clades in the BI and NJ trees, which could be attributed to the presence of multiple mosaic sites (Fig. 3). However, ITS performed better than the other fragments in S. subg. Amphilaena, and thus we propose that this fragment should be the first or best choice when selecting only one of the current candidates.
We found that it was difficult to identify the best second choice after ITS. TrnK performed much better than rbcL in terms of its efficiency when used individually, but its combination with ITS obtained contradictory results, i.e., ITS + trnK was inferior to ITS + rbcL in terms of efficiency. This contradictory result was unexpected and it is not common in other taxa (Cao et al., 2010; Müller & Borsch, 2005). We attributed this result to higher degree of congruence of the concatenated sequences of rbcL and ITS (P = 0.12 for ILD test), in compare to trnK and ITS (P = 0.001). But it might derive from some other mechanisms, such as the higher rate of mutation for trnK that could have caused differentiation within species, but not high enough to form distinct genetic differentiation among species, and thus a failure to cluster as a monophyletic group in line with species (Naciri, Caetano & Salamin, 2012; Petit & Excoffier, 2009). Therefore, we suggest that using trnK alone is problematic and instead we propose to use rbcL as complementary to ITS because this combination could identify all 19 of the sampled species based BCM, and 17 by NJ or BI (89%) (Table 7) (Fig. 4).
The two loci comprising trnH -psbA and matK were affected by the same problem as trnK, with higher mutation rates and barcode efficiencies compared with rbcL when used individually, but lower efficiency when combined with ITS. Thus, their combination with ITS + rbcL failed to significantly increase the success rate and lower results were even obtained in some cases (Table 7). However, among the combinations without ITS, the combination with higher mutation rates was more efficient than those with lower mutation rates, e.g., trnK + trnH-psbA was better than matK + rbcL, which was proposed previously as the core DNA barcode for plants (Hollingsworth et al., 2009). Therefore, if ITS is subjected to hybridization, we propose that the priority order should be the following: trnK > trnH-psbA > matK > rbcL. Moreover, the combination with more loci performed better than that with less loci. However, even the combination of all four loci was not sufficient to discriminate each species and new fragments should be considered.
Insights into taxonomic problems based on DNA barcodes
Most of the analyses failed to identify the species within two groups, i.e., S. luae vs. S. publifolia and S. globosa vs. S. erubescens (Figs. 3–5; Table 7). We found that these failures might have been attributable to taxonomic problems. For the first group, we found that S. luae was rather heterogeneous in terms of the ITS sequences. Some cp sequences were slightly differentiated compared with S. velutina, but the others were closer to those in S. glandulosissima or S. uniflora (Fig. 5). By contrast, the ITS sequences lacked variance and after excluding the mosaic sites, they were closely related in S. pubifolia or S. bracteata (Fig. 3). These nuclear-cytoplasmic inconsistencies suggest that hybridization may have occurred among these species.
The second group comprising S. globosa and S. erubescens was often confused in previous studies because the latter resembles a smaller form of S. globosa, which has various forms across its distribution (Raab-Straube, 2017). In agreement with the morphology, the genetic distance between the cp sequences within S. erubescens was zero whereas that within S. globosa was 0.04% (Table 5), which is even larger than that between S. erubescens and S. globosa (Table 6). The ITS sequences had a very similar pattern and the rich mosaic sites in both species also indicated differentiation accompanying substantial gene flow (Naciri, Caetano & Salamin, 2012). Both the BI and NJ methods found that S. globosa formed a clade within which S. erubescens nested as a monophyletic clade (Fig. 3). Based on these results, we propose that S. globosa might be a species with a series of differentiated populations where S. erubescens represents one of the most obvious. The current delimitation might need revision on the basis of extensive morphological as well as genetic diversity across the distribution range of both species.
Identification of the medicinal species and the potential substitutes
All of the known medically important species could be identified using our proposed DNA barcodes, i.e., ITS + rbcL or ITS alone (Table 7; Figs. 3–4). Moreover, some species such as S. bogedaensis, S. glandulosissima, S. polycolea, S. wettsteiniana, and S. orgaadayi could be identified with the cp DNA barcodes (Fig. 5). This high rate of success was unexpected because some species such as the two species in the S. obvallata complex (S. glandulosissima and S. sikkimensis) have been morphologically confused for many years and they were only separated very recently (Raab-Straube, 2017). Their distinction is indicative of difference in bioactive components. Therefore, our results caution against their indiscriminating usage in medicine.
Barcode sequences can also help to identify substitutes for medically useful species because closely related species might possibly share the same or similar secondary metabolites and bioactivities (Zhou et al., 2014). Thus, we propose that nine of the 15 medically useful species might be substituted by their close relatives according to the molecular phylogenetic context. Six of these species, which formed three groups, are also morphologically similar, i.e., S. involucrata and S. orgaadayi or S. bogedaensis, S. globosa and S. erubescens, and S. wettsteiniana and S. glandulosissima (Fig. 3) (Raab-Straube, 2017). Among the remaining three species, S. bracteata appears to be closely related to S. pubifolia whereas S. iodostegia and S. nigrescens are closely related to each other according to phylogenetic tree (Fig. 3). These affinities were not expected according to their morphology, but they are possibly due to convergent evolution or radiation in Saussurea (Wang et al., 2009). Secondary metabolomes or bioactivities are wanted to confirm their similarity.
Conclusion
Based on the sequence statistics, inter- and intraspecific distances, SPIDER, and phylogenetic analyses, it is concluded that internal transcribed spacer (ITS) + rbcL or ITS + rbcL + psbA-trnH could distinguish all of the species, while the ITS alone could identify all of the 15 medical plants. However, the species identification rates based on plastid barcodes were low, i.e., 0% to 36% when analyzed individually, and 63% when all four loci were combined. Thus, we recommend using ITS + rbcL as the DNA barcode for S. subg. Amphilaena or the ITS alone for medical plants.
Supplemental Information
Acknowledgments
We are grateful to Jian-Quan Liu, Zhong-Hu Li, Yi-Xuan Kou, Fu-Shen Yang and Hiroshi Ikeda for helping with our field investigation.
Funding Statement
This study was supported by the National Natural Science Foundation of China (81274024). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Additional Information and Declarations
Competing Interests
The authors declare there are no competing interests.
Author Contributions
Jie Chen conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.
Yong-Bao Zhao performed the experiments, contributed reagents/materials/analysis tools, prepared figures and/or tables.
Yu-Jin Wang contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
Xiao-Gang Li approved the final draft.
Data Availability
References
- Berends, Jones & Mullet (1990).Berends ST, Jones JT, Mullet JE. Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU) Current Genetics. 1990;17:445–454. doi: 10.1007/BF00334526. [DOI] [PubMed] [Google Scholar]
- Brown et al. (2012).Brown SD, Collins RA, Boyer S, Lefort MC, Malumbres-Olarte J, Vink CJ, Cruickshank RH. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources. 2012;12:562–565. doi: 10.1111/j.1755-0998.2011.03108.x. [DOI] [PubMed] [Google Scholar]
- Cao et al. (2010).Cao H, Sasaki Y, Fushimi H, Komatsu K. Authentication of Curcuma species (Zingiberaceae) based on nuclear 18S rDNA and plastid trnK sequences. Acta Pharmaceutica Sinica. 2010;45(7):926–933. [PubMed] [Google Scholar]
- Cao et al. (2016).Cao JH, Wang YF, Xi SQ, Qi RL, Yang YJ. Investigation on resources of medicinal plants Saussurea DC. in Gansu Province. Journal of Traditional Chinese Veterinary Medicine. 2016;2:73–75. [Google Scholar]
- CBOL Plant Working Group (2009).CBOL Plant Working Group A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:12794–12797. doi: 10.1073/pnas.0905845106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen (2014).Chen YS. Five new species of Saussurea (Asteraceae, Cardueae) from the Hengduan Mountains region, southwestern China. Phytotaxa. 2014;170:141–154. doi: 10.11646/phytotaxa.170.3.1. [DOI] [Google Scholar]
- Chen (2015).Chen YS. Astesraceae II Saussurea. In: Hong DY, editor. Flora of Pan-Himalaya. Science Press; Bejing: 2015. [Google Scholar]
- Chen, Pei & Zhao (2010).Chen QS, Pei J, Zhao JW. Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy. 2010;76:50–55. doi: 10.1016/j.saa.2010.02.045. [DOI] [PubMed] [Google Scholar]
- Chen & Wang (2018).Chen J, Wang YJ. New Saussurea (Asteraceae) species from Bogeda Mountain, eastern Tianshan, China, and inference of its evolutionary history and medical usage. PLOS ONE. 2018;13:e0199416. doi: 10.1371/journal.pone.0199416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen & Yuan (2015).Chen YS, Yuan Q. Twenty-six new species of Saussurea (Asteraceae, Cardueae) from the Qinghai-Tibetan Plateau and adjacent regions. Phytotaxa. 2015;213:159–211. doi: 10.11646/phytotaxa.213.3.1. [DOI] [Google Scholar]
- Chik et al. (2015).Chik WI, Zhu L, Fan LL, Yi T, Zhu GY, Gou XJ, Tang YN, Xu J, Yeung WP, Zhao ZZ, Yu ZL, Chen HB. Saussurea involucrata: a review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine. Journal of Ethnopharmacology. 2015;172:44–60. doi: 10.1016/j.jep.2015.06.033. [DOI] [PubMed] [Google Scholar]
- Darriba et al. (2012).Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;9(8):772. doi: 10.1038/nmeth.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle (1987).Doyle JJ. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochemical Bulletin. 1987;19:11–15. [Google Scholar]
- Farris et al. (1995).Farris JS, Kallersjo M, Kluge AG, Bult C. Constructing a significance test for incongruence. Systematic Biology. 1995;44:570–572. doi: 10.1093/sysbio/44.4.570. [DOI] [Google Scholar]
- Ford et al. (2009).Ford CS, Ayres KL, Toomey N, Haider N, Stahl JV, Kelly LJ, Wikstrom N, Hollingsworth PM, Duff RJ, Hoot SB, Cowan RS, Chase MW, Wilkinson MJ. Selection of candidate coding DNA barcoding regions for use on land plants. Botanical Journal of the Linnean Society. 2009;159:1–11. doi: 10.1111/j.1095-8339.2008.00938.x. [DOI] [Google Scholar]
- Fu & Jin (1992).Fu LK, Jin JM. Rare and endangered plants. In: Fu LK, Jin JM, editors. China plant red data book. Science Press; Shanghai: 1992. pp. 234–235. [Google Scholar]
- Gao et al. (2010).Gao T, Yao H, Song J-Y, Zhu Y-J, Liu C, Chen S-L. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evolutionary Biology. 2010;10:324. doi: 10.1186/1471-2148-10-324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gong et al. (2016).Gong W, Liu Y, Chen J, Hong Y, Kong HH. DNA barcodes identify Chinese medicinal plants and detect geographical patterns of Sinosenecio (Asteraceae) Journal of Systematics & Evolution. 2016;54:83–91. doi: 10.1111/jse.12166. [DOI] [Google Scholar]
- Hall (1999).Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–98. [Google Scholar]
- Hollingsworth et al. (2009).Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington R, Long D, Cowan R, Chase M, Gaudeul M, Hollingsworth P. Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Molecular Ecology Resources. 2009;9:439–457. doi: 10.1111/j.1755-0998.2008.02439.x. [DOI] [PubMed] [Google Scholar]
- Jiang, Luo & Xu (2010).Jiang X, Luo YQ, Xu SK. Varieties of Tibetan medicine research in Saussurea. Chinese Journal of Ethnomedicine and Ethnopharmacy. 2010;11:3–4. [Google Scholar]
- Kress et al. (2005).Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:8369–8374. doi: 10.1073/pnas.0503123102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li (1999).Li JS. Studies on ethnomedicinal plant resources of Xue Lianhua of genus Saussurea DC. in China Doctor. Peking Union Medical College; Beijing: 1999. [Google Scholar]
- Li et al. (2011).Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:19641–19646. doi: 10.1073/pnas.1104551108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li, Zhu & Cai (2000).Li JS, Zhu ZY, Cai SQ. A survey on botanical origins of drug Xue Lianhua produced in China. China Journal of Chinese Materia Medica. 2000;25:461–465. [PubMed] [Google Scholar]
- Lipschitz (1979).Lipschitz SJ. Genus Saussurea DC. (Asteraceae) Lenipopoli Science Press; Lenipopoli: 1979. [Google Scholar]
- Meyer & Paulay (2005).Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLOS Biology. 2005;3:e422. doi: 10.1371/journal.pbio.0030422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller & Borsch (2005).Müller K, Borsch T. Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates. Plant Systematics & Evolution. 2005;250:39–67. doi: 10.1007/s00606-004-0224-1. [DOI] [Google Scholar]
- Naciri, Caetano & Salamin (2012).Naciri Y, Caetano S, Salamin N. Plant DNA barcodes and the influence of gene flow. Molecular Ecology Resources. 2012;12:575–580. doi: 10.1111/j.1755-0998.2012.03130.x. [DOI] [PubMed] [Google Scholar]
- Olmstead et al. (1992).Olmstead RG, Michaels HJ, Scott KM, Palmer JD. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Annals of the Missouri Botanical Garden. 1992;79:249–265. doi: 10.2307/2399768. [DOI] [Google Scholar]
- Omori, Takayama & Fls (2000).Omori Y, Takayama H, Fls HO. Selective light transmittance of translucent bracts in the Himalayan giant glasshouse plant Rheum nobile Hook.f. & Thomson (Polygonaceae) Botanical Journal of the Linnean Society. 2000;132:19–27. doi: 10.1111/j.1095-8339.2000.tb01852.x. [DOI] [Google Scholar]
- Petit & Excoffier (2009).Petit R, Excoffier L. Gene flow and species delimitation. Trends in Ecology & Evolution. 2009;24(7):386–393. doi: 10.1016/j.tree.2009.02.011. [DOI] [PubMed] [Google Scholar]
- Raab-Straube (2017).Raab-Straube EV. Taxonomic revision of Saussurea subgenus Amphilaena (Compositae, Cardueae) Botanic Garden and Botanical Museum Berlin; Berlin: 2017. [Google Scholar]
- Ronquist et al. (2012).Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology. 2012;61:973–999. doi: 10.1093/sysbio/sys058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sang, Crawford & Stuessy (1997).Sang T, Crawford D, Stuessy T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae) American Journal of Botany. 1997;84(8):1120–1136. doi: 10.2307/2446155. [DOI] [PubMed] [Google Scholar]
- Shi & Raab-Straube (2011).Shi Z, Raab-Straube EV. Saussurea Candolle. In: Wu ZY, Raven PH, editors. Flora of China. Science Press; Beijing: 2011. pp. 56–149. [Google Scholar]
- Simões et al. (2016).Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC, Heins L, Herzog K, Lieberman BS. The evolving theory of evolutionary radiations. Trends in Ecology & Evolution. 2016;31:27–34. doi: 10.1016/j.tree.2015.10.007. [DOI] [PubMed] [Google Scholar]
- Smirnov (2004).Smirnov SV. Notes on the genus Saussurea DC. (Asteraceae) in Altai. Turczaninowia. 2004;7:11–17. [Google Scholar]
- Swofford (2003).Swofford D. Sinauer Associates; Sunderland: 2003. [Google Scholar]
- Thompson et al. (1997).Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang et al. (2014).Wang YF, Li QJ, Du GZ, Lian YS. Saussurea pseudograminea sp. nov. (Asteraceae) from the Qinghai–Tibetan plateau, China. Nordic Journal of Botany. 2014;32:185–189. doi: 10.1111/j.1756-1051.2013.00200.x. [DOI] [Google Scholar]
- Wang et al. (2009).Wang YJ, Susanna A, Raab-Straube EV, Milne R, Liu JQ. Island-like radiation of Saussurea (Asteraceae: Cardueae) trigged by uplifts of the Qinghai-Tibetan Plateau. Botanical Journal of the Linnean Society. 2009;97:893–903. doi: 10.1111/j.1095-8312.2009.01225.x. [DOI] [Google Scholar]
- White et al. (1990).White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols a guide to methods and applications. Academic Press; San Diego: 1990. pp. 315–322. [Google Scholar]
- Xu, Hao & Xia (2014).Xu BQ, Hao G, Xia NH. Saussurea haizishanensis sp. nov. (Compositae, Cardueae) from Sichuan, China. Nordic Journal of Botany. 2014;32:154–159. doi: 10.1111/j.1756-1051.2012.01735.x. [DOI] [Google Scholar]
- Yang et al. (2005).Yang RM, Lan YF, Lan WC, Peng Cuo T. The analysis of elements in flowers from two kinds of snow lotus herb of the tibetan drug. Journal of the Central University for Nationalities. 2005;14:120–123. [Google Scholar]
- Zhou et al. (2014).Zhou J, Wang WC, Liu MQ, Liu ZW. Molecular authentication of the traditional medicinal plant Peucedanum praeruptorum and its substitutes and adulterants by DNA-barcoding technique. Pharmacognosy Magazine. 2014;10(40):385–390. doi: 10.4103/0973-1296.141754. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
The following information was supplied regarding data availability:
All of the sequences used in this article are registered in GenBank: accession numbers MH003704 to MH003835 for ITS and MH070616 to MH071120 for chloroplast regions.