Skip to main content
Springer logoLink to Springer
. 2019 Jan 10;79(1):20. doi: 10.1140/epjc/s10052-018-6482-9

Measurement of differential cross sections for inclusive isolated-photon and photon+jet production in proton-proton collisions at s=13TeV

A M Sirunyan 1, A Tumasyan 1, W Adam 2, F Ambrogi 2, E Asilar 2, T Bergauer 2, J Brandstetter 2, E Brondolin 2, M Dragicevic 2, J Erö 2, A Escalante Del Valle 2, M Flechl 2, R Frühwirth 2, V M Ghete 2, J Hrubec 2, M Jeitler 2, N Krammer 2, I Krätschmer 2, D Liko 2, T Madlener 2, I Mikulec 2, N Rad 2, H Rohringer 2, J Schieck 2, R Schöfbeck 2, M Spanring 2, D Spitzbart 2, A Taurok 2, W Waltenberger 2, J Wittmann 2, C-E Wulz 2, M Zarucki 2, V Chekhovsky 3, V Mossolov 3, J Suarez Gonzalez 3, E A De Wolf 4, D Di Croce 4, X Janssen 4, J Lauwers 4, M Pieters 4, M Van De Klundert 4, H Van Haevermaet 4, P Van Mechelen 4, N Van Remortel 4, S Abu Zeid 5, F Blekman 5, J D’Hondt 5, I De Bruyn 5, J De Clercq 5, K Deroover 5, G Flouris 5, D Lontkovskyi 5, S Lowette 5, I Marchesini 5, S Moortgat 5, L Moreels 5, Q Python 5, K Skovpen 5, S Tavernier 5, W Van Doninck 5, P Van Mulders 5, I Van Parijs 5, D Beghin 6, B Bilin 6, H Brun 6, B Clerbaux 6, G De Lentdecker 6, H Delannoy 6, B Dorney 6, G Fasanella 6, L Favart 6, R Goldouzian 6, A Grebenyuk 6, A K Kalsi 6, T Lenzi 6, J Luetic 6, N Postiau 6, E Starling 6, L Thomas 6, C Vander Velde 6, P Vanlaer 6, D Vannerom 6, Q Wang 6, T Cornelis 7, D Dobur 7, A Fagot 7, M Gul 7, I Khvastunov 7, D Poyraz 7, C Roskas 7, D Trocino 7, M Tytgat 7, W Verbeke 7, B Vermassen 7, M Vit 7, N Zaganidis 7, H Bakhshiansohi 8, O Bondu 8, S Brochet 8, G Bruno 8, C Caputo 8, P David 8, C Delaere 8, M Delcourt 8, B Francois 8, A Giammanco 8, G Krintiras 8, V Lemaitre 8, A Magitteri 8, A Mertens 8, M Musich 8, K Piotrzkowski 8, A Saggio 8, M Vidal Marono 8, S Wertz 8, J Zobec 8, F L Alves 9, G A Alves 9, L Brito 9, G Correia Silva 9, C Hensel 9, A Moraes 9, M E Pol 9, P Rebello Teles 9, E Belchior Batista Das Chagas 10, W Carvalho 10, J Chinellato 10, E Coelho 10, E M Da Costa 10, G G Da Silveira 10, D De Jesus Damiao 10, C De Oliveira Martins 10, S Fonseca De Souza 10, H Malbouisson 10, D Matos Figueiredo 10, M Melo De Almeida 10, C Mora Herrera 10, L Mundim 10, H Nogima 10, W L Prado Da Silva 10, L J Sanchez Rosas 10, A Santoro 10, A Sznajder 10, M Thiel 10, E J Tonelli Manganote 10, F Torres Da Silva De Araujo 10, A Vilela Pereira 10, S Ahuja 11, C A Bernardes 11, L Calligaris 11, T R Fernandez Perez Tomei 11, E M Gregores 11, P G Mercadante 11, S F Novaes 11, Sandra S Padula 11, D Romero Abad 11, A Aleksandrov 12, R Hadjiiska 12, P Iaydjiev 12, A Marinov 12, M Misheva 12, M Rodozov 12, M Shopova 12, G Sultanov 12, A Dimitrov 13, L Litov 13, B Pavlov 13, P Petkov 13, W Fang 14, X Gao 14, L Yuan 14, M Ahmad 15, J G Bian 15, G M Chen 15, H S Chen 15, M Chen 15, Y Chen 15, C H Jiang 15, D Leggat 15, H Liao 15, Z Liu 15, F Romeo 15, S M Shaheen 15, A Spiezia 15, J Tao 15, C Wang 15, Z Wang 15, E Yazgan 15, H Zhang 15, J Zhao 15, Y Ban 16, G Chen 16, A Levin 16, J Li 16, L Li 16, Q Li 16, Y Mao 16, S J Qian 16, D Wang 16, Z Xu 16, Y Wang 17, C Avila 18, A Cabrera 18, C A Carrillo Montoya 18, L F Chaparro Sierra 18, C Florez 18, C F González Hernández 18, M A Segura Delgado 18, B Courbon 19, N Godinovic 19, D Lelas 19, I Puljak 19, T Sculac 19, Z Antunovic 20, M Kovac 20, V Brigljevic 21, D Ferencek 21, K Kadija 21, B Mesic 21, A Starodumov 21, T Susa 21, M W Ather 22, A Attikis 22, M Kolosova 22, G Mavromanolakis 22, J Mousa 22, C Nicolaou 22, F Ptochos 22, P A Razis 22, H Rykaczewski 22, M Finger 23, M Finger Jr 23, E Ayala 24, E Carrera Jarrin 25, A Ellithi Kamel 26, M A Mahmoud 26, E Salama 26, S Bhowmik 27, A Carvalho Antunes De Oliveira 27, R K Dewanjee 27, K Ehataht 27, M Kadastik 27, M Raidal 27, C Veelken 27, P Eerola 28, H Kirschenmann 28, J Pekkanen 28, M Voutilainen 28, J Havukainen 29, J K Heikkilä 29, T Järvinen 29, V Karimäki 29, R Kinnunen 29, T Lampén 29, K Lassila-Perini 29, S Laurila 29, S Lehti 29, T Lindén 29, P Luukka 29, T Mäenpää 29, H Siikonen 29, E Tuominen 29, J Tuominiemi 29, T Tuuva 30, M Besancon 31, F Couderc 31, M Dejardin 31, D Denegri 31, J L Faure 31, F Ferri 31, S Ganjour 31, A Givernaud 31, P Gras 31, G Hamel de Monchenault 31, P Jarry 31, C Leloup 31, E Locci 31, J Malcles 31, G Negro 31, J Rander 31, A Rosowsky 31, M Ö Sahin 31, M Titov 31, A Abdulsalam 32, C Amendola 32, I Antropov 32, F Beaudette 32, P Busson 32, C Charlot 32, R Granier de Cassagnac 32, I Kucher 32, S Lisniak 32, A Lobanov 32, J Martin Blanco 32, M Nguyen 32, C Ochando 32, G Ortona 32, P Pigard 32, R Salerno 32, J B Sauvan 32, Y Sirois 32, A G Stahl Leiton 32, A Zabi 32, A Zghiche 32, J-L Agram 33, J Andrea 33, D Bloch 33, J-M Brom 33, E C Chabert 33, V Cherepanov 33, C Collard 33, E Conte 33, J-C Fontaine 33, D Gelé 33, U Goerlach 33, M Jansová 33, A-C Le Bihan 33, N Tonon 33, P Van Hove 33, S Gadrat 34, S Beauceron 35, C Bernet 35, G Boudoul 35, N Chanon 35, R Chierici 35, D Contardo 35, P Depasse 35, H El Mamouni 35, J Fay 35, L Finco 35, S Gascon 35, M Gouzevitch 35, G Grenier 35, B Ille 35, F Lagarde 35, I B Laktineh 35, H Lattaud 35, M Lethuillier 35, L Mirabito 35, A L Pequegnot 35, S Perries 35, A Popov 35, V Sordini 35, M Vander Donckt 35, S Viret 35, S Zhang 35, T Toriashvili 36, Z Tsamalaidze 37, C Autermann 38, L Feld 38, M K Kiesel 38, K Klein 38, M Lipinski 38, M Preuten 38, M P Rauch 38, C Schomakers 38, J Schulz 38, M Teroerde 38, B Wittmer 38, V Zhukov 38, A Albert 39, D Duchardt 39, M Endres 39, M Erdmann 39, T Esch 39, R Fischer 39, S Ghosh 39, A Güth 39, T Hebbeker 39, C Heidemann 39, K Hoepfner 39, H Keller 39, S Knutzen 39, L Mastrolorenzo 39, M Merschmeyer 39, A Meyer 39, P Millet 39, S Mukherjee 39, T Pook 39, M Radziej 39, H Reithler 39, M Rieger 39, F Scheuch 39, A Schmidt 39, D Teyssier 39, G Flügge 40, O Hlushchenko 40, B Kargoll 40, T Kress 40, A Künsken 40, T Müller 40, A Nehrkorn 40, A Nowack 40, C Pistone 40, O Pooth 40, H Sert 40, A Stahl 40, M Aldaya Martin 41, T Arndt 41, C Asawatangtrakuldee 41, I Babounikau 41, K Beernaert 41, O Behnke 41, U Behrens 41, A Bermúdez Martínez 41, D Bertsche 41, A A Bin Anuar 41, K Borras 41, V Botta 41, A Campbell 41, P Connor 41, C Contreras-Campana 41, F Costanza 41, V Danilov 41, A De Wit 41, M M Defranchis 41, C Diez Pardos 41, D Domínguez Damiani 41, G Eckerlin 41, T Eichhorn 41, A Elwood 41, E Eren 41, E Gallo 41, A Geiser 41, J M Grados Luyando 41, A Grohsjean 41, P Gunnellini 41, M Guthoff 41, M Haranko 41, A Harb 41, J Hauk 41, H Jung 41, M Kasemann 41, J Keaveney 41, C Kleinwort 41, J Knolle 41, D Krücker 41, W Lange 41, A Lelek 41, T Lenz 41, K Lipka 41, W Lohmann 41, R Mankel 41, I-A Melzer-Pellmann 41, A B Meyer 41, M Meyer 41, M Missiroli 41, G Mittag 41, J Mnich 41, V Myronenko 41, S K Pflitsch 41, D Pitzl 41, A Raspereza 41, M Savitskyi 41, P Saxena 41, P Schütze 41, C Schwanenberger 41, R Shevchenko 41, A Singh 41, N Stefaniuk 41, H Tholen 41, A Vagnerini 41, G P Van Onsem 41, R Walsh 41, Y Wen 41, K Wichmann 41, C Wissing 41, O Zenaiev 41, R Aggleton 42, S Bein 42, L Benato 42, A Benecke 42, V Blobel 42, M Centis Vignali 42, T Dreyer 42, E Garutti 42, D Gonzalez 42, J Haller 42, A Hinzmann 42, A Karavdina 42, G Kasieczka 42, R Klanner 42, R Kogler 42, N Kovalchuk 42, S Kurz 42, V Kutzner 42, J Lange 42, D Marconi 42, J Multhaup 42, M Niedziela 42, D Nowatschin 42, A Perieanu 42, A Reimers 42, O Rieger 42, C Scharf 42, P Schleper 42, S Schumann 42, J Schwandt 42, J Sonneveld 42, H Stadie 42, G Steinbrück 42, F M Stober 42, M Stöver 42, D Troendle 42, A Vanhoefer 42, B Vormwald 42, M Akbiyik 43, C Barth 43, M Baselga 43, S Baur 43, E Butz 43, R Caspart 43, T Chwalek 43, F Colombo 43, W De Boer 43, A Dierlamm 43, N Faltermann 43, B Freund 43, M Giffels 43, M A Harrendorf 43, F Hartmann 43, S M Heindl 43, U Husemann 43, F Kassel 43, I Katkov 43, S Kudella 43, H Mildner 43, S Mitra 43, M U Mozer 43, Th Müller 43, M Plagge 43, G Quast 43, K Rabbertz 43, M Schröder 43, I Shvetsov 43, G Sieber 43, H J Simonis 43, R Ulrich 43, S Wayand 43, M Weber 43, T Weiler 43, S Williamson 43, C Wöhrmann 43, R Wolf 43, G Anagnostou 44, G Daskalakis 44, T Geralis 44, A Kyriakis 44, D Loukas 44, G Paspalaki 44, I Topsis-Giotis 44, G Karathanasis 45, S Kesisoglou 45, P Kontaxakis 45, A Panagiotou 45, N Saoulidou 45, E Tziaferi 45, K Vellidis 45, K Kousouris 46, I Papakrivopoulos 46, G Tsipolitis 46, I Evangelou 47, C Foudas 47, P Gianneios 47, P Katsoulis 47, P Kokkas 47, S Mallios 47, N Manthos 47, I Papadopoulos 47, E Paradas 47, J Strologas 47, F A Triantis 47, D Tsitsonis 47, M Bartók 48, M Csanad 48, N Filipovic 48, P Major 48, M I Nagy 48, G Pasztor 48, O Surányi 48, G I Veres 48, G Bencze 49, C Hajdu 49, D Horvath 49, Á Hunyadi 49, F Sikler 49, T Á Vámi 49, V Veszpremi 49, G Vesztergombi 49, N Beni 50, S Czellar 50, J Karancsi 50, A Makovec 50, J Molnar 50, Z Szillasi 50, P Raics 51, Z L Trocsanyi 51, B Ujvari 51, S Choudhury 52, J R Komaragiri 52, P C Tiwari 52, S Bahinipati 53, C Kar 53, P Mal 53, K Mandal 53, A Nayak 53, D K Sahoo 53, S K Swain 53, S Bansal 54, S B Beri 54, V Bhatnagar 54, S Chauhan 54, R Chawla 54, N Dhingra 54, R Gupta 54, A Kaur 54, A Kaur 54, M Kaur 54, S Kaur 54, R Kumar 54, P Kumari 54, M Lohan 54, A Mehta 54, K Sandeep 54, S Sharma 54, J B Singh 54, G Walia 54, A Bhardwaj 55, B C Choudhary 55, R B Garg 55, M Gola 55, S Keshri 55, Ashok Kumar 55, S Malhotra 55, M Naimuddin 55, P Priyanka 55, K Ranjan 55, Aashaq Shah 55, R Sharma 55, R Bhardwaj 56, M Bharti 56, R Bhattacharya 56, S Bhattacharya 56, U Bhawandeep 56, D Bhowmik 56, S Dey 56, S Dutt 56, S Dutta 56, S Ghosh 56, K Mondal 56, S Nandan 56, A Purohit 56, P K Rout 56, A Roy 56, S Roy Chowdhury 56, S Sarkar 56, M Sharan 56, B Singh 56, S Thakur 56, P K Behera 57, R Chudasama 58, D Dutta 58, V Jha 58, V Kumar 58, P K Netrakanti 58, L M Pant 58, P Shukla 58, T Aziz 59, M A Bhat 59, S Dugad 59, G B Mohanty 59, N Sur 59, B Sutar 59, RavindraKumar Verma 59, S Banerjee 60, S Bhattacharya 60, S Chatterjee 60, P Das 60, M Guchait 60, Sa Jain 60, S Karmakar 60, S Kumar 60, M Maity 60, G Majumder 60, K Mazumdar 60, N Sahoo 60, T Sarkar 60, S Chauhan 61, S Dube 61, V Hegde 61, A Kapoor 61, K Kothekar 61, S Pandey 61, A Rane 61, S Sharma 61, S Chenarani 62, E Eskandari Tadavani 62, S M Etesami 62, M Khakzad 62, M Mohammadi Najafabadi 62, M Naseri 62, F Rezaei Hosseinabadi 62, B Safarzadeh 62, M Zeinali 62, M Felcini 63, M Grunewald 63, M Abbrescia 64, C Calabria 64, A Colaleo 64, D Creanza 64, L Cristella 64, N De Filippis 64, M De Palma 64, A Di Florio 64, F Errico 64, L Fiore 64, A Gelmi 64, G Iaselli 64, S Lezki 64, G Maggi 64, M Maggi 64, G Miniello 64, S My 64, S Nuzzo 64, A Pompili 64, G Pugliese 64, R Radogna 64, A Ranieri 64, G Selvaggi 64, A Sharma 64, L Silvestris 64, R Venditti 64, P Verwilligen 64, G Zito 64, G Abbiendi 65, C Battilana 65, D Bonacorsi 65, L Borgonovi 65, S Braibant-Giacomelli 65, R Campanini 65, P Capiluppi 65, A Castro 65, F R Cavallo 65, S S Chhibra 65, C Ciocca 65, G Codispoti 65, M Cuffiani 65, G M Dallavalle 65, F Fabbri 65, A Fanfani 65, P Giacomelli 65, C Grandi 65, L Guiducci 65, F Iemmi 65, S Marcellini 65, G Masetti 65, A Montanari 65, F L Navarria 65, A Perrotta 65, F Primavera 65, A M Rossi 65, T Rovelli 65, G P Siroli 65, N Tosi 65, S Albergo 66, A Di Mattia 66, R Potenza 66, A Tricomi 66, C Tuve 66, G Barbagli 67, K Chatterjee 67, V Ciulli 67, C Civinini 67, R D’Alessandro 67, E Focardi 67, G Latino 67, P Lenzi 67, M Meschini 67, S Paoletti 67, L Russo 67, G Sguazzoni 67, D Strom 67, L Viliani 67, L Benussi 68, S Bianco 68, F Fabbri 68, D Piccolo 68, F Ferro 69, F Ravera 69, E Robutti 69, S Tosi 69, A Benaglia 70, A Beschi 70, L Brianza 70, F Brivio 70, V Ciriolo 70, S Di Guida 70, M E Dinardo 70, S Fiorendi 70, S Gennai 70, A Ghezzi 70, P Govoni 70, M Malberti 70, S Malvezzi 70, A Massironi 70, D Menasce 70, L Moroni 70, M Paganoni 70, D Pedrini 70, S Ragazzi 70, T Tabarelli de Fatis 70, S Buontempo 71, N Cavallo 71, A Di Crescenzo 71, F Fabozzi 71, F Fienga 71, G Galati 71, A O M Iorio 71, W A Khan 71, L Lista 71, S Meola 71, P Paolucci 71, C Sciacca 71, E Voevodina 71, P Azzi 72, N Bacchetta 72, D Bisello 72, A Boletti 72, A Bragagnolo 72, R Carlin 72, P Checchia 72, M Dall’Osso 72, P De Castro Manzano 72, T Dorigo 72, U Dosselli 72, F Gasparini 72, U Gasparini 72, A Gozzelino 72, S Lacaprara 72, P Lujan 72, M Margoni 72, A T Meneguzzo 72, P Ronchese 72, R Rossin 72, F Simonetto 72, A Tiko 72, E Torassa 72, M Zanetti 72, P Zotto 72, G Zumerle 72, A Braghieri 73, A Magnani 73, P Montagna 73, S P Ratti 73, V Re 73, M Ressegotti 73, C Riccardi 73, P Salvini 73, I Vai 73, P Vitulo 73, L Alunni Solestizi 74, M Biasini 74, G M Bilei 74, C Cecchi 74, D Ciangottini 74, L Fanò 74, P Lariccia 74, E Manoni 74, G Mantovani 74, V Mariani 74, M Menichelli 74, A Rossi 74, A Santocchia 74, D Spiga 74, K Androsov 75, P Azzurri 75, G Bagliesi 75, L Bianchini 75, T Boccali 75, L Borrello 75, R Castaldi 75, M A Ciocci 75, R Dell’Orso 75, G Fedi 75, F Fiori 75, L Giannini 75, A Giassi 75, M T Grippo 75, F Ligabue 75, E Manca 75, G Mandorli 75, A Messineo 75, F Palla 75, A Rizzi 75, P Spagnolo 75, R Tenchini 75, G Tonelli 75, A Venturi 75, P G Verdini 75, L Barone 76, F Cavallari 76, M Cipriani 76, N Daci 76, D Del Re 76, E Di Marco 76, M Diemoz 76, S Gelli 76, E Longo 76, B Marzocchi 76, P Meridiani 76, G Organtini 76, F Pandolfi 76, R Paramatti 76, F Preiato 76, S Rahatlou 76, C Rovelli 76, F Santanastasio 76, N Amapane 77, R Arcidiacono 77, S Argiro 77, M Arneodo 77, N Bartosik 77, R Bellan 77, C Biino 77, N Cartiglia 77, F Cenna 77, S Cometti 77, M Costa 77, R Covarelli 77, N Demaria 77, B Kiani 77, C Mariotti 77, S Maselli 77, E Migliore 77, V Monaco 77, E Monteil 77, M Monteno 77, M M Obertino 77, L Pacher 77, N Pastrone 77, M Pelliccioni 77, G L Pinna Angioni 77, A Romero 77, M Ruspa 77, R Sacchi 77, K Shchelina 77, V Sola 77, A Solano 77, D Soldi 77, A Staiano 77, S Belforte 78, V Candelise 78, M Casarsa 78, F Cossutti 78, G Della Ricca 78, F Vazzoler 78, A Zanetti 78, D H Kim 79, G N Kim 79, M S Kim 79, J Lee 79, S Lee 79, S W Lee 79, C S Moon 79, Y D Oh 79, S Sekmen 79, D C Son 79, Y C Yang 79, H Kim 80, D H Moon 80, G Oh 80, J Goh 81, T J Kim 81, S Cho 82, S Choi 82, Y Go 82, D Gyun 82, S Ha 82, B Hong 82, Y Jo 82, K Lee 82, K S Lee 82, S Lee 82, J Lim 82, S K Park 82, Y Roh 82, H S Kim 83, J Almond 84, J Kim 84, J S Kim 84, H Lee 84, K Lee 84, K Nam 84, S B Oh 84, B C Radburn-Smith 84, S h Seo 84, U K Yang 84, H D Yoo 84, G B Yu 84, D Jeon 85, H Kim 85, J H Kim 85, J S H Lee 85, I C Park 85, Y Choi 86, C Hwang 86, J Lee 86, I Yu 86, N Barakat 87, V Dudenas 88, A Juodagalvis 88, J Vaitkus 88, I Ahmed 89, Z A Ibrahim 89, M A B Md Ali 89, F Mohamad Idris 89, W A T Wan Abdullah 89, M N Yusli 89, Z Zolkapli 89, H Castilla-Valdez 90, E De La Cruz-Burelo 90, M C Duran-Osuna 90, I Heredia-De La Cruz 90, R Lopez-Fernandez 90, J Mejia Guisao 90, R I Rabadan-Trejo 90, G Ramirez-Sanchez 90, R Reyes-Almanza 90, A Sanchez-Hernandez 90, S Carrillo Moreno 91, C Oropeza Barrera 91, F Vazquez Valencia 91, J Eysermans 92, I Pedraza 92, H A Salazar Ibarguen 92, C Uribe Estrada 92, A Morelos Pineda 93, D Krofcheck 94, S Bheesette 95, P H Butler 95, A Ahmad 96, M Ahmad 96, M I Asghar 96, Q Hassan 96, H R Hoorani 96, A Saddique 96, M A Shah 96, M Shoaib 96, M Waqas 96, H Bialkowska 97, M Bluj 97, B Boimska 97, T Frueboes 97, M Górski 97, M Kazana 97, K Nawrocki 97, M Szleper 97, P Traczyk 97, P Zalewski 97, K Bunkowski 98, A Byszuk 98, K Doroba 98, A Kalinowski 98, M Konecki 98, J Krolikowski 98, M Misiura 98, M Olszewski 98, A Pyskir 98, M Walczak 98, P Bargassa 99, C Beirão Da Cruz E Silva 99, A Di Francesco 99, P Faccioli 99, B Galinhas 99, M Gallinaro 99, J Hollar 99, N Leonardo 99, L Lloret Iglesias 99, M V Nemallapudi 99, J Seixas 99, G Strong 99, O Toldaiev 99, D Vadruccio 99, J Varela 99, A Baginyan 100, A Golunov 100, I Golutvin 100, V Karjavin 100, I Kashunin 100, V Korenkov 100, G Kozlov 100, A Lanev 100, A Malakhov 100, V Matveev 100, V V Mitsyn 100, P Moisenz 100, V Palichik 100, V Perelygin 100, S Shmatov 100, N Skatchkov 100, V Smirnov 100, B S Yuldashev 100, A Zarubin 100, V Golovtsov 101, Y Ivanov 101, V Kim 101, E Kuznetsova 101, P Levchenko 101, V Murzin 101, V Oreshkin 101, I Smirnov 101, D Sosnov 101, V Sulimov 101, L Uvarov 101, S Vavilov 101, A Vorobyev 101, Yu Andreev 102, A Dermenev 102, S Gninenko 102, N Golubev 102, A Karneyeu 102, M Kirsanov 102, N Krasnikov 102, A Pashenkov 102, D Tlisov 102, A Toropin 102, V Epshteyn 103, V Gavrilov 103, N Lychkovskaya 103, V Popov 103, I Pozdnyakov 103, G Safronov 103, A Spiridonov 103, A Stepennov 103, V Stolin 103, M Toms 103, E Vlasov 103, A Zhokin 103, T Aushev 104, M Chadeeva 105, P Parygin 105, D Philippov 105, S Polikarpov 105, E Popova 105, V Rusinov 105, V Andreev 106, M Azarkin 106, I Dremin 106, M Kirakosyan 106, S V Rusakov 106, A Terkulov 106, A Baskakov 107, A Belyaev 107, E Boos 107, M Dubinin 107, L Dudko 107, A Ershov 107, A Gribushin 107, V Klyukhin 107, O Kodolova 107, I Lokhtin 107, I Miagkov 107, S Obraztsov 107, S Petrushanko 107, V Savrin 107, A Snigirev 107, V Blinov 108, T Dimova 108, L Kardapoltsev 108, D Shtol 108, Y Skovpen 108, I Azhgirey 109, I Bayshev 109, S Bitioukov 109, D Elumakhov 109, A Godizov 109, V Kachanov 109, A Kalinin 109, D Konstantinov 109, P Mandrik 109, V Petrov 109, R Ryutin 109, S Slabospitskii 109, A Sobol 109, S Troshin 109, N Tyurin 109, A Uzunian 109, A Volkov 109, A Babaev 110, S Baidali 110, P Adzic 111, P Cirkovic 111, D Devetak 111, M Dordevic 111, J Milosevic 111, J Alcaraz Maestre 112, A Álvarez Fernández 112, I Bachiller 112, M Barrio Luna 112, J A Brochero Cifuentes 112, M Cerrada 112, N Colino 112, B De La Cruz 112, A Delgado Peris 112, C Fernandez Bedoya 112, J P Fernández Ramos 112, J Flix 112, M C Fouz 112, O Gonzalez Lopez 112, S Goy Lopez 112, J M Hernandez 112, M I Josa 112, D Moran 112, A Pérez-Calero Yzquierdo 112, J Puerta Pelayo 112, I Redondo 112, L Romero 112, M S Soares 112, A Triossi 112, C Albajar 113, J F de Trocóniz 113, J Cuevas 114, C Erice 114, J Fernandez Menendez 114, S Folgueras 114, I Gonzalez Caballero 114, J R González Fernández 114, E Palencia Cortezon 114, V Rodríguez Bouza 114, S Sanchez Cruz 114, P Vischia 114, J M Vizan Garcia 114, I J Cabrillo 115, A Calderon 115, B Chazin Quero 115, J Duarte Campderros 115, M Fernandez 115, P J Fernández Manteca 115, A García Alonso 115, J Garcia-Ferrero 115, G Gomez 115, A Lopez Virto 115, J Marco 115, C Martinez Rivero 115, P Martinez Ruiz del Arbol 115, F Matorras 115, J Piedra Gomez 115, C Prieels 115, T Rodrigo 115, A Ruiz-Jimeno 115, L Scodellaro 115, N Trevisani 115, I Vila 115, R Vilar Cortabitarte 115, D Abbaneo 116, B Akgun 116, E Auffray 116, P Baillon 116, A H Ball 116, D Barney 116, J Bendavid 116, M Bianco 116, A Bocci 116, C Botta 116, T Camporesi 116, M Cepeda 116, G Cerminara 116, E Chapon 116, Y Chen 116, G Cucciati 116, D d’Enterria 116, A Dabrowski 116, V Daponte 116, A David 116, A De Roeck 116, N Deelen 116, M Dobson 116, T du Pree 116, M Dünser 116, N Dupont 116, A Elliott-Peisert 116, P Everaerts 116, F Fallavollita 116, D Fasanella 116, G Franzoni 116, J Fulcher 116, W Funk 116, D Gigi 116, A Gilbert 116, K Gill 116, F Glege 116, M Guilbaud 116, D Gulhan 116, J Hegeman 116, V Innocente 116, A Jafari 116, P Janot 116, O Karacheban 116, J Kieseler 116, A Kornmayer 116, M Krammer 116, C Lange 116, P Lecoq 116, C Lourenço 116, L Malgeri 116, M Mannelli 116, F Meijers 116, J A Merlin 116, S Mersi 116, E Meschi 116, P Milenovic 116, F Moortgat 116, M Mulders 116, J Ngadiuba 116, S Orfanelli 116, L Orsini 116, F Pantaleo 116, L Pape 116, E Perez 116, M Peruzzi 116, A Petrilli 116, G Petrucciani 116, A Pfeiffer 116, M Pierini 116, F M Pitters 116, D Rabady 116, A Racz 116, T Reis 116, G Rolandi 116, M Rovere 116, H Sakulin 116, C Schäfer 116, C Schwick 116, M Seidel 116, M Selvaggi 116, A Sharma 116, P Silva 116, P Sphicas 116, A Stakia 116, J Steggemann 116, M Tosi 116, D Treille 116, A Tsirou 116, V Veckalns 116, W D Zeuner 116, L Caminada 117, K Deiters 117, W Erdmann 117, R Horisberger 117, Q Ingram 117, H C Kaestli 117, D Kotlinski 117, U Langenegger 117, T Rohe 117, S A Wiederkehr 117, M Backhaus 118, L Bäni 118, P Berger 118, N Chernyavskaya 118, G Dissertori 118, M Dittmar 118, M Donegà 118, C Dorfer 118, C Grab 118, C Heidegger 118, D Hits 118, J Hoss 118, T Klijnsma 118, W Lustermann 118, R A Manzoni 118, M Marionneau 118, M T Meinhard 118, F Micheli 118, P Musella 118, F Nessi-Tedaldi 118, J Pata 118, F Pauss 118, G Perrin 118, L Perrozzi 118, S Pigazzini 118, M Quittnat 118, D Ruini 118, D A Sanz Becerra 118, M Schönenberger 118, L Shchutska 118, V R Tavolaro 118, K Theofilatos 118, M L Vesterbacka Olsson 118, R Wallny 118, D H Zhu 118, T K Aarrestad 119, C Amsler 119, D Brzhechko 119, M F Canelli 119, A De Cosa 119, R Del Burgo 119, S Donato 119, C Galloni 119, T Hreus 119, B Kilminster 119, I Neutelings 119, D Pinna 119, G Rauco 119, P Robmann 119, D Salerno 119, K Schweiger 119, C Seitz 119, Y Takahashi 119, A Zucchetta 119, Y H Chang 120, K y Cheng 120, T H Doan 120, Sh Jain 120, R Khurana 120, C M Kuo 120, W Lin 120, A Pozdnyakov 120, S S Yu 120, P Chang 121, Y Chao 121, K F Chen 121, P H Chen 121, W-S Hou 121, Arun Kumar 121, Y y Li 121, R-S Lu 121, E Paganis 121, A Psallidas 121, A Steen 121, J f Tsai 121, B Asavapibhop 122, N Srimanobhas 122, N Suwonjandee 122, A Bat 123, F Boran 123, S Cerci 123, S Damarseckin 123, Z S Demiroglu 123, F Dolek 123, C Dozen 123, I Dumanoglu 123, S Girgis 123, G Gokbulut 123, Y Guler 123, E Gurpinar 123, I Hos 123, C Isik 123, E E Kangal 123, O Kara 123, A Kayis Topaksu 123, U Kiminsu 123, M Oglakci 123, G Onengut 123, K Ozdemir 123, S Ozturk 123, D Sunar Cerci 123, B Tali 123, U G Tok 123, S Turkcapar 123, I S Zorbakir 123, C Zorbilmez 123, B Isildak 124, G Karapinar 124, M Yalvac 124, M Zeyrek 124, I O Atakisi 125, E Gülmez 125, M Kaya 125, O Kaya 125, S Tekten 125, E A Yetkin 125, M N Agaras 126, S Atay 126, A Cakir 126, K Cankocak 126, Y Komurcu 126, S Sen 126, B Grynyov 127, L Levchuk 128, F Ball 129, L Beck 129, J J Brooke 129, D Burns 129, E Clement 129, D Cussans 129, O Davignon 129, H Flacher 129, J Goldstein 129, G P Heath 129, H F Heath 129, L Kreczko 129, D M Newbold 129, S Paramesvaran 129, B Penning 129, T Sakuma 129, D Smith 129, V J Smith 129, J Taylor 129, A Titterton 129, K W Bell 130, A Belyaev 130, C Brew 130, R M Brown 130, D Cieri 130, D J A Cockerill 130, J A Coughlan 130, K Harder 130, S Harper 130, J Linacre 130, E Olaiya 130, D Petyt 130, C H Shepherd-Themistocleous 130, A Thea 130, I R Tomalin 130, T Williams 130, W J Womersley 130, G Auzinger 131, R Bainbridge 131, P Bloch 131, J Borg 131, S Breeze 131, O Buchmuller 131, A Bundock 131, S Casasso 131, D Colling 131, L Corpe 131, P Dauncey 131, G Davies 131, M Della Negra 131, R Di Maria 131, Y Haddad 131, G Hall 131, G Iles 131, T James 131, M Komm 131, C Laner 131, L Lyons 131, A-M Magnan 131, S Malik 131, A Martelli 131, J Nash 131, A Nikitenko 131, V Palladino 131, M Pesaresi 131, A Richards 131, A Rose 131, E Scott 131, C Seez 131, A Shtipliyski 131, G Singh 131, M Stoye 131, T Strebler 131, S Summers 131, A Tapper 131, K Uchida 131, T Virdee 131, N Wardle 131, D Winterbottom 131, J Wright 131, S C Zenz 131, J E Cole 132, P R Hobson 132, A Khan 132, P Kyberd 132, C K Mackay 132, A Morton 132, I D Reid 132, L Teodorescu 132, S Zahid 132, K Call 133, J Dittmann 133, K Hatakeyama 133, H Liu 133, C Madrid 133, B Mcmaster 133, N Pastika 133, C Smith 133, R Bartek 134, A Dominguez 134, A Buccilli 135, S I Cooper 135, C Henderson 135, P Rumerio 135, C West 135, D Arcaro 136, T Bose 136, D Gastler 136, D Rankin 136, C Richardson 136, J Rohlf 136, L Sulak 136, D Zou 136, G Benelli 137, X Coubez 137, D Cutts 137, M Hadley 137, J Hakala 137, U Heintz 137, J M Hogan 137, K H M Kwok 137, E Laird 137, G Landsberg 137, J Lee 137, Z Mao 137, M Narain 137, J Pazzini 137, S Piperov 137, S Sagir 137, R Syarif 137, E Usai 137, D Yu 137, R Band 138, C Brainerd 138, R Breedon 138, D Burns 138, M Calderon De La Barca Sanchez 138, M Chertok 138, J Conway 138, R Conway 138, P T Cox 138, R Erbacher 138, C Flores 138, G Funk 138, W Ko 138, O Kukral 138, R Lander 138, C Mclean 138, M Mulhearn 138, D Pellett 138, J Pilot 138, S Shalhout 138, M Shi 138, D Stolp 138, D Taylor 138, K Tos 138, M Tripathi 138, Z Wang 138, F Zhang 138, M Bachtis 139, C Bravo 139, R Cousins 139, A Dasgupta 139, A Florent 139, J Hauser 139, M Ignatenko 139, N Mccoll 139, S Regnard 139, D Saltzberg 139, C Schnaible 139, V Valuev 139, E Bouvier 140, K Burt 140, R Clare 140, J W Gary 140, S M A Ghiasi Shirazi 140, G Hanson 140, G Karapostoli 140, E Kennedy 140, F Lacroix 140, O R Long 140, M Olmedo Negrete 140, M I Paneva 140, W Si 140, L Wang 140, H Wei 140, S Wimpenny 140, B R Yates 140, J G Branson 141, S Cittolin 141, M Derdzinski 141, R Gerosa 141, D Gilbert 141, B Hashemi 141, A Holzner 141, D Klein 141, G Kole 141, V Krutelyov 141, J Letts 141, M Masciovecchio 141, D Olivito 141, S Padhi 141, M Pieri 141, M Sani 141, V Sharma 141, S Simon 141, M Tadel 141, A Vartak 141, S Wasserbaech 141, J Wood 141, F Würthwein 141, A Yagil 141, G Zevi Della Porta 141, N Amin 142, R Bhandari 142, J Bradmiller-Feld 142, C Campagnari 142, M Citron 142, A Dishaw 142, V Dutta 142, M Franco Sevilla 142, L Gouskos 142, R Heller 142, J Incandela 142, A Ovcharova 142, H Qu 142, J Richman 142, D Stuart 142, I Suarez 142, S Wang 142, J Yoo 142, D Anderson 143, A Bornheim 143, J M Lawhorn 143, H B Newman 143, T Q Nguyen 143, M Spiropulu 143, J R Vlimant 143, R Wilkinson 143, S Xie 143, Z Zhang 143, R Y Zhu 143, M B Andrews 144, T Ferguson 144, T Mudholkar 144, M Paulini 144, M Sun 144, I Vorobiev 144, M Weinberg 144, J P Cumalat 145, W T Ford 145, F Jensen 145, A Johnson 145, M Krohn 145, S Leontsinis 145, E MacDonald 145, T Mulholland 145, K Stenson 145, K A Ulmer 145, S R Wagner 145, J Alexander 146, J Chaves 146, Y Cheng 146, J Chu 146, A Datta 146, K Mcdermott 146, N Mirman 146, J R Patterson 146, D Quach 146, A Rinkevicius 146, A Ryd 146, L Skinnari 146, L Soffi 146, S M Tan 146, Z Tao 146, J Thom 146, J Tucker 146, P Wittich 146, M Zientek 146, S Abdullin 147, M Albrow 147, M Alyari 147, G Apollinari 147, A Apresyan 147, A Apyan 147, S Banerjee 147, L A T Bauerdick 147, A Beretvas 147, J Berryhill 147, P C Bhat 147, G Bolla 147, K Burkett 147, J N Butler 147, A Canepa 147, G B Cerati 147, H W K Cheung 147, F Chlebana 147, M Cremonesi 147, J Duarte 147, V D Elvira 147, J Freeman 147, Z Gecse 147, E Gottschalk 147, L Gray 147, D Green 147, S Grünendahl 147, O Gutsche 147, J Hanlon 147, R M Harris 147, S Hasegawa 147, J Hirschauer 147, Z Hu 147, B Jayatilaka 147, S Jindariani 147, M Johnson 147, U Joshi 147, B Klima 147, M J Kortelainen 147, B Kreis 147, S Lammel 147, D Lincoln 147, R Lipton 147, M Liu 147, T Liu 147, J Lykken 147, K Maeshima 147, J M Marraffino 147, D Mason 147, P McBride 147, P Merkel 147, S Mrenna 147, S Nahn 147, V O’Dell 147, K Pedro 147, C Pena 147, O Prokofyev 147, G Rakness 147, L Ristori 147, A Savoy-Navarro 147, B Schneider 147, E Sexton-Kennedy 147, A Soha 147, W J Spalding 147, L Spiegel 147, S Stoynev 147, J Strait 147, N Strobbe 147, L Taylor 147, S Tkaczyk 147, N V Tran 147, L Uplegger 147, E W Vaandering 147, C Vernieri 147, M Verzocchi 147, R Vidal 147, M Wang 147, H A Weber 147, A Whitbeck 147, D Acosta 148, P Avery 148, P Bortignon 148, D Bourilkov 148, A Brinkerhoff 148, L Cadamuro 148, A Carnes 148, M Carver 148, D Curry 148, R D Field 148, S V Gleyzer 148, B M Joshi 148, J Konigsberg 148, A Korytov 148, P Ma 148, K Matchev 148, H Mei 148, G Mitselmakher 148, K Shi 148, D Sperka 148, J Wang 148, S Wang 148, Y R Joshi 149, S Linn 149, A Ackert 150, T Adams 150, A Askew 150, S Hagopian 150, V Hagopian 150, K F Johnson 150, T Kolberg 150, G Martinez 150, T Perry 150, H Prosper 150, A Saha 150, A Santra 150, V Sharma 150, R Yohay 150, M M Baarmand 151, V Bhopatkar 151, S Colafranceschi 151, M Hohlmann 151, D Noonan 151, M Rahmani 151, T Roy 151, F Yumiceva 151, M R Adams 152, L Apanasevich 152, D Berry 152, R R Betts 152, R Cavanaugh 152, X Chen 152, S Dittmer 152, O Evdokimov 152, C E Gerber 152, D A Hangal 152, D J Hofman 152, K Jung 152, J Kamin 152, C Mills 152, I D Sandoval Gonzalez 152, M B Tonjes 152, N Varelas 152, H Wang 152, X Wang 152, Z Wu 152, J Zhang 152, M Alhusseini 153, B Bilki 153, W Clarida 153, K Dilsiz 153, S Durgut 153, R P Gandrajula 153, M Haytmyradov 153, V Khristenko 153, J-P Merlo 153, A Mestvirishvili 153, A Moeller 153, J Nachtman 153, H Ogul 153, Y Onel 153, F Ozok 153, A Penzo 153, C Snyder 153, E Tiras 153, J Wetzel 153, B Blumenfeld 154, A Cocoros 154, N Eminizer 154, D Fehling 154, L Feng 154, A V Gritsan 154, W T Hung 154, P Maksimovic 154, J Roskes 154, U Sarica 154, M Swartz 154, M Xiao 154, C You 154, A Al-bataineh 155, P Baringer 155, A Bean 155, S Boren 155, J Bowen 155, A Bylinkin 155, J Castle 155, S Khalil 155, A Kropivnitskaya 155, D Majumder 155, W Mcbrayer 155, M Murray 155, C Rogan 155, S Sanders 155, E Schmitz 155, J D Tapia Takaki 155, Q Wang 155, A Ivanov 156, K Kaadze 156, D Kim 156, Y Maravin 156, D R Mendis 156, T Mitchell 156, A Modak 156, A Mohammadi 156, L K Saini 156, N Skhirtladze 156, F Rebassoo 157, D Wright 157, A Baden 158, O Baron 158, A Belloni 158, S C Eno 158, Y Feng 158, C Ferraioli 158, N J Hadley 158, S Jabeen 158, G Y Jeng 158, R G Kellogg 158, J Kunkle 158, A C Mignerey 158, F Ricci-Tam 158, Y H Shin 158, A Skuja 158, S C Tonwar 158, K Wong 158, D Abercrombie 159, B Allen 159, V Azzolini 159, A Baty 159, G Bauer 159, R Bi 159, S Brandt 159, W Busza 159, I A Cali 159, M D’Alfonso 159, Z Demiragli 159, G Gomez Ceballos 159, M Goncharov 159, P Harris 159, D Hsu 159, M Hu 159, Y Iiyama 159, G M Innocenti 159, M Klute 159, D Kovalskyi 159, Y-J Lee 159, P D Luckey 159, B Maier 159, A C Marini 159, C Mcginn 159, C Mironov 159, S Narayanan 159, X Niu 159, C Paus 159, C Roland 159, G Roland 159, G S F Stephans 159, K Sumorok 159, K Tatar 159, D Velicanu 159, J Wang 159, T W Wang 159, B Wyslouch 159, S Zhaozhong 159, A C Benvenuti 160, R M Chatterjee 160, A Evans 160, P Hansen 160, S Kalafut 160, Y Kubota 160, Z Lesko 160, J Mans 160, S Nourbakhsh 160, N Ruckstuhl 160, R Rusack 160, J Turkewitz 160, M A Wadud 160, J G Acosta 161, S Oliveros 161, E Avdeeva 162, K Bloom 162, D R Claes 162, C Fangmeier 162, F Golf 162, R Gonzalez Suarez 162, R Kamalieddin 162, I Kravchenko 162, J Monroy 162, J E Siado 162, G R Snow 162, B Stieger 162, A Godshalk 163, C Harrington 163, I Iashvili 163, A Kharchilava 163, D Nguyen 163, A Parker 163, S Rappoccio 163, B Roozbahani 163, G Alverson 164, E Barberis 164, C Freer 164, A Hortiangtham 164, D M Morse 164, T Orimoto 164, R Teixeira De Lima 164, T Wamorkar 164, B Wang 164, A Wisecarver 164, D Wood 164, S Bhattacharya 165, O Charaf 165, K A Hahn 165, N Mucia 165, N Odell 165, M H Schmitt 165, K Sung 165, M Trovato 165, M Velasco 165, R Bucci 166, N Dev 166, M Hildreth 166, K Hurtado Anampa 166, C Jessop 166, D J Karmgard 166, N Kellams 166, K Lannon 166, W Li 166, N Loukas 166, N Marinelli 166, F Meng 166, C Mueller 166, Y Musienko 166, M Planer 166, A Reinsvold 166, R Ruchti 166, P Siddireddy 166, G Smith 166, S Taroni 166, M Wayne 166, A Wightman 166, M Wolf 166, A Woodard 166, J Alimena 167, L Antonelli 167, B Bylsma 167, L S Durkin 167, S Flowers 167, B Francis 167, A Hart 167, C Hill 167, W Ji 167, T Y Ling 167, W Luo 167, B L Winer 167, H W Wulsin 167, S Cooperstein 168, P Elmer 168, J Hardenbrook 168, P Hebda 168, S Higginbotham 168, A Kalogeropoulos 168, D Lange 168, M T Lucchini 168, J Luo 168, D Marlow 168, K Mei 168, I Ojalvo 168, J Olsen 168, C Palmer 168, P Piroué 168, J Salfeld-Nebgen 168, D Stickland 168, C Tully 168, S Malik 169, S Norberg 169, A Barker 170, V E Barnes 170, S Das 170, L Gutay 170, M Jones 170, A W Jung 170, A Khatiwada 170, B Mahakud 170, D H Miller 170, N Neumeister 170, C C Peng 170, H Qiu 170, J F Schulte 170, J Sun 170, F Wang 170, R Xiao 170, W Xie 170, T Cheng 171, J Dolen 171, N Parashar 171, Z Chen 172, K M Ecklund 172, S Freed 172, F J M Geurts 172, M Kilpatrick 172, W Li 172, B Michlin 172, B P Padley 172, J Roberts 172, J Rorie 172, W Shi 172, Z Tu 172, J Zabel 172, A Zhang 172, A Bodek 173, P de Barbaro 173, R Demina 173, Y t Duh 173, J L Dulemba 173, C Fallon 173, T Ferbel 173, M Galanti 173, A Garcia-Bellido 173, J Han 173, O Hindrichs 173, A Khukhunaishvili 173, K H Lo 173, P Tan 173, R Taus 173, M Verzetti 173, A Agapitos 174, J P Chou 174, Y Gershtein 174, T A Gómez Espinosa 174, E Halkiadakis 174, M Heindl 174, E Hughes 174, S Kaplan 174, R Kunnawalkam Elayavalli 174, S Kyriacou 174, A Lath 174, R Montalvo 174, K Nash 174, M Osherson 174, H Saka 174, S Salur 174, S Schnetzer 174, D Sheffield 174, S Somalwar 174, R Stone 174, S Thomas 174, P Thomassen 174, M Walker 174, A G Delannoy 175, J Heideman 175, G Riley 175, K Rose 175, S Spanier 175, K Thapa 175, O Bouhali 176, A Castaneda Hernandez 176, A Celik 176, M Dalchenko 176, M De Mattia 176, A Delgado 176, S Dildick 176, R Eusebi 176, J Gilmore 176, T Huang 176, T Kamon 176, S Luo 176, R Mueller 176, Y Pakhotin 176, R Patel 176, A Perloff 176, L Perniè 176, D Rathjens 176, A Safonov 176, A Tatarinov 176, N Akchurin 177, J Damgov 177, F De Guio 177, P R Dudero 177, S Kunori 177, K Lamichhane 177, S W Lee 177, T Mengke 177, S Muthumuni 177, T Peltola 177, S Undleeb 177, I Volobouev 177, Z Wang 177, S Greene 178, A Gurrola 178, R Janjam 178, W Johns 178, C Maguire 178, A Melo 178, H Ni 178, K Padeken 178, J D Ruiz Alvarez 178, P Sheldon 178, S Tuo 178, J Velkovska 178, M Verweij 178, Q Xu 178, M W Arenton 179, P Barria 179, B Cox 179, R Hirosky 179, M Joyce 179, A Ledovskoy 179, H Li 179, C Neu 179, T Sinthuprasith 179, Y Wang 179, E Wolfe 179, F Xia 179, R Harr 180, P E Karchin 180, N Poudyal 180, J Sturdy 180, P Thapa 180, S Zaleski 180, M Brodski 181, J Buchanan 181, C Caillol 181, D Carlsmith 181, S Dasu 181, L Dodd 181, S Duric 181, B Gomber 181, M Grothe 181, M Herndon 181, A Hervé 181, U Hussain 181, P Klabbers 181, A Lanaro 181, A Levine 181, K Long 181, R Loveless 181, T Ruggles 181, A Savin 181, N Smith 181, W H Smith 181, N Woods 181; CMS Collaboration182
PMCID: PMC6383984  PMID: 30872964

Abstract

Measurements of inclusive isolated-photon and photon+jet production in proton–proton collisions at s=13TeV are presented. The analysis uses data collected by the CMS experiment in 2015, corresponding to an integrated luminosity of 2.26fb-1. The cross section for inclusive isolated photon production is measured as a function of the photon transverse energy in a fiducial region. The cross section for photon+jet production is measured as a function of the photon transverse energy in the same fiducial region with identical photon requirements and with the highest transverse momentum jet. All measurements are in agreement with predictions from next-to-leading-order perturbative QCD.

Introduction

The measurement of inclusive isolated-photon and photon+jet production cross sections can directly probe quantum chromodynamics (QCD). The dominant production processes in proton–proton (p p) collisions at the energies of the CERN LHC are quark–gluon Compton scattering qgqγ, together with contributions from quark-antiquark annihilation qq¯gγ, and parton fragmentation qq¯(gg)X+γ. Both the CMS and ATLAS Collaborations have reported measurements of the differential cross sections for isolated prompt photon production [17] and for the production of a photon in association with jets [810] using data with center-of-mass energies of 2.76, 7, and 8TeV. The ATLAS Collaboration has also reported the same measurements at a center-of-mass energy of 13TeV  [11, 12].

The published measurements show agreement with the results of next-to-leading-order (NLO) perturbative QCD calculations [13, 14].

These LHC measurements are sensitive to the gluon density function g(x,Q2) over a wide range of parton momentum fraction x and energy scale Q2 [1517]. These measurements were not included in the global parton distribution function (PDF) fits [1820] until very recently [21]. An improved understanding of all PDFs is key to reducing the associated theoretical uncertainties in the calculation of many relevant cross sections, including Higgs boson production and new physics searches.

In this paper, measurements are reported for the inclusive isolated-photon cross section in a fiducial region using data collected by the CMS Collaboration in proton-proton collisions at s=13TeV, corresponding to an integrated luminosity of 2.26fb-1  [22]. The specific fiducial region is defined at generator level as: (1) photon transverse momentum ET>190GeV, (2) rapidity |y|<2.5, and (3) an isolated photon where the sum of the pT of all particles inside a cone of radius ΔR=(Δϕ)2+(Δη)2=0.4 around the photon is less than 5GeV. The photon+jet cross section is also measured in this fiducial region with the same photon requirements and with pTjet>30GeV and |yjet|<2.4. The significant increase in center-of-mass energy compared with the previous CMS papers [1, 2] opens a large additional region of phase space.

The dominant background for the photon+jet process is QCD multijet production with an isolated electromagnetic (EM) deposit from decays of neutral hadrons, mostly from π0 mesons. A multivariate analysis method is used to identify prompt photons using a boosted decision tree (BDT) algorithm, implemented using the TMVA v4.1.2 toolkit [23]. Photon yields are extracted using the shape of the BDT distributions, and the measured cross sections are compared to the results of NLO QCD calculations.

The CMS detector

CMS is a general-purpose detector built to explore physics at the TeV scale. The central feature of the CMS apparatus is a superconducting solenoid of 6m internal diameter, providing a magnetic field of 3.8T. Within the solenoid volume are a silicon pixel and a strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity η coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke outside the solenoid. A more detailed description of the CMS detector, together with the definition of the coordinate system and the relevant kinematic variables, is given in Ref. [24].

The ECAL consists of 75 848 lead tungstate crystals, which provide coverage up to |η|=1.479 in the barrel region (EB) and 1.479<|η|<3.0 in two endcap regions (EE). A preshower detector consisting of two planes of silicon sensors interleaved with a total of 3 radiation lengths of lead is located in front of the EE.

The silicon tracker measures charged particles within the range |η|<2.5. For nonisolated particles of transverse momenta 1<pT<10GeV and |η|<1.4, the track resolutions are typically 1.5% in pT and 25–90 (45–150)μm in the transverse (longitudinal) impact parameter [25].

The global event reconstruction (also called particle-flow event reconstruction) [26] reconstructs and identifies each particle candidate with an optimized combination of all subdetector information.

In CMS, both converted and unconverted photons are reconstructed using ECAL clusters and are included in the analysis. The clustering algorithm results in an almost complete collection of the energy of the photons, unconverted ones and those converting in the material upstream of the calorimeter. First, cluster “seeds” are identified as local energy maxima above a given threshold. Second, clusters are grown from the seeds by aggregating crystals with at least one side in common with a clustered crystal and with an energy in excess of a given threshold. This threshold represents about two standard deviations of the electronic noise, which depends on |η|. The energy in an individual crystal can be shared between clusters under the assumption that each seed corresponds to a single EM particle. Finally, clusters are merged into “superclusters”, to allow good energy containment, accounting for geometrical variations of the detector along η, and increasing robustness against additional p p collisions in the same or adjacent bunch crossings (pileup). The clustering excludes 1.44<|η|<1.56, which corresponds to the transition region between the EB and EE. The fiducial region terminates at |η|=2.5 where the tracker coverage ends.

The energy of photons is computed from the sum of the energies of the clustered crystals, calibrated and corrected for degradation in the crystal response over time [27]. The preshower energy is added to that of the superclusters in the region covered by this detector. To optimize the resolution, the photon energy is corrected using a multivariate regression technique that estimates the containment of the electromagnetic shower in the superclusters, the shower losses for photons that convert in the material upstream of the calorimeter, and the effects of pileup [28]. The regression training is performed on simulated events using shower shape and position variables of the photon as inputs. The regression provides a per-photon estimate of the function parameters that quantify the containment, the shower losses, and pileup and therefore a prediction of the distribution of the ratio of true energy to the uncorrected supercluster energy. The most probable value of this distribution is taken as the photon energy correction. The regression output is used to correct the reconstucted photon energy in data to agree with simulated events. An additional smearing is applied to the photon energy in simulation to reproduce the resolution observed in data. The scale correction and smearing procedure uses a multistep procedure exploiting electrons from Ze+e- decays. In the EB, an energy resolution of about 1% is achieved for unconverted photons in the tens of GeV energy range. The remaining EB photons have a resolution of about 1.3% up to |η|=1.0, rising to about 2.5% at |η|=1.4. In the EE, the resolution of unconverted or late-converting photons is about 2.5%, while the remaining EE photons have a resolution between 3 and 4%.

Electrons are identified as a primary charged track consistent with potentially multiple ECAL energy clusters from both the electron and from potential bremsstrahlung photons produced in the tracker material. Muons are identified as a track in the central tracker consistent with either a track or several hits in the muon system, associated with a minimum ionization signature in the calorimeters. Charged hadrons are charged-particle tracks not identified as electrons or muons. Finally, neutral hadrons are identified as HCAL energy clusters not linked to any charged-hadron track, or as ECAL and HCAL energy excesses with respect to the expected charged-hadron energy deposit.

Jets are clustered from all particle candidates reconstructed by the global event reconstruction with the infrared- and collinear- safe anti-kT algorithm [29, 30] using a distance parameter R of 0.4. The momenta of jets reconstructed using particle-flow candidates in the simulation are within 5 to 10% of particle-level jet momenta over the whole jet pT spectrum and detector acceptance, and corrected on average accordingly. In situ measurements of the momentum balance in dijet, photon+jet, Z+jet, and multijet events are used to correct for any residual differences in jet energy scale in data and simulation [31]. The jet energy resolution amounts typically to 15 (8)% at 10 (100)GeV.

Simulation samples

Simulated event samples for photon+jet and multijet final states are generated at leading order (LO) with pythia  8 (v8.212) [32]. The photon+jet sample contains direct photon production originating from quark–gluon Compton scattering and quark-antiquark annihilation.

The multijet sample, which is dominated by final states with quark and gluon jets, is used in the estimate of systematic uncertainties, and to estimate the small bias in the extracted photon yield from the BDT fit, as described in Sect. 5. For these studies, events containing a photon, produced via the fragmentation process and passing the fiducial requirements, are removed, leaving only events with nonfiducial photons. The removed events are considered part of the signal, although they are not included in the signal sample in the training of the BDT due to associated large statistical uncertainties. The distributions of the variables used in the BDT training were examined and are consistent with those of the direct photons, within the statistical uncertainty.

The MadGraph  (v5.2.2.2) [33, 34] LO generator, interfaced with pythia  8, is used to generate an additional sample of photon+jet events containing up to 4 jets that are used to estimate systematic uncertainties. Samples of Z/γ+jets events are generated at NLO with MadGraph5_amc@nlo  (v5.2.2.2) [33, 35] and are used for calibration and validation studies described later. The CUETP8M1 tune [36] is used in pythia  8. The NNPDF2.3 LO PDF [37] and the NNPDF3.0 NLO PDF [18] are used to generate simulation samples, where the former is used with pythia  8.

The simulated processes include the effect of the pileup. The pileup contribution is simulated with additional minimum bias events superimposed on the primary event using the measured distribution of the number of reconstructed interaction vertices, an average of 14 vertices per bunch crossing. A detailed detector simulation based on the Geant4  (v9.4p03) [38] package is applied to all the generated signal and background samples.

Data samples and event selection criteria

Events containing high energy photon candidates are selected using the two-level CMS trigger system [39]. At the first level, events are accepted if they have an ECAL trigger tower, which has a segmentation corresponding to 5×5 ECAL crystals, with total transverse energy ET, defined as the magnitude of the photon transverse momentum, greater than 40GeV. The second level of the trigger system uses the same reconstruction algorithm as the offline photon reconstruction [28]. An event is accepted online if it contains at least one ECAL cluster with ET greater than 175GeV, and if the “H / E”, defined as the ratio of energy deposited in the HCAL to that in the ECAL, is less than 0.15 (0.10) in the EB (EE) region.

All events are required to have at least one well-reconstructed primary vertex [25]. The reconstructed vertex with the largest value of summed physics-object pT2 is the primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding algorithm [29, 30] with the tracks assigned to the vertex as inputs, and the associated missing transverse momentum pTmiss [40], taken as the negative vector sum of the pT of those jets. In addition, photon+jet events are required to be balanced in pT, and hence the magnitude of missing transverse momentum, defined as the magnitude of the negative vector sum of the momenta of all reconstructed particle-flow objects projected onto the plane perpendicular to the beam axis in an event, is required to be less than 70% of the highest photon ET.

Photon candidates are selected as described in the following procedure. An electron veto is imposed by requiring the absence of hits in the innermost layer of the silicon pixel detector that could be ascribed to an electron track consistent with the energy and position of the photon ECAL cluster. Criteria on the energy measured in HCAL (H), isolation, and shower shape variables are applied to reject photons arising from electromagnetic decays of particles in hadronic showers. Hence, H / E is required to be less than 0.08 (0.05) for photon candidates in the EB (EE), respectively. The sum of the ET of other photons in a cone (photon isolation) of size ΔR=0.3 around the photon candidate is required to be less than 15GeV, and the sum of pT of charged hadrons in the same cone (hadron isolation) is required to be less than 2.0 (1.5)GeV for photon candidates in the EB (EE).

To further suppress photons from decays of neutral mesons (π0, η, etc.) that survive the isolation and HCAL energy leakage criteria, a selection on the EM shower shape is imposed by requiring that its second moment σηη [28], which is a measure of the lateral extension of the shower along the η direction, be <0.015 (0.045) for photon candidates in the EB (EE). The photon candidate with the highest ET that satisfies the above selection criteria in each event is referred to as the leading photon. The data consist of 212 134 events after applying inclusive isolated-photon selections and 207 120 events after applying the photon+jet requirements. The estimated electron contribution is typically at 10-3 level as a result of the electron veto algorithm. This contribution is small compared to statistical uncertainties of the photon yield and other systematic uncertainties.

The photon reconstruction and selection efficiencies are estimated using simulated events that pass the fiducial region requirements at the generator level. The efficiency is about 90–92% (83–85%) for EB (EE) photons, depending on the ET of the photon candidate. The loss of efficiency comes primarily from the hadron isolation requirement. Multiplicative scale factors (SF) are applied to correct potential differences in efficiencies between data and simulation. The SFs are obtained from the ratio of the efficiency in data to that in simulated control samples. The photon SF is derived from Drell–Yan Ze+e- events, where one of the electrons is reconstructed as a photon. The events are selected by requiring the invariant mass of the electron pair to be between 60 and 120GeV. The electron veto SF is determined using final-state radiation photons in Zμ+μ-γ events. All SFs are within 1% of unity, and their uncertainties are included in the total systematic uncertainty. All efficiencies and SF are measured as functions of photon ET and rapidity y using the same binning as the cross section measurement.

The absolute photon trigger efficiency, as a function of photon ET, is measured using events collected with a jet trigger that contains a photon candidate, which satisfies the signal selection criteria and is spatially separated from the jet that triggered the event by ΔR(γ,jet)>0.7. The trigger efficiency is above 99% for EB (EE) photons above 200 (220)GeV. The ET-dependent trigger efficiency is used to compute the cross section, and the associated uncertainties are incorporated into the uncertainty calculation for the cross section.

For the cross section measurement as a function of jet y, the jets are required to: (1) satisfy a set of selection criteria that remove detector noise [41], (2) have a separation from the leading photon of ΔR>0.4, and (3) have pT greater than 30GeV. The pT requirement for jets is fully efficient for simulation events with both photon and jet in their fiducial regions. The jet candidate with the highest pT satisfying the above requirements is selected.

The measurement of the differential cross section for inclusive isolated photons uses four ranges of photon rapidity, |yγ|<0.8, 0.8<|yγ|<1.44, 1.57<|yγ|<2.1, and 2.1<|yγ|<2.5. The photon+jet differential cross section measurement uses two ranges of photon rapidity, |yγ|<1.44 and 1.57<|yγ|<2.5, and two ranges of jet rapidity, |yjet|<1.5 and 1.5<|yjet|<2.4. For all cases, the results are presented in nine bins in photon ET between 190 and 1000GeV, except for two cases: the 2.1<|yγ|<2.5 region for the isolated-photon measurement and the 1.57<|yγ|<2.5 and 1.5<|yjet|<2.4 regions for the photon+jet measurement, where eight bins in photon ET between 190 and 750GeV are used.

Cross section measurement

To further suppress remaining backgrounds originating from jets faking photons, a BDT is constructed utilizing the following discriminating variables:

  1. Photon η, ϕ, and energy;

  2. Several shower shape variables:
    1. The energy sum of the 3×3 crystals centered on the most energetic crystal in the photon divided by the energy of the photon;
    2. The ratio of E2×2, the maximum energy sum collected in a 2×2 crystal matrix that includes the largest energy crystal in the photon, and E5×5, the energy collected in a 5×5 crystal matrix centered around the same crystal (E2×2/E5×5);
    3. The second moment of the EM cluster shape along the η direction (σηη);
    4. The diagonal component of the covariance matrix that is constructed from the energy-weighted crystal positions within the 5×5 crystal array (qηϕ);
    5. The energy-weighted spreads along η (ση) and ϕ (σϕ), calculated using all crystals in the photon cluster, which provide further measures of the lateral spread of the shower.
  3. For photon candidates in the EE, the preshower shower width, σRR=σxx2+σyy2, where σxx and σyy measure the lateral spread in the two orthogonal sensor planes of the detector, and the fraction of energy deposits in the preshower.

  4. The median energy density per unit area in the event ρ [30] to minimize the effect of the pileup.

The distributions of the BDT values are used in a two-template binned likelihood fit to estimate the photon yield. A separate BDT is constructed for each bin of photon y and ET. The signal BDT template is obtained from the sample of simulated photon+jet events generated using pythia  8. This template is validated using Zμ+μ-γ data samples and also a data sample of Ze+e- candidates where each candidate contains an electron reconstructed as a photon. The signal templates have a systematic uncertainty due to differences in the distributions of the BDT input variables in data and simulation. To evaluate this uncertainty, the distribution of each variable obtained from a sample of simulated Ze+e- events is modified until agreement is obtained with the data. Signal templates are made using the same procedure. The difference in the templates is treated as a nuisance parameter in the fit procedure.

The background BDT template is derived from the data, using a sideband region defined using the same signal selection, but relaxing the hadron isolation criterion. The hadron isolation for the sideband region is required to be between 7 and 13 (6 and 12)GeV for EB (EE) photons, where the chosen ranges ensure negligible signal contamination. Possible biases in the photon yields due to differences between the background BDT templates in the control and signal regions are estimated using simulated events and are found to be less than 5%. Photon yields extracted from the fits are corrected for these biases. The statistical uncertainties in each bin of the background template constructed from the data sideband events are also included as nuisance parameters in the fitting procedure. Figure 1 shows the BDT templates obtained for a particular photon ET and y bin for the data sideband and for the signal and sideband regions from simulated QCD multijet events. The distributions of BDT outputs for EB and EE photons in data are shown in Fig. 2 for photon ET between 200 and 220GeV and jet |y|<1.5. The fitted results for the signal, background, and combined distributions are also shown in Fig. 2. The ratio of experimental data to the simulation results demonstrates agreement as indicated by the χ2 per degree of freedom.

Fig. 1.

Fig. 1

Distributions of the BDT for background photons in the 200–220GeV bin for the EB region. The points show events from a sideband region of the photon isolation selection criteria, the solid histogram shows the events in the signal region in simulated QCD multijet events, and the dashed histogram shows the sideband region for simulated QCD multijet events. All three samples have their statistical uncertainties shown as error bars

Fig. 2.

Fig. 2

Distributions of the BDT output for an EB (left) and an EE (right) bin with photon ET between 200 and 220GeV and |yjet|<1.5. The points represent data, and the solid histograms, approaching the data points, represent the fit results with the signal (dashed) and background (dotted) components displayed. The bottom panels show the ratio of the data to the fitted results and the χ2/dof

The corrected signal yield is unfolded using the iterative D’Agostini method [42], as implemented in the RooUnfold software package [43], to take into account migrations between different bins due to the photon energy scale and resolution, and into and out of the fiducial ET region. The unfolding response matrix is obtained from the pythia  8 photon+jet sample. The unfolding corrections are small, of the order of 1%. The size of the corrections is also verified using an independent photon+jet sample generated with MadGraph.

The inclusive isolated-photon differential production cross section is calculated as

d2σdyγdETγ=U(Nγ)ΔyγΔETγ1ϵSFL, 1

and the photon+jet as

d3σdyγdETγdyjet=U(Nγ)ΔyγΔETγΔyjet1ϵSFL, 2

where U(Nγ) denotes the unfolded photon yields in bins of width ΔETγ and Δy, and y is the rapidity of either the photon or the jet. In these equations, ϵ denotes the product of trigger, reconstruction, and selection efficiencies; SF the product of the selection and electron veto scale factors; and L is the integrated luminosity.

Systematic uncertainties

The uncertainty in the efficiency of the event selection is typically small except in the high-ET region, where statistical uncertainties in both data and simulated events dominate. A summary of the systematic uncertainties in the cross section measurement, due to the uncertain in trigger and event selection efficiencies, Data-to-MC scale factors, signal and background template shapes, bin migrations from the unfolding procedure, and uncertainties in the photon energy scale and resolution, is given in Table 1. All of the above are treated as uncorrelated.

Table 1.

Impact on cross sections, in percent, for each systematic uncertainty source in the four photon rapidity regions, |yγ|<0.8, 0.8<|yγ|<1.44, 1.57<|yγ|<2.1, and 2.1<|yγ|<2.5. The ranges, when quoted, indicate the variation over photon ET between 190 and 1000GeV

Source |yγ|<0.8 0.8<|yγ|<1.44 1.57<|yγ|<2.1 2.1<|yγ|<2.5
Trigger efficiency 0.7–8.5 0.2–13.4 0.6–20.5 0.3–7.8
Selection efficiency 0.1–1.3 0.1–1.3 0.1–5.3 0.1–1.1
Data-to-MC scale factor 3.7 3.7 7.1 7.1
Template shape 0.6–5.0 0.1–10.2 0.5–4.9 0.6–16.2
Event migration 3.8–5.5 1.2–4.1 2.0–8.5 2.3–10.3
Total w/o luminosity 5.4–12.0 5.9–18.2 8.2–26.9 8.6–21.7
Integrated luminosity 2.3

The systematic uncertainties in the trigger efficiency are dominated by the statistical uncertainty in jet trigger data where the trigger efficiencies are measured. The uncertainties of the selection efficiency are dominated by the statistical uncertainties of the simulation sample. The uncertainties of the Data-to-MC scale factor are based on the available Ze+e- events, and a pT extrapolation is employed.

The systematic uncertainties in the signal and background templates are incorporated into the fit as nuisance parameters. For the signal template uncertainty, the nuisance parameter is assigned a Gaussian prior, while log-normal priors are assigned to the background template nuisances. A description of the general methodology can be found in Ref. [44]. The bias correction, applied to the photon yields, due to the selection of the sideband range is also considered as a systematic uncertainty.

The impact on photon yields due to the event migration between photon pT bins from the unfolding uncertainties, which include photon energy scale and resolution uncertainties, is roughly 5%. The uncertainties of the event selection efficiency due to the jet selection, jet energy scale and resolution, and jet rapidity migration are negligible.

The total uncertainty, not considering luminosity uncertainty, in the yield per bin, excluding the highest photon ET bin in each y range, is about 5–8% for EB and 9–17% for EE photons. The highest photon ET bins in all y region have limited events in data and simulated samples for the evaluation of systematics.

The uncertainty in the measurement of the CMS integrated luminosity is 2.3% [22] and it is added in quadrature with other systematic uncertainties.

Results and comparison with theory

The measured inclusive isolated-photon cross sections as a function of photon ET are shown in Fig. 3 and the ratio compared with theory in Fig. 4 for photon ET greater than 190GeV and |yγ|<2.5 in 4 rapidity bins. The results are listed in Table 2. The measurements for photon+jet cross sections as a function of photon ET are shown in Fig. 5 and the ratio compared with theory in Fig. 6 with additional requirements of pTjet>30GeV and |yjet|<2.4. The results are binned in two photon rapidity and two jet rapidity bins and are listed in Table 3. The predictions require an isolated photon at generator level as described previously, with a transverse isolation energy less than 5GeV.

Fig. 3.

Fig. 3

Differential cross sections for isolated-photon production in photon rapidity bins, |yγ|<0.8, 0.8<|yγ|<1.44, 1.57<|yγ|<2.1, and 2.1<|yγ|<2.5. The points show the measured values and their total uncertainties; the lines show the NLO jetphox  predictions with the NNPDF3.0 PDF set

Fig. 4.

Fig. 4

The ratios of theoretical NLO predictions to data for the differential cross sections for isolated-photon production in four photon rapidity bins, |yγ|<0.8, 0.8<|yγ|<1.44, 1.57<|yγ|<2.1, and 2.1<|yγ|<2.5, are shown. The error bars on data points represent the statistical uncertainty, while the hatched area shows the total experimental uncertainty. The errors on the ratio represent scale uncertainties, and the shaded regions represent the total theoretical uncertainties

Table 2.

Measured and predicted differential cross section for isolated-photon production, along with the statistical and systematical uncertainties in the various ET and y bins. Predictions use jetphox  at NLO with the NNPDF3.0 PDF set. The ratio of the jetphox  predictions to data are listed in the last column, with the total uncertainty estimated assuming uncorrelated experimental and theoretical uncertainties

ET (GeV ) Measured cross section within the bin (pb) jetphox NNPDF3.0 (pb) jetphox/Data
|yγ|<0.8
   190–200 (3.64±0.04(stat)±0.23(syst))×10-1 (3.1±0.3)×10-1 0.85±0.10
   200–220 (2.49±0.02(stat)±0.15(syst))×10-1 (2.2±0.2)×10-1 0.88±0.09
   220–250 (1.46±0.01(stat)±0.09(syst))×10-1 (1.3±0.1)×10-1 0.90±0.10
   250–300 (7.09±0.08(stat)±0.45(syst))×10-2 (6.4±0.5)×10-2 0.91±0.10
   300–350 (2.91±0.05(stat)±0.19(syst))×10-2 (2.7±0.3)×10-2 0.92±0.12
   350–400 (1.24±0.03(stat)±0.10(syst))×10-2 (1.4±0.2)×10-2 1.11±0.15
   400–500 (5.1±0.1(stat)±0.4(syst))×10-3 (5.0±0.6)×10-3 0.98±0.14
   500–750 (1.11±0.04(stat)±0.08(syst))×10-3 (9.0±1.0)×10-4 0.79±0.14
   750–1000 (1.0±0.1(stat)±0.1(syst))×10-4 (1.4±0.4)×10-4 1.33±0.44
0.8<|yγ|<1.44
   190–200 (3.44±0.04(stat)±0.25(syst))×10-1 (3.0±0.3)×10-1 0.88±0.10
   200–220 (2.26±0.03(stat)±0.18(syst))×10-1 (2.1±0.2)×10-1 0.95±0.12
   220–250 (1.37±0.02(stat)±0.09(syst))×10-1 (1.3±0.1)×10-1 0.94±0.10
   250–300 (5.87±0.08(stat)±0.40(syst))×10-2 (6.2±0.6)×10-2 1.06±0.12
   300–350 (2.60±0.05(stat)±0.17(syst))×10-2 (2.7±0.2)×10-2 1.04±0.12
   350–400 (1.15±0.04(stat)±0.09(syst))×10-2 (1.3±0.1)×10-2 1.15±0.13
   400–500 (4.6±0.2(stat)±0.3(syst))×10-3 (4.7±0.5)×10-3 1.04±0.13
   500–750 (7.4±0.4(stat)±0.6(syst))×10-4 (8.2±0.8)×10-4 1.11±0.15
   750–1000 (8.0±1.0(stat)±1.0(syst))×10-5 (1.1±0.2)×10-4 1.40±0.39
1.57<|yγ|<2.1
   190–200 (3.16±0.05(stat)±0.31(syst))×10-1 (2.8±0.3)×10-1 0.88±0.13
   200–220 (2.19±0.03(stat)±0.19(syst))×10-1 (2.0±0.2)×10-1 0.91±0.12
   220–250 (1.19±0.02(stat)±0.12(syst))×10-1 (1.1±0.1)×10-1 0.96±0.13
   250–300 (5.80±0.09(stat)±0.54(syst))×10-2 (5.4±0.5)×10-2 0.92±0.12
   300–350 (2.37±0.06(stat)±0.22(syst))×10-2 (2.2±0.3)×10-2 0.93±0.14
   350–400 (1.02±0.04(stat)±0.12(syst))×10-2 (9.5±0.9)×10-3 0.93±0.15
   400–500 (4.0±0.2(stat)±0.5(syst))×10-3 (3.1±0.3)×10-3 0.77±0.13
   500–750 (6.1±0.4(stat)±0.9(syst))×10-4 (4.6±0.5)×10-4 0.76±0.14
   750–1000 (3.9±1.0(stat)±1.1(syst))×10-5 (3.0±0.9)×10-5 0.78±0.37
2.1<|yγ|<2.5
   190–200 (2.52±0.07(stat)±0.35(syst))×10-1 (2.3±0.3)×10-1 0.92±0.17
   200–220 (1.55±0.04(stat)±0.14(syst))×10-1 (1.6±0.2)×10-1 1.04±0.14
   220–250 (8.8±0.2(stat)±0.8(syst))×10-2 (9.0±1.0)×10-2 1.02±0.15
   250–300 (3.7±0.1(stat)±0.4(syst))×10-2 (3.8±0.4)×10-2 1.01±0.14
   300–350 (1.32±0.07(stat)±0.15(syst))×10-2 (1.4±0.1)×10-2 1.06±0.17
   350–400 (5.9±0.4(stat)±0.7(syst))×10-3 (5.0±0.5)×10-3 0.85±0.14
   400–500 (1.7±0.1(stat)±0.3(syst))×10-3 (1.2±0.1)×10-3 0.72±0.16
   500–750 (1.8±0.2(stat)±0.4(syst))×10-4 (1.4±0.3)×10-4 0.77±0.25

Fig. 5.

Fig. 5

Differential cross sections for photon+jet production in two photon rapidity bins, |yγ|<1.44 and 1.57<|yγ|<2.5, and two jet rapidity bins, |yjet|<1.5 and 1.5<|yjet|<2.4. The points show the measured values with their total uncertainties, and the lines show the NLO jetphox  predictions with the NNPDF3.0 PDF set

Fig. 6.

Fig. 6

The ratios of theoretical NLO prediction to data for the differential cross sections for photon+jet production in two photon rapidity (|yγ|<1.44 and 1.57<|yγ|<2.5) and two jet rapidity (|yjet|<1.5 and 1.5<|yjet|<2.4) bins , are shown. The error bars on the data points represent their statistical uncertainty, while the hatched area shows the total experimental uncertainty. The error bars on the ratios show the scale uncertainties, and the shaded area shows the total theoretical uncertainties

Table 3.

Measured and predicted differential cross section for photon+jet production, along with statistical and systematical uncertainties in the various ET and y bins. Predictions are based on jetphox  at NLO with the NNPDF3.0 PDF set. The ratio of the jetphox  predictions to the data are listed in the last column, with the total uncertainty estimated assuming uncorrelated experimental and theoretical uncertainties

ET (GeV ) Measured cross section within the bin (pb) jetphox NNPDF3.0 (pb) jetphox/Data
|yγ|<1.44, |yjet|<1.5, and pTjet>30GeV
   190–200 (9.2±0.1(stat)±0.6(syst))×10-2 (7.7±0.7)×10-2 0.83±0.10
   200–220 (6.26±0.06(stat)±0.41(syst))×10-2 (5.6±0.5)×10-2 0.89±0.10
   220–250 (3.72±0.04(stat)±0.23(syst))×10-2 (3.3±0.3)×10-2 0.89±0.10
   250–300 (1.72±0.02(stat)±0.11(syst))×10-2 (1.6±0.2)×10-2 0.95±0.12
   300–350 (7.50±0.1(stat)±0.5(syst))×10-3 (7.3±0.7)×10-3 0.97±0.11
   350–400 (3.34±0.08(stat)±0.25(syst))×10-3 (3.8±0.4)×10-3 1.14±0.15
   400–500 (1.37±0.03(stat)±0.10(syst))×10-3 (1.4±0.1)×10-3 1.02±0.12
   500–750 (2.82±0.09(stat)±0.22(syst))×10-4 (2.7±0.2)×10-4 0.97±0.12
   750–1000 (3.0±0.3(stat)±0.3(syst))×10-5 (3.8±0.6)×10-5 1.26±0.26
|yγ|<1.44, 1.5<|yjet|<2.4, and pTjet>30GeV
   190–200 (4.08±0.09(stat)±0.27(syst))×10-2 (3.2±0.4)×10-2 0.78±0.11
   200–220 (2.73±0.05(stat)±0.18(syst))×10-2 (2.3±0.2)×10-2 0.84±0.10
   220–250 (1.54±0.03(stat)±0.10(syst))×10-2 (1.3±0.1)×10-2 0.86±0.10
   250–300 (6.9±0.1(stat)±0.5(syst))×10-3 (6.3±0.6)×10-3 0.91±0.10
   300–350 (2.73±0.09(stat)±0.18(syst))×10-3 (2.7±0.3)×10-3 0.97±0.12
   350–400 (1.12±0.05(stat)±0.08(syst))×10-3 (1.2±0.1)×10-3 1.07±0.13
   400–500 (4.4±0.2(stat)±0.3(syst))×10-4 (3.9±0.3)×10-4 0.89±0.10
   500–750 (5.8±0.5(stat)±0.5(syst))×10-5 (6.0±0.6)×10-5 1.03±0.15
   750–1000 (4.3±1.3(stat)±0.4(syst))×10-6 (4.4±0.7)×10-6 1.02±0.36
1.57<|yγ|<2.5, |yjet|<1.5, and pTjet>30GeV
   190–200 (6.0±0.1(stat)±0.6(syst))×10-2 (5.1±0.6)×10-2 0.85±0.12
   200–220 (3.92±0.08(stat)±0.39(syst))×10-2 (3.6±0.4)×10-2 0.92±0.14
   220–250 (2.42±0.04(stat)±0.23(syst))×10-2 (2.1±0.2)×10-2 0.88±0.13
   250–300 (1.08±0.02(stat)±0.12(syst))×10-2 (1.0±0.1)×10-2 0.93±0.14
   300–350 (4.7±0.1(stat)±0.5(syst))×10-3 (4.2±0.4)×10-3 0.90±0.13
   350–400 (2.03±0.09(stat)±0.25(syst))×10-3 (1.8±0.2)×10-3 0.91±0.15
   400–500 (8.1±0.3(stat)±0.9(syst))×10-4 (6.0±0.5)×10-4 0.74±0.11
   500–750 (1.24±0.08(stat)±0.17(syst))×10-4 (8.5±0.9)×10-5 0.69±0.12
   750–1000 (1.0±0.2(stat)±0.3(syst))×10-5 (6.0±2.0)×10-6 0.64±0.32
1.57<|yγ|<2.5, 1.5<|yjet|<2.4, and pTjet>30GeV
   190–200 (5.0±0.1(stat)±0.5(syst))×10-2 (4.0±1.0)×10-2 0.85±0.23
   200–220 (3.39±0.08(stat)±0.34(syst))×10-2 (3.0±0.8)×10-2 0.89±0.24
   220–250 (1.87±0.05(stat)±0.17(syst))×10-2 (1.7±0.5)×10-2 0.91±0.26
   250–300 (8.1±0.2(stat)±0.9(syst))×10-3 (7.0±2.0)×10-3 0.92±0.27
   300–350 (3.4±0.1(stat)±0.3(syst))×10-3 (2.8±0.8)×10-3 0.83±0.26
   350–400 (1.38±0.02(stat)±0.17(syst))×10-3 (1.0±0.3)×10-3 0.74±0.25
   400–500 (3.4±0.3(stat)±0.4(syst))×10-4 (2.7±0.8)×10-4 0.79±0.27
   500–750 (4.1±0.7(stat)±0.5(syst))×10-5 (3.0±1.0)×10-5 0.67±0.30

The measured cross sections in the overlapping photon ET regions are increased by approximately a factor of 3 to 5 compared to previous CMS measurements at 7TeV  [1, 2, 8]. This 13TeV analysis also extends the photon ET range from 400 (300)GeV in the 7 TeV inclusive photon (photon+jet) results to 1TeV.

The measured cross sections are compared with NLO perturbative QCD calculations from the jetphox  1.3.1 generator [13, 45, 46], using the NNPDF3.0 NLO [18] PDFs and the Bourhis–Fontannaz–Guillet (BFG) set II parton fragmentation functions [47]. The renormalization, factorization, and fragmentation scales are all set to be equal to the photon ET. To estimate the effect of the choice of theoretical scales on the predictions, the three scales are varied independently from ET/2 to 2ET, while keeping their ratio between one-half and two. The impact of jetphox  cross section predictions due to the uncertainties in the PDF and in the strong coupling αS=0.118 at the mass of Z boson is calculated using the 68% confidence level NNPDF3.0 NLO replica. The uncertainty of parton-to-particle level transformation of the NLO pQCD prediction due to the underlying event and parton shower is studied by comparing with dedicated pythia samples where the choice and tuning of the generator has been modified. The differences between the dedicated pythia and the nominal sample are between 0.5 and 2.0%, depending on the photon ET and y, and they are assigned as the systematic uncertainty. The total theoretical uncertainties of the cross section predictions are evaluated as the quadratic sum of the scale, PDF,αS, and underlying event and parton shower uncertainties.

The ratio of the theoretical predictions to data, together with the experimental and theoretical uncertainties, are shown in Figs. 4 and 6 for the isolated-photon and photon+jet cross section measurements respectively. The uncertainties in the theoretical predictions and ratios to data are symmetrized in the tables; the largest value between the positive and negative uncertainties is listed. Measured cross sections are in agreement with theoretical expectations within statistical and systematic uncertainties.

The ratio of the theoretical predictions to data based on jetphox  at NLO with different PDF sets, including MMHT14 [19], CT14 [20], and HERAPDF2.0 [48] together with NNPDF3.0, are shown in Fig. 7. The differences between jetphox  predictions using different PDF sets are small, within the theoretical uncertainties estimated with NNPDF3.0.

Fig. 7.

Fig. 7

Ratios of jetphox  NLO predictions to data for various PDF sets as a function of photon ET for inclusive isolated-photons (top four panels) and photon+jet (four bottom panels). Data are shown as points, the error bars represent statistical uncertainties, while the hatched area represents the total experimental uncertainties. The theoretical uncertainty in the NNPDF3.0 prediction is shown as a shaded area

Summary

The differential cross sections for inclusive isolated-photon and photon+jet production in proton-proton collisions at a center-of-mass energy of 13TeV are measured with a data sample collected by the CMS experiment corresponding to an integrated luminosity of 2.26fb-1. The measurements of inclusive isolated-photon production cross sections are presented as functions of photon transverse energy and rapidity with ETγ>190GeV and |yγ|<2.5. The photon+jet production cross sections are presented as functions of photon transverse energy, and photon and jet rapidities, with requirement of an isolated photon and jet where pTjet>30GeV and |yjet|<2.4.

The measurements are compared with theoretical predictions produced using the jetphox  next-to-leading order calculations using different parton distribution functions. The theoretical predictions agree with the experimental measurements within the statistical and systematic uncertainties. For low to middle range in photon ET, where the experimental uncertainties are smaller or comparable to theoretical uncertainties, these measurements provide the potential to further constrain the proton PDFs. The agreement between data and theory, and the new next-to-next-to-leading-order (NNLO) calculations [49] motivate the use of additional measurements to better estimate the gluon and other PDFs.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research Grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

  • 1.CMS Collaboration, Measurement of the isolated prompt photon production cross section in pp collisions at s=7 TeV. Phys. Rev. Lett. 106, 082001 (2011). 10.1103/PhysRevLett.106.082001. arXiv:1012.0799 [DOI] [PubMed]
  • 2.CMS Collaboration, Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV. Phys. Rev. D 84, 052011 (2011). 10.1103/PhysRevD.84.052011. arXiv:1108.2044
  • 3.CMS Collaboration, Measurement of isolated photon production in pp and PbPb collisions at sNN=2.76 TeV. Phys. Lett. B 710, 256 (2012). 10.1016/j.physletb.2012.02.077. arXiv:1201.3093
  • 4.ATLAS Collaboration, Measurement of the inclusive isolated prompt photon cross section in pp collisions at s=7 TeV with the ATLAS detector. Phys. Rev. D 83, 052005 (2011). 10.1103/PhysRevD.83.052005. arXiv:1012.4389
  • 5.ATLAS Collaboration, Measurement of the inclusive isolated prompt photon cross-section in pp collisions at s= 7 TeV using 35 pb-1 of ATLAS data. Phys. Lett. B 706, 150 (2011). 10.1016/j.physletb.2011.11.010. arXiv:1108.0253
  • 6.ATLAS Collaboration, Measurement of the inclusive isolated prompt photons cross section in pp collisions at s=7 TeV with the ATLAS detector using 4.6fb-1. Phys. Rev. D 89, 052004 (2014). 10.1103/PhysRevD.89.052004. arXiv:1311.1440
  • 7.ATLAS Collaboration, Measurement of the inclusive isolated prompt photon cross section in pp collisions at s=8 TeV with the ATLAS detector. JHEP 08, 005 (2016). 10.1007/JHEP08(2016)005. arXiv:1605.03495
  • 8.CMS Collaboration, Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at s=7 TeV. JHEP 06, 009 (2014). 10.1007/JHEP06(2014)009. arXiv:1311.6141
  • 9.ATLAS Collaboration, Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at s=7 TeV with the ATLAS detector. Phys. Rev. D 85, 092014 (2012). 10.1103/PhysRevD.85.092014. arXiv:1203.3161
  • 10.ATLAS Collaboration, High-ET isolated-photon plus jets production in pp collisions at s= 8 TeV with the ATLAS detector. Nucl. Phys. B 918, 257 (2017). 10.1016/j.nuclphysb.2017.03.006. arXiv:1611.06586
  • 11.ATLAS Collaboration, Measurement of the cross section for inclusive isolated-photon production in pp collisions at s=13 TeV using the ATLAS detector. Phys. Lett. B 770, 473 (2017). 10.1016/j.physletb.2017.04.072. arXiv:1701.06882
  • 12.ATLAS Collaboration, Measurement of the cross section for isolated-photon plus jet production in pp collisions at s=13 TeV using the ATLAS detector. Phys. Lett. B 780, 578 (2018). 10.1016/j.physletb.2018.03.035. arXiv:1801.00112
  • 13.Aurenche P, et al. A new critical study of photon production in hadronic collisions. Phys. Rev. D. 2006;73:094007. doi: 10.1103/PhysRevD.73.094007. [DOI] [Google Scholar]
  • 14.Ichou R, d’Enterria D. Sensitivity of isolated photon production at TeV hadron colliders to the gluon distribution in the proton. Phys. Rev. D. 2010;82:014015. doi: 10.1103/PhysRevD.82.014015. [DOI] [Google Scholar]
  • 15.Vogelsang W, Vogt A. Constraints on the proton’s gluon distribution from prompt photon production. Nucl. Phys. B. 1995;453:334. doi: 10.1016/0550-3213(95)00424-Q. [DOI] [Google Scholar]
  • 16.d’Enterria D, Rojo J. Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data. Nucl. Phys. B. 2012;860:311. doi: 10.1016/j.nuclphysb.2012.03.003. [DOI] [Google Scholar]
  • 17.Carminati L, et al. Sensitivity of the LHC isolated-gamma+jet data to the parton distribution functions of the proton. EPL. 2013;101:61002. doi: 10.1209/0295-5075/101/61002. [DOI] [Google Scholar]
  • 18.NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP 04, 040 (2015). 10.1007/JHEP04(2015)040. arXiv:1410.8849
  • 19.Harland-Lang LA, Martin AD, Motylinski P, Thorne RS. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C. 2015;75:204. doi: 10.1140/epjc/s10052-015-3397-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Dulat S, et al. New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D. 2016;93:033006. doi: 10.1103/PhysRevD.93.033006. [DOI] [Google Scholar]
  • 21.Campbell JM, Rojo J, Slade E, Williams C. Direct photon production and PDF fits reloaded. Eur. Phys. J. C. 2018;78:470. doi: 10.1140/epjc/s10052-018-5944-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.CMS Collaboration, CMS luminosity measurement for the 2015 data-taking period. CMS Physics Analysis Summary CMS-PAS-LUM-15-001 (2016). https://cds.cern.ch/record/2138682
  • 23.H. Voss, A. Höcker, J. Stelzer, F. Tegenfeldt, TMVA, the toolkit for multivariate data analysis with ROOT. In XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), (2007). p. 40. arXiv:physics/0703039. 10.22323/1.050.0040
  • 24.CMS Collaboration, The CMS Experiment at the CERN LHC. JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004
  • 25.CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014). 10.1088/1748-0221/9/10/P10009. arXiv:1405.6569
  • 26.CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector. JINST 12, P10003 (2017). 10.1088/1748-0221/12/10/P10003. arXiv:1706.04965
  • 27.CMS Collaboration, Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at s=7 TeV. JINST 8, P09009 (2013). 10.1088/1748-0221/8/09/P09009. arXiv:1306.2016
  • 28.CMS Collaboration, Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at s=8TeV. JINST 10, P08010 (2015). 10.1088/1748-0221/10/08/P08010. arXiv:1502.02702
  • 29.Cacciari M, Salam GP, Soyez G. The anti-kT jet clustering algorithm. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 30.Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 31.CMS Collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. JINST 12, P02014 (2017). 10.1088/1748-0221/12/02/P02014. arXiv:1607.03663
  • 32.Sjöstrand T, et al. An Introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015;191:159. doi: 10.1016/j.cpc.2015.01.024. [DOI] [Google Scholar]
  • 33.Alwall J, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP. 2014;07:079. doi: 10.1007/JHEP07(2014)079. [DOI] [Google Scholar]
  • 34.Alwall J, et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C. 2008;53:473. doi: 10.1140/epjc/s10052-007-0490-5. [DOI] [Google Scholar]
  • 35.Frederix R, Frixione S. Merging meets matching in MC@NLO. JHEP. 2012;12:061. doi: 10.1007/JHEP12(2012)061. [DOI] [Google Scholar]
  • 36.CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2016). 10.1140/epjc/s10052-016-3988-x. arXiv:1512.00815 [DOI] [PMC free article] [PubMed]
  • 37.NNPDF Collaboration, Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). 10.1016/j.nuclphysb.2012.10.003. arXiv:1207.1303
  • 38.GEANT4 Collaboration, Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). 10.1016/S0168-9002(03)01368-8
  • 39.CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017). 10.1088/1748-0221/12/01/P01020. arXiv:1609.02366
  • 40.CMS Collaboration, Performance of missing energy reconstruction in 13 TeV pp collision data using the CMS detector. CMS Physics Analysis Summary CMS-PAS-JME-16-004 (2016). https://cds.cern.ch/record/2205284
  • 41.CMS Collaboration, Jet algorithms performance in 13 TeV data. CMS Physics Analysis Summary CMS-PAS-JME-16-003 (2017). https://cds.cern.ch/record/2256875
  • 42.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A. 1995;362:487. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 43.T. Adye, Unfolding algorithms and tests using RooUnfold. Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding 313, (2011). 10.5170/CERN-2011-006.313. arXiv:1105.1160
  • 44.ATLAS and CMS Collaborations, LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in summer 2011. CMS/ATLAS joint note ATL-PHYS-PUB-2011-11, CMS NOTE 2011/005 (2011)
  • 45.Catani S, Fontannaz M, Guillet JP, Pilon E. Cross section of isolated prompt photons in hadron–hadron collisions. JHEP. 2002;05:028. doi: 10.1088/1126-6708/2002/05/028. [DOI] [Google Scholar]
  • 46.Belghobsi Z, et al. Photon-jet correlations and constraints on fragmentation functions. Phys. Rev. D. 2009;79:114024. doi: 10.1103/PhysRevD.79.114024. [DOI] [Google Scholar]
  • 47.Bourhis L, Fontannaz M, Guillet JP. Quark and gluon fragmentation functions into photons. Eur. Phys. J. C. 1998;2:529. doi: 10.1007/s100520050158. [DOI] [Google Scholar]
  • 48.H1 and ZEUS Collaborations, Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data. Eur. Phys. J. C 75, 580 (2015). 10.1140/epjc/s10052-015-3710-4. arXiv:1506.06042
  • 49.Campbell JM, Ellis RK, Williams C. Direct photon production at next-to-next-to-leading order. Phys. Rev. Lett. 2017;118:222001. doi: 10.1103/PhysRevLett.118.222001. [DOI] [PubMed] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES