Skip to main content
Journal of Radiation Research logoLink to Journal of Radiation Research
. 2018 Aug 21;60(1):80–97. doi: 10.1093/jrr/rry044

Japanese structure survey of radiation oncology in 2010

Hodaka Numasaki 1,, Teruki Teshima 2, Tetsuo Nishimura 3, Keizo Akuta 4, Yutaka Ando 5, Hiroshi Ikeda 6, Norihiko Kamikonya 7, Masahiko Koizumi 8, Tomonari Sasaki 9, Kenji Sekiguchi 10, Masao Tago 11, Atsuro Terahara 12, Katsumasa Nakamura 13, Masamichi Nishio 14, Masao Murakami 15, Yoshimasa Mori 16, Kazuhiko Ogawa 17; Japanese Society for Radiation Oncology Database Committee
PMCID: PMC6373681  PMID: 30137391

Abstract

We evaluated the evolving structure of radiation oncology in Japan in terms of equipment, personnel, patient load, and geographic distribution to identify and overcome any existing limitations. From March 2011 to June 2013, the Japanese Society for Radiation Oncology conducted a questionnaire based on the Japanese national structure survey of radiation oncology in 2010. Data were analyzed based on the institutional stratification by the annual number of new patients treated with radiotherapy per institution. The estimated annual numbers of new and total (new plus repeat) patients treated with radiation were 211 000 and 251 000, respectively. Additionally, the estimated cancer incidence was 805 236 cases, with ~26.2% of all newly diagnosed patients being treated with radiation. The types and numbers of treatment devices actually used included linear accelerator (LINAC; n = 829), telecobalt (n = 9), Gamma Knife (n = 46), 60Co remote afterloading system (RALS; n = 28), and 192Ir RALS (n = 131). The LINAC system used dual-energy functions in 586 units, three-dimensional conformal radiotherapy functions in 663, and intensity-modulated radiotherapy (IMRT) functions in 337. There were 564 JASTRO-certified radiation oncologists, 959.2 full-time equivalent (FTE) radiation oncologists, 1841.3 FTE radiotherapy technologists, 131.3 FTE medical physicists, 121.5 FTE radiotherapy quality managers, and 649.6 FTE nurses. The frequency of IMRT use significantly increased during this year. To conclude, although there was a shortage of personnel in 2010, the Japanese structure of radiation oncology has clearly improved in terms of equipment and utility.

Keywords: structure survey, radiotherapy institution, radiotherapy personnel, radiotherapy equipment

PREFACE

We greatly appreciate the substantial contributions of the many radiation oncologists (ROs), radiation technologists, and other staff to the national structure survey of radiation oncology. Despite some delays, the updated Japanese national structure survey data for radiation oncology in 2010 is now available.

Since 1991, the Japanese Society for Radiation Oncology (JASTRO) has conducted national structure surveys every 2 years [124]. From March 2011 to June 2013, the Japanese Society for Radiation Oncology conducted a questionnaire based on the Japanese national structure survey of radiation oncology in 2010, which included the number of treatment systems by type, number of personnel by category, and number of patients by type, site, and treatment modality. To measure variables over a longer time period, data for the year 2010 were also considered. In total, 705 of 780 active institutions attempted the survey; the response rate was 90.4%.

The current report analyzes these institutional structure data (equipment, personnel, patient load, and geographic distribution) based on institutional stratification according to the annual number of new patients treated with radiotherapy at each institution. The clinical working hours of each staff member performing radiotherapy were derived from full-time equivalent (FTE; 40 h per week for radiation oncology work only) data. The Japanese Blue Book Guidelines (JBBG) [25, 26] were used for comparison with the results of this study. These guidelines pertain to the structure of radiation oncology in Japan based on the Patterns of Care Study (PCS) [27, 28] data. The standard guidelines were set at 250–300 (warning level, 400) for annual patient load per external beam machine, at 200 (warning level, 300) for annual patient load per FTE RO, and at 120 (warning level, 200) for annual patient load per FTE radiotherapy technologist. Furthermore, we analyzed data from the designated cancer care hospitals accredited by the Ministry of Health, Labor, and Welfare. As at 1 August 2013, Japan had 397 designated cancer care hospitals [29]. Twenty-three institutions did not return the survey; therefore, the structure data for 374 designated cancer care hospitals were analyzed and compared with the data for all radiotherapy hospitals. The analysis was conducted in two groups: institutions with <1.0 FTE RO and those with ≥1.0 FTE RO.

Here, preliminary results have been presented as tables and figures (Tables 118 and Figs 16). We have briefly summarized the Japanese national structure survey of radiation oncology for 2010. In total, 780 radiotherapy institutions were surveyed, and the estimated number of new patients was ~211 000; the estimated total number of patients (new plus repeat) was 251 000. In 2010, based on Japanese cancer registries, the cancer incidence was estimated at 805 236 cases [30], with ~26.2% (211 000 of 805 236) of all newly diagnosed patients being treated with radiation. Overall, 829 linear accelerators (LINACs), 9 telecobalt units, 46 Gamma Knife, 28 60Co remote afterloading systems (RALS) and 131 192Ir RALS were actually used. The LINAC system used dual-energy functions in 586 units, three-dimensional conformal radiotherapy functions in 663, and intensity-modulated radiotherapy (IMRT) functions in 337. There were 564 JASTRO-certified ROs, 959.2 FTE ROs, 1841.3 FTE radiotherapy technologists, 131.3 FTE medical physicists, 121.5 FTE radiotherapy quality managers, and 649.6 FTE nurses. Approximately 50.0% of all radiotherapy institutions had >200 new radiotherapy patients per year, whereas 31.6% of the institutions had >300. Additionally, 47.5% of all radiotherapy institutions had <1.0 FTE ROs. We expect that this updated national structure survey of radiation oncology for 2010 will aid the continuous improvement of all aspects of radiation oncology in Japan.

Table 1.

Categories of radiotherapy institution

Institution category
U: university hospital
G: cancer center (including national cancer center)
N: national hospital organization (excluding national cancer center)
P: public hospital (excluding national cancer center), red cross hospital, saiseikai hospital, company hospital, public corporation hospital, national health insurance hospital
O: social insurance hospital, mutual insurance hospital, industrial accident hospital, association hospital, Japan agricultural cooperatives hospital
H: medical corporation hospital, medical association hospital, private hospital, other hospitals

Table 2.

Number of radiotherapy institutions by scale classification and institution category

Scale category (annual number of new patients) Institution category Total Institution ratio [%]
U G N P O H
A (1–99) 5 2 14 44 35 23 123 17.6
B (100–199) 11 1 27 80 70 38 227 32.4
C (200–299) 14 3 12 41 36 23 129 18.4
D (300–399) 14 5 7 20 25 15 86 12.3
E (400–499) 16 1 1 10 8 9 45 6.4
F (500–) 51 17 2 7 5 13 95 13.6
Total 111 29 63 202 179 121 705 100.0
Institution ratio [%] 15.7 4.1 8.9 28.7 25.4 17.2 100.0

Table 3.

Annual number of new patients by scale classification and institution category

Scale category (number of institutions) Institution category (number of institutions) Total (705) Average
U (111) G (29) N (63) P (202) O (179) H (121)
A (123) 162 101 750 2677 2498 1475 7663 62.3
B (227) 1573 106 4138 12 067 10 050 5693 33 627 148.1
C (129) 3601 831 2734 10 009 8679 5527 31 381 243.3
D (86) 4774 1656 2318 6700 8521 5012 28 981 337.0
E (45) 7134 476 433 4266 3377 4114 19 800 440.0
F (95) 36 908 14 665 1290 4054 3245 8708 68 870 724.9
Total (705) 54 152 17 835 11 663 39 773 36 370 30 529 190 322 270.0
Average 492.3 615.0 185.1 196.9 203.2 252.3 270.0

Table 4.

Annual number of total (new plus repeat) patients by scale classification and institution category

Scale category (number of institutions) Institution category (number of institutions) Total (705) Average
U (111) G (29) N (63) P (202) O (179) H (121)
A (123) 178 110 949 3042 2871 1747 8897 72.3
B (227) 1713 147 4809 13 784 11 366 7188 39 007 171.8
C (129) 4288 1096 3111 12 118 9991 6408 37 012 286.9
D (86) 5496 2050 2588 7853 10 327 6443 34 757 404.2
E (45) 8498 583 490 5188 4214 5293 24 266 539.2
F (95) 44 624 17 686 1678 4653 3609 10 662 82 912 872.8
Total (705) 64 797 21 672 13 625 46 638 42 378 37 741 226 851 321.8
Average 583.8 747.3 216.3 230.9 236.7 311.9 321.8

Table 5.

Number of treatment devices and their functions by scale classification

Treatment devices and their functions Scale category (number of institutions) Total (705)
A (123) B (227) C (129) D (86) E (45) F (95)
LINAC 117 213 132 101 69 197 829
 with dual-energy function 63 149 105 83 54 152 606
 with 3DCRT function (MLC width ≤1.0 cm) 83 167 109 93 65 184 701
 with IMRT function 17 51 54 66 40 147 375
 with cone-beam CT or CT on rail 15 42 37 41 33 71 239
 with treatment position verification system (X-ray perspective image) 14 42 44 39 33 74 246
 with treatment position verification system (other than those above) 19 49 30 31 17 68 214
Annual no. patients/LINAC 76.0 183.1 280.4 344.1 351.7 420.9 273.6
 CyberKnife® 3 5 1 2 2 4 17
 Novalis® 1 2 4 5 4 9 25
 Tomotherapy® 3 2 1 4 2 3 15
Particle 0 0 0 0 0 7 7
Microtoron 0 5 1 0 2 5 13
Telecobalt (actual use) 3 (3) 4 (3) 1 (0) 2 (1) 0 (0) 2 (2) 12 (9)
Gamma knife® 3 11 10 7 6 9 46
Other accelerator 0 0 3 1 0 3 7
Other external irradiation device 0 1 2 0 0 4 7
New type 60Co RALS (in actual use) 0 (0) 3 (3) 4 (3) 3 (3) 2 (2) 6 (6) 18 (17)
Old type 60Co RALS (in actual use) 2 (0) 7 (2) 4 (3) 4 (3) 3 (2) 1 (1) 19 (11)
192Ir RALS (in actual use) 0 (1) 8 (6) 21 (18) 20 (20) 17 (17) 70 (70) 136 (131)
137Cs RALS (in actual use) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1)

Table 6.

Numbers of treatment-planning equipment and accessories by scale classification

Treatment-planning equipment and accessories Scale category (number of institutions) Total (705)
A (123) B (227) C (129) D (86) E (45) F (95)
X-ray simulator 58 105 54 40 21 70 348
CT simulator 91 189 117 86 46 104 633
RTP computer (2 or more) 128 (13) 262 (34) 192 (38) 192 (46) 144 (29) 463 (86) 1 381 (246)
X-ray CT (2 or more) 219 (79) 491 (172) 357 (113) 275 (80) 172 (44) 456 (89) 1 970 (577)
 for RT only 40 105 84 66 35 95 425
MRI (2 or more) 153 (34) 321 (89) 227 (87) 173 (69) 107 (41) 271 (80) 1 252 (400)
 for RT only 1 2 6 3 1 3 16
Computer use for RT recording 96 186 109 76 40 86 593
Water phantom (2 or more) 119 (17) 236 (41) 165 (41) 111 (29) 65 (17) 174 (44) 870 (189)
Film densitometer (2 or more) 38 (1) 89 (1) 63 (2) 63 (4) 34 (2) 98 (14) 385 (24)
Dosimeter (3 or more) 311 (56) 690 (130) 482 (80) 358 (59) 203 (33) 564 (78) 2 608 (436)

The numbers in parentheses indicate the number of institutions. CT = computed tomography, RTP = radiotherapy planning, MRI = magnetic resonance imaging, RT = radiotherapy.

Table 7.

Numbers of personnel and annual patients by scale classification

Scale category (number of institutions) Total (705)
A (123) B (227) C (129) D (86) E (45) F (95)
Scale (annual no. of new patients) ≤99 100–199 200–299 300–399 400–499 500≤
Institution ratio [%] 17.4% 32.2% 18.3% 12.2% 6.4% 13.5% 100%
New patients 7663 33 627 31 381 28 981 19 800 68 870 190 322
New patients/institution 62.3 148.1 243.3 337.0 440.0 724.9 270.0
Total patients 8897 39 007 37 012 34 757 24 266 82 912 226 851
Total patients/institution 72.3 171.8 286.9 404.2 539.2 872.8 321.8
Beds 39 816 94 885 61 173 48 128 29 179 71 577 344 758
Institutions with RT beds (%) 18 (14.6) 45 (19.8) 38 (29.5) 40 (46.5) 21 (46.7) 68 (71.6) 230 (32.6)
RT beds 85.0 183.0 204.0 259.5 191.0 982.4 1 904.9
RT beds/total beds [%] 0.2% 0.2% 0.3% 0.5% 0.7% 1.4% 0.6%
RT beds/institution 0.7 0.8 1.6 3.0 4.2 10.3 2.7
RT beds/institution with RT beds 4.7 4.1 5.4 6.5 9.1 14.4 8.3
JRS-certified institutions (%) 13 (10.6) 40 (17.6) 57 (44.2) 55 (64) 36 (80) 79 (83.2) 280 (39.7)
JRS-cooperation institutions (%) 28 (22.8) 94 (41.4) 33 (25.6) 21 (24.4) 8 (17.8) 10 (10.5) 194 (27.5)
JASTRO-certified institutions (%) 2 (1.6) 37 (16.3) 60 (46.5) 57 (66.3) 35 (77.8) 84 (88.4) 275 (39)
JRS membership (full-time) 69 167 139 136 103 441 1 055
JRS-certified ROs (full-time) 57 149 125 122 79 335 867
JASTRO membership (full-time) 37 127 131 120 95 440 950
JASTRO-certified ROs (full-time) 13 67 82 82 56 264 564
Institutions with full-time RO (%) 56 (45.5) 147 (64.8) 109 (84.5) 83 (96.5) 44 (97.8) 93 (97.9) 532 (75.5)
ROs (full-time) 85 180 150 146 110 452 1 123
ROs (full-time)/institution 0.7 0.8 1.2 1.7 2.4 4.8 1.6
FTE RO (full-time) 34.3 121.1 120.6 117.5 85.7 373.0 852.1
FTE RO (full-time)/institution 0.28 0.53 0.93 1.37 1.90 3.93 1.21
ROs (part-time) 107 179 93 45 35 120 579
ROs (part-time)/institution 0.87 0.79 0.72 0.52 0.78 1.26 0.82
FTE RO (part-time) 16.6 30.0 16.5 7.6 7.4 29.1 107.1
FTE RO (part-time)/institution 0.1 0.1 0.1 0.1 0.2 0.3 0.2
FTE RO (full-time plus parttime) 50.9 151.1 137.0 125.1 93.1 402.1 959.2
FTE RO (full-time plus part-time)/institution 0.41 0.67 1.06 1.45 2.07 4.23 1.36
Radiologists (full-time) 174.9 381.5 377.4 298.0 299.0 865.0 2 395.8
Radiologists (parttime) 132.7 380.4 203.7 117.2 76.0 184.0 1 094.0
RTTs (full-time)a 346 754 479 387 229 703 2 898
FTE RTT 155.7 416.8 282.5 253.9 175.2 557.2 1 841.3
Medical physicists (full-time)a 22 69 64 54 36 113 358
FTE medical physicist 6.5 21.4 21.2 21.5 12.5 48.3 131.3
RT quality manager (full-time)a 29 105 87 62 49 117 449
FTE RT quality manager 6.7 23.5 25.8 16.3 13.5 35.8 121.5
Dosimetrists (full-time)a 12 17 20 18 14 51 132
FTE dosimetrist 2.2 3.4 4.1 3.6 2.7 9.5 25.4
Craftworkers (full-time)a 35 63 32 26 12 52 220
FTE craftworker 6.8 11.6 6.3 5.0 1.4 5.7 36.7
Nurses (full-time) 100 282 220 156 125 269 1 152
FTE nurses 44.76 132.3 114.5 86.1 59.4 212.5 649.6
Nursing assistants 5.2 11.2 6.35 9.6 12.4 20.3 65.1
Clerks 29.85 54.3 53.55 59.4 39.5 121.75 358.4

aOverlap is included in the total number of each staff (radiotherapy technologist, medical physicist, and radiotherapy quality manager). RT = radiotherapy, JRS = Japan Radiological Society, RO = radiation oncologist, JASTRO = Japanese Society for Radiation Oncology, FTE = full-time equivalent, RTT = radiotherapy technologist.

Table 8.

Population size and numbers of patients, institutions, and patient load according to prefecture

Prefecture Population (×103) Institutions New patients New patients/institution Total patients Total patients/institution
Hokkaido 5 506 30 9 520 317.3 12 200 406.7
Aomori 1 373 9 2 049 227.7 2 281 253.4
Iwate 1 330 8 1 684 210.5 1 868 233.5
Miyagi 2 348 11 4 123 374.8 5 758 523.5
Akita 1 086 10 1 787 178.7 2 167 216.7
Yamagata 1 169 6 1 308 218.0 1 570 261.7
Fukushima 2 029 10 3 071 307.1 3 524 352.4
Ibaraki 2 970 15 3 638 242.5 4 444 296.3
Tochigi 2 008 8 2 751 343.9 3 534 441.8
Gunma 2 008 13 3 769 289.9 4 271 328.5
Saitama 7 195 20 7 070 353.5 8 990 449.5
Chiba 6 216 23 7 398 321.7 9 034 392.8
Tokyo 13 159 67 23 116 345.0 27 951 417.2
Kanagawa 9 048 39 12 597 323.0 14 331 367.5
Niigata 2 374 15 3 930 262.0 4 410 294.0
Toyama 1 093 8 1 542 192.8 1 761 220.1
Ishikawa 1 170 7 1 994 284.9 2 386 340.9
Fukui 806 6 1 250 208.3 1 487 247.8
Yamanashi 863 4 1 140 285.0 1 338 334.5
Nagano 2 152 15 3 331 222.1 3 940 262.7
Gifu 2 081 12 3 245 270.4 4 244 353.7
Shizuoka 3 765 23 6 019 261.7 7 569 329.1
Aichi 7 411 37 10 113 273.3 12 088 326.7
Mie 1 855 12 1 853 154.4 2 116 176.3
Shiga 1 411 10 1 832 183.2 2 238 223.8
Kyoto 2 636 13 4 032 310.2 4 710 362.3
Osaka 8 865 51 13 528 265.3 15 835 310.5
Hyogo 5 588 32 8 096 253.0 9 294 290.4
Nara 1 401 8 2 200 275.0 2 499 312.4
Wakayama 1 002 10 1 717 171.7 2 063 206.3
Tottori 589 7 968 138.3 1 149 164.1
Shimane 717 5 986 197.2 1 099 219.8
Okayama 1 945 11 2 772 252.0 3 271 297.4
Hiroshima 2 861 20 5 128 256.4 6 220 311.0
Yamaguchi 1 451 14 1 991 142.2 2 247 160.5
Tokushima 785 5 1 436 287.2 1 664 332.8
Kagawa 996 6 1 194 199.0 1 266 211.0
Ehime 1 431 11 2 277 207.0 2 631 239.2
Kochi 764 6 1 220 203.3 1 379 229.8
Fukuoka 5 072 26 8 585 330.2 9 903 380.9
Saga 850 4 901 225.3 1 017 254.3
Nagasaki 1 427 8 2 343 292.9 2 726 340.8
Kumamoto 1 817 13 3 209 246.8 3 717 285.9
Oita 1 197 11 1 616 146.9 1 913 173.9
Miyazaki 1 135 7 1 520 217.1 1 832 261.7
Kagoshima 1 706 12 2 671 222.6 2 888 240.7
Okinawa 1 393 7 1 802 257.4 2 028 289.7
Total 128 057 705 190 322 270.0 226 851 321.8

Table 9.

Population size and numbers of patients, radiation oncologists, and patient load according to prefecture

Prefecture Population (×103) Total patients JASTRO-certified RO FTE RO Total patients/FTE RO
Hokkaido 5 506 12 200 32 51.1 238.7
Aomori 1 373 2 281 7 9.0 253.4
Iwate 1 330 1 868 5 8.0 233.5
Miyagi 2 348 5 758 11 17.9 321.7
Akita 1 086 2 167 2 8.4 258.0
Yamagata 1 169 1 570 5 8.6 182.6
Fukushima 2 029 3 524 5 14.8 238.1
Ibaraki 2 970 4 444 8 15.1 294.3
Tochigi 2 008 3 534 8 14.8 238.8
Gunma 2 008 4 271 21 29.9 142.8
Saitama 7 195 8 990 18 27.0 333.0
Chiba 6 216 9 034 29 48.6 185.8
Tokyo 13 159 27 951 76 119.0 235.0
Kanagawa 9 048 14 331 35 53.0 270.4
Niigata 2 374 4 410 8 16.6 265.7
Toyama 1 093 1 761 5 7.0 251.6
Ishikawa 1 170 2 386 4 6.7 356.1
Fukui 806 1 487 5 8.2 181.3
Yamanashi 863 1 338 6 7.3 183.3
Nagano 2 152 3 940 6 11.2 353.4
Gifu 2 081 4 244 5 9.1 466.4
Shizuoka 3 765 7 569 18 26.4 286.7
Aichi 7 411 12 088 21 49.8 242.7
Mie 1 855 2 116 4 9.8 215.9
Shiga 1 411 2 238 7 11.0 203.5
Kyoto 2 636 4 710 18 26.3 179.1
Osaka 8 865 15 835 44 77.2 205.2
Hyogo 5 588 9 294 27 43.7 212.9
Nara 1 401 2 499 8 12.4 201.5
Wakayama 1 002 2 063 4 10.0 206.3
Tottori 589 1 149 1 4.3 267.2
Shimane 717 1 099 6 8.3 132.4
Okayama 1 945 3 271 8 17.9 182.7
Hiroshima 2 861 6 220 21 26.2 237.9
Yamaguchi 1 451 2 247 4 10.8 208.1
Tokushima 785 1 664 4 8.2 202.9
Kagawa 996 1 266 3 6.5 194.8
Ehime 1 431 2 631 8 13.3 197.8
Kochi 764 1 379 4 3.9 353.6
Fukuoka 5 072 9 903 24 41.8 236.9
Saga 850 1 017 3 4.8 211.9
Nagasaki 1 427 2 726 4 8.1 336.5
Kumamoto 1 817 3 717 5 15.4 241.4
Oita 1 197 1 913 3 9.6 199.3
Miyazaki 1 135 1 832 4 6.2 295.5
Kagoshima 1 706 2 888 5 10.7 269.9
Okinawa 1 393 2 028 5 5.5 368.7
Total 128 054 226 851 564 959.2 236.5

JASTRO = Japanese Society for Radiation Oncology, RO = radiation oncologist, FTE = full-time equivalent.

Table 10.

Population size and numbers of patients, staffs, and patient load according to prefecture

Prefecture Total patients FTE RTT Total patients/FTE RTT FTE MP FTE RTQM
Hokkaido 12 200 72.3 168.7 6.8 7.1
Aomori 2 281 22.1 103.2 2.6 1.6
Iwate 1 868 18.7 99.9 0.1 0.4
Miyagi 5 758 31.5 182.8 0.1 1.8
Akita 2 167 19.9 108.9 0.5 1.3
Yamagata 1 570 13.2 118.9 0.9 1.4
Fukushima 3 524 30.8 114.4 2.9 1.3
Ibaraki 4 444 42.2 105.3 1.1 1.5
Tochigi 3 534 25.9 136.4 1.6 3.1
Gunma 4 271 38.9 109.8 3.5 3.0
Saitama 8 990 50.3 178.7 2.2 4.2
Chiba 9 034 74.2 121.8 4.4 3.0
Tokyo 27 951 228.4 122.4 14.3 9.0
Kanagawa 14 331 125.3 114.4 6.9 8.3
Niigata 4 410 47.7 92.5 2.1 0.7
Toyama 1 761 21.8 80.8 0.8 1.4
Ishikawa 2 386 19.2 124.3 2.9 1.8
Fukui 1 487 15.7 94.7 1.6 0.9
Yamanashi 1 338 7.0 191.1 0.1 0.6
Nagano 3 940 31.1 126.7 2.2 1.6
Gifu 4 244 27.2 156.0 2.1 1.7
Shizuoka 7 569 71.4 106.0 5.5 4.2
Aichi 12 088 100.3 120.5 6.2 4.6
Mie 2 116 25.0 84.6 1.0 1.4
Shiga 2 238 24.3 92.1 2.1 2.0
Kyoto 4 710 33.3 141.4 5.7 4.7
Osaka 15 835 141.7 111.8 19.7 13.5
Hyogo 9 294 82.2 113.1 6.1 4.7
Nara 2 499 22.9 109.1 0.9 2.2
Wakayama 2 063 17.2 119.9 0.0 0.4
Tottori 1 149 12.3 93.4 0.3 2.1
Shimane 1 099 11.9 92.4 0.3 1.3
Okayama 3 271 30.4 107.6 1.7 2.9
Hiroshima 6 220 43.9 141.7 2.6 3.0
Yamaguchi 2 247 22.0 102.1 0.8 1.6
Tokushima 1 664 12.3 135.3 0.0 2.0
Kagawa 1 266 10.6 119.4 0.8 0.2
Ehime 2 631 21.2 124.1 2.6 2.3
Kochi 1 379 10.0 137.9 1.6 0.7
Fukuoka 9 903 67.1 147.6 4.2 5.1
Saga 1 017 7.6 133.8 0.0 0.5
Nagasaki 2 726 15.6 174.7 2.6 1.5
Kumamoto 3 717 28.0 132.8 2.5 2.4
Oita 1 913 21.1 90.7 1.9 1.3
Miyazaki 1 832 14.4 127.2 1.1 0.9
Kagoshima 2 888 20.1 143.7 1.0 0.0
Okinawa 2 028 11.1 182.7 0.6 0.4
Total 226 851 1841.3 123.2 131.3 121.5

FTE = full-time equivalent, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager, NS = nurse.

Table 11.

Numbers of institutions and patients receiving special radiotherapy by scale classification

Specific therapy 2010 2009
A (123) B (227) C (129) D (86) E (45) F (95) Total (705) Total (700)
Intracavitary radiotherapy
 Treatment institutions 0 10 23 25 21 73 152 151
 Patients 0 107 335 393 329 2 081 3 245 3 139
Interstitial radiotherapy
 Treatment institutions 1 8 17 18 12 59 115 109
 Patients 41 66 319 550 305 2913 4 194 4 070
Radioactive iodine therapy for prostate
 Treatment institutions 1 4 16 17 11 52 101 96
 Patients 41 44 312 485 215 2 018 3 115 3 080
Radioactive iodine therapy for hyperthyroidism
 Treatment institutions 0 5 11 7 11 25 59 97
 Patients 0 62 427 100 377 1 114 2 080 4 478
Total body radiotherapy
 Treatment institutions 9 20 25 31 28 73 186 180
 Patients 57 148 254 171 294 1 013 1 937 1 790
Intraoperative radiotherapy
 Treatment institutions 1 1 2 5 5 10 24 28
 Patients 2 1 5 18 25 110 161 173
Stereotactic brain radiotherapy
 Treatment institutions 12 40 37 42 28 52 211 202
 Patients 511 2 364 2 108 2 629 2 214 3 974 13 800 13 855
Stereotactic body radiotherapy
 Treatment institutions 5 29 35 45 22 67 203 165
 Patients 120 205 482 603 307 1 819 3 536 2 537
IMRT
 Treatment institutions 4 13 17 25 14 63 136 101
 Patients 165 503 780 1 049 646 3 213 6 356 4 296
Thermoradiotherapy
 Treatment institutions 1 2 7 2 3 5 20 20
 Patients 9 6 38 11 184 111 359 391
Sr-90 radiotherapy for pterygia
 Treatment institutions 0 0 2 2 0 1 5 11
 Patients 0 0 8 14 0 11 33 90
Internal 89Sr radiotherapy
 Treatment institutions 4 25 22 29 15 47 142
 Patients 12 111 80 172 83 335 793
Internal Y-90 radiotherapy
 Treatment institutions 1 3 1 4 4 20 33
 Patients 1 8 3 11 8 122 153

IMRT = intensity-modulated radiotherapy, Sr = strontium, Y = yttrium.

Table 12.

Annual numbers of new patients by disease sitea

Primary site n %
Cerebrospinal 8 065 4.4
Head and neck (including thyroid) 17 513 9.6
Esophagus 10 207 5.6
Lung, trachea and mediastinum 35 149 19.3
 Lung 32 540 17.8
Breast 43 315 23.7
Liver, biliary tract, pancreas 6 835 3.7
Gastric, small intestine, colorectal 8 741 4.8
Gynecologic 8 563 4.7
Urogenital 25 832 14.2
 Prostate 20 303 11.1
Hematopoietic and lymphatic 8 587 4.7
Skin, bone and soft tissue 4 601 2.5
Other (malignant) 2 377 1.3
Benign tumors 2 706 1.5
Pediatric ≤15 years (included in totals above) 858 0.5
Total 182 491 100

aThe total numbers of new patients in Table 3 differ from these data, because no data on primary sites were reported by some institutions.

Table 13.

Annual number of total patients (new plus repeat) treated for brain metastasis and bone metastasis by scale classification

Metastasis Scale category (number of institutions) Total (705)
A (123) B (227) C (129) D (86) E (45) F (95)
n % n % n % n % n % n % n %
Brain 761 8.6 4 504 11.5 3 345 9.0 3 622 10.4 2 317 9.5 7 216 8.7 21 765 9.6
Bone 1 414 15.9 5 847 15.0 5 059 13.7 4 812 13.8 2 629 10.8 9 235 11.1 28 996 12.8

Data presented as number of patients, with percentages in parentheses.

Table 14.

Classification of institutions by number of FTE radiation oncologists in all radiotherapy institutions and designated cancer care hospitals

Institution category Description Institutions
RH-A All radiotherapy hospitals (FTE RO ≥ 1.0) 374
RH-B All radiotherapy hospitals (FTE RO < 1.0) 331
Total 705
DCCH-A Designated cancer care hospitals (FTE RO ≥ 1.0) 260
DCCH-B Designated cancer care hospitals (FTE RO < 1.0) 114
Total 374

FTE = full-time equivalent, RO = radiation oncologist.

Table 15.

Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC, and patient load per member of staff according to institution category shown in Table 14; all radiotherapy hospitals

RH-A (374) RH-B (331) Total (705)
Average per hospital Total number Average per hospital Total number Average per hospital Total number
Total patients 456.5 170 739 169.5 56 112 321.8 226 851
New patients 379.4 141 879 146.4 48 443 270.0 190 322
LINACs 1.4 514 1.0 315 1.2 829
Annual total no. of patients / LINAC 332.2 178.1 273.6
Annual no. of new patients / LINAC 276.0 153.8 229.6
FTE ROs 2.2 819.0 0.4 140.2 1.4 959.2
JASTRO-certified ROs (full time) 1.3 503 0.2 61 0.8 564
Annual total no. of patients / FTE RO 208.5 400.3 236.5
Annual no. of new patients / FTE RO 173.2 345.6 198.4
FTE RT technologists 3.5 1297.1 1.6 544.2 2.6 1841.3
Annual total no. of patients / FTE RTT 131.6 103.1 123.2
Annual no. of new patients / FTE RTT 109.4 89.0 103.4
FTE RT technologists / LINAC 2.5 1.7 2.2
FTE medical physicists 0.28 103.9 0.08 27.5 0.19 131.3
Annual total no. of patients / FTE MP 1644.1 2044.2 1727.7
Annual no. of new patients / FTE MP 1366.2 1764.8 1449.5
FTE RT quality managers 0.24 90.0 0.10 31.5 0.17 121.5
Annual total no. of patients / FTE RTQM 1897.1 1781.3 1,867.1
Annual no. of new patients / FTE RTQM 1576.4 1537.9 1566.4
FTE RT quality managers / LINAC 0.18 0.10 0.15

Table 16.

Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC, and patient load per member of staff according to institution category shown in Table 14; designated cancer care hospitals

DCCH-A (260) DCCH-B (114) Total (374)
Average per hospital Total number Average per hospital Total number Average per hospital Total number
Total patients 529.8 137 744 203.8 23 234 430.4 160 978
New patients 440.8 114 609 178.0 20 295 360.7 134 904
LINACs 1.5 401 1.0 117 1.4 518
Annual total no. of patients / Linac 343.5 198.6 310.8
Annual no. of new patients / Linac 285.8 173.5 260.4
FTE ROs 2.5 637.5 0.5 62.4 1.9 699.9
JASTRO-certified ROs (full time) 1.6 426 0.2 28 1.2 454
Annual total no. of patients / FTE RO 216.1 372.6 230.0
Annual no. of new patients / FTE RO 179.8 325.5 192.8
FTE RT technologists 3.9 1013.1 1.9 219.9 3.3 1233.0
Annual total no. of patients / FTE RTT 136.0 105.7 130.6
Annual no. of new patients / FTE RTT 113.1 92.3 109.4
FTE RT technologists / LINAC 2.5 1.9 2.4
FTE medical physicists 0.31 80.9 0.05 5.6 0.23 86.5
Annual total no. of patients / FTE MP 1702.6 4186.3 1862.1
Annual no. of new patients / FTE MP 1416.7 3656.8 1560.5
FTE RT quality managers 0.27 70.9 0.11 12.6 0.22 83.5
Annual total no. of patients / FTE RTQM 1944.2 1844.0 1929.0
Annual no. of new patients / FTE RTQM 1617.6 1610.7 1616.6
FTE RT quality managers / LINAC 0.18 0.11 0.16

LINAC = linear accelerator, FTE = full-time equivalent, RO = radiation oncologist, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager.

Table 17.

Number of items of equipment and their functions according to institution category showing Table 14

RH-A (n = 374) RH-B (n = 331) Total (n = 705)
n % n % n %
LINAC 514 95.7 315 93.7 829 94.8
 with dual-energy function 397 82.6 209 62.5 606 73.2
 with 3DCRT function (MLC width ≤ 1.0 cm) 475 89.3 226 68 701 79.3
 with IMRT function 310 57.8 65 19.6 375 39.9
 with cone-beam CT or CT on rail 190 41.4 49 14.8 239 28.9
 with treatment position verification system (X-ray perspective image) 192 39 54 15.7 246 28.1
 with treatment-position verification system (other than those above) 148 32.6 66 19.9 214 26.7
CT simulator 365 90.4 268 76.1 633 83.7
DCCH-A (n = 260) DCCH-B (n = 114) Total (n = 374)
n % n % n %
LINAC 401 98.8 117 99.1 518 98.9
 with dual-energy function 318 90.4 94 80.7 412 87.4
 with 3DCRT function (MLC width ≤ 1.0 cm) 379 94.6 91 78.9 470 89.8
 with IMRT function 261 66.9 34 29.8 295 55.6
 with cone-beam CT or CT on rail 158 48.1 24 21.1 182 39.8
 with treatment-position verification system (X-ray perspective image) 154 43.5 23 19.3 177 36.1
 with treatment-position verification system (other than those above) 117 36.2 29 25.4 146 32.9
CT simulator 264 94.2 104 83.3 368 90.9

LINAC = linear accelerator, 3DCRT = three dimensional conformal radiotherapy, MLC = multileaf collimator, IMRT = intensity-modulated radiotherapy, CT = computed tomography.

Table 18.

Numbers of radiotherapy institutions and treatment devices, and patient load and personnel trend 1990–2010

Survey year
1990 1993 1995 1997 1999 2001 2003 2005 2007 2009 2010
Institution 378 629 504 568 636 603 726 712 721 700 705
 Response rate 48.5% 88.3% 73.9% 78.6% 86.3% 85.3% 100% 96.9% 94.2% 90.9% 90.4%
New patients 62 829 71 696 84 379 107 150 118 016 149 793 156 318 170 229 182 390 190 322
Total patients 191 173 205 087 217 829 226 851
Average no. of new patients 166 142 149 168 196 206 220 236 261 270
Treatment device (in actual use)
 LINAC 311 508 407 475 626 626 744 765 807 816 829
 Telecobalt 170 213 127 98 83 45 42 11 15 11 9
192Ir RALS 29 50 73 93 117 119 123 130 131
Full-time ROs 547 748 821 889 925 878 921 1 003 1 007 1 085 1 123
FTE ROs 774 826 939 959
Full-time JASTRO-certified ROs 308 369 426 477 529 564
FTE RT technologists 592 877 665 733 771 918 1 555 1 635 1 634 1 836 1 841
Treatment-planning equipment
 X-ray simulators 295 430 394 452 512 464 532 502 445 361 348
 CT simulators 30 75 55 96 164 247 329 407 497 575 633
 RTP computers 238 468 374 453 682 680 874 940 1 070 1 271 1 381

LINAC = linear accelerator, Ir = iridium, RO = radiation oncologist, FTE = full-time equivalent, JASTRO = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japan Radiological Society, JASTRO = Japanese Society for Radiation Oncology, CT = computed tomography, RTP = radiotherapy planning.

Fig. 1.

Fig. 1.

Estimate of increase in demand for radiotherapy in Japan, based on statistical correction of annual change in the number of new patients per year at Patterns of Care Study survey facilities [25]. Crosses and circles denote the estimated numbers of total (new plus repeat) and new patients, respectively, from the results in the structure surveys by the JASTRO.

Fig. 6.

Fig. 6.

Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiotherapy technologist (RTT) in designated cancer care hospitals. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE RTT within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 2.

Fig. 2.

Distribution of annual total (new plus repeat) patient load per LINAC in radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per LINAC within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 3.

Fig. 3.

Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiation oncologist (RO) in all radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE rRO within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 4.

Fig. 4.

Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiotherapy technologist (RTT) in all radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE RTT within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 5.

Fig. 5.

Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiation oncologist (RO) in designated cancer care hospitals. Horizontal axis represents institutions arranged in order of increasing value of total annual number of patients per FTE RO within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

CONFLICT OF INTEREST

The authors state that there are no conflicts of interest.

FUNDING

This study was supported by the JASTRO and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science [JSPS KAKENHI Grant No. JP16K45678].

REFERENCES

  • 1. Tsunemoto H. Present status of Japanese radiation oncology: national survey of structure in 1990 [in Japanese]. J Jpn Soc Ther Radiol Oncol (Special Report) 1992;1–30. [Google Scholar]
  • 2. Sato S, Nakamura Y, Kawashima K et al. Present status of radiotherapy in Japan—a census in 1990—finding on radiotherapy facilities [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1994;6:83–9. [Google Scholar]
  • 3. Morita K, Uchiyama Y. Present status of radiotherapy in Japan—the second census in 1993 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1995;7:251–61. [Google Scholar]
  • 4. JASTRO Database Committee Present status of radiotherapy in Japan—the regular census in 1995 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1997;9:231–53. [Google Scholar]
  • 5. JASTRO Database Committee Present status of radiotherapy in Japan—the regular census in 1997 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2001;13:175–82. [Google Scholar]
  • 6. JASTRO Database Committee Present status of radiotherapy in Japan—the regular structure survey in 1999 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2001;13:227–35. [Google Scholar]
  • 7. JASTRO Database Committee Present status of radiotherapy in Japan—the regular structure survey in 2001 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2003;15:51–9. [Google Scholar]
  • 8. JASTRO Database Committee Present status of radiotherapy in Japan—the regular structure survey in 2003 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2005;17:115–21. [Google Scholar]
  • 9. Shibuya H, Tsujii H. The structural characteristics of radiation oncology in Japan in 2003. Int J Radiat Oncol Biol Phys 2005;62:1472–6. [DOI] [PubMed] [Google Scholar]
  • 10. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 (first report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2007;19:181–92. [Google Scholar]
  • 11. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 (second report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2007;19:193–205. [Google Scholar]
  • 12. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 based on institutional stratification of patterns of care study. Int J Radiat Oncol Biol Phys 2008;72:144–52. [DOI] [PubMed] [Google Scholar]
  • 13. Numasaki H, Teshima T, Shibuya H et al. National structure of radiation oncology in Japan with special reference to designated cancer care hospital. Int J Clin Oncol 2009;14:237–44. [DOI] [PubMed] [Google Scholar]
  • 14. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 (first report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2009;21:113–25. [Google Scholar]
  • 15. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 (second report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2009;21:126–38. [Google Scholar]
  • 16. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 based on institutional stratification of patterns of care study. Int J Radiat Oncol Biol Phys 2010;72:144–52. [DOI] [PubMed] [Google Scholar]
  • 17. Numasaki H, Teshima T, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 with special reference to designated cancer care hospitals. Strahlenther Onkol 2011;187:167–74. [DOI] [PubMed] [Google Scholar]
  • 18. Numasaki H, Shibuya H, Nishio M et al. National medical care system may impede fostering of true specialization of radiation oncologists: study based on structure survey in Japan. Int J Radiat Oncol Biol Phys 2012;82:e111–7. [DOI] [PubMed] [Google Scholar]
  • 19. Teshima T, Numasaki H, Nishimura T et al. Japanese Structure Survey of Radiation Oncology in 2009 (First Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 November 2013, date last accessed).
  • 20. Teshima T, Numasaki H, Nishimura T et al. Japanese Structure Survey of Radiation Oncology in 2009 (Second Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 November 2013, date last accessed).
  • 21. Teshima T, Numasaki H, Nishio M et al. Japanese structure survey of radiation oncology in 2009 based on institutional stratification of patterns of care study. J Radiat Res 2012;53:710–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Numasaki H, Teshima T, Shibuya H et al. Japanese structure survey of radiation oncology in 2009 with special reference to designated cancer care hospitals. Int J Clin Oncol 2013;18:775–783. [DOI] [PubMed] [Google Scholar]
  • 23. Teshima T, Numasaki H, Shibuya H et al. Japanese Structure Survey of Radiation Oncology in 2010 (First Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 June 2017, date last accessed).
  • 24. Teshima T, Numasaki H, Shibuya H et al. Japanese Structure Survey of Radiation Oncology in 2010 (Second Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 June 2017, date last accessed).
  • 25. Japanese PCS Working Group Radiation oncology in multidisciplinary cancer therapy—basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Ministry of Health, Labor, and Welfare Cancer Research Grant Planned Research Study 14-6, 2005.
  • 26. Japanese PCS Working Group Radiation oncology in multidisciplinary cancer therapy—basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Ministry of Health, Labor, and Welfare Cancer Research Grant Planned Research Study 18-4, 2010.
  • 27. Tanisada K, Teshima T, Ohno Y et al. Patterns of Care Study quantitative evaluation of the quality of radiotherapy in Japan. Cancer 2002;95:164–71. [DOI] [PubMed] [Google Scholar]
  • 28. Teshima T; Japanese PCS Working Group Patterns of Care Study in Japan. Jpn J Clin Oncol 2005;35:497–506. [DOI] [PubMed] [Google Scholar]
  • 29. The Designated Cancer Hospitals, Ministry of Health, Labor and Welfare : A List of Designated Cancer Hospitals (Point in time: 1 August 2013). http://www.mhlw.go.jp/ (1 November 2013, date last accessed).
  • 30. Cancer Registry and Statistics Cancer Information Service, National Cancer Center, Japan http://ganjoho.jp/reg_stat/statistics/dl/index.html (1 October 2014, date last accessed).

Articles from Journal of Radiation Research are provided here courtesy of Oxford University Press

RESOURCES