Skip to main content
Springer logoLink to Springer
. 2019 Jan 23;79(1):58. doi: 10.1140/epjc/s10052-018-6500-y

Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector

M Aaboud 54, G Aad 144, B Abbott 170, O Abdinov 18, B Abeloos 174, D K Abhayasinghe 136, S H Abidi 218, O S AbouZeid 60, N L Abraham 206, H Abramowicz 212, H Abreu 211, Y Abulaiti 8, B S Acharya 94,95, S Adachi 214, L Adamczyk 125, J Adelman 164, M Adersberger 157, A Adiguzel 16, T Adye 193, A A Affolder 195, Y Afik 211, C Agheorghiesei 38, J A Aguilar-Saavedra 182,187, F Ahmadov 118, G Aielli 109,110, S Akatsuka 128, T P A Åkesson 139, E Akilli 75, A V Akimov 153, G L Alberghi 31,32, J Albert 228, P Albicocco 72, M J Alconada Verzini 131, S Alderweireldt 162, M Aleksa 56, I N Aleksandrov 118, C Alexa 37, T Alexopoulos 12, M Alhroob 170, B Ali 190, G Alimonti 99, J Alison 57, S P Alkire 198, C Allaire 174, B M M Allbrooke 206, B W Allen 173, P P Allport 29, A Aloisio 101,102, A Alonso 60, F Alonso 131, C Alpigiani 198, A A Alshehri 79, M I Alstaty 144, B Alvarez Gonzalez 56, D Álvarez Piqueras 226, M G Alviggi 101,102, B T Amadio 26, Y Amaral Coutinho 120, L Ambroz 177, C Amelung 35, D Amidei 148, S P Amor Dos Santos 182,184, S Amoroso 67, C S Amrouche 75, C Anastopoulos 199, L S Ancu 75, N Andari 29, T Andeen 13, C F Anders 87, J K Anders 28, K J Anderson 57, A Andreazza 99,100, V Andrei 86, C R Anelli 228, S Angelidakis 58, I Angelozzi 163, A Angerami 59, A V Anisenkov 165,166, A Annovi 105, C Antel 86, M T Anthony 199, M Antonelli 72, D J A Antrim 223, F Anulli 107, M Aoki 123, J A Aparisi Pozo 226, L Aperio Bella 56, G Arabidze 149, J P Araque 182, V Araujo Ferraz 120, R Araujo Pereira 120, A T H Arce 70, R E Ardell 136, F A Arduh 131, J-F Arguin 152, S Argyropoulos 116, A J Armbruster 56, L J Armitage 135, A Armstrong 223, O Arnaez 218, H Arnold 163, M Arratia 46, O Arslan 33, A Artamonov 154, G Artoni 177, S Artz 142, S Asai 214, N Asbah 67, A Ashkenazi 212, E M Asimakopoulou 224, L Asquith 206, K Assamagan 44, R Astalos 42, R J Atkin 47, M Atkinson 225, N B Atlay 201, K Augsten 190, G Avolio 56, R Avramidou 82, M K Ayoub 20, G Azuelos 152, A E Baas 86, M J Baca 29, H Bachacou 194, K Bachas 97,98, M Backes 177, P Bagnaia 107,108, M Bahmani 127, H Bahrasemani 202, A J Bailey 226, J T Baines 193, M Bajic 60, C Bakalis 12, O K Baker 235, P J Bakker 163, D Bakshi Gupta 138, E M Baldin 165,166, P Balek 232, F Balli 194, W K Balunas 179, J Balz 142, E Banas 127, A Bandyopadhyay 33, S Banerjee 233, A A E Bannoura 234, L Barak 212, W M Barbe 58, E L Barberio 147, D Barberis 76,77, M Barbero 144, T Barillari 158, M-S Barisits 56, J Barkeloo 173, T Barklow 203, N Barlow 46, R Barnea 211, S L Barnes 84, B M Barnett 193, R M Barnett 26, Z Barnovska-Blenessy 82, A Baroncelli 111, G Barone 35, A J Barr 177, L Barranco Navarro 226, F Barreiro 141, J Barreiro Guimarães da Costa 20, R Bartoldus 203, A E Barton 132, P Bartos 42, A Basalaev 180, A Bassalat 174, R L Bates 79, S J Batista 218, S Batlamous 55, J R Batley 46, M Battaglia 195, M Bauce 107,108, F Bauer 194, K T Bauer 223, H S Bawa 203, J B Beacham 168, M D Beattie 132, T Beau 178, P H Beauchemin 222, P Bechtle 33, H C Beck 74, H P Beck 28, K Becker 73, M Becker 142, C Becot 67, A Beddall 17, A J Beddall 14, V A Bednyakov 118, M Bedognetti 163, C P Bee 205, T A Beermann 56, M Begalli 120, M Begel 44, A Behera 205, J K Behr 67, A S Bell 137, G Bella 212, L Bellagamba 32, A Bellerive 50, M Bellomo 211, P Bellos 11, K Belotskiy 155, N L Belyaev 155, O Benary 212, D Benchekroun 51, M Bender 157, N Benekos 12, Y Benhammou 212, E Benhar Noccioli 235, J Benitez 116, D P Benjamin 70, M Benoit 75, J R Bensinger 35, S Bentvelsen 163, L Beresford 177, M Beretta 72, D Berge 67, E Bergeaas Kuutmann 224, N Berger 7, L J Bergsten 35, J Beringer 26, S Berlendis 9, N R Bernard 145, G Bernardi 178, C Bernius 203, F U Bernlochner 33, T Berry 136, P Berta 142, C Bertella 20, G Bertoli 65,66, I A Bertram 132, G J Besjes 60, O Bessidskaia Bylund 65,66, M Bessner 67, N Besson 194, A Bethani 143, S Bethke 158, A Betti 33, A J Bevan 135, J Beyer 158, R M Bianchi 181, O Biebel 157, D Biedermann 27, R Bielski 143, K Bierwagen 142, N V Biesuz 105,106, M Biglietti 111, T R V Billoud 152, M Bindi 74, A Bingul 17, C Bini 107,108, S Biondi 31,32, M Birman 232, T Bisanz 74, J P Biswal 212, C Bittrich 69, D M Bjergaard 70, J E Black 203, K M Black 34, T Blazek 42, I Bloch 67, C Blocker 35, A Blue 79, U Blumenschein 135, Dr Blunier 196, G J Bobbink 163, V S Bobrovnikov 165,166, S S Bocchetta 139, A Bocci 70, D Boerner 234, D Bogavac 157, A G Bogdanchikov 165,166, C Bohm 65, V Boisvert 136, P Bokan 74,224, T Bold 125, A S Boldyrev 156, A E Bolz 87, M Bomben 178, M Bona 135, J S Bonilla 173, M Boonekamp 194, A Borisov 192, G Borissov 132, J Bortfeldt 56, D Bortoletto 177, V Bortolotto 90,91,109,110, D Boscherini 32, M Bosman 19, J D Bossio Sola 45, K Bouaouda 51, J Boudreau 181, E V Bouhova-Thacker 132, D Boumediene 58, C Bourdarios 174, S K Boutle 79, A Boveia 168, J Boyd 56, I R Boyko 118, A J Bozson 136, J Bracinik 29, N Brahimi 144, A Brandt 10, G Brandt 234, O Brandt 86, F Braren 67, U Bratzler 215, B Brau 145, J E Brau 173, W D Breaden Madden 79, K Brendlinger 67, A J Brennan 147, L Brenner 67, R Brenner 224, S Bressler 232, B Brickwedde 142, D L Briglin 29, D Britton 79, D Britzger 87, I Brock 33, R Brock 149, G Brooijmans 59, T Brooks 136, W K Brooks 197, E Brost 164, J H Broughton 29, P A Bruckman de Renstrom 127, D Bruncko 43, A Bruni 32, G Bruni 32, L S Bruni 163, S Bruno 109,110, B H Brunt 46, M Bruschi 32, N Bruscino 181, P Bryant 57, L Bryngemark 67, T Buanes 25, Q Buat 56, P Buchholz 201, A G Buckley 79, I A Budagov 118, F Buehrer 73, M K Bugge 176, O Bulekov 155, D Bullock 10, T J Burch 164, S Burdin 133, C D Burgard 163, A M Burger 7, B Burghgrave 164, K Burka 127, S Burke 193, I Burmeister 68, J T P Burr 177, D Büscher 73, V Büscher 142, E Buschmann 74, P Bussey 79, J M Butler 34, C M Buttar 79, J M Butterworth 137, P Butti 56, W Buttinger 56, A Buzatu 208, A R Buzykaev 165,166, G Cabras 31,32, S Cabrera Urbán 226, D Caforio 190, H Cai 225, V M M Cairo 2, O Cakir 4, N Calace 75, P Calafiura 26, A Calandri 144, G Calderini 178, P Calfayan 93, G Callea 61,62, L P Caloba 120, S Calvente Lopez 141, D Calvet 58, S Calvet 58, T P Calvet 205, M Calvetti 105,106, R Camacho Toro 178, S Camarda 56, P Camarri 109,110, D Cameron 176, R Caminal Armadans 145, C Camincher 56, S Campana 56, M Campanelli 137, A Camplani 60, A Campoverde 201, V Canale 101,102, M Cano Bret 84, J Cantero 171, T Cao 212, Y Cao 225, M D M Capeans Garrido 56, I Caprini 37, M Caprini 37, M Capua 61,62, R M Carbone 59, R Cardarelli 109, F C Cardillo 73, I Carli 191, T Carli 56, G Carlino 101, B T Carlson 181, L Carminati 99,100, R M D Carney 65,66, S Caron 162, E Carquin 197, S Carrá 99,100, G D Carrillo-Montoya 56, D Casadei 48, M P Casado 19, A F Casha 218, M Casolino 19, D W Casper 223, R Castelijn 163, F L Castillo 226, V Castillo Gimenez 226, N F Castro 182,186, A Catinaccio 56, J R Catmore 176, A Cattai 56, J Caudron 33, V Cavaliere 44, E Cavallaro 19, D Cavalli 99, M Cavalli-Sforza 19, V Cavasinni 105,106, E Celebi 15, F Ceradini 111,112, L Cerda Alberich 226, A S Cerqueira 119, A Cerri 206, L Cerrito 109,110, F Cerutti 26, A Cervelli 31,32, S A Cetin 15, A Chafaq 51, D Chakraborty 164, S K Chan 81, W S Chan 163, Y L Chan 89, J D Chapman 46, D G Charlton 29, C C Chau 50, C A Chavez Barajas 206, S Che 168, A Chegwidden 149, S Chekanov 8, S V Chekulaev 219, G A Chelkov 118, M A Chelstowska 56, C Chen 82, C H Chen 117, H Chen 44, J Chen 82, J Chen 59, S Chen 179, S J Chen 22, X Chen 21, Y Chen 124, Y-H Chen 67, H C Cheng 148, H J Cheng 23, A Cheplakov 118, E Cheremushkina 192, R Cherkaoui El Moursli 55, E Cheu 9, K Cheung 92, L Chevalier 194, V Chiarella 72, G Chiarelli 105, G Chiodini 97, A S Chisholm 56, A Chitan 37, I Chiu 214, Y H Chiu 228, M V Chizhov 118, K Choi 93, A R Chomont 174, S Chouridou 213, Y S Chow 163, V Christodoulou 137, M C Chu 89, J Chudoba 189, A J Chuinard 146, J J Chwastowski 127, L Chytka 172, D Cinca 68, V Cindro 134, I A Cioară 33, A Ciocio 26, F Cirotto 101,102, Z H Citron 232, M Citterio 99, A Clark 75, M R Clark 59, P J Clark 71, C Clement 65,66, Y Coadou 144, M Cobal 94,96, A Coccaro 76,77, J Cochran 117, A E C Coimbra 232, L Colasurdo 162, B Cole 59, A P Colijn 163, J Collot 80, P Conde Muiño 182,183, E Coniavitis 73, S H Connell 48, I A Connelly 143, S Constantinescu 37, F Conventi 101, A M Cooper-Sarkar 177, F Cormier 227, K J R Cormier 218, M Corradi 107,108, E E Corrigan 139, F Corriveau 146, A Cortes-Gonzalez 56, M J Costa 226, D Costanzo 199, G Cottin 46, G Cowan 136, B E Cox 143, J Crane 143, K Cranmer 167, S J Crawley 79, R A Creager 179, G Cree 50, S Crépé-Renaudin 80, F Crescioli 178, M Cristinziani 33, V Croft 167, G Crosetti 61,62, A Cueto 141, T Cuhadar Donszelmann 199, A R Cukierman 203, J Cúth 142, S Czekierda 127, P Czodrowski 56, M J Da Cunha Sargedas De Sousa 83,183, C Da Via 143, W Dabrowski 125, T Dado 42, S Dahbi 55, T Dai 148, F Dallaire 152, C Dallapiccola 145, M Dam 60, G D’amen 31,32, J Damp 142, J R Dandoy 179, M F Daneri 45, N P Dang 233, N D Dann 143, M Danninger 227, V Dao 56, G Darbo 77, S Darmora 10, O Dartsi 7, A Dattagupta 173, T Daubney 67, S D’Auria 79, W Davey 33, C David 67, T Davidek 191, D R Davis 70, E Dawe 147, I Dawson 199, K De 10, R De Asmundis 101, A De Benedetti 170, M De Beurs 163, S De Castro 31,32, S De Cecco 107,108, N De Groot 162, P de Jong 163, H De la Torre 149, F De Lorenzi 117, A De Maria 74, D De Pedis 107, A De Salvo 107, U De Sanctis 109,110, A De Santo 206, K De Vasconcelos Corga 144, J B De Vivie De Regie 174, C Debenedetti 195, D V Dedovich 118, N Dehghanian 3, M Del Gaudio 61,62, J Del Peso 141, Y Delabat Diaz 67, D Delgove 174, F Deliot 194, C M Delitzsch 9, M Della Pietra 101,102, D Della Volpe 75, A Dell’Acqua 56, L Dell’Asta 34, M Delmastro 7, C Delporte 174, P A Delsart 80, D A DeMarco 218, S Demers 235, M Demichev 118, S P Denisov 192, D Denysiuk 163, L D’Eramo 178, D Derendarz 127, J E Derkaoui 54, F Derue 178, P Dervan 133, K Desch 33, C Deterre 67, K Dette 218, M R Devesa 45, P O Deviveiros 56, A Dewhurst 193, S Dhaliwal 35, F A Di Bello 75, A Di Ciaccio 109,110, L Di Ciaccio 7, W K Di Clemente 179, C Di Donato 101,102, A Di Girolamo 56, B Di Micco 111,112, R Di Nardo 145, K F Di Petrillo 81, A Di Simone 73, R Di Sipio 218, D Di Valentino 50, C Diaconu 144, M Diamond 218, F A Dias 60, T Dias Do Vale 182, M A Diaz 196, J Dickinson 26, E B Diehl 148, J Dietrich 27, S Díez Cornell 67, A Dimitrievska 26, J Dingfelder 33, F Dittus 56, F Djama 144, T Djobava 210, J I Djuvsland 86, M A B Do Vale 121, M Dobre 37, D Dodsworth 35, C Doglioni 139, J Dolejsi 191, Z Dolezal 191, M Donadelli 122, J Donini 58, A D’onofrio 135, M D’Onofrio 133, J Dopke 193, A Doria 101, M T Dova 131, A T Doyle 79, E Drechsler 74, E Dreyer 202, T Dreyer 74, Y Du 83, J Duarte-Campderros 212, F Dubinin 153, M Dubovsky 42, A Dubreuil 75, E Duchovni 232, G Duckeck 157, A Ducourthial 178, O A Ducu 152, D Duda 158, A Dudarev 56, A C Dudder 142, E M Duffield 26, L Duflot 174, M Dührssen 56, C Dülsen 234, M Dumancic 232, A E Dumitriu 37, A K Duncan 79, M Dunford 86, A Duperrin 144, H Duran Yildiz 4, M Düren 78, A Durglishvili 210, D Duschinger 69, B Dutta 67, D Duvnjak 1, M Dyndal 67, S Dysch 143, B S Dziedzic 127, C Eckardt 67, K M Ecker 158, R C Edgar 148, T Eifert 56, G Eigen 25, K Einsweiler 26, T Ekelof 224, M El Kacimi 53, R El Kosseifi 144, V Ellajosyula 144, M Ellert 224, F Ellinghaus 234, A A Elliot 135, N Ellis 56, J Elmsheuser 44, M Elsing 56, D Emeliyanov 193, Y Enari 214, J S Ennis 230, M B Epland 70, J Erdmann 68, A Ereditato 28, S Errede 225, M Escalier 174, C Escobar 226, O Estrada Pastor 226, A I Etienvre 194, E Etzion 212, H Evans 93, A Ezhilov 180, M Ezzi 55, F Fabbri 79, L Fabbri 31,32, V Fabiani 162, G Facini 137, R M Faisca Rodrigues Pereira 182, R M Fakhrutdinov 192, S Falciano 107, P J Falke 7, S Falke 7, J Faltova 191, Y Fang 20, M Fanti 99,100, A Farbin 10, A Farilla 111, E M Farina 103,104, T Farooque 149, S Farrell 26, S M Farrington 230, P Farthouat 56, F Fassi 55, P Fassnacht 56, D Fassouliotis 11, M Faucci Giannelli 71, A Favareto 76,77, W J Fawcett 75, L Fayard 174, O L Fedin 180, W Fedorko 227, M Feickert 63, S Feigl 176, L Feligioni 144, C Feng 83, E J Feng 56, M Feng 70, M J Fenton 79, A B Fenyuk 192, L Feremenga 10, J Ferrando 67, A Ferrari 224, P Ferrari 163, R Ferrari 103, D E Ferreira de Lima 87, A Ferrer 226, D Ferrere 75, C Ferretti 148, F Fiedler 142, A Filipčič 134, F Filthaut 162, K D Finelli 34, M C N Fiolhais 182,184, L Fiorini 226, C Fischer 19, W C Fisher 149, N Flaschel 67, I Fleck 201, P Fleischmann 148, R R M Fletcher 179, T Flick 234, B M Flierl 157, L M Flores 179, L R Flores Castillo 89, N Fomin 25, G T Forcolin 143, A Formica 194, F A Förster 19, A C Forti 143, A G Foster 29, D Fournier 174, H Fox 132, S Fracchia 199, P Francavilla 105,106, M Franchini 31,32, S Franchino 86, D Francis 56, L Franconi 176, M Franklin 81, M Frate 223, M Fraternali 103,104, D Freeborn 137, S M Fressard-Batraneanu 56, B Freund 152, W S Freund 120, D Froidevaux 56, J A Frost 177, C Fukunaga 215, E Fullana Torregrosa 226, T Fusayasu 159, J Fuster 226, O Gabizon 211, A Gabrielli 31,32, A Gabrielli 26, G P Gach 125, S Gadatsch 75, P Gadow 158, G Gagliardi 76,77, L G Gagnon 152, C Galea 37, B Galhardo 182,184, E J Gallas 177, B J Gallop 193, P Gallus 190, G Galster 60, R Gamboa Goni 135, K K Gan 168, S Ganguly 232, J Gao 82, Y Gao 133, Y S Gao 203, C García 226, J E García Navarro 226, J A García Pascual 20, M Garcia-Sciveres 26, R W Gardner 57, N Garelli 203, V Garonne 176, K Gasnikova 67, A Gaudiello 76,77, G Gaudio 103, I L Gavrilenko 153, A Gavrilyuk 154, C Gay 227, G Gaycken 33, E N Gazis 12, C N P Gee 193, J Geisen 74, M Geisen 142, M P Geisler 86, K Gellerstedt 65,66, C Gemme 77, M H Genest 80, C Geng 148, S Gentile 107,108, S George 136, D Gerbaudo 19, G Gessner 68, S Ghasemi 201, M Ghasemi Bostanabad 228, M Ghneimat 33, B Giacobbe 32, S Giagu 107,108, N Giangiacomi 31,32, P Giannetti 105, A Giannini 101,102, S M Gibson 136, M Gignac 195, D Gillberg 50, G Gilles 234, D M Gingrich 3, M P Giordani 94,96, F M Giorgi 32, P F Giraud 194, P Giromini 81, G Giugliarelli 94,96, D Giugni 99, F Giuli 177, M Giulini 87, S Gkaitatzis 213, I Gkialas 11, E L Gkougkousis 19, P Gkountoumis 12, L K Gladilin 156, C Glasman 141, J Glatzer 19, P C F Glaysher 67, A Glazov 67, M Goblirsch-Kolb 35, J Godlewski 127, S Goldfarb 147, T Golling 75, D Golubkov 192, A Gomes 182,183,185, R Goncalves Gama 119, R Gonçalo 182, G Gonella 73, L Gonella 29, A Gongadze 118, F Gonnella 29, J L Gonski 81, S González de la Hoz 226, S Gonzalez-Sevilla 75, L Goossens 56, P A Gorbounov 154, H A Gordon 44, B Gorini 56, E Gorini 97,98, A Gorišek 134, A T Goshaw 70, C Gössling 68, M I Gostkin 118, C A Gottardo 33, C R Goudet 174, D Goujdami 53, A G Goussiou 198, N Govender 48, C Goy 7, E Gozani 211, I Grabowska-Bold 125, P O J Gradin 224, E C Graham 133, J Gramling 223, E Gramstad 176, S Grancagnolo 27, V Gratchev 180, P M Gravila 41, F G Gravili 97,98, C Gray 79, H M Gray 26, Z D Greenwood 138, C Grefe 33, K Gregersen 137, I M Gregor 67, P Grenier 203, K Grevtsov 67, J Griffiths 10, A A Grillo 195, K Grimm 203, S Grinstein 19, Ph Gris 58, J-F Grivaz 174, S Groh 142, E Gross 232, J Grosse-Knetter 74, G C Grossi 138, Z J Grout 137, C Grud 148, A Grummer 161, L Guan 148, W Guan 233, J Guenther 56, A Guerguichon 174, F Guescini 219, D Guest 223, R Gugel 73, B Gui 168, T Guillemin 7, S Guindon 56, U Gul 79, C Gumpert 56, J Guo 84, W Guo 148, Y Guo 82, Z Guo 144, R Gupta 63, S Gurbuz 16, G Gustavino 170, B J Gutelman 211, P Gutierrez 170, C Gutschow 137, C Guyot 194, M P Guzik 125, C Gwenlan 177, C B Gwilliam 133, A Haas 167, C Haber 26, H K Hadavand 10, N Haddad 55, A Hadef 82, S Hageböck 33, M Hagihara 221, H Hakobyan 236, M Haleem 229, J Haley 171, G Halladjian 149, G D Hallewell 144, K Hamacher 234, P Hamal 172, K Hamano 228, A Hamilton 47, G N Hamity 199, K Han 82, L Han 82, S Han 23, K Hanagaki 123, M Hance 195, D M Handl 157, B Haney 179, R Hankache 178, P Hanke 86, E Hansen 139, J B Hansen 60, J D Hansen 60, M C Hansen 33, P H Hansen 60, K Hara 221, A S Hard 233, T Harenberg 234, S Harkusha 150, P F Harrison 230, N M Hartmann 157, Y Hasegawa 200, A Hasib 71, S Hassani 194, S Haug 28, R Hauser 149, L Hauswald 69, L B Havener 59, M Havranek 190, C M Hawkes 29, R J Hawkings 56, D Hayden 149, C Hayes 205, C P Hays 177, J M Hays 135, H S Hayward 133, S J Haywood 193, M P Heath 71, V Hedberg 139, L Heelan 10, S Heer 33, K K Heidegger 73, J Heilman 50, S Heim 67, T Heim 26, B Heinemann 67, J J Heinrich 157, L Heinrich 167, C Heinz 78, J Hejbal 189, L Helary 56, A Held 227, S Hellesund 176, S Hellman 65,66, C Helsens 56, R C W Henderson 132, Y Heng 233, S Henkelmann 227, A M Henriques Correia 56, G H Herbert 27, H Herde 35, V Herget 229, Y Hernández Jiménez 49, H Herr 142, M G Herrmann 157, G Herten 73, R Hertenberger 157, L Hervas 56, T C Herwig 179, G G Hesketh 137, N P Hessey 219, J W Hetherly 63, S Higashino 123, E Higón-Rodriguez 226, K Hildebrand 57, E Hill 228, J C Hill 46, K K Hill 44, K H Hiller 67, S J Hillier 29, M Hils 69, I Hinchliffe 26, M Hirose 175, D Hirschbuehl 234, B Hiti 134, O Hladik 189, D R Hlaluku 49, X Hoad 71, J Hobbs 205, N Hod 219, M C Hodgkinson 199, A Hoecker 56, M R Hoeferkamp 161, F Hoenig 157, D Hohn 33, D Hohov 174, T R Holmes 57, M Holzbock 157, M Homann 68, S Honda 221, T Honda 123, T M Hong 181, A Hönle 158, B H Hooberman 225, W H Hopkins 173, Y Horii 160, P Horn 69, A J Horton 202, L A Horyn 57, J-Y Hostachy 80, A Hostiuc 198, S Hou 208, A Hoummada 51, J Howarth 143, J Hoya 131, M Hrabovsky 172, J Hrdinka 56, I Hristova 27, J Hrivnac 174, A Hrynevich 151, T Hryn’ova 7, P J Hsu 92, S-C Hsu 198, Q Hu 44, S Hu 84, Y Huang 20, Z Hubacek 190, F Hubaut 144, M Huebner 33, F Huegging 33, T B Huffman 177, E W Hughes 59, M Huhtinen 56, R F H Hunter 50, P Huo 205, A M Hupe 50, N Huseynov 118, J Huston 149, J Huth 81, R Hyneman 148, G Iacobucci 75, G Iakovidis 44, I Ibragimov 201, L Iconomidou-Fayard 174, Z Idrissi 55, P Iengo 56, R Ignazzi 60, O Igonkina 163, R Iguchi 214, T Iizawa 75, Y Ikegami 123, M Ikeno 123, D Iliadis 213, N Ilic 203, F Iltzsche 69, G Introzzi 103,104, M Iodice 111, K Iordanidou 59, V Ippolito 107,108, M F Isacson 224, N Ishijima 175, M Ishino 214, M Ishitsuka 216, W Islam 171, C Issever 177, S Istin 16, F Ito 221, J M Iturbe Ponce 89, R Iuppa 113,114, A Ivina 232, H Iwasaki 123, J M Izen 64, V Izzo 101, P Jacka 189, P Jackson 1, R M Jacobs 33, V Jain 2, G Jäkel 234, K B Jakobi 142, K Jakobs 73, S Jakobsen 115, T Jakoubek 189, D O Jamin 171, D K Jana 138, R Jansky 75, J Janssen 33, M Janus 74, P A Janus 125, G Jarlskog 139, N Javadov 118, T Javůrek 73, M Javurkova 73, F Jeanneau 194, L Jeanty 26, J Jejelava 209, A Jelinskas 230, P Jenni 73, J Jeong 67, S Jézéquel 7, H Ji 233, J Jia 205, H Jiang 117, Y Jiang 82, Z Jiang 203, S Jiggins 73, F A Jimenez Morales 58, J Jimenez Pena 226, S Jin 22, A Jinaru 37, O Jinnouchi 216, H Jivan 49, P Johansson 199, K A Johns 9, C A Johnson 93, W J Johnson 198, K Jon-And 65,66, R W L Jones 132, S D Jones 206, S Jones 9, T J Jones 133, J Jongmanns 86, P M Jorge 182,183, J Jovicevic 219, X Ju 233, J J Junggeburth 158, A Juste Rozas 19, A Kaczmarska 127, M Kado 174, H Kagan 168, M Kagan 203, T Kaji 231, E Kajomovitz 211, C W Kalderon 139, A Kaluza 142, S Kama 63, A Kamenshchikov 192, L Kanjir 134, Y Kano 214, V A Kantserov 155, J Kanzaki 123, B Kaplan 167, L S Kaplan 233, D Kar 49, M J Kareem 220, E Karentzos 12, S N Karpov 118, Z M Karpova 118, V Kartvelishvili 132, A N Karyukhin 192, K Kasahara 221, L Kashif 233, R D Kass 168, A Kastanas 204, Y Kataoka 214, C Kato 214, J Katzy 67, K Kawade 124, K Kawagoe 130, T Kawamoto 214, G Kawamura 74, E F Kay 133, V F Kazanin 165,166, R Keeler 228, R Kehoe 63, J S Keller 50, E Kellermann 139, J J Kempster 29, J Kendrick 29, O Kepka 189, S Kersten 234, B P Kerševan 134, R A Keyes 146, M Khader 225, F Khalil-Zada 18, A Khanov 171, A G Kharlamov 165,166, T Kharlamova 165,166, A Khodinov 217, T J Khoo 75, E Khramov 118, J Khubua 210, S Kido 124, M Kiehn 75, C R Kilby 136, S H Kim 221, Y K Kim 57, N Kimura 94,96, O M Kind 27, B T King 133, D Kirchmeier 69, J Kirk 193, A E Kiryunin 158, T Kishimoto 214, D Kisielewska 125, V Kitali 67, O Kivernyk 7, E Kladiva 43, T Klapdor-Kleingrothaus 73, M H Klein 148, M Klein 133, U Klein 133, K Kleinknecht 142, P Klimek 164, A Klimentov 44, R Klingenberg 68, T Klingl 33, T Klioutchnikova 56, F F Klitzner 157, P Kluit 163, S Kluth 158, E Kneringer 115, E B F G Knoops 144, A Knue 73, A Kobayashi 214, D Kobayashi 130, T Kobayashi 214, M Kobel 69, M Kocian 203, P Kodys 191, T Koffas 50, E Koffeman 163, N M Köhler 158, T Koi 203, M Kolb 87, I Koletsou 7, T Kondo 123, N Kondrashova 84, K Köneke 73, A C König 162, T Kono 123, R Konoplich 167, V Konstantinides 137, N Konstantinidis 137, B Konya 139, R Kopeliansky 93, S Koperny 125, K Korcyl 127, K Kordas 213, A Korn 137, I Korolkov 19, E V Korolkova 199, O Kortner 158, S Kortner 158, T Kosek 191, V V Kostyukhin 33, A Kotwal 70, A Koulouris 12, A Kourkoumeli-Charalampidi 103,104, C Kourkoumelis 11, E Kourlitis 199, V Kouskoura 44, A B Kowalewska 127, R Kowalewski 228, T Z Kowalski 125, C Kozakai 214, W Kozanecki 194, A S Kozhin 192, V A Kramarenko 156, G Kramberger 134, D Krasnopevtsev 155, M W Krasny 178, A Krasznahorkay 56, D Krauss 158, J A Kremer 125, J Kretzschmar 133, P Krieger 218, K Krizka 26, K Kroeninger 68, H Kroha 158, J Kroll 189, J Kroll 179, J Krstic 24, U Kruchonak 118, H Krüger 33, N Krumnack 117, M C Kruse 70, T Kubota 147, S Kuday 5, J T Kuechler 234, S Kuehn 56, A Kugel 86, F Kuger 229, T Kuhl 67, V Kukhtin 118, R Kukla 144, Y Kulchitsky 150, S Kuleshov 197, Y P Kulinich 225, M Kuna 80, T Kunigo 128, A Kupco 189, T Kupfer 68, O Kuprash 212, H Kurashige 124, L L Kurchaninov 219, Y A Kurochkin 150, M G Kurth 23, E S Kuwertz 228, M Kuze 216, J Kvita 172, T Kwan 146, A La Rosa 158, J L La Rosa Navarro 122, L La Rotonda 61,62, F La Ruffa 61,62, C Lacasta 226, F Lacava 107,108, J Lacey 67, D P J Lack 143, H Lacker 27, D Lacour 178, E Ladygin 118, R Lafaye 7, B Laforge 178, T Lagouri 49, S Lai 74, S Lammers 93, W Lampl 9, E Lançon 44, U Landgraf 73, M P J Landon 135, M C Lanfermann 75, V S Lang 67, J C Lange 19, R J Langenberg 56, A J Lankford 223, F Lanni 44, K Lantzsch 33, A Lanza 103, A Lapertosa 76,77, S Laplace 178, J F Laporte 194, T Lari 99, F Lasagni Manghi 31,32, M Lassnig 56, T S Lau 89, A Laudrain 174, M Lavorgna 101,102, A T Law 195, P Laycock 133, M Lazzaroni 99,100, B Le 147, O Le Dortz 178, E Le Guirriec 144, E P Le Quilleuc 194, M LeBlanc 9, T LeCompte 8, F Ledroit-Guillon 80, C A Lee 44, G R Lee 196, L Lee 81, S C Lee 208, B Lefebvre 146, M Lefebvre 228, F Legger 157, C Leggett 26, N Lehmann 234, G Lehmann Miotto 56, W A Leight 67, A Leisos 213, M A L Leite 122, R Leitner 191, D Lellouch 232, B Lemmer 74, K J C Leney 137, T Lenz 33, B Lenzi 56, R Leone 9, S Leone 105, C Leonidopoulos 71, G Lerner 206, C Leroy 152, R Les 218, A A J Lesage 194, C G Lester 46, M Levchenko 180, J Levêque 7, D Levin 148, L J Levinson 232, D Lewis 135, B Li 148, C-Q Li 82, H Li 83, L Li 84, Q Li 23, Q Y Li 82, S Li 84,85, X Li 84, Y Li 201, Z Liang 20, B Liberti 109, A Liblong 218, K Lie 91, S Liem 163, A Limosani 207, C Y Lin 46, K Lin 149, T H Lin 142, R A Linck 93, B E Lindquist 205, A L Lionti 75, E Lipeles 179, A Lipniacka 25, M Lisovyi 87, T M Liss 225, A Lister 227, A M Litke 195, J D Little 10, B Liu 117, B L Liu 8, H B Liu 44, H Liu 148, J B Liu 82, J K K Liu 177, K Liu 178, M Liu 82, P Liu 26, Y Liu 20, Y L Liu 82, Y W Liu 82, M Livan 103,104, A Lleres 80, J Llorente Merino 20, S L Lloyd 135, C Y Lo 90, F Lo Sterzo 63, E M Lobodzinska 67, P Loch 9, A Loesle 73, K M Loew 35, T Lohse 27, K Lohwasser 199, M Lokajicek 189, B A Long 34, J D Long 225, R E Long 132, L Longo 97,98, K A Looper 168, J A Lopez 197, I Lopez Paz 19, A Lopez Solis 199, J Lorenz 157, N Lorenzo Martinez 7, M Losada 30, P J Lösel 157, X Lou 67, X Lou 20, A Lounis 174, J Love 8, P A Love 132, J J Lozano Bahilo 226, H Lu 89, M Lu 82, N Lu 148, Y J Lu 92, H J Lubatti 198, C Luci 107,108, A Lucotte 80, C Luedtke 73, F Luehring 93, I Luise 178, W Lukas 115, L Luminari 107, B Lund-Jensen 204, M S Lutz 145, P M Luzi 178, D Lynn 44, R Lysak 189, E Lytken 139, F Lyu 20, V Lyubushkin 118, H Ma 44, L L Ma 83, Y Ma 83, G Maccarrone 72, A Macchiolo 158, C M Macdonald 199, J Machado Miguens 179,183, D Madaffari 226, R Madar 58, W F Mader 69, A Madsen 67, N Madysa 69, J Maeda 124, K Maekawa 214, S Maeland 25, T Maeno 44, A S Maevskiy 156, V Magerl 73, C Maidantchik 120, T Maier 157, A Maio 182,183,185, O Majersky 42, S Majewski 173, Y Makida 123, N Makovec 174, B Malaescu 178, Pa Malecki 127, V P Maleev 180, F Malek 80, U Mallik 116, D Malon 8, C Malone 46, S Maltezos 12, S Malyukov 56, J Mamuzic 226, G Mancini 72, I Mandić 134, J Maneira 182, L Manhaes de Andrade Filho 119, J Manjarres Ramos 69, K H Mankinen 139, A Mann 157, A Manousos 115, B Mansoulie 194, J D Mansour 20, M Mantoani 74, S Manzoni 99,100, G Marceca 45, L March 75, L Marchese 177, G Marchiori 178, M Marcisovsky 189, C A Marin Tobon 56, M Marjanovic 58, D E Marley 148, F Marroquim 120, Z Marshall 26, M U F Martensson 224, S Marti-Garcia 226, C B Martin 168, T A Martin 230, V J Martin 71, B Martin dit Latour 25, M Martinez 19, V I Martinez Outschoorn 145, S Martin-Haugh 193, V S Martoiu 37, A C Martyniuk 137, A Marzin 56, L Masetti 142, T Mashimo 214, R Mashinistov 153, J Masik 143, A L Maslennikov 165,166, L H Mason 147, L Massa 109,110, P Massarotti 101,102, P Mastrandrea 7, A Mastroberardino 61,62, T Masubuchi 214, P Mättig 234, J Maurer 37, B Maček 134, S J Maxfield 133, D A Maximov 165,166, R Mazini 208, I Maznas 213, S M Mazza 195, N C Mc Fadden 161, G Mc Goldrick 218, S P Mc Kee 148, A McCarn 148, T G McCarthy 158, L I McClymont 137, E F McDonald 147, J A Mcfayden 56, G Mchedlidze 74, M A McKay 63, K D McLean 228, S J McMahon 193, P C McNamara 147, C J McNicol 230, R A McPherson 228, J E Mdhluli 49, Z A Meadows 145, S Meehan 198, T M Megy 73, S Mehlhase 157, A Mehta 133, T Meideck 80, B Meirose 64, D Melini 226, B R Mellado Garcia 49, J D Mellenthin 74, M Melo 42, F Meloni 67, A Melzer 33, S B Menary 143, E D Mendes Gouveia 182, L Meng 133, X T Meng 148, A Mengarelli 31,32, S Menke 158, E Meoni 61,62, S Mergelmeyer 27, C Merlassino 28, P Mermod 75, L Merola 101,102, C Meroni 99, F S Merritt 57, A Messina 107,108, J Metcalfe 8, A S Mete 223, C Meyer 179, J Meyer 211, J-P Meyer 194, H Meyer Zu Theenhausen 86, F Miano 206, R P Middleton 193, L Mijović 71, G Mikenberg 232, M Mikestikova 189, M Mikuž 134, M Milesi 147, A Milic 218, D A Millar 135, D W Miller 57, A Milov 232, D A Milstead 65,66, A A Minaenko 192, M Miñano Moya 226, I A Minashvili 210, A I Mincer 167, B Mindur 125, M Mineev 118, Y Minegishi 214, Y Ming 233, L M Mir 19, A Mirto 97,98, K P Mistry 179, T Mitani 231, J Mitrevski 157, V A Mitsou 226, A Miucci 28, P S Miyagawa 199, A Mizukami 123, J U Mjörnmark 139, T Mkrtchyan 236, M Mlynarikova 191, T Moa 65,66, K Mochizuki 152, P Mogg 73, S Mohapatra 59, S Molander 65,66, R Moles-Valls 33, M C Mondragon 149, K Mönig 67, J Monk 60, E Monnier 144, A Montalbano 202, J Montejo Berlingen 56, F Monticelli 131, S Monzani 99, R W Moore 3, N Morange 174, D Moreno 30, M Moreno Llácer 56, P Morettini 77, M Morgenstern 163, S Morgenstern 69, D Mori 202, T Mori 214, M Morii 81, M Morinaga 231, V Morisbak 176, A K Morley 56, G Mornacchi 56, A P Morris 137, J D Morris 135, L Morvaj 205, P Moschovakos 12, M Mosidze 210, H J Moss 199, J Moss 203, K Motohashi 216, R Mount 203, E Mountricha 56, E J W Moyse 145, S Muanza 144, F Mueller 158, J Mueller 181, R S P Mueller 157, D Muenstermann 132, P Mullen 79, G A Mullier 28, F J Munoz Sanchez 143, P Murin 43, W J Murray 193,230, A Murrone 99,100, M Muškinja 134, C Mwewa 47, A G Myagkov 192, J Myers 173, M Myska 190, B P Nachman 26, O Nackenhorst 68, K Nagai 177, K Nagano 123, Y Nagasaka 88, K Nagata 221, M Nagel 73, E Nagy 144, A M Nairz 56, Y Nakahama 160, K Nakamura 123, T Nakamura 214, I Nakano 169, H Nanjo 175, F Napolitano 86, R F Naranjo Garcia 67, R Narayan 13, D I Narrias Villar 86, I Naryshkin 180, T Naumann 67, G Navarro 30, R Nayyar 9, H A Neal 148, P Y Nechaeva 153, T J Neep 194, A Negri 103,104, M Negrini 32, S Nektarijevic 162, C Nellist 74, M E Nelson 177, S Nemecek 189, P Nemethy 167, M Nessi 56, M S Neubauer 225, M Neumann 234, P R Newman 29, T Y Ng 91, Y S Ng 27, H D N Nguyen 144, T Nguyen Manh 152, E Nibigira 58, R B Nickerson 177, R Nicolaidou 194, J Nielsen 195, N Nikiforou 13, V Nikolaenko 192, I Nikolic-Audit 178, K Nikolopoulos 29, P Nilsson 44, Y Ninomiya 123, A Nisati 107, N Nishu 84, R Nisius 158, I Nitsche 68, T Nitta 231, T Nobe 214, Y Noguchi 128, M Nomachi 175, I Nomidis 178, M A Nomura 44, T Nooney 135, M Nordberg 56, N Norjoharuddeen 177, T Novak 134, O Novgorodova 69, R Novotny 190, L Nozka 172, K Ntekas 223, E Nurse 137, F Nuti 147, F G Oakham 50, H Oberlack 158, T Obermann 33, J Ocariz 178, A Ochi 124, I Ochoa 59, J P Ochoa-Ricoux 196, K O’Connor 35, S Oda 130, S Odaka 123, S Oerdek 74, A Oh 143, S H Oh 70, C C Ohm 204, H Oide 76,77, H Okawa 221, Y Okazaki 128, Y Okumura 214, T Okuyama 123, A Olariu 37, L F Oleiro Seabra 182, S A Olivares Pino 196, D Oliveira Damazio 44, J L Oliver 1, M J R Olsson 57, A Olszewski 127, J Olszowska 127, D C O’Neil 202, A Onofre 182,186, K Onogi 160, P U E Onyisi 13, H Oppen 176, M J Oreglia 57, Y Oren 212, D Orestano 111,112, E C Orgill 143, N Orlando 90, A A O’Rourke 67, R S Orr 218, B Osculati 76,77, V O’Shea 79, R Ospanov 82, G Otero y Garzon 45, H Otono 130, M Ouchrif 54, F Ould-Saada 176, A Ouraou 194, Q Ouyang 20, M Owen 79, R E Owen 29, V E Ozcan 16, N Ozturk 10, J Pacalt 172, H A Pacey 46, K Pachal 202, A Pacheco Pages 19, L Pacheco Rodriguez 194, C Padilla Aranda 19, S Pagan Griso 26, M Paganini 235, G Palacino 93, S Palazzo 61,62, S Palestini 56, M Palka 126, D Pallin 58, I Panagoulias 12, C E Pandini 56, J G Panduro Vazquez 136, P Pani 56, G Panizzo 94,96, L Paolozzi 75, T D Papadopoulou 12, K Papageorgiou 11, A Paramonov 8, D Paredes Hernandez 90, S R Paredes Saenz 177, B Parida 84, A J Parker 132, K A Parker 67, M A Parker 46, F Parodi 76,77, J A Parsons 59, U Parzefall 73, V R Pascuzzi 218, J M P Pasner 195, E Pasqualucci 107, S Passaggio 77, F Pastore 136, P Pasuwan 65,66, S Pataraia 142, J R Pater 143, A Pathak 233, T Pauly 56, B Pearson 158, M Pedersen 176, L Pedraza Diaz 162, R Pedro 182,183, S V Peleganchuk 165,166, O Penc 189, C Peng 23, H Peng 82, B S Peralva 119, M M Perego 194, A P Pereira Peixoto 182, D V Perepelitsa 44, F Peri 27, L Perini 99,100, H Pernegger 56, S Perrella 101,102, V D Peshekhonov 118, K Peters 67, R F Y Peters 143, B A Petersen 56, T C Petersen 60, E Petit 80, A Petridis 1, C Petridou 213, P Petroff 174, E Petrolo 107, M Petrov 177, F Petrucci 111,112, M Pettee 235, N E Pettersson 145, A Peyaud 194, R Pezoa 197, T Pham 147, F H Phillips 149, P W Phillips 193, G Piacquadio 205, E Pianori 26, A Picazio 145, M A Pickering 177, R Piegaia 45, J E Pilcher 57, A D Pilkington 143, M Pinamonti 109,110, J L Pinfold 3, M Pitt 232, M-A Pleier 44, V Pleskot 191, E Plotnikova 118, D Pluth 117, P Podberezko 165,166, R Poettgen 139, R Poggi 75, L Poggioli 174, I Pogrebnyak 149, D Pohl 33, I Pokharel 74, G Polesello 103, A Poley 67, A Policicchio 107,108, R Polifka 56, A Polini 32, C S Pollard 67, V Polychronakos 44, D Ponomarenko 155, L Pontecorvo 107, G A Popeneciu 39, D M Portillo Quintero 178, S Pospisil 190, K Potamianos 67, I N Potrap 118, C J Potter 46, H Potti 13, T Poulsen 139, J Poveda 56, T D Powell 199, M E Pozo Astigarraga 56, P Pralavorio 144, S Prell 117, D Price 143, M Primavera 97, S Prince 146, N Proklova 155, K Prokofiev 91, F Prokoshin 197, S Protopopescu 44, J Proudfoot 8, M Przybycien 125, A Puri 225, P Puzo 174, J Qian 148, Y Qin 143, A Quadt 74, M Queitsch-Maitland 67, A Qureshi 1, P Rados 147, F Ragusa 99,100, G Rahal 140, J A Raine 143, S Rajagopalan 44, A Ramirez Morales 135, T Rashid 174, S Raspopov 7, M G Ratti 99,100, D M Rauch 67, F Rauscher 157, S Rave 142, B Ravina 199, I Ravinovich 232, J H Rawling 143, M Raymond 56, A L Read 176, N P Readioff 80, M Reale 97,98, D M Rebuzzi 103,104, A Redelbach 229, G Redlinger 44, R Reece 195, R G Reed 49, K Reeves 64, L Rehnisch 27, J Reichert 179, A Reiss 142, C Rembser 56, H Ren 23, M Rescigno 107, S Resconi 99, E D Resseguie 179, S Rettie 227, E Reynolds 29, O L Rezanova 165,166, P Reznicek 191, R Richter 158, S Richter 137, E Richter-Was 126, O Ricken 33, M Ridel 178, P Rieck 158, C J Riegel 234, O Rifki 67, M Rijssenbeek 205, A Rimoldi 103,104, M Rimoldi 28, L Rinaldi 32, G Ripellino 204, B Ristić 132, E Ritsch 56, I Riu 19, J C Rivera Vergara 196, F Rizatdinova 171, E Rizvi 135, C Rizzi 19, R T Roberts 143, S H Robertson 146, A Robichaud-Veronneau 146, D Robinson 46, J E M Robinson 67, A Robson 79, E Rocco 142, C Roda 105,106, Y Rodina 144, S Rodriguez Bosca 226, A Rodriguez Perez 19, D Rodriguez Rodriguez 226, A M Rodríguez Vera 220, S Roe 56, C S Rogan 81, O Røhne 176, R Röhrig 158, C P A Roland 93, J Roloff 81, A Romaniouk 155, M Romano 31,32, N Rompotis 133, M Ronzani 167, L Roos 178, S Rosati 107, K Rosbach 73, P Rose 195, N-A Rosien 74, E Rossi 67, E Rossi 101,102, L P Rossi 77, L Rossini 99,100, J H N Rosten 46, R Rosten 19, M Rotaru 37, J Rothberg 198, D Rousseau 174, D Roy 49, A Rozanov 144, Y Rozen 211, X Ruan 49, F Rubbo 203, F Rühr 73, A Ruiz-Martinez 226, Z Rurikova 73, N A Rusakovich 118, H L Russell 146, J P Rutherfoord 9, E M Rüttinger 67, Y F Ryabov 180, M Rybar 225, G Rybkin 174, S Ryu 8, A Ryzhov 192, G F Rzehorz 74, P Sabatini 74, G Sabato 163, S Sacerdoti 174, H F-W Sadrozinski 195, R Sadykov 118, F Safai Tehrani 107, P Saha 164, M Sahinsoy 86, A Sahu 234, M Saimpert 67, M Saito 214, T Saito 214, H Sakamoto 214, A Sakharov 167, D Salamani 75, G Salamanna 111,112, J E Salazar Loyola 197, D Salek 163, P H Sales De Bruin 224, D Salihagic 158, A Salnikov 203, J Salt 226, D Salvatore 61,62, F Salvatore 206, A Salvucci 89,90,91, A Salzburger 56, J Samarati 56, D Sammel 73, D Sampsonidis 213, D Sampsonidou 213, J Sánchez 226, A Sanchez Pineda 94,96, H Sandaker 176, C O Sander 67, M Sandhoff 234, C Sandoval 30, D P C Sankey 193, M Sannino 76,77, Y Sano 160, A Sansoni 72, C Santoni 58, H Santos 182, I Santoyo Castillo 206, A Sapronov 118, J G Saraiva 182,185, O Sasaki 123, K Sato 221, E Sauvan 7, P Savard 218, N Savic 158, R Sawada 214, C Sawyer 193, L Sawyer 138, C Sbarra 32, A Sbrizzi 31,32, T Scanlon 137, J Schaarschmidt 198, P Schacht 158, B M Schachtner 157, D Schaefer 57, L Schaefer 179, J Schaeffer 142, S Schaepe 56, U Schäfer 142, A C Schaffer 174, D Schaile 157, R D Schamberger 205, N Scharmberg 143, V A Schegelsky 180, D Scheirich 191, F Schenck 27, M Schernau 223, C Schiavi 76,77, S Schier 195, L K Schildgen 33, Z M Schillaci 35, E J Schioppa 56, M Schioppa 61,62, K E Schleicher 73, S Schlenker 56, K R Schmidt-Sommerfeld 158, K Schmieden 56, C Schmitt 142, S Schmitt 67, S Schmitz 142, U Schnoor 73, L Schoeffel 194, A Schoening 87, E Schopf 33, M Schott 142, J F P Schouwenberg 162, J Schovancova 56, S Schramm 75, A Schulte 142, H-C Schultz-Coulon 86, M Schumacher 73, B A Schumm 195, Ph Schune 194, A Schwartzman 203, T A Schwarz 148, H Schweiger 143, Ph Schwemling 194, R Schwienhorst 149, A Sciandra 33, G Sciolla 35, M Scornajenghi 61,62, F Scuri 105, F Scutti 147, L M Scyboz 158, J Searcy 148, C D Sebastiani 107,108, P Seema 33, S C Seidel 161, A Seiden 195, T Seiss 57, J M Seixas 120, G Sekhniaidze 101, K Sekhon 148, S J Sekula 63, N Semprini-Cesari 31,32, S Sen 70, S Senkin 58, C Serfon 176, L Serin 174, L Serkin 94,95, M Sessa 111,112, H Severini 170, F Sforza 222, A Sfyrla 75, E Shabalina 74, J D Shahinian 195, N W Shaikh 65,66, L Y Shan 20, R Shang 225, J T Shank 34, M Shapiro 26, A S Sharma 1, A Sharma 177, P B Shatalov 154, K Shaw 206, S M Shaw 143, A Shcherbakova 180, Y Shen 170, N Sherafati 50, A D Sherman 34, P Sherwood 137, L Shi 208, S Shimizu 124, C O Shimmin 235, M Shimojima 159, I P J Shipsey 177, S Shirabe 130, M Shiyakova 118, J Shlomi 232, A Shmeleva 153, D Shoaleh Saadi 152, M J Shochet 57, S Shojaii 147, D R Shope 170, S Shrestha 168, E Shulga 155, P Sicho 189, A M Sickles 225, P E Sidebo 204, E Sideras Haddad 49, O Sidiropoulou 229, A Sidoti 31,32, F Siegert 69, Dj Sijacki 24, J Silva 182, M Silva Jr 233, M V Silva Oliveira 119, S B Silverstein 65, L Simic 118, S Simion 174, E Simioni 142, M Simon 142, R Simoniello 142, P Sinervo 218, N B Sinev 173, M Sioli 31,32, G Siragusa 229, I Siral 148, S Yu Sivoklokov 156, J Sjölin 65,66, M B Skinner 132, P Skubic 170, M Slater 29, T Slavicek 190, M Slawinska 127, K Sliwa 222, R Slovak 191, V Smakhtin 232, B H Smart 7, J Smiesko 42, N Smirnov 155, S Yu Smirnov 155, Y Smirnov 155, L N Smirnova 156, O Smirnova 139, J W Smith 74, M N K Smith 59, R W Smith 59, M Smizanska 132, K Smolek 190, A A Snesarev 153, I M Snyder 173, S Snyder 44, R Sobie 228, A M Soffa 223, A Soffer 212, A Søgaard 71, D A Soh 208, G Sokhrannyi 134, C A Solans Sanchez 56, M Solar 190, E Yu Soldatov 155, U Soldevila 226, A A Solodkov 192, A Soloshenko 118, O V Solovyanov 192, V Solovyev 180, P Sommer 199, H Son 222, W Song 193, A Sopczak 190, F Sopkova 43, D Sosa 87, C L Sotiropoulou 105,106, S Sottocornola 103,104, R Soualah 94,96, A M Soukharev 165,166, D South 67, B C Sowden 136, S Spagnolo 97,98, M Spalla 158, M Spangenberg 230, F Spanò 136, D Sperlich 27, F Spettel 158, T M Spieker 86, R Spighi 32, G Spigo 56, L A Spiller 147, D P Spiteri 79, M Spousta 191, A Stabile 99,100, R Stamen 86, S Stamm 27, E Stanecka 127, R W Stanek 8, C Stanescu 111, B Stanislaus 177, M M Stanitzki 67, B Stapf 163, S Stapnes 176, E A Starchenko 192, G H Stark 57, J Stark 80, S H Stark 60, P Staroba 189, P Starovoitov 86, S Stärz 56, R Staszewski 127, M Stegler 67, P Steinberg 44, B Stelzer 202, H J Stelzer 56, O Stelzer-Chilton 219, H Stenzel 78, T J Stevenson 135, G A Stewart 79, M C Stockton 173, G Stoicea 37, P Stolte 74, S Stonjek 158, A Straessner 69, J Strandberg 204, S Strandberg 65,66, M Strauss 170, P Strizenec 43, R Ströhmer 229, D M Strom 173, R Stroynowski 63, A Strubig 71, S A Stucci 44, B Stugu 25, J Stupak 170, N A Styles 67, D Su 203, J Su 181, S Suchek 86, Y Sugaya 175, M Suk 190, V V Sulin 153, D M S Sultan 75, S Sultansoy 6, T Sumida 128, S Sun 148, X Sun 3, K Suruliz 206, C J E Suster 207, M R Sutton 206, S Suzuki 123, M Svatos 189, M Swiatlowski 57, S P Swift 2, A Sydorenko 142, I Sykora 42, T Sykora 191, D Ta 142, K Tackmann 67, J Taenzer 212, A Taffard 223, R Tafirout 219, E Tahirovic 135, N Taiblum 212, H Takai 44, R Takashima 129, E H Takasugi 158, K Takeda 124, T Takeshita 200, Y Takubo 123, M Talby 144, A A Talyshev 165,166, J Tanaka 214, M Tanaka 216, R Tanaka 174, R Tanioka 124, B B Tannenwald 168, S Tapia Araya 197, S Tapprogge 142, A Tarek Abouelfadl Mohamed 178, S Tarem 211, G Tarna 37, G F Tartarelli 99, P Tas 191, M Tasevsky 189, T Tashiro 128, E Tassi 61,62, A Tavares Delgado 182,183, Y Tayalati 55, A C Taylor 161, A J Taylor 71, G N Taylor 147, P T E Taylor 147, W Taylor 220, A S Tee 132, P Teixeira-Dias 136, H Ten Kate 56, P K Teng 208, J J Teoh 163, F Tepel 234, S Terada 123, K Terashi 214, J Terron 141, S Terzo 19, M Testa 72, R J Teuscher 218, S J Thais 235, T Theveneaux-Pelzer 67, F Thiele 60, J P Thomas 29, A S Thompson 79, P D Thompson 29, L A Thomsen 235, E Thomson 179, Y Tian 59, R E Ticse Torres 74, V O Tikhomirov 153, Yu A Tikhonov 165,166, S Timoshenko 155, P Tipton 235, S Tisserant 144, K Todome 216, S Todorova-Nova 7, S Todt 69, J Tojo 130, S Tokár 42, K Tokushuku 123, E Tolley 168, K G Tomiwa 49, M Tomoto 160, L Tompkins 203, K Toms 161, B Tong 81, P Tornambe 73, E Torrence 173, H Torres 69, E Torró Pastor 198, C Tosciri 177, J Toth 144, F Touchard 144, D R Tovey 199, C J Treado 167, T Trefzger 229, F Tresoldi 206, A Tricoli 44, I M Trigger 219, S Trincaz-Duvoid 178, M F Tripiana 19, W Trischuk 218, B Trocmé 80, A Trofymov 174, C Troncon 99, M Trovatelli 228, F Trovato 206, L Truong 48, M Trzebinski 127, A Trzupek 127, F Tsai 67, J C-L Tseng 177, P V Tsiareshka 150, N Tsirintanis 11, V Tsiskaridze 205, E G Tskhadadze 209, I I Tsukerman 154, V Tsulaia 26, S Tsuno 123, D Tsybychev 205, Y Tu 90, A Tudorache 37, V Tudorache 37, T T Tulbure 36, A N Tuna 81, S Turchikhin 118, D Turgeman 232, I Turk Cakir 5, R Turra 99, P M Tuts 59, E Tzovara 142, G Ucchielli 31,32, I Ueda 123, M Ughetto 65,66, F Ukegawa 221, G Unal 56, A Undrus 44, G Unel 223, F C Ungaro 147, Y Unno 123, K Uno 214, J Urban 43, P Urquijo 147, P Urrejola 142, G Usai 10, J Usui 123, L Vacavant 144, V Vacek 190, B Vachon 146, K O H Vadla 176, A Vaidya 137, C Valderanis 157, E Valdes Santurio 65,66, M Valente 75, S Valentinetti 31,32, A Valero 226, L Valéry 67, R A Vallance 29, A Vallier 7, J A Valls Ferrer 226, T R Van Daalen 19, W Van Den Wollenberg 163, H Van der Graaf 163, P Van Gemmeren 8, J Van Nieuwkoop 202, I Van Vulpen 163, M Vanadia 109,110, W Vandelli 56, A Vaniachine 217, P Vankov 163, R Vari 107, E W Varnes 9, C Varni 76,77, T Varol 63, D Varouchas 174, K E Varvell 207, G A Vasquez 197, J G Vasquez 235, F Vazeille 58, D Vazquez Furelos 19, T Vazquez Schroeder 146, J Veatch 74, V Vecchio 111,112, L M Veloce 218, F Veloso 182,184, S Veneziano 107, A Ventura 97,98, M Venturi 228, N Venturi 56, V Vercesi 103, M Verducci 111,112, C M Vergel Infante 117, W Verkerke 163, A T Vermeulen 163, J C Vermeulen 163, M C Vetterli 202, N Viaux Maira 197, M Vicente Barreto Pinto 75, I Vichou 225, T Vickey 199, O E Vickey Boeriu 199, G H A Viehhauser 177, S Viel 26, L Vigani 177, M Villa 31,32, M Villaplana Perez 99,100, E Vilucchi 72, M G Vincter 50, V B Vinogradov 118, A Vishwakarma 67, C Vittori 31,32, I Vivarelli 206, S Vlachos 12, M Vogel 234, P Vokac 190, G Volpi 19, S E von Buddenbrock 49, E Von Toerne 33, V Vorobel 191, K Vorobev 155, M Vos 226, J H Vossebeld 133, N Vranjes 24, M Vranjes Milosavljevic 24, V Vrba 190, M Vreeswijk 163, T Šfiligoj 134, R Vuillermet 56, I Vukotic 57, T Ženiš 42, L Živković 24, P Wagner 33, W Wagner 234, J Wagner-Kuhr 157, H Wahlberg 131, S Wahrmund 69, K Wakamiya 124, V M Walbrecht 158, J Walder 132, R Walker 157, S D Walker 136, W Walkowiak 201, V Wallangen 65,66, A M Wang 81, C Wang 83, F Wang 233, H Wang 26, H Wang 3, J Wang 207, J Wang 87, P Wang 63, Q Wang 170, R-J Wang 178, R Wang 82, R Wang 8, S M Wang 208, W T Wang 82, W Wang 22, W X Wang 82, Y Wang 82, Z Wang 84, C Wanotayaroj 67, A Warburton 146, C P Ward 46, D R Wardrope 137, A Washbrook 71, P M Watkins 29, A T Watson 29, M F Watson 29, G Watts 198, S Watts 143, B M Waugh 137, A F Webb 13, S Webb 142, C Weber 235, M S Weber 28, S A Weber 50, S M Weber 86, A R Weidberg 177, B Weinert 93, J Weingarten 74, M Weirich 142, C Weiser 73, P S Wells 56, T Wenaus 44, T Wengler 56, S Wenig 56, N Wermes 33, M D Werner 117, P Werner 56, M Wessels 86, T D Weston 28, K Whalen 173, N L Whallon 198, A M Wharton 132, A S White 148, A White 10, M J White 1, R White 197, D Whiteson 223, B W Whitmore 132, F J Wickens 193, W Wiedenmann 233, M Wielers 193, C Wiglesworth 60, L A M Wiik-Fuchs 73, A Wildauer 158, F Wilk 143, H G Wilkens 56, L J Wilkins 136, H H Williams 179, S Williams 46, C Willis 149, S Willocq 145, J A Wilson 29, I Wingerter-Seez 7, E Winkels 206, F Winklmeier 173, O J Winston 206, B T Winter 33, M Wittgen 203, M Wobisch 138, A Wolf 142, T M H Wolf 163, R Wolff 144, M W Wolter 127, H Wolters 182,184, V W S Wong 227, N L Woods 195, S D Worm 29, B K Wosiek 127, K W Woźniak 127, K Wraight 79, M Wu 57, S L Wu 233, X Wu 75, Y Wu 82, T R Wyatt 143, B M Wynne 71, S Xella 60, Z Xi 148, L Xia 230, D Xu 20, H Xu 82, L Xu 44, T Xu 194, W Xu 148, B Yabsley 207, S Yacoob 47, K Yajima 175, D P Yallup 137, D Yamaguchi 216, Y Yamaguchi 216, A Yamamoto 123, T Yamanaka 214, F Yamane 124, M Yamatani 214, T Yamazaki 214, Y Yamazaki 124, Z Yan 34, H J Yang 84,85, H T Yang 26, S Yang 116, Y Yang 214, Z Yang 25, W-M Yao 26, Y C Yap 67, Y Yasu 123, E Yatsenko 84,85, J Ye 63, S Ye 44, I Yeletskikh 118, E Yigitbasi 34, E Yildirim 142, K Yorita 231, K Yoshihara 179, C J S Young 56, C Young 203, J Yu 10, J Yu 117, X Yue 86, S P Y Yuen 33, B Zabinski 127, G Zacharis 12, E Zaffaroni 75, R Zaidan 19, A M Zaitsev 192, N Zakharchuk 67, J Zalieckas 25, S Zambito 81, D Zanzi 56, D R Zaripovas 79, S V Zeißner 68, C Zeitnitz 234, G Zemaityte 177, J C Zeng 225, Q Zeng 203, O Zenin 192, D Zerwas 174, M Zgubič 177, D F Zhang 83, D Zhang 148, F Zhang 233, G Zhang 82, H Zhang 22, J Zhang 8, L Zhang 22, L Zhang 82, M Zhang 225, P Zhang 22, R Zhang 82, R Zhang 33, X Zhang 83, Y Zhang 23, Z Zhang 174, P Zhao 70, X Zhao 63, Y Zhao 83,174, Z Zhao 82, A Zhemchugov 118, B Zhou 148, C Zhou 233, L Zhou 63, M S Zhou 23, M Zhou 205, N Zhou 84, Y Zhou 9, C G Zhu 83, H L Zhu 82, H Zhu 20, J Zhu 148, Y Zhu 82, X Zhuang 20, K Zhukov 153, V Zhulanov 165,166, A Zibell 229, D Zieminska 93, N I Zimine 118, S Zimmermann 73, Z Zinonos 158, M Zinser 142, M Ziolkowski 201, G Zobernig 233, A Zoccoli 31,32, K Zoch 74, T G Zorbas 199, R Zou 57, M Zur Nedden 27, L Zwalinski 56; ATLAS Collaboration40,52,188,237
PMCID: PMC6383730  PMID: 30872971

Abstract

A search for doubly charged scalar bosons decaying into W boson pairs is presented. It uses a data sample from proton–proton collisions corresponding to an integrated luminosity of 36.1 fb-1 collected by the ATLAS detector at the LHC at a centre-of-mass energy of 13 TeV in 2015 and 2016. This search is guided by a model that includes an extension of the Higgs sector through a scalar triplet, leading to a rich phenomenology that includes doubly charged scalar bosons H±±. Those bosons are produced in pairs in proton–proton collisions and decay predominantly into electroweak gauge bosons H±±W±W±. Experimental signatures with several leptons, missing transverse energy and jets are explored. No significant deviations from the Standard Model predictions are found. The parameter space of the benchmark model is excluded at 95% confidence level for H±± bosons with masses between 200 and 220 GeV.

Introduction

An extension of the scalar sector of the Standard Model (SM) is possible in the context of type II seesaw models [1], originally conceived to explain the smallness of the neutrino masses. In the model investigated in this paper, the scalar sector includes a hypercharge Y=2 scalar triplet, Δ, in addition to the SM scalar doublet H [2, 3]. Electroweak symmetry breaking (EWSB) is achieved if the neutral components of H and Δ acquire vacuum expectation values, vd and vt respectively. After the EWSB, the mixing between these fields results in seven scalar bosons: H±±, H±, A0 (CP odd), H0 (CP even), h0 (CP even). A small mixing between the CP-even scalars allows h0 to have the expected properties of the SM Higgs boson. In addition, the triplet-neutrino Yukawa term provides non-zero neutrino masses proportional to the vacuum expectation value of the triplet vt. Constraints from electroweak precision measurements lead to an upper bound on vt of around 1 GeV. This range is significantly lower than the electroweak scale and matches the need for small values suggested by the natural association of vt with the neutrino masses.

The assumption of a non-zero vt, of the order of a hundred MeV, opens the possibility for the doubly charged boson to decay into a pair of same-sign W bosons, H±±W±W±, while the leptonic decays H±±±± are suppressed with increasing vt [4, 5]. Extensive searches for leptonic decays H±±±± have been performed at various colliders [611], where H±± bosons with masses up to about 800 GeV have been excluded. Moreover, searches for H±±W±W± decays have been performed by the CMS Collaboration in the context of single H±± production through vector-boson fusion at large vt (of order of tens of GeV) [12, 13] for a model with two Higgs triplets [14]. For that model, a custodial symmetry avoids large contributions to the electroweak precision observables [15]. In contrast, the H±±W±W± decay mode has not been directly searched for so far for small values of vt, where the vector-boson fusion is suppressed.

The present paper focuses on the phenomenology of doubly charged scalar bosons H±± that can be produced in pairs at the Large Hadron Collider (LHC) and decay into W bosons. The triplet vacuum expectation value is taken to be vt=0.1 GeVsuch that only the H±±W±W± decays are relevant, leading to final states with four W bosons. The mixing between the CP-even scalars is taken to be 10-4 and the remaining five Yukawa parameters in the potential are adjusted to obtain a given H±± mass hypothesis while requiring h0 to have a mass of 125 GeV. The corresponding cross-section calculation is performed for on-shell W bosons, and therefore only the region mH±±>200 GeV is considered in the present analysis.

The four-boson final states are identified by the presence of light charged leptons (electrons or muons), missing transverse momentum, and jets. The analysis uses three final states defined according to the number of light leptons: same-sign (SS) dilepton channel (2ss), trilepton channel (3) and four-lepton channel (4). Similar final states were used for other searches for new phenomena in ATLAS [1618]. However, the previously searched signal topologies differ significantly from those targeted in the present analysis and a dedicated event selection optimisation is therefore applied.

This paper includes a description of the experimental set-up in Sect. 2, followed by a description of the simulation used in the analysis in Sect. 3. The event selection and background estimations for the three explored signatures are described in Sect. 4. The signal region optimisation is described in Sect.  5. The systematic uncertainties are presented in Sect. 6. The results are shown in Sect. 7, followed by the conclusions in Sect. 8.

ATLAS detector

The ATLAS experiment [19] at the LHC is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and a near 4π coverage in solid angle.1 It consists of an inner tracking detector surrounded by a superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner tracking detector, covering the pseudorapidity range |η|<2.5, consists of silicon pixel and silicon microstrip tracking detectors inside a transition-radiation tracker that covers |η|<2.0. It includes, for the s=13 TeVrunning period, a newly installed innermost pixel layer, the insertable B-layer [20]. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements for |η|<2.5 with high granularity and longitudinal segmentation. A hadronic calorimeter consisting of steel and scintillator tiles covers the central pseudorapidity range (|η|<1.7). The endcap and forward regions are instrumented with LAr calorimeters for EM and hadronic energy measurements up to |η|=4.9. The muon spectrometer surrounds the calorimeters and is based on three large air-core toroid superconducting magnets with eight coils each. It includes a system of precision tracking chambers (|η|<2.7) and fast detectors for triggering (|η|<2.4). A two-level trigger system is used to select events [21]. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the accepted rate to a design maximum of 100 kHz. This is followed by a software-based trigger with a sustained average accepted event rate of about 1 kHz.

Data and simulation

The data sample collected by the ATLAS Collaboration at s=13 TeV during 2015 and 2016 was used. After the application of beam and data quality requirements, the integrated luminosity is 36.1fb-1.

Monte Carlo (MC) simulation samples were produced for signal and background processes using the full ATLAS detector simulation [22] based on Geant4 [23] or, for selected smaller backgrounds and some of the signal samples, a fast simulation using a parameterisation of the calorimeter response and Geant4 for the tracking system [24]. To simulate the effects of additional pp collisions in the same and nearby bunch crossings (pile-up), additional interactions were generated using Pythia  8.186 [25, 26] with a set of tuned parameters for the underlying event, referred to as the A2 tune [27], and the MSTW2008LO set of parton distribution functions (PDF) [28], and overlaid on the simulated hard-scatter event. The simulated events were reweighted to match the distribution of the number of interactions per bunch crossing observed in the data and were reconstructed using the same procedure as for the data.

The signal events containing H±± pairs were simulated with the CalcHEP generator version 3.4 [29], which is at leading order in QCD, using the Lagrangian described in Ref. [3] and the PDF set CTEQ6L1 [30, 31]. The modelling of the parton showering and hadronisation of these events was performed using PYTHIA 8.186 [25, 26] with the A14 tune [32]. Event samples for the process ppH±±HW±W±WW were simulated for mH±± in the range from 200 to 700 GeV with steps of 100 GeV. The production cross-section decreases rapidly with mH±± and is 80.7 fb for mH±±=200GeV, 5.0 fb for mH±±=400GeV, and 0.35 fb for mH±±=700GeV. Next-to-leading order (NLO) corrections [33] in QCD were applied, which increase these cross-sections by a factor 1.25. The fast detector simulation was used for the samples corresponding to mH±±>500 GeV.

The SM background processes were simulated using the MC event generator programs and configurations shown in Table 1. The production of VV, VVqq, and VVV (where V denotes a vector boson W or Z and qq labels the vector-boson fusion production mechanism) was simulated with a NLO QCD matrix element computed by Sherpa and matched to the Sherpa parton shower. The main background contribution in the 2ss and 3 channels is from WZ production, for which the total cross-section prediction is 48.2±1.1 pb [44]. The main contribution to the 4 topology is from ZZ production with a total cross-section of 16.9±0.6 pb [45, 46], which is suppressed by requiring significant missing transverse momentum in these events. The MC samples used to simulate tt¯H, tt¯V, VV and tt¯ are described in more detail in Refs. [4749].

Table 1.

Configurations used for event generation of background processes

Process Event generator ME order Parton shower PDF Tune
VV, qqVV, VVV Sherpa 2.1.1 [35] MEPS NLO Sherpa 2.1.1 CT10 [36] Sherpa 2.1.1 default
tt¯H MG5_aMC [37] NLO Pythia 8 [26] NNPDF 3.0 NLO [38] A14 [32]
VH Pythia 8 LO Pythia 8 NNPDF 2.3 LO A14
tHqb MG5_aMC LO Pythia 8 CT10 A14
tHW MG5_aMC NLO Herwig++ [39] CT10 UE-EE-5 [40]
tt¯W, tt¯(Z/γ) MG5_aMC NLO Pythia 8 NNPDF 3.0 NLO A14
t(Z/γ) MG5_aMC LO Pythia 6 [25] CTEQ6L1 [30, 31] Perugia2012 [41]
tW(Z/γ) MG5_aMC NLO Pythia 8 NNPDF 2.3 LO A14
tt¯t,tt¯tt¯ MG5_aMC LO Pythia 8 NNPDF 2.3 LO A14
tt¯W+W- MG5_aMC LO Pythia 8 NNPDF 2.3 LO A14
Vγ Sherpa 2.2 MEPS NLO Sherpa 2.2 NNPDF 3.0 NLO Sherpa 2.2 default
s-, t-channel, Wt single top Powheg-Box v 2 [42, 43] NLO Pythia 6 CT10/CTEQ6L1 Perugia2012

If only one PDF is shown, the same is used for both the matrix element (ME) and parton shower generators; if two are shown, the first is used for the matrix element calculation and the second for the parton shower. V refers to the production of an electroweak boson (W or Z/γ). “Tune” refers to the underlying-event tune of the parton shower generator. “MG5_aMC” refers to MadGraph5_aMC@NLO 2.2.1; “Pythia 6” refers to version 6.427; “Pythia 8” refers to version 8.1; “Herwig++ ” refers to version 2.7. The samples have heavy flavour hadron decays modelled by EvtGen1.2.0 [34], except for samples generated with Sherpa

The simulated SM contributions in each of the channels considered are separated into prompt-lepton and fake-lepton contributions, depending on the source of the reconstructed leptons at generator level. The processes that contain only reconstructed charged leptons originating from prompt leptonic decays of W and Z bosons are classified as a prompt-lepton contribution, while processes with at least one of the reconstructed leptons being a misidentified hadron or photon, or a lepton from hadron decays constitute the fake-lepton contribution. The simulated events are not used to evaluate the background originating from charge-misidentified leptons for the 2ss channel and fake leptons for the 2ss and 3 channels. These are estimated in general using data-driven methods because they are not well modelled by simulations. This is the case in particular for Z+-, Wν and tt¯ processes. The background process Vγ can contribute if electrons originating from the photon conversion are selected. This contribution is found to be small and adequately modelled, so it is estimated using the MC simulation. For the 4 channel, the background from fake leptons is small and the data-driven methods are not applicable due to the low number of events available, so the MC simulation is used to estimate both the prompt-lepton and the fake-lepton contributions.

Event selection and background estimates

Event reconstruction

Interaction vertices originating from pp collisions are reconstructed using at least two tracks with transverse momentum pT>0.4 GeV, and required to be consistent with the beam-spot envelope. The primary vertex is identified as the vertex with the largest sum of squares of the transverse momenta from associated tracks [50].

Electrons are reconstructed as tracks in the inner detector matched to clusters in the electromagnetic calorimeter, within the region of pseudorapidity |η|<2.47 [51]. The candidates in the transition region between the barrel and the endcap calorimeters (1.37<|η|<1.52) are removed. Only those electron candidates with transverse momentum greater than 10 GeVare considered. The electron identification is based on a multivariate likelihood-based discriminant that uses the shower shapes in the electromagnetic calorimeter and the associated track properties measured in the inner detector. In particular, the loose and tight identification working points, described in Ref. [51], are used, providing electron identification efficiencies of approximately 95% and 78–90% (depending on pT and η), respectively. In order to reduce contributions from converted photons and hadron decays, the longitudinal impact parameter of the electron track relative to the selected event primary vertex, multiplied by the sine of the polar angle, |z0sinθ|, is required to be less than 0.5 mm. The transverse impact parameter divided by its uncertainty, |d0|/σ(d0), is required to be less than five. The identification algorithm is complemented by an isolation requirement, based on the energy in a cone around the electron candidate calculated using either charged tracks or calorimetric deposits. The calorimeter- and track-based isolation criteria are applied jointly to suppress fake electrons.

Muon candidates are reconstructed by combining tracks formed in the inner detector and in the muon spectrometer, within the region of pseudorapidity |η|< 2.5 [52]. Only those muon candidates with transverse momentum greater than 10 GeVare considered. A muon candidate is required to satisfy loose or tight identification criteria which are defined in Ref. [52], and which have efficiencies of approximately 98% and 92%, respectively. Similarly to electrons, isolation criteria complement the identification requirements. The impact parameters must satisfy |z0sinθ|<0.5 mm and |d0|/σ(d0)<3 when selecting muons.

Combining the selection criteria mentioned above, two types of lepton requirements are used for both the electrons and muons: type T (for tight) and L (for loose). The type T leptons are a subset of the type L.

Jets are reconstructed from topological clusters [53] of energy deposits in the calorimeters using the anti-kt algorithm [54, 55] with a radius parameter of R=0.4. Only jets with pT>25 GeVand |η|<2.5 are considered. In order to suppress jets arising from pile-up collisions, jets with pT<60 GeVand |η|<2.4 must have a sizeable fraction of their tracks matched to the selected primary vertex [56]. Jets containing b-hadrons are identified (b-tagged) via a multi-variate discriminant combining information from the impact parameters of displaced tracks with topological properties of secondary and tertiary decay vertices reconstructed within the jet [57]. The b-tagging algorithm used for this search has an average efficiency of 70% to identify b-jets with pT>20 GeVand |η|<2.5 in simulated tt¯ events.

To avoid object double counting, an overlap removal procedure is applied to resolve ambiguities among electrons, muons, and jets in the final state. Any electron candidate sharing an inner detector track with a muon candidate is removed. Jets within ΔR=0.2 of an electron, as well as jets with less than three tracks within ΔR=0.2 of a muon candidate are discarded. Any remaining electron candidate within ΔR=0.4 of a jet is discarded. Any remaining muon candidate within ΔR=0.04+10/pTμ(GeV) of a jet is discarded.

The missing transverse momentum, with magnitude ETmiss, is defined as the negative vector sum of the transverse momenta of all identified leptons and jets and the remaining unclustered energy of the event, which is estimated from tracks associated with the primary vertex but not assigned to any physics object [58].

Event preselection

Candidate events are selected using triggers that require at least one electron or one muon to pass various thresholds of pT [21]. The higher thresholds are applied with looser lepton identification and/or isolation requirements in order to ensure efficiencies close to 100% for leptons with transverse momentum above 30 GeV.

The signal topologies studied in this search involve the presence of at least two leptons of the same charge and are classified as explained above in three mutually exclusive categories: 2ss, 3 and 4 channels. The 2ss channel targets signal events where the two same-sign W bosons from one of the doubly charged Higgs boson decays leptonically, while the two W bosons from the other doubly charged Higgs boson decay hadronically. In the 3 channel, one W boson decays hadronically and in the 4 channel, all W bosons decay leptonically. All channels present significant ETmiss corresponding to the neutrinos from leptonic W boson decays. In the 2ss and 4 channels, jets from W boson decays originate from the first- and second-generation quarks, and therefore lead to events without b-jets. The event selection is divided into two steps: the preselection and the signal region selection.

The preselection requirements are summarised in Table 2. The electrons (muons) are selected in the pseudorapidity range |η|<2.47(2.5) with a transverse momentum of at least 10 GeV, satisfying the type L requirement. Events are selected only if the absolute value of the sum of charges of the leptons is two, one and zero for the 2ss, 3 and 4 channels, respectively. At least one of the leptons is required to have pT >30 GeV to ensure a high trigger efficiency. To reduce the fake-lepton contamination in the 2ss channel, the second highest pT (subleading) lepton is required to have pT >20 GeVand both leptons are required to be of type T. Similarly in the 3 channel, each lepton in the pair of leptons of the same sign, which is expected to suffer more from fake-lepton contamination, is required to have pT >20 GeV and to both be of type T. In the 2ss and 4 channels, the leptons are labelled by descending pT, and are denoted by 1,2,.... The ranking follows a different logic for the 3 channel: the lepton that has a charge opposite to the total lepton charge is denoted as 0, while the same-sign leptons are denoted by 1 and 2, ranked by increasing distance to 0 in the ηϕ plane.

Table 2.

The preselection criteria for the three analysis channels

Selection criteria 2ss 3 4
Trigger At least one lepton with pT>30 GeV that fulfils the requirements of single-lepton triggers
N(L-type, pT>10 GeV, |η|<2.47) 2 3 4
N(T-type, pT>10 GeV, |η|<2.47) 2 2 (1,2)
|Q| 2 1 0
Lepton pT threshold pT1,2>30,20 GeV pT0,1,2>10,20,20 GeV pT1,2,3,4>10 GeV
ETmiss >70 GeV >30 GeV >30 GeV
Njets  3 2
b-jet veto Nb-jet=0 Nb-jet=0 Nb-jet=0
Low SFOS m veto m±>15GeV m±>12GeV
Z boson decays veto |me±e±-mZ|>10GeV |m±-mZ|>10GeV

The leptons are ordered by decreasing pT (1,2,) in the 2ss and 4 channels, while for the 3 channel 1,2 denote the same-sign leptons and 0 the lepton with a charge opposite to the total lepton charge. Q denotes the charge of each lepton

Further preselection requirements are based on ETmiss, the jet multiplicity Njets and the number of jets tagged as b-jets Nb-jet. Moreover, in order to reduce the background from Z bosons and neutral mesons decaying into same-flavour opposite-sign leptons (SFOS), the invariant mass of such lepton pairs is required to be greater than 12 (15) GeV for the 3 (4) channel and to have an invariant mass that is not compatible with the Z boson. For the 2ss channel, the Z boson invariant mass veto is also applied to e±e± events, in order to reduce the contributions originating from electron charge misidentification.

After this preselection, 562 data events are selected in the 2ss channel, 392 events in the 3 channel, and 44 events in the 4 channel.

Background estimate

The background processes containing only prompt selected leptons are estimated with MC simulations normalised to the most precise cross-section calculation (see Sect. 3). Further contributions originate from non-prompt and mismeasured leptons. The procedures used to estimate those contributions are described in the following.

Charge misidentification

In the 2ss channel, a background contribution is expected from events with opposite-sign lepton pairs when the charge of one of the leptons is misidentified, while the background contribution from charge misidentification is negligible for 3 and 4 channels. In the transverse momentum domain relevant for this analysis, charge misidentification is only significant for electrons and is due mainly to bremsstrahlung interactions with the inner detector material. The radiated photon produces an e+e- pair near the original electron trajectory leading to a charge identification confusion.

The misidentification rate is measured using a large data sample of dilepton events originating mainly from Ze+e- decays selected by two type T electrons with an invariant mass between 80 and 100 GeV. The sample contains mostly opposite-sign dileptons, with a small fraction of same-sign dileptons. The fraction of same-sign dilepton events is used to extract the charge-misidentification rate as a function of electron pT and η. This rate is found to range between 0.02% and 10%, where large values are obtained at large rapidities where the amount of material is higher. The statistical error of this estimate is taken as systematic uncertainty of the charge misidentification rate. The background from fake leptons in both the opposite-sign and same-sign samples is estimated using sidebands around the Z boson mass peak. Its impact on the charge misidentification rate is about 2% and is included in the systematic uncertainty.

The background from charge misidentification in a given region is estimated using a data control sample selected with the same criteria as the nominal sample but with opposite-sign dilepton pairs, where at least one lepton is an electron, weighted by the probability that the charge of the electron(s) is misidentified.

Fake-lepton contributions

The composition of the fake-lepton background varies considerably among the analysis channels. Therefore, the methods to estimate the fake-lepton contributions are different for the 2ss, 3 and 4 channels. The contribution from fake leptons for the 2ss and 3 channels are estimated using the fake-factor method, while the simulation prediction corrected with data-driven scale factors is used for the 4 channels. Those methods involve various fake-enriched control samples that are summarised in Table 3 and described below.

Table 3.

The selection criteria defining the fake-enriched control regions used to determine the fake factors for the 2ss and 3 channel and the MC scale factors for the 4 channel

Sample 2ss 3 4-Z 4-T
N (type L) 2 3 3 3
|Q| 2 1 1 1
pT >30,20 GeV >10,20,20 GeV >10,10,10 GeV >10,10,10 GeV
Njets  3 1 1or2 1or2
Nb-jet 0
pTjet >25 GeV >25 GeV >25 GeV >30(25) GeV
Z-window |meess-mZ|>10 GeV |mos-mZ|>10 GeV |mos-mZ|<10 GeV No same-flavour
opposite-sign lepton pair
mos >15 GeV
ETmiss <70 GeV <50 GeV
mT <50 GeV

The symbol “−” means no requirement. The transverse mass mT, used for the 4-Z region to reduce the WZ contributions, is calculated as the invariant mass of the vector sum of transverse momentum of the fake-lepton candidate and the missing transverse momentum

Fake-lepton contribution estimate for the 2ss channel The fake-factor method assumes that the fake-lepton contribution in a nominal region, which can be the preselection or the signal region, can be computed using an extrapolation factor that is referred to as a fake factor, and is denoted as θ in the following. The fake factor is multiplied by the number of events containing fake leptons in a region with the same selection criteria as the nominal region, except that at least one of the leptons is required to satisfy the type L but not the type T identification criteria. That lepton is denoted by Inline graphic, Inline graphic or collectively Inline graphic in the following.

The fake factors are calculated in fake-enriched control regions with kinematic selections designed to enhance their content in fake leptons. In the case of the 2ss channel (2ss column in Table 3), this is achieved by requiring low ETmiss. The fake factor is defined as the number of fake-lepton events in the fake-enriched region where all selected leptons pass the type T identification, divided by the number of fake-lepton events in the same region but where one of the selected leptons is of type Inline graphic.

The muon fake factor is thus computed in the fake-enriched region, where a pair of same-sign muons was selected, as follows:

graphic file with name 10052_2018_6500_Equ1_HTML.gif 1

where NμμData,C and Inline graphic are the number of events where both muons are of type T, and where one is of type T and the other of type Inline graphic, respectively. The prompt-lepton contributions NPrompt, which are estimated using MC simulation, are subtracted from data event yields to obtain a pure estimate of the fake-lepton contributions in the μμ and Inline graphic regions. The superscript C indicates the fake-enriched control region.

The electron fake factor is computed using the fake-enriched region where a same-sign eμ pair was selected:

graphic file with name 10052_2018_6500_Equ2_HTML.gif 2

In addition to the prompt-lepton contribution, the electron charge-misidentification contribution, denoted by Inline graphic, needs to be subtracted. It is computed using the method described in Sect. 4.3.1. Furthermore, the fake-muon contribution in the eμ sample is subtracted from the numerator. It is computed as:

graphic file with name 10052_2018_6500_Equ6_HTML.gif

The fake-muon contribution is not considered in the denominator of the electron fake factor, in Eq. (2), because it is negligible.

The muon fake factor is measured to be 0.14±0.03, while the electron fake factor is 0.48±0.07, where the uncertainties are statistical only. A systematic uncertainty of 35% (56%) in the electron (muon) fake factor is estimated from complementary control samples with low jet multiplicity or by applying a different selection to vary the fraction of jets containing heavy-flavour hadrons. The uncertainty in the muon fake factor is larger than in the electron fake factor due lower number of data events available for those checks. The fake-lepton contributions in the nominal region (signal or preselection, denoted collectively by the superscript R) are obtained by multiplying the fake factors by the number of events in a region with the same selection as the nominal region, but where at least one lepton is of type Inline graphic:

graphic file with name 10052_2018_6500_Equ3_HTML.gif 3

where the prompt-lepton and the charge misidentifications contributions are subtracted as explained above.

Fake-lepton contribution estimate for the 3 channel A method similar to that employed for the 2ss channel is applied for the 3 channel. Here the opposite-sign lepton 0 is assumed to be prompt, an assumption that was found to be valid in MC simulation. The fake-enriched region used to calculate the fake factors for the 3 channel, which is described in Table 3, follows the 3 preselection conditions except that the jet multiplicity is required to be exactly one. The fake factors for electrons and muons are both calculated by applying a formula analogous to Eq. (1) to the Inline graphic and Inline graphic regions, respectively. The muon fake factor is found to be 0.17±0.06 and the electron fake factor is found to be 0.39±0.07, where the errors are statistical only. The values are compatible with those obtained for the 2ss channel. Additional control samples, defined such that the content is enriched in either Z+jets or tt¯ events, are used to test the method and to estimate systematic uncertainties of 55% and 81% for the electron and muon fake factors, respectively. The fake-lepton contributions to the nominal regions are then calculated using relations analogous to Eq. (3).

Fake-lepton contribution estimate for the 4 channel There are too few data events to apply the fake-factor method in the 4 channel. Instead, the fake-lepton contribution is estimated from the yields predicted by the MC simulation but corrected using process-dependent scale factors that are extracted in two fake-enriched control regions. The fake-lepton contribution in this channel comes mainly from tt¯V processes, where the fake lepton originates from a b-jet. A small component from light quarks is also present. Two data samples designed to contain fake leptons originating from Z+jets and tt¯ events are used to study the capability of the simulation to describe fake leptons originating from light- and heavy-flavour jets, respectively. The two control samples are labelled Z and T and are defined in Table 3. The samples are required to have three identified leptons. For the Z region, the fake-lepton candidate is assumed not to be part of the lepton pair forming the Z boson candidate. For the T region, the fake lepton is assumed to be the lepton with the lower pT in the same-sign lepton pair. The scale factors are derived independently for fake electrons and fake muons. Four scale factors λX (with =e,μ and X=Z,T) are obtained by solving the system of equations

NData|X-NPrompt|X=λTNtt¯|X+λZNZ+jets|X,

where the event yields N are labelled by the nature of the contribution, data (Data) or simulation (Prompt, tt¯ and Z+jets), and the equations are derived in each of the respective control region X (Z or T). The obtained scale factors are λTe=1.12±0.05, λZe=1.02±0.07, λTμ=1.11±0.05 and λZμ=0.94±0.07, where the errors are statistical only. Alternative trilepton control samples, where the jet multiplicity and the lepton pT threshold are varied, are used to estimate a systematic uncertainty of 50% in these scale factors. The scale factors are used as weights to the simulated events that contain a fake lepton according to the fake-lepton flavour and the presence of heavy-flavour jets in the event.

Signal region optimisation

The hypothetical signal produces four W± bosons in each event. Since at least two leptonic W boson decays are needed to lead to the multi-lepton topologies considered in this analysis, all signal events are expected to feature significant ETmiss, while jets are expected from hadronic W boson decays for 2ss and 3 channels. Moreover, when the mass of the doubly charged Higgs boson is in the range of 200–300 GeV, each H±± is produced with a significant momentum and the two subsequent W bosons are emitted close to each other in the laboratory frame. Consequently, the two same-sign leptons from the decays of the two W bosons tend to be close in the ηϕ plane. The decay products of the other doubly charged Higgs boson are generally well-separated from the two same-sign leptons.

The analysis channels face different background contributions from the SM. The 2ss category is populated with events containing one prompt lepton from a W boson, or to a lesser extent from a Z boson, and one fake lepton from the hadronic final state produced. The 2ss events with two same-sign electrons can also originate from Drell–Yan and tt¯ production, where the charge of one of the electrons is misidentified, as explained above. In the 2ss and 3 channels, most of the expected prompt-lepton contribution is due to the production of WZ associated with jets, with both bosons subsequently decaying into leptons. This process also produces other features of the signal, such as significant ETmiss and the absence of b-jets for most of the production cross-section. For the WZ events, the mass of the same-flavour opposite-sign lepton pair is close to the Z boson mass, while no such resonant distribution is expected for the signal. In the 4 channel, the dominant background originates from tt¯V and ZZ production. Processes containing top quarks (tt¯, tt¯V) can lead to events with multiple leptons in the final state. A noticeable feature of those processes is the presence of b-jets.

Given these properties of the signal and of the expected background, the following discriminating variables, in addition to ETmiss, are considered:

  • mx, the invariant mass of the system composed of all selected leptons in the event, where x can be 2, 3 or 4.

  • ΔR±±, the distance in ηϕ between two same-sign leptons. This variable is used for the 2ss and 3 channels. In the 4 channel, two such variables can be calculated per event, ΔR±±min and ΔR±±max, denoting the minimum and maximum values, respectively.

  • mjets, the invariant mass of the system composed of all jets in the event. When there are more than four jets in the event, only the leading four jets are used. This variable is used only for the 2ss channel.

  • pTleading jet, the transverse momentum of the highest-pT jet.

  • Δϕ(,ETmiss), the difference in azimuth between the dilepton system and ETmiss. This variable is used in the 2ss channel.

  • ΔR-jet, the minimal distance in ηϕ between any lepton and its closest jet. This variable is used in the 3 channel.

  • S, is a variable used for the 2ss channel to describe the event topology in the transverse plane, and defined using the spread of the ϕ angles of the leptons, ETmiss, and jets as follows:
    S=R(ϕ1,ϕ2,ϕETmiss)·R(ϕj1,ϕj2,)R(ϕ1,,ϕ2,ϕETmiss,ϕj1,ϕj2,),
    where the R is the root mean square that quantifies the spread, R(ϕ1,,ϕn)=1ni=1n(ϕi-ϕ¯)2. The azimuthal angles ϕ are bounded in (-π,π], and the bound is considered in the calculation. The S variable is expected to be on average smaller for the signal than for the background for low H±± mass values.

The distributions of the selected variables for the 2ss, 3 and 4 channels are shown at preselection level in Figs. 12 and 3, respectively. The data are compared with the sum of the prompt lepton, fake lepton and charge-misidentified lepton background predictions. The prompt-lepton backgrounds are estimated with simulations while the background from fake leptons and charge-flipped leptons are measured with the methods described in the previous section. Good agreement is observed in both normalisation and shape, demonstrating that the background contributions are well modelled. The expected signal distributions for various H±± masses are also shown to illustrate the discriminating power of the selected variables.

Fig. 1.

Fig. 1

Distribution of variables used for the signal region optimisation of the 2ss final state. The events are selected with the preselection requirements listed in Table 2. The data (dots) are compared with the predictions (histograms) that include the contributions from the dominant prompt-lepton background (WZ), other prompt-lepton backgrounds, processes where a fake lepton is reconstructed, and electrons with misidentified charge (QMisID). The expected signal distributions corresponding to two H±± masses are also shown, scaled up for visibility. The last bin includes overflows. In each figure the bottom panel shows the ratio of data to the prediction, where the band around unity represents the total uncertainty of the SM prediction

Fig. 2.

Fig. 2

Distribution of variables used for the signal region optimisation of the 3 channel (a detailed description can be found in the caption of Fig. 1)

Fig. 3.

Fig. 3

Distribution of variables used for the signal region optimisation of the 4 channel (a detailed description can be found in the caption of Fig. 1)

The strategy used to extract the signal is based on rectangular cut optimisation using the TMVA package [59]. For each mH±± hypothesis, six signal regions are defined using the following lepton flavour content: in the 2ss channel, three signal regions are optimised separately for ee, eμ and μμ channels; in the 3 channel, the signal regions are optimised separately for events with no same-flavour opposite-sign lepton pairs (SFOS 0, for which the SM background is small) and for events with one or two such pairs (SFOS 1,2); the 4 channel is treated globally, with no further lepton flavour distinction. The selection criteria used to define the signal regions are shown in Table 4. The optimisation is performed as a function of the H±± mass for mH±±=200,300,400 and 500 GeV, and seeks the best expected signal significance. The last optimisation point is applied to mH±±600 GeVas well, since the signal discrimination power does not vary significantly in this regime.

Table 4.

The selection criteria used to define the signal regions

2ss 3 4
Selection criteria e±e± e±μ± μ±μ± SFOS 0 SFOS 1,2
mH±±=200 GeV
ETmiss [GeV] >100 >100 >100 >45 >45 >60
mx [GeV] [25, 130] [15, 150] [35, 150] >160 >170 >230
ΔR±±[rad.] <0.8 <1.8 <0.9 [0.15, 1.57] [0.00, 1.52]
Δϕ(,ETmiss) [rad.] <1.1 <1.3 <1.3
S [rad.] <0.3 <0.3 <0.2
mjets [GeV] [140, 770] [95, 330] [95, 640]
ΔR-jet [rad.] [0.08, 1.88] [0.07, 1.31]
pTleading jet [GeV] >80 >55
pT1 [GeV] >65
ΔR±±min [rad.] [0.16, 1.21]
ΔR±±max [rad.] [0.27, 2.03]
mH±±=300 GeV
ETmiss [GeV] >200 >200 >200 >65 >55 >60
mx [GeV] [105, 340] [80, 320] [80, 320] >170 >210 >270
ΔR±± [rad.] <1.4 <1.8 <1.8 [0.18, 2.23] [0.08, 2.23]
Δϕ(,ETmiss) [rad.] <2.1 <2.4 <2.4
S [rad.] <0.4 <0.4 <0.4
mjets [GeV] [180, 770] [130, 640] [130, 640]
ΔRj [rad.] [0.27, 2.37] [0.21, 2.08]
pTleading jet [GeV] >95 >80
pT1 [GeV] >45
ΔR±±min [rad.] [0.09, 1.97]
ΔR±±max [rad.] [0.44, 2.68]
mH±±=400 GeV
ETmiss [GeV] >200 >200 >200 >65 >85 >60
mx [GeV] [105, 340] [80, 350] [80, 350] >230 >250 >270
ΔR±± [rad.] <2.2 <1.8 <1.8 [0.22, 2.39] [0.29, 2.69]
Δϕ(,ETmiss) [rad.] <2.4 <2.4 <2.4
S [rad.] <0.6 <0.6 <0.5
mjets [GeV] [280, 1200] [220, 1200] [220, 1200]
ΔRj [rad.] [0.30, 2.59] [0.31, 2.30]
pTleading jet [GeV] >120 >100
pT1 [GeV] >110
ΔR±±min [rad.] [0.39, 2.22]
ΔR±±max [rad.] [0.55, 2.90]
mH±±=500–700 GeV
ETmiss [GeV] >250 >250 >250 >120 >100 >60
mx [GeV] [105, 730] [110, 440] [110, 440] >230 >300 >370
ΔR±± [rad.] <2.6 <2.2 <2.2 [0.39, 3.11] [0.29, 2.85]
Δϕ(,ETmiss) [rad.] <2.6 <2.4 <2.4
S [rad.] <1.1 <1.1 <1.1
mjets [GeV] >440 >470 >470
ΔRj [rad.] [0.60, 2.68] [0.31, 2.53]
pTleading jet [GeV] >130 >130
pT1 [GeV] >160
ΔR±±min [rad.] [0.53, 3.24]
ΔR±±max [rad.] [0.59, 2.94]

The variables are described in Sect. 5

In order to verify the background estimate reliability for the signal region, three further checks were performed: the optimised cuts were applied individually, the cuts were applied successively, or each cut was inverted while the other cuts were applied. The agreement between data and prediction remains adequate for all those cases.

Systematic uncertainties

The theoretical uncertainties associated with the signal prediction originate from the PDFs, the matrix element calculation and the parton shower simulation. The uncertainties related to PDFs are evaluated using the Hessian method provided in LHAPDF6 [60] and are found to be in the range from 2.5% to 4.5%. The uncertainty of the parton shower simulation is assessed by comparing PYTHIA (with A14 tune) and Herwig++ (with UEEE5 tune [61]), and is found to be 2.4%, 1.7%, and 3.8% for the 2ss, 3, and 4 channels, respectively. The higher-order corrections are assumed to induce an additional 15% uncertainty in the cross-section calculations [33]. Combining those uncertainties in quadrature, an overall uncertainty of 17% is obtained for the signal normalisation.

The theoretical uncertainties associated with the largest SM backgrounds, VV [48] (including same-sign WWqq and WZ processes) and tt¯V [62], are estimated using dedicated MC samples, where the factorisation and renormalisation scales are varied independently by factors of 2 and 0.5 and the parton shower parameters are varied within the given model uncertainties. The theoretical uncertainties obtained are 24% for VV and 17% for tt¯V. The uncertainties related to PDFs are found to be negligible. The uncertainty associated with the Vγ contributions is taken to be 25%, as indicated by dedicated studies using converted photons. The uncertainties related to the VVV and tZ process predictions are taken from the respective inclusive cross-section measurements [63, 64]. For other rare backgrounds which have no dedicated measurements yet (ttt¯, tt¯W+W-), uncertainties of 50% are assumed and are found to have a negligible impact on the sensitivity.

The experimental uncertainties arise from the accuracy of the detector simulation and from the uncertainties associated with the data-driven methods that are used to estimate the instrumental backgrounds. These uncertainties originate from the following sources:

  • The uncertainties related to event reconstruction include the lepton [52, 65] and the jet [66] energy scales and resolutions and the uncertainties in the reconstruction of ETmiss  [58]. The impact of this type of uncertainty on the signal and background yields is in the range 3–8% and 10–30%, respectively.

  • The uncertainties related to the efficiencies of electron [51] and muon [52] reconstruction and identification, including the uncertainties in the trigger efficiency are estimated in dedicated studies. The impact of this type of uncertainty on the signal and background yields is found to be in the range 4–6% and 2–5%, respectively. The uncertainties related to the b-jet identification algorithms, used in the analysis to veto events containing b-jets, are found to be negligible.

  • The uncertainties originating from data-taking conditions include the luminosity measurement and the pile-up simulation procedure. The uncertainty of the integrated luminosity is 2.1%, determined using a methodology similar to that detailed in Ref. [67]. The uncertainty from the pile-up simulation is about 5%.

  • The uncertainties related to the background contributions from electron charge misidentification are 22–28% for the 2ss ee and eμ channels. The uncertainties of the fake-lepton contributions range from 50 to 250%, and mainly originate from the fake factors (2ss and 3 channels) and the scale factors for MC simulation (4 channel) described in Sect. 4.3.2 and the statistics of the control samples. The uncertainties exceed 100% in some cases due to the subtraction of the prompt-lepton contributions in the fake-lepton control regions.

The theoretical and experimental systematic uncertainties described above are assumed to be correlated amongst the various signal regions in the interpretation of the final results. Overall, the sensitivity of the search is dominated by the statistical uncertainty of the event yield in the signal regions.

Results

The expected and observed event yields in the signal regions are shown in Fig. 4 and Table 5. For a H±± mass of 200 GeV, substantial signal yield is expected in all channels, and the analysis sensitivity is found to be comparable across the 2ss, 3 and 4 channels. No significant excess has been observed. Table 5 also includes the overall signal acceptance A, defined as the number of selected events selected in a given channel divided by the total number of ppH±±HW±W±WW events and representing the signal reduction due to phase space acceptance, branching ratio and detector efficiency.

Fig. 4.

Fig. 4

Event yields in the signal regions optimised for the mH±±= 200, 300, 400 and 500 GeV searches. The bottom panel shows the ratio of the data to the total background prediction, where the band illustrates the total uncertainty of the SM background. The error bars attributed to data are estimated assuming a Poisson distribution with the average equal to the respective yields. The signal prediction is represented as a dotted histogram, stacked on the SM background

Table 5.

Event yields in the signal regions of corresponding targeted masses of H±±

2ss 3 4
Subchannel e±e± e±μ± μ±μ± SFOS 0 SFOS 1,2
mH±±=200 GeV
Prompt lepton 0.5±0.2 0.3±0.2 1.3±0.6 0.3±0.1 1.4±0.5 0.07±0.03
QMisID 0.6±0.2 0.4±0.1
Fake lepton 1±1 <0.4 0.4±0.3 0.2±0.1 0.2±0.1 0.03±0.02
Total background 2±1 0.6±0.3 1.7±0.7 0.5±0.1 1.7±0.6 0.11±0.05
Signal 1.1±0.2 2.3±0.4 2.4±0.4 1.8±0.3 5.0±0.9 1.1±0.2
A [%] 0.037 0.080 0.082 0.061 0.17 0.038
n95 12.3 7.1 7.5 4.1 7.7 3.8
Data 3 2 2 1 2 0
mH±±=300 GeV
Prompt lepton 0.1±0.1 0.9±0.4 0.02±0.02 0.4±0.1 4±1 0.3±0.1
QMisID 0.1±0.1 0.07±0.04
Fake lepton 0.4±0.5 <0.2 <0.4 0.3±0.2 0.8±0.4 0.2±0.2
Total background 0.7±0.5 1.0±0.5 0.02±0.02 0.8±0.2 5±2 0.5±0.2
Signal 0.16±0.03 0.6±0.1 0.29±0.05 0.6±0.1 1.8±0.3 0.43±0.08
A [%] 0.027 0.10 0.049 0.11 0.30 0.071
n95 4.0 9.6 3.0 3.1 22.7 3.8
Data 0 3 0 0 11 0
mH±±=400 GeV
Prompt lepton 0.7±0.3 1.0±0.4 0.2±0.1 0.3±0.1 4±1 0.3±0.1
QMisID 0.3±0.1 0.2±0.1
Fake lepton 0.4±0.5 <0.3 <0.4 0.3±0.2 0.2±0.1 0.05±0.04
Total background 1.4±0.6 1.2±0.5 0.3±0.1 0.6±0.2 4±1 0.4±0.1
Signal 0.20±0.04 0.38±0.07 0.19±0.03 0.23±0.04 0.6±0.1 0.17±0.03
A [%] 0.11 0.21 0.11 0.13 0.36 0.092
n95 10.4 18.3 6.4 3.1 10.4 4.3
Data 2 6 1 0 4 1
mH±±=500 GeV
Prompt lepton 1.0±0.4 0.7±0.3 0.3±0.2 0.4±0.1 3±1 0.2±0.1
QMisID 0.3±0.1 0.2±0.1
Fake lepton 0.2±0.5 0.3±0.5 <0.4 0.11±0.06 0.10±0.05 0.2±0.2
Total background 1.6±0.6 1.2±0.6 0.3±0.2 0.5±0.1 3.0±0.8 0.4±0.2
Signal 0.10±0.02 0.16±0.03 0.07±0.01 0.09±0.02 0.24±0.04 0.06±0.01
A [%] 0.16 0.25 0.11 0.14 0.37 0.098
A [%] mH±±=600 GeV 0.22 0.36 0.16 0.17 0.44 0.11
A [%] mH±±=700 GeV 0.26 0.38 0.17 0.19 0.48 0.12
n95 8.6 12.7 3.8 3.0 7.9 4.9
Data 4 3 0 0 2 3

The signal yield is for the corresponding mass point and is normalised to the luminosity of 36.1fb-1. The dominant background from prompt-lepton sources is from the WZ process in the 2ss channel. For the 3 and 4 channels, the dominant background from prompt-lepton sources is from WZ and tt¯V processes. The overall signal acceptance A and the upper limit of extra contribution to each signal region at 95% confidence level n95 are also presented. The data and SM prediction yields obtained for mH±±=500 GeV are also valid for mH±±=600 and 700 GeV

The statistical analysis of the results is based on a likelihood ratio test [68] using the CLs method [69]. The parameter of interest is the signal strength, defined as the cross-section of the hypothetical contribution from physics beyond the SM in units of the cross-section of the benchmark model. The likelihood function is constructed from Poisson probability distributions of counting experiments for each of the six channels in each signal region. The systematic uncertainties are treated as nuisance parameters implemented in the likelihood functions with Gaussian constraints.

The expected and observed upper limits of the H±±W±W± cross-section at 95% confidence level (CL), obtained from the combination of 2ss, 3 and 4 channels for the six H±± mass hypotheses are shown in Fig. 5. Assuming a linear interpolation of the sensitivity between neighbouring mass hypotheses, and the cross-section of the benchmark model, the observed (expected) lower limit on the mass of the H±± boson is 220 GeV (250 GeV) at 95% CL.

Fig. 5.

Fig. 5

Observed and expected upper limits for ppH±±HW±W±WW cross-section times branching fraction at 95% CL obtained from the combination of 2ss, 3 and 4 channels. The region above the observed limit is excluded by the measurement. The bands represent the expected exclusion curves within one and two standard deviations. The theoretical prediction [3] including the NLO QCD corrections [33] is also shown and is excluded for mH±± < 220 GeV

Conclusion

A search for the pair production of doubly charged Higgs scalar bosons with subsequent decays into W bosons is performed in proton–proton collisions at a centre-of-mass energy of 13 TeV. The data sample was collected by the ATLAS experiment at the LHC and corresponds to an integrated luminosity of 36.1fb-1. The search for the H±±W±W± decay mode, not considered in previous analyses at colliders, is motivated by a model with an extended scalar sector that includes a triplet in addition to the Standard Model scalar doublet. The analysis proceeds through the selection of multi-lepton events in three channels (a pair of same-sign leptons, three leptons and four leptons) with missing transverse momentum and jets. The signal region is optimised as a function of the H±± mass. The data are found to be in good agreement with the Standard Model predictions for all channels investigated. Combining those channels, the model considered is excluded at 95% confidence level for H±± boson masses between 200 and 220 GeV.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [70].

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2). Angular distance is measured in units of ΔR(Δη)2+(Δϕ)2.

References

  • 1.Schechter J, Valle JWF. Neutrino masses in SU(2)U(1) theories. Phys. Rev. D. 1980;22:2227. doi: 10.1103/PhysRevD.22.2227. [DOI] [Google Scholar]
  • 2.Fileviez Perez P, Han T, Huang G-y, Li T, Wang K. Neutrino masses and the CERN LHC: Testing the type II seesaw mechanisim. Phys. Rev. D. 2008;78:015018. doi: 10.1103/PhysRevD.78.015018. [DOI] [Google Scholar]
  • 3.A. Arhrib et al., The Higgs potential in the type II seesaw model. Phys. Rev. D 84, 095005 (2011) (We would like to thank Gilbert Moultaka for the implementation in CalcHEP of the doublet-triplet-model and helpful discussions on the phenomenological aspects of the analysis). arXiv: 1105.1925 [hep-ph]
  • 4.Kanemura S, Kikuchi M, Yagyu K, Yokoya H. Bounds on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario. Phys. Rev. D. 2014;90:115018. doi: 10.1103/PhysRevD.90.115018. [DOI] [Google Scholar]
  • 5.Kang Z, Li J, Li T, Liu Y, Ning G-Z. Light doubly charged Higgs boson via the WW channel at LHC. Eur. Phys. J. C. 2015;75:574. doi: 10.1140/epjc/s10052-015-3774-1. [DOI] [Google Scholar]
  • 6.OPAL collaboration, Search for doubly charged Higgs bosons with the OPAL detector at LEP. Phys. Lett. B 526, 221 (2002). arXiv: hep-ex/0111059
  • 7.H1 Collaboration, Search for doubly-charged Higgs boson production at HERA. Phys. Lett. B 638, 432 (2006). arXiv: hep-ex/0604027
  • 8.CDF Collaboration, Search for new physics in high pT like-sign Dilepton events at CDF II. Phys. Rev. Lett. 107, 181801 (2011). arXiv: 1108.0101 [hep-ex] [DOI] [PubMed]
  • 9.ATLAS Collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at s=7TeV with the ATLAS detector. Eur. Phys. J. C 72, 2244 (2012). arXiv: 1210.5070 [hep-ex]
  • 10.CMS Collaboration, A search for a doubly-charged Higgs boson in pp collisions at s=7TeV. Eur. Phys. J. C 72, 2189 (2012). arXiv: 1207.2666 [hep-ex]
  • 11.ATLAS Collaboration, Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton–proton collisions at s=13TeV. Eur. Phys. J. C 78, 199 (2018). arXiv: 1710.09748 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 12.CMS Collaboration, Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets. Phys. Rev. Lett. 114, 051801 (2015). arXiv: 1410.6315 [hep-ex] [DOI] [PubMed]
  • 13.CMS Collaboration, Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at s=13TeV. Phys. Rev. Lett. 120, 081801 (2018). arXiv: 1709.05822 [hep-ex] [DOI] [PubMed]
  • 14.Georgi H, Machacek M. Doubly charged Higgs bosons. Nucl. Phys. 1985;B262:463. doi: 10.1016/0550-3213(85)90325-6. [DOI] [Google Scholar]
  • 15.Englert C, Re E, Spannowsky M. Triplet Higgs boson collider phenomenology after the LHC. Phys. Rev. 2013;D87:095014. [Google Scholar]
  • 16.ATLAS Collaboration, Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at s=13TeV (2018). arXiv: 1802.03388 [hep-ex]
  • 17.ATLAS Collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at s=13TeV with the ATLAS detector. (2018). arXiv: 1803.02762 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 18.ATLAS Collaboration, Search for supersymmetry in final states with two same-sign or three leptons and jets using 36fb-1 of s=13TeV pp collision data with the ATLAS detector. JHEP 09, 084 (2017). arXiv: 1706.03731 [hep-ex]
  • 19.ATLAS Collaboration, The ATLAS experiment at the CERN large Hadron Collider. JINST 3, S08003 (2008)
  • 20.ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, ATLAS-TDR-19 (2010). https://cds.cern.ch/record/1291633. ATLAS Insertable B-Layer Technical Design Report Addendum, ATLAS-TDR-19-ADD-1 (2012). https://cds.cern.ch/record/1451888
  • 21.ATLAS Collaboration, Performance of the ATLAS trigger system in 2015. Eur. Phys. J. C 77, 317 (2017). arXiv: 1611.09661 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 22.ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv: 1005.4568 [physics.ins-det]
  • 23.Agostinelli S, et al. Geant4: a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 24.ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. ATL-PHYS-PUB-2010-013 (2010). https://cds.cern.ch/record/1300517
  • 25.T. Sjöstrand, S. Mrenna, P. Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv: hep-ph/0603175
  • 26.T. Sjöstrand, S. Mrenna, P. Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). arXiv: 0710.3820 [hep-ph]
  • 27.ATLAS Collaboration, Monte Carlo Generators for the Production of a W or Z/γ Boson in Association with Jets at ATLAS in Run 2. ATL-PHYS-PUB-2016-003. (2015). https://cds.cern.ch/record/2120133
  • 28.Martin A, Stirling WJ, Thorne RS, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 29.Belyaev A, Christensen ND, Pukhov A. CalcHEP 3.4 for collider physics within and beyond the Standard Model. Comput. Phys. Commun. 2013;184:1729. doi: 10.1016/j.cpc.2013.01.014. [DOI] [Google Scholar]
  • 30.Pumplin J. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 31.Nadolsky PM. Implications of CTEQ global analysis for collider observables. Phys. Rev. D. 2008;78:013004. doi: 10.1103/PhysRevD.78.013004. [DOI] [Google Scholar]
  • 32.ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data. ATL-PHYS-PUB-2014-021 (2014). https://cds.cern.ch/record/1966419
  • 33.Muhlleitner M, Spira M. A Note on doubly charged Higgs pair production at hadron colliders. Phys. Rev. D. 2003;68:117701. doi: 10.1103/PhysRevD.68.117701. [DOI] [Google Scholar]
  • 34.Lange DJ. The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A. 2001;462:152. doi: 10.1016/S0168-9002(01)00089-4. [DOI] [Google Scholar]
  • 35.T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 02, 007 (2009). arXiv: 0811.4622 [hep-ph]
  • 36.Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 37.Alwall J, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP. 2014;07:079. doi: 10.1007/JHEP07(2014)079. [DOI] [Google Scholar]
  • 38.Ball RD, et al. Parton distributions for the LHC Run II. JHEP. 2015;04:040. doi: 10.1007/JHEP04(2015)040. [DOI] [Google Scholar]
  • 39.Bahr M, et al. Herwig++ physics and manual. Eur. Phys. J. C. 2008;58:639. doi: 10.1140/epjc/s10052-008-0798-9. [DOI] [Google Scholar]
  • 40.Seymour MH, Siodmok A. Constraining MPI models using σeff and recent Tevatron and LHC Underlying Event data. JHEP. 2013;10:113. doi: 10.1007/JHEP10(2013)113. [DOI] [Google Scholar]
  • 41.Skands P. Tuning Monte Carlo generators: The Perugia tunes. Phys. Rev. D. 2010;82:074018. doi: 10.1103/PhysRevD.82.074018. [DOI] [Google Scholar]
  • 42.Re E. Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C. 2011;71:1547. doi: 10.1140/epjc/s10052-011-1547-z. [DOI] [Google Scholar]
  • 43.Alioli S, Nason P, Oleari C, Re E. NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. JHEP. 2009;09:111. doi: 10.1088/1126-6708/2009/09/111. [DOI] [Google Scholar]
  • 44.Grazzini M, Kallweit S, Rathlev D, Wiesemann M. W±Z production at hadron colliders in NNLO QCD. Phys. Lett. B. 2016;761:179. doi: 10.1016/j.physletb.2016.08.017. [DOI] [PubMed] [Google Scholar]
  • 45.Caola F, Melnikov K, Rontsch R, Tancredi L. QCD corrections to ZZ production in gluon fusion at the LHC. Phys. Rev. D. 2015;92:094028. doi: 10.1103/PhysRevD.92.094028. [DOI] [Google Scholar]
  • 46.Grazzini M, Kallweit S, Rathlev D. ZZ production at the LHC: Fiducial cross sections and distributions in NNLO QCD. Phys. Lett. B. 2015;750:407. doi: 10.1016/j.physletb.2015.09.055. [DOI] [Google Scholar]
  • 47.ATLAS Collaboration, Modelling of the tt¯H and tt¯V(V=W,Z) processes for s=13TeV ATLAS analyses, ATL-PHYS-PUB-2016-005 (2016). https://cds.cern.ch/record/2120826
  • 48.ATLAS Collaboration, Multi-Boson Simulation for 13 TeV ATLAS Analyses, ATL-PHYS-PUB-2017-005 (2017). https://cds.cern.ch/record/2261933
  • 49.ATLAS Collaboration, Validation of Monte Carlo event generators in the ATLAS Collaboration for LHC Run 2, ATL-PHYS-PUB-2016-001. (2016). https://cds.cern.ch/record/2119984
  • 50.ATLAS Collaboration, Vertex Reconstruction Performance of the ATLAS Detector at s=13TeV, ATL-PHYS-PUB-2015-026 (2015). https://cds.cern.ch/record/2037717
  • 51.ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, ATLAS-CONF-2016-024 (2016). https://cds.cern.ch/record/2157687 [DOI] [PMC free article] [PubMed]
  • 52.ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton–proton collision data at s=13TeV. Eur. Phys. J. C 76, 292 (2016). arXiv: 1603.05598 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 53.ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1. Eur. Phys. J. C 77, 490 (2017). arXiv: 1603.02934 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 54.Cacciari M, Salam GP, Soyez G. The anti-kt jet clustering algorithm. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 55.Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 56.ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at s=8TeV using the ATLAS detector. Eur. Phys. J. C 76, 581 (2016). arXiv: 1510.03823 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 57.ATLAS Collaboration, Performance of b-jet identification in the ATLAS experiment. JINST 11, P04008 (2016). arXiv: 1512.01094 [hep-ex]
  • 58.ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at s=13TeV, (2018), arXiv: 1802.08168 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 59.A. Hoecker et al., TMVA: Toolkit for Multivariate Data Analysis, PoS ACAT, 040 (2007). arXiv: physics/0703039
  • 60.Buckley A, et al. LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C. 2015;75:132. doi: 10.1140/epjc/s10052-015-3318-8. [DOI] [Google Scholar]
  • 61.Gieseke S, Röhr C, Siódmok A. Colour reconnections in Herwig++ Eur. Phys. J. C. 2012;72:2225. doi: 10.1140/epjc/s10052-012-2225-5. [DOI] [Google Scholar]
  • 62.ATLAS Collaboration, Studies on top-quark Monte Carlo modelling with Sherpa and MG5\_aMC@NLO, ATL-PHYS-PUB-2017-007 (2017). https://cds.cern.ch/record/2261938
  • 63.ATLAS Collaboration Search for triboson W±W±W production in pp collisions at s=8TeV with the ATLAS detector. Eur. Phys. J. C. 2017;77:171. doi: 10.1140/epjc/s10052-017-4719-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.ATLAS Collaboration Measurement of the production cross-section of a single top quark in association with a Z boson in proton-proton collisions at 13 TeV with the ATLAS detector. Phys. Lett. B. 2018;780:557. doi: 10.1016/j.physletb.2018.03.023. [DOI] [Google Scholar]
  • 65.ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using data collected in 2015 at s=13TeV, ATL-PHYS-PUB-2016-015, 2016. https://cds.cern.ch/record/2203514
  • 66.ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at s=13TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 072002, arXiv: 1703.09665 [hep-ex]
  • 67.ATLAS Collaboration, Luminosity determination in pp collisions at s=8TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 76, 653 (2016). arXiv:1608.03953 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 68.Cowan G, Cranmer K, Gross E, Vitells O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C. 2011;71:1554. doi: 10.1140/epjc/s10052-011-1554-0. [DOI] [Google Scholar]
  • 69.Read AL. Presentation of search results: the CLs technique. J. Phys. G. 2002;28:2693. doi: 10.1088/0954-3899/28/10/313. [DOI] [Google Scholar]
  • 70.ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-GEN-PUB-2016-002. https://cds.cern.ch/record/2202407

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES