Skip to main content
Scientific Data logoLink to Scientific Data
. 2019 Feb 26;6:190027. doi: 10.1038/sdata.2019.27

An emissions-socioeconomic inventory of Chinese cities

Yuli Shan 1, Jianghua Liu 2, Zhu Liu 1,3, Shuai Shao 2,a, Dabo Guan 1,3,4,b
PMCID: PMC6390707  PMID: 30806637

Abstract

As the centre of human activity and being under the threat of climate change, cities are considered to be major components in the implementation of climate change mitigation and CO2 emission reduction strategies. Inventories of cities’ emissions serve as the foundation for the analysis of emissions characteristics and policymaking. China is the world’s top energy consumer and CO2 emitter, and it is facing great potential harm from climate change. Consequently, China is taking increasing responsibility in the fight against global climate change. Many energy/emissions control policies have been implemented in China, most of which are designed at the national level. However, cities are at different stages of industrialization and have distinct development pathways; they need specific control policies designed based on their current emissions characteristics. This study is the first to construct emissions inventories for 182 Chinese cities. The inventories are constructed using 17 fossil fuels and 47 socioeconomic sectors. These city-level emissions inventories have a scope and format consistent with China’s national/provincial inventories. Some socioeconomic data of the cities, such as GDP, population, industrial structures, are included in the datasets as well. The dataset provides transparent, accurate, complete, comparable, and verifiable data support for further city-level emissions studies and low-carbon/sustainable development policy design. The dataset also offers insights for other countries by providing an emissions accounting method with limited data.

Subject terms: Climate-change policy, Climate-change mitigation, Environmental economics

Background & Summary

Cities are considered to be major components in the implementation of climate change mitigation and CO2 emission reduction strategies1. Although a mention of “city” is lacking in the Paris Agreement or the Sustainable Development Goals, as all submissions focused on the national level, climate change actions should be taken at the city level2.

Cities are the basic units for human activity3 and the main consumers of energy and emitters of CO2 throughout the world4,5. The CO2 emissions from energy use in cities will grow by 1.8% per year between 2006 and 2030, with the share of global CO2 emissions rising from 71 to 76%6. In China, urban energy use accounts for 85% of total emissions, which is higher than its share in the USA (80%) or Europe (69%)7,8. The high energy demand and high CO2 emissions of cities not only increase climate change concerns and environmental pressure but also increase residents’ health problems through air pollution9. Both coastal and interior cities are facing danger from extreme weather, geological hazards, urban waterlogging, etc. Thus, cities are motivated to fight against climate change.

Although climate policies are usually designed at the national level, they are implemented at the city level. Without support from local city governments, national policies cannot be effectively executed. Considering that cities have different natural resource endowments and development pathways, each should have specific emission reduction actions that are designed based on that city’s unique emission characteristics. In China, this is particularly true. There are over 330 cities in China, and they are at different stages of industrialization, with distinct development pathways. Therefore, cities are the key components in climate change policymaking, and many low-carbon projects and actions have been taken at the city level, such as the Local Governments for Sustainability (ICLEI) and the C40 Cities Climate Leadership Group (C40).

Understanding the emissions characteristics of cities is the foundation of any further city-level climate change actions. Compared to studies focused on national and provincial emissions accounts, far fewer have focused on city-level emissions, and those that do have methods limitations and geographical restrictions.

First, previous studies on city-level emissions have severe methodological weaknesses and limitations. Most previous city-level greenhouse gas emissions inventories were calculated using a bottom-up approach, i.e., by using energy consumption data from surveys of several sectors10–12. The sectors were set differently between studies, making the cities’ CO2 emissions inconsistent and not comparable across studies, as well as inconsistent with the national and regional emission inventories. In addition, some studies used spatial and geographical analysis13,14, night-time light imagery15,16, or economic models17,18 to account for city emissions. These models can only estimate the overall CO2 emissions of a city. They cannot exactly determine the contributions of emission sources (i.e., energy types or socioeconomic sectors).

Second, most of the previous studies on city-level emissions focused on megacities from developed countries with consistent and transparent data sources, especially US cities19–23. Currently, city-level emissions are being studied from a more international perspective by analysing more global cities, especially cities from developing countries24–30. Restricted by data availability, the CO2 emissions from Chinese cities are far behind in their documentation. Sugar, et al.31 reported emissions for Beijing, Tianjin, and Shanghai in 2006 and compared the three cities’ emissions with those of ten other global cities. Wang, et al.10 discussed the CO2 emissions from 12 Chinese megacities, most of which are provincial capital cities. Dhakal8 examined the energy consumption and CO2 emissions of all Chinese provincial cities. Zhou, et al.32 and Xu, et al.33 account for the CO2 emissions of specific city clusters, such as the Guangdong Bay cities and cities in the central plain. Ramaswami, et al.34 in the cited study and a follow-up study developed a comprehensive emission database including the scope 1 and scope 2 CO2 emissions of 233 prefecture-level and 637 county-level cities in China35.

Thus, the previous assessments of city-level emissions either focused on total emissions (or combined emissions for several sectors) or on megacities with consistent and systematic energy statistics. Previous analyses of the bottom-up sector-based emissions of cities are inconsistent with national and regional emission inventories, making multi-scale emission studies unavailable. Additionally, such general emission data cannot support detailed city-level emission analysis and related emission reduction policy making.

The dataset in this study provides detailed emissions inventories for 182 Chinese cities. The inventories are constructed for 17 types of fossil fuel and 47 socioeconomic sectors that are consistent with the System of National Accounts. Additional socioeconomic indexes for the cities are included in the dataset. The dataset has been re-used in our latest study1 and will facilitate further city-level emissions studies and low-carbon/sustainable development policy design.

Methods

City boundaries and emission scopes

This dataset provides the emissions and socioeconomic inventories of 182 Chinese cities; these cities cover 82% (33,880 billion yuan) of the country’s GDP (41,303 billion yuan), 64% (860 million) of the population (1,341 million), and 35% (3.4 million km2) of the land area (9.6 million km2) in 201036. Most of the studied cities are located east of the Heihe-Tengchong line, where 96% of China’s population lives on 43% of the land. The 182 cities are selected based on data availability.

The term ‘city’ here refers to administrative prefecture-level city rather than to a built-up city. Accordingly, the CO2 emissions calculated in this dataset are Intergovernmental Panel on Climate Change (IPCC) administrative territorial CO2 emissions, referring to emissions “taking place within national (including administered) territories and offshore areas over which the country has jurisdiction (page overview.5)”37. We exclude the emissions induced by international aviation and shipping38. Unlike production- or consumption-based emissions17, the administrative territorial scope quantifies the direct emissions induced by human activities within a regional boundary. That is, territorial emissions provide the data baseline for emission-related studies and regional carbon control.

The emission inventories include two components: CO2 emitted from fossil fuel combustion (energy-related emissions) and CO2 emitted from industrial production (process-related emissions). Process-related emissions refers to CO2 emitted from industrial raw materials during chemical reactions, such as CO2 escaping during calcium carbonate (CaCO3) calcination in cement production.

The cities’ emissions inventories are uniform with China’s national and provincial emission inventories in scope, format, and data sources39, making them comparable.

Emissions calculation and inventory construction

The energy-related emissions are calculated based on 17 fuels (shown in Table 1) and 47 socioeconomic sectors (shown in Table 2). The 17 types of fossil fuels are selected based on China’s official energy statistical system36. There are 29 energy types used in the system: 26 are fossil fuels, one is electricity, one is heat, and one is other energy. As our study only accounts for the direct emissions from fossil fuel burning within one city boundary (the IPCC administrative territorial scope), the inventories exclude the indirect emissions induced by electricity and heat use. The CO2 emissions related to electricity and heat generation, therefore, are calculated based on fuel inputs and allocated to the power plants. We also assume that there is no, or little, CO2 emitted from other energy uses. Some of the fossil fuels share similar carbon content and have very low consumption volumes; we merge them in the emission accounts39. The 47 socioeconomic sectors are set according to the System of National Accounts40.

Table 1. Fossil fuels in the city-level emissions inventories and emissions factors.

No. (i) Unit Fuels in China’s Energy Statistics Fuels in this study NCVi CCi
PJ/104 tonnes, 108 m3 tonne C/TJ
1 Raw coal Raw coal 0.21 26.32
2 Cleaned coal Cleaned coal 0.26 26.32
3 Other washed coal Other washed coal 0.15 26.32
4 Briquettes Briquette 0.18 26.32
Gangue
5 Coke Coke 0.28 31.38
6 Coke oven gas Coke over gas 1.61 21.49
7 Blast furnace gas Other gas 0.83 21.49
Converter gas
Other gas
8 Other coking products Other coking products 0.28 27.45
9 Crude Oil Crude oil 0.43 20.08
10 Gasoline Gasoline 0.44 18.9
11 Kerosene Kerosene 0.44 19.6
12 Diesel oil Diesel oil 0.43 20.2
13 Fuel oil Fuel oil 0.43 21.1
14 Naphtha Other petroleum products 0.51 17.2
Lubricants
Paraffin
White spirit
Bitumen asphalt
Petroleum coke
Other petroleum products
15 Liquefied petroleum gas (LPG) LPG 0.47 20
16 Refinery gas Refinery gas 0.43 20.2
17 Nature gas Nature gas 3.89 15.32

Table 2. Sectors’ definition of the emission inventories.

No. (j) Socioeconomic sectors Category
1 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy The primary industry
2 Coal Mining and Dressing Energy production Manufacturing industries
3 Petroleum and Natural Gas Extraction Energy production
4 Ferrous Metals Mining and Dressing Energy production
5 Nonferrous Metals Mining and Dressing Energy production
6 Non-metal Minerals Mining and Dressing Energy production
7 Other Minerals Mining and Dressing Energy production
8 Logging and Transport of Wood and Bamboo Light manufacturing
9 Food Processing Light manufacturing
10 Food Production Light manufacturing
11 Beverage Production Light manufacturing
12 Tobacco Processing Light manufacturing
13 Textile Industry Light manufacturing
14 Garments and Other Fibre Products Light manufacturing
15 Leather, Furs, Down and Related Products Light manufacturing
16 Timber Processing, Bamboo, Cane, Palm Fibre & Straw Products Light manufacturing
17 Furniture Manufacturing Light manufacturing
18 Papermaking and Paper Products Light manufacturing
19 Printing and Record Medium Reproduction Light manufacturing
20 Cultural, Educational and Sports Articles Light manufacturing
21 Petroleum Processing and Coking Energy production
22 Raw Chemical Materials and Chemical Products Heavy manufacturing
23 Medical and Pharmaceutical Products Light manufacturing
24 Chemical Fibre Heavy manufacturing
25 Rubber Products Heavy manufacturing
26 Plastic Products Heavy manufacturing
27 Non-metal Mineral Products Heavy manufacturing
28 Smelting and Pressing of Ferrous Metals Heavy manufacturing
29 Smelting and Pressing of Nonferrous Metals Heavy manufacturing
30 Metal Products Heavy manufacturing
31 Ordinary Machinery Heavy manufacturing
32 Equipment for Special Purposes Heavy manufacturing
33 Transportation Equipment manufacturing Heavy manufacturing
34 Electric Equipment and Machinery High-tech industry
35 Electronic and Telecommunications Equipment High-tech industry
36 Instruments, Meters, Cultural and Office Machinery High-tech industry
37 Other Manufacturing Industry High-tech industry
38 Scrap and waste High-tech industry
39 Production and Supply of Electric Power, Steam and Hot Water Energy production
40 Production and Supply of Gas Energy production
41 Production and Supply of Tap Water Heavy manufacturing
42 Construction Construction
43 Transportation, Storage, Post and Telecommunication Services Services sectors
44 Wholesale, Retail Trade and Catering Services    
45 Other Service Sectors    
46 Urban Resident Energy Usage Household
47 Rural Resident Energy Usage    

Energy-related CO2 emissions are calculated based on the mass balance theory;41 see Equation 1.

(1)CEij=ADij×NCVi×CCi×Oij

where CEij represents the CO2 emissions induced by the combustion of fuel i in sector j, ADij (activity data) represents fossil fuel combustion by fuel and sector. The emission factor (ton CO2/ton) is composed of a specific heat value factor- NCVi (J/ton) multiplied by the carbon content per unit heat value-CCi (ton CO2/J) and oxygenation efficiency-Oij (quantified as percentage). Specifically, NCVi refers to the heat value produced per physical unit of fossil fuel i combusted, CCi is the carbon content emitted per unit heat value when combusting per physical unit of fossil fuel i, while Oij stands for the oxidation ratio of the fossil fuel combusted.

The emission factors (NCVi, CCi, and Oij) have been published by international institutions, including the IPCC and the United Nations (UN; governmental agencies in China such as the National Bureau of Statistics of China (NBS) and the National Development and Reform Commission of China (NDRC);42 and previous studies such as the Multi-resolution Emission Inventory for China (MEIC)43, Liu, et al.44. Liu, et al.44 re-evaluated the carbon content of raw coal samples from 4,243 state-owned Chinese coal mines and found that the emission factors for Chinese coal are, on average, 40% lower than the default values recommended by the IPCC. After comparing Liu, et al.44 emissions factors with eight different sources, our previous study finds that Liu, et al.44 emission factors are relatively lower than others (shown in Table 3 (available online only)). The seven sets of emission factors are collected from IPCC, NBS, NDRC, NC1994, NC2005, MEIC, UN-China, and UN-average. Generally, coal-related fuels have a larger range than oil- and gas-related fuels. Liu, et al.44’s re-evaluated emission factors have already been widely used by many studies and institutions to calculate China’s emission inventory, including China’s third official emission inventory 201245 . Thus, this study uses the above-mentioned updated emission factors. Table 1 gives the net caloric value (NCVi) and carbon content (CCi). Table 4 (available online only) shows the sector-specific oxygenation efficiency (Oij), which considers sector discrepancies in technical level39.

Table 3. Fuel’s emission factors from other sources.

  IPCC NBS NDRC NC1994 NC2005 MEIC UN-China UN average Liu et al.’s nature
Net caloric value (PJ/10 thousand tonnes, 100 million cu.m.) Raw Coal 0.28 0.21 0.21 0.21 0.22 0.19 0.21 0.29 0.21
Cleaned Coal 0.27 0.26 0.23 0.24 0.23 0.26 0.21 0.29 0.26
Other Washed Coal 0.27 0.15 0.23 0.21 0.23 0.15 0.21 0.29 0.15
Briquettes 0.26 0.18 0.17 0.20 0.17 0.18 0.21 0.29 0.18
Coke 0.28 0.28 0.28 0.28 0.28 0.28 0.26 0.26 0.28
Coke Oven Gas 1.88 1.63 1.74 1.63 1.74 1.67 1.88 1.88 1.61
Other Gas 1.88 0.84 1.58 0.84 1.58 0.52 1.88 1.88 0.83
Other Coking Products 0.43 0.28 0.28 0.28 0.28 0.42 0.43 0.43 0.28
Crude Oil 0.42 0.42 0.43 0.42 0.43 0.42 0.42 0.42 0.43
Gasoline 0.44 0.43 0.45 0.45 0.45 0.43 0.45 0.45 0.44
Kerosene 0.44 0.43 0.45 0.45 0.45 0.43 0.43 0.43 0.44
Diesel Oil 0.43 0.43 0.43 0.45 0.43 0.43 0.42 0.42 0.43
Fuel Oil 0.40 0.42 0.40 0.40 0.40 0.42 0.40 0.40 0.43
LPG 0.47 0.50 0.47 0.47 0.47 0.50 0.46 0.46 0.51
Refinery Gas 0.50 0.46 0.46 0.40 0.46 0.46 0.42 0.42 0.47
Other Petroleum Products 0.40 0.42 0.45 0.40 0.45 0.42 0.42 0.42 0.43
Natural Gas 3.44 3.89 3.89 3.90 3.89 3.89 3.44 3.44 3.89
Carbon content (C/TJ) Raw Coal 25.80 26.37 26.37 24.26 25.83 25.80 25.80 25.80 26.32
Cleaned Coal 26.80 25.41 25.41 26.35 27.82 25.80 26.80 26.80 26.32
Other Washed Coal 26.80 25.41 25.41 24.26 27.82 25.80 26.80 26.80 26.32
Briquettes 25.80 33.56 33.56 24.26 33.56 25.80 25.80 25.80 26.32
Coke 29.20 29.42 29.42 29.50 28.84 25.52 29.20 29.20 31.38
Coke Oven Gas 12.10 13.58 13.58 20.00 14.00 15.16 12.10 12.10 21.49
Other Gas 12.10 12.20 12.20 12.10 12.20 15.16 12.10 12.10 21.49
Other Coking Products 25.80 29.50 29.50 25.80 20.00 19.91 25.80 25.80 27.45
Crude Oil 20.00 20.08 20.08 20.00 20.08 19.91 20.00 20.00 20.08
Gasoline 18.90 18.90 18.90 18.90 18.90 19.91 18.90 18.90 18.90
Kerosene 19.50 19.60 19.60 19.60 19.60 19.91 19.50 19.50 19.60
Diesel Oil 20.20 20.20 20.20 20.20 20.20 19.91 20.20 20.20 20.20
Fuel Oil 21.10 21.10 21.10 21.10 21.10 19.91 21.10 21.10 21.10
LPG 17.20 17.20 17.20 17.20 17.20 19.91 17.20 17.20 17.20
Refinery Gas 15.70 18.20 18.20 15.70 18.20 19.91 15.70 15.70 20.00
Other Petroleum Products 20.00 20.00 20.00 20.00 20.00 19.91 20.00 20.00 20.20
Natural Gas 15.30 15.32 15.32 15.30 15.32 15.16 15.30 15.30 15.32
Oxygenation efficiency Raw Coal 0.98 0.94 0.94 0.90 0.92 1.00 1.00 1.00 0.92
Cleaned Coal 0.98 0.98 0.98 0.90 0.92 1.00 1.00 1.00 0.92
Other Washed Coal 0.98 0.98 0.98 0.90 0.92 1.00 1.00 1.00 0.92
Briquettes 0.98 0.90 0.90 0.90 0.90 1.00 1.00 1.00 0.92
Coke 0.98 0.93 0.93 0.97 0.93 1.00 1.00 1.00 0.92
Coke Oven Gas 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.92
Other Gas 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.92
Other Coking Products 0.99 0.93 0.93 0.97 0.93 1.00 1.00 1.00 0.92
Crude Oil 0.99 0.98 0.98 0.98 0.98 1.00 1.00 1.00 0.98
Gasoline 0.99 0.98 0.98 0.98 0.98 1.00 1.00 1.00 0.98
Kerosene 0.99 0.98 0.98 0.98 0.98 1.00 1.00 1.00 0.98
Diesel Oil 0.99 0.98 0.98 0.98 0.98 1.00 1.00 1.00 0.98
Fuel Oil 0.99 0.98 0.98 0.98 0.98 1.00 1.00 1.00 0.98
LPG 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.98
Refinery Gas 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.98
Other Petroleum Products 0.99 0.98 0.98 0.98 0.98 1.00 1.00 1.00 0.98
Natural Gas 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99
Emission factor (ton CO2/ton) Raw Coal 2.61 1.90 1.90 1.67 1.94 1.80 1.98 2.77 1.83
Cleaned Coal 2.57 2.41 2.12 2.13 2.17 2.49 2.05 2.88 2.31
Other Washed Coal 2.57 1.41 2.12 1.66 2.17 1.46 2.05 2.88 1.33
Briquettes 2.39 1.97 1.93 1.60 1.93 1.68 1.98 2.77 1.60
Coke 2.96 2.85 2.85 2.99 2.79 2.66 2.82 2.82 2.96
Coke Oven Gas 8.26 8.04 8.55 11.84 8.85 9.30 8.34 8.34 11.67
Other Gas 8.26 3.73 6.98 3.70 6.98 2.91 8.34 8.34 6.02
Other Coking Products 4.03 2.86 2.86 2.61 1.94 3.05 4.07 4.07 2.59
Crude Oil 3.07 3.02 3.08 3.01 3.08 3.05 3.10 3.10 3.10
Gasoline 3.05 2.93 3.04 3.04 3.04 3.14 3.11 3.11 2.99
Kerosene 3.10 3.04 3.15 3.15 3.15 3.14 3.09 3.09 3.10
Diesel Oil 3.15 3.10 3.15 3.25 3.15 3.11 3.15 3.15 3.12
Fuel Oil 3.09 3.17 3.05 3.05 3.05 3.05 3.13 3.13 3.26
LPG 2.95 3.13 2.95 2.95 2.95 3.66 2.87 2.87 3.15
Refinery Gas 2.82 3.04 3.04 2.29 3.04 3.36 2.41 2.41 3.38
Other Petroleum Products 2.90 3.01 3.24 2.89 3.24 3.05 3.12 3.12 3.12
Natural Gas 1.91 2.17 2.17 2.17 2.17 2.16 1.93 1.93 2.16

Table 4. Oxygenation efficiency of fossil fuels combusted in sectors.

Sectors Raw Coal Cleaned Coal Other Washed Coal Briquettes Coke Coke Oven Gas Other Gas Other Coking Products Crude Oil Gasoline Kerosene Diesel Oil Fuel Oil LPG Refinery Gas Other Petroleum Products Natural Gas
Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy 83% 83% 83% 83% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Coal Mining and Dressing 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Petroleum and Natural Gas Extraction 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Ferrous Metals Mining and Dressing 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Nonferrous Metals Mining and Dressing 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Non-metal Minerals Mining and Dressing 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Other Minerals Mining and Dressing 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Logging and Transport of Wood and Bamboo 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Food Processing 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Food Production 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Beverage Production 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Tobacco Processing 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Textile Industry 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Garments and Other Fibre Products 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Leather, Furs, Down and Related Products 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Timber Processing, Bamboo, Cane, Palm Fibre & Straw Products 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Furniture Manufacturing 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Papermaking and Paper Products 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Printing and Record Medium Reproduction 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Cultural, Educational and Sports Articles 80% 80% 80% 80% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Petroleum Processing and Coking 83% 83% 83% 83% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Raw Chemical Materials and Chemical Products 85% 85% 85% 85% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Medical and Pharmaceutical Products 85% 85% 85% 85% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Chemical Fibre 85% 85% 85% 85% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Rubber Products 85% 85% 85% 85% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Plastic Products 85% 85% 85% 85% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Non-metal Mineral Products 90% 90% 90% 90% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Smelting and Pressing of Ferrous Metals 84% 84% 84% 84% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Smelting and Pressing of Nonferrous Metals 84% 84% 84% 84% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Metal Products 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Ordinary Machinery 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Equipment for Special Purposes 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Transportation Equipment 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Electric Equipment and Machinery 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Electronic and Telecommunications Equipment 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Instruments, Meters, Cultural and Office Machinery 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Other Manufacturing Industry 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Scrap and Waste 87% 87% 87% 87% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Production and Supply of Electric Power, Steam and Hot Water 87% 87% 87% 87% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Production and Supply of Gas 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Production and Supply of Tap Water 82% 82% 82% 82% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Construction 83% 83% 83% 83% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Transportation, Storage, Post and Telecommunication Services 74% 74% 74% 74% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Wholesale, Retail Trade and Catering Services 74% 74% 74% 74% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Others 74% 74% 74% 74% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Urban Household Energy Use 74% 74% 74% 74% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%
Rural Household Energy Use 74% 74% 74% 74% 89% 91% 91% 89% 96% 96% 96% 96% 96% 97% 97% 96% 98%

The process-related CO2 emissions (CEt) are calculated in Equation 241. We include seven industrial processes, including cement production (for approximately 70% of the total process-related emissions in China45,46), lime production (the 2nd largest emissions source47), ammonia production, soda ash production, ferrochromium production, silicon metal production, and unclassified ferro-production. The process-related emissions are allocated to the corresponding sectors in the emission inventory. Cement and lime-related emissions are allocated to the sector “Non-metal Mineral Products”; ammonia and soda ash-related emissions are allocated to the sector “Raw Chemical Materials and Chemical Products”; Ferrochromium, silicon metal, and unclassified ferro-related emissions are allocated to the sector “Smelting and Pressing of Ferrous Metals”.

(2)CEt=ADt×EFt

ADt and EFt in the equation refer to industrial production (activity data) and emission factors, respectively. The emission factors of industrial processes are collected from IPCC41 and NDRC42, as shown in Table 5.

Table 5. 7 industrial processes and emissions factors.

No. Industry process Emission factors Allocation sectors
1 Ammonia production 1.5000 Raw Chemical Materials and Chemical Products
2 Soda Ash production 0.4150 Raw Chemical Materials and Chemical Products
3 Cement production 0.4985 Non-metal Mineral Products
4 Lime production 0.6830 Non-metal Mineral Products
5 Ferrochromium production 1.3000 Smelting and Pressing of Ferrous Metals
6 Silicon metal production 4.3000 Smelting and Pressing of Ferrous Metals
7 Ferro-unclassified production 4.0000 Smelting and Pressing of Ferrous Metals

The cities’ CO2 emissions matrices (namely, inventories) are created as 19 columns and 48 rows. Seventeen fossil fuel-related emissions, process-related emissions and total emissions are represented by 19 columns, while 47 rows correspond to the 47 socioeconomic sectors. Each element of the matrices is identified as the CO2 emissions from fossil fuel combustion/industrial production in the corresponding sector. An inventory of Beijing is given in Table 6 (available online only) as an example.

Table 6. Emissions inventory of Beijing in 2010.

Unit: million tonnes Raw Coal Cleaned Coal Other Washed Coal Briquettes Coke Coke Oven Gas Other Gas Other Coking Products Crude Oil Gasoline Kerosene Diesel Oil Fuel Oil LPG Refinery Gas Other Petroleum Products Natural Gas Non-fossil Heat Non-fossil Electricity Other Energy Process Total
Total Consumption 39.6 0.0 0.1 0.5 6.3 0.9 0.0 0.0 0.0 10.9 11.9 7.3 0.5 1.3 2.5 0.4 15.2 0.0 0.0 0.0 5.2 102.6
Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1
Coal Mining and Dressing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Petroleum and Natural Gas Extraction 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ferrous Metals Mining and Dressing 1.2 0.0 0.0 0.0 1.0 0.1 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.3 0.0 0.3 0.0 0.0 0.0 0.0 3.3
Nonferrous Metals Mining and Dressing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nonmetal Minerals Mining and Dressing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other Minerals Mining and Dressing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Logging and Transport of Wood and Bamboo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Food Processing 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Food Production 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Beverage Production 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
Tobacco Processing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Textile Industry 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Garments and Other Fiber Products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Leather, Furs, Down and Related Products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Furniture Manufacturing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Papermaking and Paper Products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Printing and Record Medium Reproduction 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cultural, Educational and Sports Articles 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Petroleum Processing and Coking 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Raw Chemical Materials and Chemical Products 0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.9
Medical and Pharmaceutical Products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Chemical Fiber 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rubber Products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Plastic Products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Nonmetal Mineral Products 0.8 0.0 0.0 0.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 5.2 7.2
Smelting and Pressing of Ferrous Metals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Smelting and Pressing of Nonferrous Metals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Metal Products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Ordinary Machinery 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Equipment for Special Purposes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Transportation Equipment 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
Electric Equipment and Machinery 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Electronic and Telecommunications Equipment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Instruments, Meters, Cultural and Office Machinery 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other Manufacturing Industry 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scrap and waste 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Production and Supply of Electric Power, Steam and Hot Water 27.4 0.0 0.1 0.4 3.9 0.6 0.0 0.0 0.0 0.3 0.0 0.8 0.4 0.0 1.6 0.4 6.8 0.0 0.0 0.0 0.0 42.7
Production and Supply of Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Production and Supply of Tap Water 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Construction 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 1.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 1.9
Transportation, Storage, Post and Telecommunication Services 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 11.9 3.9 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 17.9
Wholesale, Retail Trade and Catering Services 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.3 0.0 0.4 0.0 0.0 1.0 0.0 0.0 0.0 0.0 2.9
Others 3.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.5 0.0 0.1 0.0 0.0 3.9 0.0 0.0 0.0 0.0 8.9
Urban 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 0.0 0.0 0.5 0.0 0.0 2.1 0.0 0.0 0.0 0.0 10.2
Rural 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 3.5

These methods on emission inventory construction are expanded version of descriptions in our related work39. MATLAB R2014a is used to construct the cities’ emission inventories. We provided the MATLAB code in the Supplementary Information. We also provided the activity data of the cities for additional data transparency and verifiability (see “China city-level Energy inventory, 2010”, Data Citation 1). Researchers will be able to use the MATLAB code and energy inventories to recalculate the emission inventories for the cities or replicate to other cities.

Activity data collection

Fossil fuel combustion, i.e., the activity data for energy-related emission accounts, includes two parts: the energy inputs for electricity/heat generation and the total final consumption. Other inputs for energy transformation, such as coal cleaning or petroleum refineries, transfer the carbon element from one fuel to another. These processes emit little CO2. Following our previous emissions inventories constructed for China and its provinces39, fossil fuel combustion can be collected from a region’s energy balance table (EBT) and final energy consumption can be captured by the industrial sector (Energyij). The EBT provides each fossil fuel’s transformation and final consumption in farming, industry, construction, three service sectors, and households (rural and urban). As the entire industry sector consists of 40 sub-sectors, Energyij presents the sectoral consumption of fossil fuel for the industry sector.

Generally, the EBT and Energyij can be found in a city’s statistical yearbook. However, due to the poor data quality of city-level statistics, not all cities’ yearbooks publish the EBT or Energyij. We developed a series of methods in our previous study to estimate missing data48:

  1. EBT: Very few cities have EBT in their statistical yearbooks. We scale down the corresponding provincial EBT to obtain the city table. We use each sector’s GDP to estimate farming, construction, and three service sectors, assuming that the city has the same farming/construction/service energy intensity as its province. We also use the urban/rural population to estimate the urban/rural household energy estimation on the premise that the city has the same per capita residential energy consumption as its province. The GDP and population data are collected from statistical yearbooks for the cities and their corresponding provinces.

  2. Energyij: Some cities only provide Energyij from enterprises of above-designated-size (ADS). ADS enterprises are defined as enterprises with prime operating revenue over 20 or 5 million yuan for different cities. ADS enterprises account for 50 to 90% (roughly) of one city’s total industrial output. We use the ADS industrial output ratio (calculated as the whole-industry output divided by the ADS enterprises’ output) to scale up ADS Energyij and obtain sectoral fossil fuel consumption at the whole-industry scale.

As for cement production, the cities’ statistical yearbooks provide total cement production or production from ADS enterprises. We then scaled up the ADS cement production by the ADS industrial output ratio to obtain the total cement production.

The raw activity data are collected through a “crowd-sourcing” working mode implemented in the Applied Energy Summer School 2017 and 2018. Over 100 students joined the summer school and participated in data collection. The summer school will be held annually in the future, and more researchers will contribute to and update city-level data collection.

These methods on city-level data estimation and collection are expanded version of descriptions in our related work48.

Socioeconomic indexes

This study collects several socioeconomic indexes for the 182 cities from the “China City Statistical Yearbook”49, including:

  1. population, in 10 thousand;

  2. employed population, in 10 thousand;

  3. employed population in sectors (primary industry; mining; manufacturing, electric power, gas and water production and supply; construction; transport, storage and post; information transmission, computer services and software industry; wholesale and retail trade; hotel and catering services; financial intermediation; real estate; leasing and business services; scientific research, technical services and geological exploration; water, environmental and public facilities management; resident services and other services; education; health, social security and social welfare; culture, sports and entertainment; public administration and social organization), in 10 thousand;

  4. area, in square kilometres;

  5. built up area, in square kilometres;

  6. gross domestic product (GDP), in 10 thousand yuan;

  7. primary industry, secondary industry, and tertiary industry’s share in GDP, in %;

  8. industrial output, in 10 thousand yuan.

The socioeconomic indexes (as shown in Table 7 (available online only) and “China city-level socioeconomic inventory, 2010”, Data Citation 1) can be used to explore the drivers and characteristics of cities’ emissions.

Table 7. Emissions-socioeconomic indexes of the cities.

City-Ename City-Cname CO2 emissions Population Employed population Employed population in “primary industry” Employed population in "mining" Employed population in "manufacturing" Employed population in "electric power, gas and water production and supply" Employed population in "construction" Employed population in "transport, storage and post" Employed population in "information transmission, computer services and software industry" Employed population in "wholesale and retail trade" Employed population in "hotel and catering services" Employed population in "financial intermediation" Employed population in "real estate" Employed population in "leasing and business services" Employed population in "scientific research, technical services and geological exploration" Employed population in "water, environmental and public facilities management" Employed population in "resident services and other services" Employed population in "education" Employed population in "health, social security and social welfare" Employed population in "culture, sports and entertainment" Employed population in "public administration and social organization" Area Built up area GDP Primay industry's share in GDP Secondary industry's share in GDP Tertiary industry's share in GDP Industrial output
    million tonnes 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand 10 thousand Square kilometers Square kilometers 10 thousand yuan % % % 10 thousand yuan
Beijing 北京 102.6 1257.80 646.63 3.23 4.54 100.55 6.80 39.35 51.00 41.73 55.38 27.96 27.24 31.54 77.81 45.74 8.76 7.44 40.56 20.67 15.25 41.08 16411 1186 141135800 0.88 24.01 75.11 136998388
Tianjin 天津 132.0 984.85 205.65 0.71 8.96 75.30 3.27 10.21 12.50 2.24 12.39 4.83 6.95 3.61 6.95 6.47 3.55 6.86 16.43 8.98 1.75 13.69 11760 687 92244600 1.58 52.47 45.95 167518155
Shijiazhuang 河北石家庄 119.5 989.16 84.15 0.41 0.67 23.28 2.66 4.50 5.67 0.91 6.09 1.28 4.44 0.41 0.85 2.23 1.69 0.32 12.34 3.91 1.42 11.07 15848 203 34010186 10.87 48.63 40.51 56553423
Tangshan 河北唐山 194.0 735.00 84.02 3.03 10.42 24.81 2.76 5.14 3.87 0.65 4.12 0.62 3.77 0.56 0.84 0.40 1.66 0.12 9.07 3.43 0.48 8.27 13472 234 44691588 9.44 58.14 32.42 75450331
Handan 河北邯郸 129.6 963.50 56.57 0.25 6.59 9.22 2.71 3.79 2.42 0.53 2.31 0.36 2.48 0.31 0.47 0.95 1.49 0.04 10.75 2.87 0.52 8.51 12062 111 23615569 13.04 54.21 32.75 41073243
Zhangjiakou 河北张家口 53.2 465.97 33.72 0.55 2.32 6.54 1.33 1.74 1.08 0.46 1.47 0.28 1.35 0.63 0.28 0.41 0.75 0.08 5.80 1.95 0.23 6.47 36873 84 9664158 15.83 42.96 41.21 8934836
Taiyuan 山西太原 87.0 365.50 84.64 0.33 8.40 24.69 1.57 8.09 7.71 1.10 3.51 1.91 2.56 0.51 1.44 3.16 1.60 0.39 7.54 2.94 1.47 5.72 6963 245 17780539 1.70 44.91 53.39 19946527
Yangquan 山西阳泉 33.0 130.78 23.74 0.04 11.29 2.16 0.84 0.96 0.83 0.10 0.88 0.11 0.67 0.16 0.39 0.16 0.23 0.02 1.88 0.69 0.14 2.19 4570 52 4293774 1.53 59.46 39.01 5426118
Changzhi 山西长治 57.4 331.54 37.30 0.31 9.39 7.95 1.04 1.32 1.06 0.29 1.38 0.20 1.48 0.10 0.54 0.30 0.67 0.01 4.64 1.44 0.39 4.79 13896 59 9202336 4.37 65.38 30.24 14332828
Jincheng 山西晋城 34.6 216.23 27.15 0.15 11.79 2.31 0.72 0.62 0.67 0.24 1.61 0.21 1.00 0.07 0.26 0.15 0.43 0.04 2.71 1.05 0.20 2.92 9425 41 7305428 4.20 63.60 32.19 8511244
Shuozhou 山西朔州 27.2 159.07 17.89 0.87 3.88 1.36 0.80 1.38 0.31 0.23 1.21 0.17 0.56 0.12 0.55 0.10 0.20 0.08 1.95 0.51 0.11 3.50 11066 36 6701476 6.05 56.56 37.39 8285136
Jinzhong 山西晋中 60.7 320.96 35.06 0.18 7.33 6.75 1.12 2.11 0.85 0.34 1.50 0.42 1.73 0.19 0.43 0.56 0.54 0.02 4.52 1.62 0.32 4.53 16392 39 7638366 8.50 54.76 36.74 10302374
Xinzhou 山西忻州 24.2 307.55 22.70 0.33 2.64 1.81 0.44 1.25 0.77 0.39 1.50 0.29 0.89 0.07 0.31 0.22 0.45 0.04 4.33 1.47 0.20 5.30 25117 30 4374561 11.25 44.59 44.15 3930339
Hohhot 内蒙古呼和浩特 69.0 229.56 31.50 0.36 0.02 5.84 1.47 1.50 1.44 0.84 1.13 0.70 1.99 0.21 0.93 1.37 1.55 0.30 4.68 1.68 0.93 4.56 17224 166 18657116 4.90 36.39 58.71 11885198
Baotou 内蒙古包头 119.2 219.80 32.59 0.31 0.95 12.62 1.28 2.10 1.37 0.61 1.22 0.69 1.89 0.25 0.28 0.65 0.87 0.11 3.12 1.27 0.32 2.68 27768 183 24608100 2.70 54.11 43.19 24122422
Wuhai 内蒙古乌海 21.6 53.00 9.52 0.05 2.80 1.30 0.48 1.58 0.23 0.13 0.13 0.02 0.32 0.10 0.06 0.09 0.28 0.01 0.70 0.30 0.07 0.87 1754 63 3911235 0.95 71.72 27.33 5453200
Chifeng 内蒙古赤峰 38.1 457.74 30.50 1.95 3.49 3.64 1.30 1.77 0.89 0.34 0.76 0.19 1.16 0.14 0.41 0.40 0.52 0.07 6.55 1.98 0.31 4.63 90021 81 10862293 16.33 51.24 32.43 12658407
Tongliao 内蒙古通辽 61.2 318.70 24.34 5.82 1.35 2.15 0.79 1.60 0.60 0.35 0.57 0.16 0.74 0.25 0.12 0.32 0.73 0.03 4.27 1.29 0.24 2.96 59535 66 11766183 15.15 58.62 26.23 18097485
Ordos 内蒙古鄂尔多斯 131.6 152.38 17.31 0.47 3.05 2.93 0.82 0.07 0.32 0.29 0.25 0.05 0.79 0.03 0.13 0.19 0.85 0.01 2.53 0.79 0.24 3.50 86752 113 26432300 2.68 58.69 38.63 26810700
Ulanqab 内蒙古乌兰察布 43.1 287.02 14.62 0.36 0.18 1.06 0.90 0.66 0.71 0.30 0.63 0.12 0.75 0.10 0.12 0.29 0.56 0.02 2.82 0.85 0.24 3.95 54492 35 5676016 16.55 52.28 31.17 6774228
Shenyang 辽宁沈阳 63.4 719.60 110.42 0.99 2.17 30.40 3.22 5.48 10.70 1.52 5.66 2.06 4.28 2.27 4.61 4.59 3.15 1.37 11.45 6.04 1.68 8.78 12980 412 50175427 4.64 50.42 44.94 96125255
Dalian 辽宁大连 73.9 586.44 94.20 0.97 0.22 40.88 1.71 4.76 5.30 2.42 3.61 2.33 5.03 2.88 1.93 1.59 1.41 0.36 7.82 4.11 0.82 6.05 12574 390 51581621 6.69 50.88 42.43 77018355
Benxi 辽宁本溪 67.0 154.60 23.21 0.19 1.73 8.36 0.83 2.01 1.00 0.24 0.65 0.06 0.91 0.50 0.16 0.23 0.65 0.04 2.10 1.33 0.19 2.03 8411 107 8603675 5.04 62.30 32.66 15113534
Dandong 辽宁丹东 10.1 241.36 21.22 0.30 0.51 4.90 0.90 1.70 1.14 0.42 0.98 0.32 0.67 0.65 0.21 0.72 0.80 0.06 2.51 1.28 0.25 2.90 15290 53 7288908 13.73 51.20 35.07 8650865
Fuxin 辽宁阜新 34.8 192.38 17.54 0.44 4.58 1.67 0.81 0.89 0.42 0.25 0.58 0.08 0.75 0.15 0.22 0.26 0.40 0.04 2.45 1.10 0.24 2.21 10355 76 3788656 24.46 41.82 33.72 4477708
Changchun 吉林长春 61.2 758.89 92.81 1.33 1.24 28.33 2.64 5.24 3.40 2.13 4.49 1.88 3.38 2.15 3.10 4.04 2.60 0.41 12.59 4.68 1.65 7.53 20604 394 33290329 7.59 51.66 40.74 58841613
Jilin 吉林吉林 41.3 434.03 33.25 1.64 1.06 10.28 1.44 1.48 0.99 0.27 0.82 0.17 1.40 0.19 0.13 0.47 0.86 0.05 5.12 2.18 0.37 4.33 27126 166 18006376 10.80 49.76 39.44 21041551
Siping 吉林四平 21.8 340.55 21.14 1.03 0.27 5.85 0.68 0.58 0.57 0.32 0.35 0.06 0.88 0.27 0.06 0.54 0.85 0.03 3.84 1.87 0.32 2.77 14080 51 7795527 27.13 42.75 30.12 10364734
Liaoyuan 吉林辽源 18.4 123.75 8.83 0.36 2.44 0.81 0.40 0.13 0.21 0.09 0.12 0.02 0.41 0.08 0.07 0.13 0.19 0.02 1.35 0.70 0.11 1.19 5140 46 4101426 10.43 56.18 33.39 5856489
Baicheng 吉林白城 7.6 202.64 18.51 3.40 0.01 1.55 0.42 0.53 0.54 0.23 0.74 0.17 0.58 0.14 0.17 0.34 1.46 0.39 3.16 1.36 0.25 3.07 25745 38 4451802 18.74 45.26 36.00 2592456
Yanbian 吉林延边 14.3                                                        
Harbin 黑龙江哈尔滨 68.9 992.02 135.17 5.50 0.71 33.70 3.79 11.47 10.83 2.29 10.21 2.45 4.76 2.73 2.70 4.29 2.89 1.95 16.09 6.36 1.76 10.69 53068 359 36648538 11.26 37.78 50.96 23047364
Qiqihaer 黑龙江齐齐哈尔 45.6 568.11 41.97 7.65 0.02 9.46 1.47 1.80 4.54 0.50 0.96 0.05 1.50 0.45 0.24 0.60 1.33 0.10 4.85 2.25 0.37 3.83 42469 135 8804569 21.81 40.63 37.55 8320561
Jixi 黑龙江鸡西 44.1 189.20 27.66 6.70 7.74 1.89 0.86 1.03 0.89 0.20 1.04 0.25 0.67 0.07 0.09 0.26 0.49 0.24 1.93 0.78 0.16 2.37 22531 79 4194931 25.55 42.31 32.14 2889386
Hegang 黑龙江鹤岗 43.2 109.10 25.89 8.55 8.01 1.39 0.47 0.44 0.63 0.14 0.96 0.33 0.42 0.05 0.01 0.08 0.55 0.31 1.35 0.63 0.14 1.43 14659 43 2509870 26.45 46.60 26.95 2844194
Shuangyashan 黑龙江双鸭山 18.8 151.58 32.81 14.61 5.07 1.67 0.83 0.64 1.10 0.23 1.12 0.38 0.48 0.11 0.12 0.11 0.60 0.69 1.76 0.81 0.16 2.32 23209 59 3963504 30.34 44.78 24.88 3618786
Daqing 黑龙江大庆 106.8 279.80 51.89 0.34 11.85 7.18 2.33 5.98 1.57 0.56 1.70 0.21 1.35 0.47 0.05 5.06 0.34 2.99 4.09 1.94 0.35 3.53 21219 207 29000642 3.28 82.24 14.48 32879601
Yichunhlj 黑龙江伊春 8.4 126.95 18.21 10.23 0.26 2.28 0.64 0.62 0.33 0.26 0.14 0.04 0.40 0.09 0.04 0.15 0.21 0.01 0.65 0.42 0.10 1.34 32759 161 2024407 30.34 39.25 30.41 1945740
Jiamusi 黑龙江佳木斯 11.5 253.78 27.63 9.56 0.06 1.94 0.81 1.79 1.30 0.20 1.34 0.33 0.77 0.10 0.19 0.30 0.91 0.52 2.95 1.38 0.18 3.00 32704 94 5124563 28.58 26.13 45.30 3139380
Heihe 黑龙江黑河 6.6 174.21 29.46 16.30 0.33 0.86 0.69 0.66 1.14 0.08 1.00 0.44 0.66 0.05 0.28 0.20 0.61 0.47 1.92 0.89 0.15 2.73 82164 19 2610994 44.78 17.12 38.09 946708
Shanghai 上海 187.5 1412.32 392.87 1.54 0.09 141.32 5.41 11.34 36.30 6.71 26.43 11.67 23.63 11.15 18.64 23.25 5.86 3.29 26.14 16.72 4.71 18.67 6340 866 171659800 0.66 42.05 57.28 301144067
Nanjing 江苏南京 141.1 632.42 125.64 0.41 0.32 47.41 1.78 10.08 8.87 2.43 8.71 3.90 3.12 2.03 3.97 4.36 1.77 0.33 11.54 4.72 1.73 8.16 6587 619 51306500 2.77 45.37 51.85 86094998
Wuxi 江苏无锡 73.8 466.56 82.95 0.24   45.43 1.44 5.29 2.36 0.82 3.36 1.64 2.64 0.63 1.65 1.20 0.92 0.17 6.36 3.30 0.57 4.93 4627 231 57933000 1.81 55.39 42.80 129710811
Xuzhou 江苏徐州 78.6 972.89 61.82 1.86 8.10 12.25 1.77 1.73 6.09 0.60 2.52 0.30 2.31 0.35 0.28 0.81 1.31 0.05 10.34 3.99 0.42 6.74 11259 239 29421394 9.61 50.67 39.71 51129660
Changzhou 江苏常州 48.2 360.80 38.16 0.12 0.04 16.88 0.72 1.19 1.76 0.40 1.32 0.59 1.62 0.42 0.61 0.75 0.82 0.03 4.72 2.42 0.32 3.43 4372 153 30448900 3.28 55.30 41.43 73960851
Suzhoujs 江苏苏州 173.0 637.66 130.87 0.15   90.06 1.43 3.20 2.29 1.09 2.93 1.77 3.69 0.90 0.91 0.73 1.27 0.10 7.67 4.69 0.70 7.29 8488 329 92289100 1.69 56.93 41.38 246516665
Nantong 江苏南通 42.0 762.92 63.11 1.13   30.26 1.00 5.13 1.88 0.61 1.54 0.35 2.89 0.47 0.80 0.43 0.75 0.05 7.12 3.46 0.36 4.88 8001 125 34656700 7.68 55.07 37.25 73831630
Lianyungang 江苏连云港 20.0 497.73 34.00 1.87 0.98 8.78 0.92 2.99 2.04 0.40 1.19 0.23 1.47 0.46 0.24 0.51 0.75 0.03 5.18 1.92 0.20 3.84 7500 120 11933100 15.30 45.68 39.02 19362814
Huaian 江苏淮安 23.7 538.74 39.28 1.13 0.37 14.67 0.79 2.99 1.04 0.26 1.11 0.19 1.41 0.33 0.63 0.21 1.23 0.01 5.94 1.94 0.27 4.76 10072 120 13880700 14.12 46.62 39.26 24391100
Yancheng 江苏盐城 24.9 816.12 51.91 2.42 0.61 16.37 0.87 6.52 1.23 0.53 1.79 0.41 2.54 0.36 1.25 0.41 0.89 0.07 7.38 2.65 0.37 5.24 16972 89 23327600 16.04 47.01 36.95 39383400
Yangzhou 江苏扬州 31.4 459.12 40.09 0.09 1.80 13.78 0.41 6.99 0.91 0.52 0.95 0.44 1.24 0.31 0.45 0.47 0.66 0.07 4.91 2.04 0.21 3.84 6591 82 22294884 7.24 55.14 37.62 57533421
Zhenjiang 江苏镇江 44.2 270.71 37.26 0.15 0.18 18.35 0.79 1.88 1.44 0.23 1.41 0.42 1.63 0.47 0.36 0.52 0.75 0.05 3.47 1.85 0.22 3.09 3847 109 19876400 4.10 56.38 39.52 41904178
Taizhoujs 江苏泰州 25.4 504.65 37.15 0.24   15.30 0.62 2.00 1.01 0.51 1.71 0.36 1.71 0.48 0.86 0.36 0.58 0.06 5.02 2.33 0.18 3.82 5787 65 20487200 7.40 54.95 37.64 49160775
Suqian 江苏宿迁 6.5 546.28 21.51 0.11 0.16 5.93 0.37 2.36 0.32 0.25 0.50 0.03 0.62 0.09 0.02 0.10 0.57 0.01 5.85 1.02 0.12 3.08 8555 65 10640900 17.58 45.03 37.39 11373660
Hangzhou 浙江杭州 84.6 689.12 232.71 0.15 0.27 75.91 2.19 47.49 8.78 6.49 12.85 8.10 7.52 6.05 7.42 8.52 4.38 0.83 14.41 7.76 2.03 11.56 16596 413 59491687 3.50 47.81 48.69 110796496
Ningbo 浙江宁波 102.1 574.08 140.19 0.13 0.02 63.67 1.76 26.62 4.65 0.92 5.03 1.79 5.25 1.87 5.24 1.33 1.29 0.31 7.42 4.58 1.01 7.30 9816 272 51630017 4.24 55.60 40.15 106187425
Wenzhou 浙江温州 29.5 786.80 107.92 0.11 0.22 50.70 1.38 20.21 2.97 0.54 2.33 1.26 2.90 1.53 1.33 0.67 0.44 0.08 8.71 4.03 0.80 7.71 11786 175 29250426 3.20 52.43 44.37 44948701
Jiaxing 浙江嘉兴 37.4 341.60 80.40 0.09   52.20 1.53 2.75 1.17 0.45 2.50 0.94 1.94 1.34 2.12 0.73 0.73 0.12 4.84 2.51 0.41 4.04 3915 85 23002027 5.52 58.24 36.24 51028508
Huzhou 浙江湖州 24.4 259.98 37.91 0.02 0.64 19.17 0.59 4.66 0.72 0.29 0.98 0.38 1.30 0.40 0.32 0.40 0.53 0.02 2.81 1.52 0.19 2.94 5818 78 13017294 8.01 54.93 37.07 26665326
Shaoxing 浙江绍兴 39.1 438.91 107.13 0.03 0.22 37.50 1.16 46.14 1.44 0.49 2.20 0.76 1.95 0.51 1.20 0.56 0.76 0.04 5.20 2.71 0.35 3.89 8279 100 27952029 5.35 56.05 38.60 67971868
Jinhua 浙江金华 43.1 466.65 52.50 0.10 0.05 15.39 0.92 10.11 1.72 0.62 1.90 0.82 2.23 0.47 1.41 0.46 1.24 0.03 5.43 2.87 0.44 6.29 10941 72 21100441 5.12 51.47 43.41 34117890
Zhoushan 浙江舟山 6.1 96.77 16.80 0.05 0.15 4.40 0.51 1.57 1.23 0.23 0.44 0.41 0.68 0.50 1.29 0.25 0.28 0.03 1.38 0.91 0.18 2.31 1440 52 6443170 9.63 45.52 44.85 9790517
Taizhouzj 浙江台州 30.8 583.14 69.78 0.48 0.02 22.87 1.05 18.86 1.34 0.60 2.00 0.80 3.40 0.76 1.39 0.65 0.71 0.14 5.92 3.07 0.37 5.35 9411 116 24264533 6.61 51.69 41.69 36307993
Lishui 浙江丽水 9.0 259.65 16.81 0.24 0.09 3.37 0.80 0.92 0.65 0.31 0.38 0.17 0.99 0.11 0.41 0.26 0.38 0.02 2.74 1.42 0.25 3.30 17298 32 6632932 9.49 49.54 40.97 11390737
Hefei 安徽合肥 34.1 494.95 71.10 0.10   17.79 0.89 14.25 4.52 0.97 4.62 1.28 2.40 1.59 1.03 2.60 1.05 0.18 7.66 3.25 1.04 5.88 7047 326 27016100 4.91 53.92 41.17 37990180
Wuhu 安徽芜湖 28.6 229.50 26.71 0.04 0.04 11.34 0.49 3.69 1.78 0.19 0.56 0.30 0.85 0.19 0.09 0.51 0.42 0.02 2.53 1.27 0.09 2.31 3317 135 11085924 4.44 65.18 30.38 22510125
Bengbu 安徽蚌埠 12.4 362.23 17.25 0.21   4.46 0.57 0.86 1.13 0.15 0.57 0.11 0.90 0.16 0.19 0.60 0.47 0.03 3.17 1.30 0.15 2.22 5941 105 6368877 18.84 47.25 33.91 7726842
Huainan 安徽淮南 53.3 243.99 32.70 0.32 12.99 3.46 1.55 2.90 0.96 0.13 0.64 0.24 0.84 0.89 1.24 0.34 0.54 0.02 2.63 1.16 0.13 1.72 2585 97 6035491 7.78 64.42 27.80 7889304
Maanshan 安徽马鞍山 55.4 129.10 15.42 0.03 1.48 6.93 0.38 0.89 0.34 0.07 0.36 0.04 0.61 0.04 0.32 0.26 0.17 0.01 1.38 0.62 0.12 1.37 1686 78 8110148 3.51 69.49 27.00 13575819
Huaibei 安徽淮北 38.6 219.56 20.84   11.31 2.82 0.50 0.27 0.41 0.10 0.16 0.06 0.36 0.03 0.07 0.11 0.12 0.02 2.03 0.81 0.06 1.60 2741 63 4616043 8.76 64.64 26.61 8814120
Tongling 安徽铜陵 18.9 74.01 11.67 0.38 0.12 5.00 0.29 2.05 0.20 0.08 0.24 0.07 0.32 0.10 0.07 0.13 0.13   0.82 0.38 0.08 1.21 1113 48 4667000 2.07 72.74 25.19 11042303
Anqing 安徽安庆 18.2 615.62 24.24 1.69 0.07 3.09 1.26 1.21 0.77 0.37 0.94 0.19 1.05 0.24 0.18 0.52 0.38 0.04 5.82 1.86 0.34 4.22 15318 77 9881100 15.74 53.03 31.23 13159401
Huangshan 安徽黄山 1.6 148.05 9.41 0.10 0.01 1.11 0.20 1.11 0.41 0.20 0.20 0.51 0.64 0.12 0.08 0.16 0.25 0.02 1.43 0.72 0.10 2.04 9807 44 3093198 12.72 44.09 43.20 3306897
Chuzhou 安徽滁州 11.4 450.80 17.85 0.85 0.34 3.18 0.32 1.26 0.97 0.19 0.52 0.10 0.76 0.09 0.09 0.19 0.46 0.02 3.86 1.34 0.09 3.22 13523 60 6956502 21.34 49.16 29.50 10529700
Fuyang 安徽阜阳 13.0 1011.84 29.11 0.31 1.60 3.66 0.74 3.03 1.33 0.27 1.46 0.15 1.61 0.27 0.26 0.18 0.48 0.02 6.83 2.11 0.17 4.63 9775 76 7218144 27.34 39.17 33.49 7037012
Suzhouah 安徽宿州 20.7 642.07 22.05 0.58 3.13 2.25 0.52 1.91 0.62 0.24 0.82 0.07 0.94 0.17 0.07 0.33 0.34 0.04 5.35 1.43 0.17 3.07 9787 53 6505700 27.89 37.88 34.23 6769181
Chaohu 安徽巢湖 20.1 460.51 16.89 0.21 0.17 2.16 0.40 2.75 0.30 0.16 0.75 0.20 0.56 0.20 0.35 0.20 0.30 0.02 3.82 1.28 0.10 2.96 9394 39 6297332 18.64 49.46 31.90 8261743
Luan 安徽六安 8.4 704.82 22.17 0.84 0.03 2.14 0.68 4.06 0.69 0.22 0.69 0.07 0.75 0.17 0.07 0.21 0.66 0.04 5.28 1.66 0.21 3.70 17976 61 6761209 23.56 42.26 34.18 8327000
Bozhou 安徽亳州 6.9 600.76 16.07 0.05 0.69 2.38 0.25 1.22 0.29 0.23 1.09 0.09 0.94 0.17 0.06 0.11 0.26 0.04 4.47 1.16 0.16 2.41 8374 57 5127800 26.75 37.36 35.90 3243341
Xuancheng 安徽宣城 11.7 278.36 12.34 0.29 0.01 3.20 0.38 0.28 0.30 0.15 0.19 0.06 0.57 0.32 0.27 0.14 0.12 0.01 2.21 1.07 0.11 2.66 12323 43 5257000 16.83 47.21 35.95 10677643
Fuzhoufj 福建福州 38.0 645.90 105.47 0.73 0.14 39.80 1.62 14.34 3.92 1.19 3.91 2.10 3.06 2.67 6.11 3.06 1.34 0.28 9.51 3.88 1.47 6.34 13066 220 31234092 9.05 44.88 46.06 45454115
Xiamen 福建厦门 11.8 180.21 95.33 0.28 0.01 52.41 0.78 12.82 4.04 1.13 3.32 2.60 1.39 3.68 2.00 0.54 0.66 0.82 3.71 1.81 0.57 2.76 1573 230 20600737 1.12 49.73 49.15 36889483
Putian 福建莆田 6.9 323.54 28.78 0.13 0.12 15.72 0.56 2.04 0.45 0.22 0.55 0.30 0.86 0.27 0.58 0.15 0.17 0.03 3.78 0.98 0.20 1.67 4119 55 8503257 10.33 56.11 33.56 12665314
Quanzhou 福建泉州 39.5 685.27 142.17 0.38 1.19 92.56 1.36 21.26 1.71 0.60 2.24 1.30 1.87 0.92 0.55 0.23 0.26 0.09 8.62 2.04 0.32 4.67 11015 160 35649739 3.71 60.16 36.13 62604054
Nanping 福建南平 7.5 313.90 23.54 1.09 0.21 7.68 0.89 0.83 0.68 0.37 0.74 0.37 1.13 0.37 0.35 0.35 0.54 0.05 3.45 1.48 0.28 2.68 26308 26 7286525 21.89 41.83 36.28 7774451
Longyan 福建龙岩 33.6 314.37 30.55 0.52 2.13 7.72 0.86 5.12 0.65 0.30 0.82 0.25 1.30 0.26 1.75 0.34 0.24 0.03 3.70 1.47 0.20 2.89 19063 38 9908973 13.01 53.25 33.74 11773399
Ningde 福建宁德 10.3 339.37 16.55 0.33 0.06 1.84 1.11 1.34 0.72 0.28 0.63 0.21 1.01 0.14 0.18 0.24 0.34 0.05 3.72 1.33 0.16 2.86 13452 19 7386099 18.50 42.95 38.56 9174539
Nanchang 江西南昌 39.9 502.25 67.83 1.73   17.16 1.62 13.33 7.86 0.67 1.49 0.32 2.23 0.43 0.74 1.48 1.61 0.16 7.23 3.03 1.25 5.49 7402 208 22001059 5.48 53.27 41.25 27732021
Jingdezhen 江西景德镇 12.1 163.16 17.44 1.02 0.61 6.53 0.44 1.22 0.41 0.12 1.08 0.10 0.50 0.20 0.15 0.33 0.13 0.03 1.79 0.66 0.18 1.94 5256 73 4615001 8.25 60.78 30.97 6871690
Pingxiang 江西萍乡 26.0 188.09 14.11 0.07 2.52 3.33 0.43 0.57 0.27 0.18 0.14 0.06 0.58 0.10 0.04 0.14 0.35 0.01 2.00 0.79 0.08 2.45 3824 42 5203900 8.13 63.31 28.56 11979370
Jiujiang 江西九江 24.9 497.91 33.95 0.89 0.24 8.91 1.26 5.03 0.84 0.35 0.61 0.25 1.12 0.24 0.99 0.66 0.46 0.08 4.91 1.92 0.31 4.88 18823 89 10320647 9.50 56.17 34.33 14977463
Xinyu 江西新余 29.4 118.01 10.07 0.09 0.38 4.48 0.47 0.46 0.21 0.11 0.13 0.04 0.33 0.02 0.02 0.10 0.21 0.03 1.24 0.43 0.06 1.26 3178 53 6312212 6.00 63.90 30.10 11987770
Yingtan 江西鹰潭 4.8 121.92 10.09 1.43 0.02 3.21 0.37 0.76 0.13 0.04 0.18 0.15 0.29 0.06 0.06 0.28 0.23   1.12 0.37 0.13 1.26 3560 29 3448865 9.51 62.78 27.71 11802016
Ganzhou 江西赣州 15.2 907.27 42.43 0.76 1.33 12.16 1.39 1.86 0.90 0.35 0.63 0.23 1.59 0.33 0.27 0.51 0.87 0.03 9.01 2.77 0.31 7.13 39379 76 11197412 18.92 44.36 36.72 12746325
Jian 江西吉安 9.6 495.04 20.15 1.39 0.57 1.19 1.02 1.09 1.01 0.34 0.61 0.16 0.92 0.21 0.20 0.32 0.51 0.01 4.51 1.66 0.22 4.21 25283 35 7205251 19.85 50.48 29.67 11349323
Yichunjx 江西宜春 24.6 557.93 28.07 0.78 2.67 6.11 0.94 1.09 0.98 0.36 0.76 0.20 1.08 0.21 0.19 0.22 0.48 0.02 4.84 1.96 0.19 4.99 18669 50 8700005 18.96 56.58 24.47 12399826
Fuzhoujx 江西抚州 4.1 403.96 21.17 0.98 0.10 4.18 0.72 2.38 0.50 0.29 0.79 0.04 0.71 0.09 0.07 0.18 0.38 0.01 4.26 1.15 0.17 4.17 18820 50 6300124 19.02 49.91 31.06 7347415
Shangrao 江西上饶 17.2 740.33 29.96 2.95 0.55 4.32 0.83 1.62 0.62 0.50 1.45 0.14 1.16 0.23 0.21 0.15 0.36 0.13 6.79 2.02 0.25 5.68 22791 38 9010029 16.86 50.96 32.18 11759109
Jinan 山东济南 64.9 604.08 127.80 0.11 1.85 30.76 1.89 27.43 8.88 1.73 7.03 2.60 5.94 2.83 2.84 2.50 1.32 1.14 10.35 4.64 1.64 12.32 8177 347 39105271 5.50 41.87 52.62 44856080
Qingdao 山东青岛 84.7 763.64 124.11 0.52 0.20 66.60 2.12 6.69 6.31 0.62 3.91 2.06 3.92 1.94 1.56 1.78 1.52 0.16 11.05 4.39 1.06 7.70 10978 282 56661900 4.89 48.69 46.43 106628345
Zibo 山东淄博 89.2 422.36 62.88 0.25 4.46 26.93 1.56 7.58 0.95 0.37 2.90 0.69 1.27 0.68 0.56 0.24 0.58 0.04 5.74 2.49 0.50 5.09 5965 225 28667500 3.67 61.62 34.70 77423440
Dongying 山东东营 51.1 184.87 40.10 0.59 12.25 9.02 0.28 1.35 1.38 0.51 0.70 0.66 0.72 0.16 1.31 1.72 0.33 1.46 3.11 1.07 0.11 3.37 7923 108 23599400 3.70 72.55 23.74 60378601
Weifang 山东潍坊 67.9 873.78 73.99 0.34 1.16 30.95 1.61 4.65 1.20 0.49 4.30 0.69 1.84 0.66 0.38 0.69 0.82 0.07 10.41 4.51 0.33 8.89 16140 140 30909200 10.69 55.66 33.65 75292226
Taian 山东泰安 63.9 557.01 56.32 0.26 11.19 14.29 1.05 7.82 1.28 0.42 2.52 0.57 1.44 0.55 0.34 0.59 0.57 0.14 5.92 2.39 0.29 4.69 7762 107 20516800 9.52 53.59 36.89 37700720
Linyi 山东临沂 59.5 1072.69 56.12 0.70 2.40 16.60 1.30 4.30 0.90 0.40 2.00 0.30 2.60 0.20 0.40 0.40 0.70 0.02 10.10 3.70 0.30 8.80 17191 166 23999900 11.00 50.26 38.74 45935251
Heze 山东菏泽 20.7 958.80 37.21 0.42 0.66 6.19 1.25 1.82 1.10 0.15 1.30 0.24 1.35 0.10 0.34 0.22 0.94 0.03 8.60 3.29 0.27 8.94 12239 77 12270900 17.94 52.85 29.20 25320325
Zhengzhou 河南郑州 76.3 963.00 108.50 0.23 7.17 20.54 3.11 19.57 3.00 1.00 5.14 2.89 4.15 2.42 2.13 2.96 1.75 0.31 12.81 5.28 2.08 11.96 7446 343 40408926 3.08 56.17 40.74 59137624
Luoyang 河南洛阳 67.0 703.54 53.92 0.21 1.51 14.83 3.66 3.81 1.81 0.20 2.29 0.71 1.99 0.48 0.94 2.25 1.02 0.21 7.31 3.11 0.47 7.11 15200 181 23202460 8.09 60.18 31.74 41323063
Pingdingshan 河南平顶山 59.7 539.59 48.45 0.12 11.83 11.05 1.08 2.82 1.12 0.15 2.10 0.47 1.66 0.30 0.96 0.40 0.73 0.03 5.40 2.04 0.34 5.85 7904 71 13108394 8.75 66.33 24.92 20031593
Hebi 河南鹤壁 23.9 162.05 17.81 0.12 4.78 4.41 0.34 2.15 0.20 0.08 0.48 0.14 0.32 0.19 0.05 0.09 0.31   1.68 0.59 0.09 1.79 2182 51 4291193 11.38 70.37 18.26 9890970
Xinxiang 河南新乡 32.4 603.86 45.69 0.63 0.40 14.67 0.97 5.44 0.93 0.15 2.17 0.41 1.03 0.45 0.45 0.71 0.53 0.10 6.82 2.76 0.30 6.77 8169 97 11899408 13.21 57.69 29.10 21733234
Jiaozuo 河南焦作 37.7 368.02 32.29 0.57 3.03 9.94 1.28 1.74 0.59 0.17 1.18 0.41 1.70 0.11 0.20 0.26 0.65 0.04 3.94 1.70 0.21 4.57 4071 90 12459260 8.13 68.65 23.22 28858779
Puyang 河南濮阳 16.9 409.83 31.42 0.05 6.68 3.04 0.67 6.10 0.91 0.10 0.86 0.20 0.78 0.17 1.48 0.15 0.43 0.12 4.29 1.33 0.20 3.86 4266 51 7754037 13.88 66.46 19.66 13852696
Xuchang 河南许昌 29.8 489.64 28.67 0.06 2.15 8.07 0.67 2.43 0.65 0.10 0.73 0.25 0.54 0.31 0.44 0.28 0.44 0.03 4.61 1.87 0.27 4.77 4996 80 13164870 11.39 68.51 20.10 24966545
Sanmenxia 河南三门峡 112.7 230.30 24.22 0.14 5.97 3.77 0.80 2.32 0.63 0.13 1.68 0.28 0.80 0.08 0.35 0.22 0.19 0.03 2.80 0.97 0.16 2.90 10496 30 8744157 8.01 68.52 23.47 20398477
Nanyang 河南南阳 155.7 1186.69 70.48 1.16 3.26 16.37 1.60 6.80 2.18 0.63 5.59 0.91 1.94 0.75 1.40 1.28 1.31 0.18 12.16 3.94 0.56 8.46 26509 92 19533562 20.54 52.07 27.39 24952130
Shangqiu 河南商丘 46.9 918.01 39.72 0.28 3.55 3.23 0.77 4.06 1.05 0.27 1.93 0.28 1.02 0.13 0.13 0.25 0.60 0.04 9.52 3.10 0.20 9.31 10704 60 11437913 26.19 46.52 27.29 13594361
Xinyang 河南信阳 19.8 870.22 43.19 0.88 0.54 5.98 1.40 5.59 1.58 0.40 3.12 0.54 1.23 0.58 0.52 0.92 0.93 0.06 9.28 2.48 0.41 6.75 18847 68 10918323 26.38 42.21 31.41 11175624
Zhoukou 河南周口 44.6 1224.35 45.22 1.10   6.31 1.25 4.87 0.96 0.45 3.13 0.27 1.79 0.51 0.16 0.19 0.53 0.03 10.70 2.98 0.29 9.70 11959 51 12283024 29.77 45.42 24.81 15007129
Zhumadian 河南驻马店 71.5 886.10 41.16 0.52 0.19 6.88 1.28 6.06 1.14 0.31 2.70 0.35 0.97 0.97 0.34 0.56 0.63 0.16 8.17 2.94 0.34 6.65 15083 52 10537118 27.58 41.88 30.54 11377676
Wuhan 湖北武汉 101.4 836.73 178.46 0.79 0.08 50.26 2.00 36.70 14.92 2.22 12.30 4.69 5.50 2.92 2.11 5.74 2.31 0.71 16.90 6.51 2.06 9.74 8494 500 55659300 3.06 45.51 51.44 64245900
Huangshi 湖北黄石 30.0 260.14 43.85 0.44 5.65 16.67 0.65 6.73 0.98 0.19 1.55 1.05 0.52 0.83 0.21 0.50 0.51 0.40 2.86 1.08 0.52 2.51 4586 66 6901200 7.77 57.22 35.01 11975700
Shiyan 湖北十堰 20.1 353.19 43.26 0.36 0.47 17.38 1.41 2.24 1.02 0.85 5.65 0.70 0.75 0.68 0.57 0.39 0.29 0.42 3.84 1.87 0.64 3.73 23680 62 7367800 10.56 54.57 34.87 12804019
Yichang 湖北宜昌 25.0 398.55 55.73 0.28 2.31 18.74 2.95 7.27 3.03 0.53 4.46 1.17 0.95 1.26 1.12 0.80 0.52 0.31 3.79 2.27 0.51 3.46 21084 92 15473200 11.41 57.53 31.07 21187359
Xiangyang 湖北襄阳 22.0 591.07 46.53 0.60 0.35 17.36 0.99 4.07 1.31 0.27 1.65 0.47 1.41 0.38 0.16 1.11 1.25 0.06 6.12 2.77 0.32 5.88 19724 107 15382700 15.26 51.89 32.85 22988086
Ezhou 湖北鄂州 24.2 108.46 18.22 0.03 0.80 7.50 0.26 3.46 0.43 0.10 0.98 0.38 0.34 0.32 0.24 0.14 0.26 0.07 1.32 0.52 0.11 0.96 1594 52 3952900 13.02 58.53 28.46 6330996
Jinmen 湖北荆门 26.1 300.40 31.44 1.08 1.12 11.83 0.65 2.34 0.84 0.46 2.22 0.42 0.78 0.61 0.70 0.36 0.44 0.47 3.10 1.38 0.20 2.44 12404 50 7300700 19.87 48.37 31.76 12001085
Jinzhou 湖北荆州 11.9 658.17 42.72 3.97 0.16 14.82 0.80 3.07 1.01 0.28 0.85 0.35 1.11 0.33 0.26 0.52 0.70 0.06 5.18 3.18 0.32 5.75 14092 66 8371000 27.60 38.86 33.53 8975700
Xianning 湖北咸宁 11.1 290.96 19.58 0.39 0.15 5.64 0.48 0.98 0.54 0.12 0.33 0.27 0.52 0.25 0.26 0.45 0.64 0.08 3.36 1.58 0.11 3.43 9861 63 5203300 19.41 45.70 34.90 6333953
Suizhou 湖北随州 3.2 257.91 10.92 0.06 0.11 2.82 0.13 1.57 0.25 0.07 0.40 0.14 0.30 0.06 0.02 0.10 0.37 0.01 1.96 0.89 0.09 1.57 9636 43 4016600 21.55 45.23 33.22 5097629
Enshizhou 湖北恩施州 8.2                                                        
Changsha 湖南长沙 53.0 652.40 110.56 0.05 0.04 30.51 1.61 16.99 2.84 1.69 6.65 4.40 5.31 4.16 2.13 3.81 1.72 0.52 10.98 5.72 1.92 8.55 11816 272 45470573 4.44 53.60 41.96 41654294
Xiangtan 湖南湘潭 32.1 288.98 29.57 0.81   8.32 0.49 7.45 0.60 0.12 1.76 0.32 0.85 0.50 0.21 0.21 0.25 0.03 3.02 1.28 0.11 3.24 5015 73 8940050 10.74 55.86 33.40 14962525
Hengyang 湖南衡阳 15.4 791.62 51.69 0.03 0.12 9.69 1.01 10.95 1.30 0.41 1.06 0.73 1.90 0.74 0.58 0.70 0.75 0.07 7.71 3.26 0.42 8.07 15299 99 14203377 18.62 45.46 35.92 18832469
Shaoyang 湖南邵阳 14.6 793.97 33.47 0.56 1.37 2.96 0.96 6.75 1.48 0.38 0.59 0.12 1.39 0.43 0.39 0.31 0.51 0.02 6.09 2.54 0.16 6.46 20830 49 7272893 23.89 38.23 37.89 7127007
Yueyang 湖南岳阳 21.4 565.62 55.02 3.23 0.01 18.30 0.75 7.76 1.67 0.46 1.71 0.90 1.53 0.68 0.66 0.43 0.64 0.35 5.48 2.26 0.28 7.27 15087 82 15393576 14.00 54.19 31.80 27843253
Changde 湖南常德 23.5 623.11 36.81 0.10 0.53 8.09 0.81 7.55 0.59 0.47 0.91 0.31 1.10 0.59 1.21 0.27 0.76 0.12 5.23 2.36 0.31 5.50 18190 76 14915686 18.78 45.94 35.28 12626665
Zhangjiajie 湖南张家界 4.6 164.75 7.93 0.07 0.18 0.35 0.34 0.83 0.34 0.18 0.11 0.31 0.34 0.06 0.07 0.12 0.37 0.01 1.59 0.69 0.06 1.91 9516 28 2424785 12.88 24.77 62.35 1089444
Yiyang 湖南益阳 15.3 476.36 24.07 0.15   4.30 0.40 3.19 0.35 0.24 0.40 0.26 1.30 0.41 0.67 0.30 0.47 0.08 3.90 1.84 0.14 5.53 12144 54 7122748 22.80 40.49 36.71 8080903
Chenzhou 湖南郴州 28.8 502.07 28.95 0.10 3.55 4.16 1.33 1.96 0.71 0.31 0.90 0.50 0.66 0.41 0.41 0.31 0.54 0.04 4.57 2.20 0.28 6.01 19699 62 10817632 11.72 54.95 33.33 14400825
Huaihua 湖南怀化 15.3 509.72 25.62 0.40   2.61 1.39 1.58 1.27 0.40 0.37 0.28 1.04 0.30 0.45 0.40 0.70 0.11 5.06 2.27 0.26 6.35 27624 52 6749227 14.44 42.80 42.76 6998921
Xiangxi 湖南湘西 3.6                                                        
Guangzhou 广东广州 100.5 806.14 246.37 0.60 0.04 88.64 2.44 14.61 22.57 5.29 12.21 10.11 7.96 9.13 9.93 7.68 3.36 3.05 18.31 11.20 3.61 15.63 7434 952 107482828 1.75 37.24 61.01 138312477
Shaoguan 广东韶关 22.7 328.10 30.61 0.46 0.89 10.24 1.38 2.82 1.30 0.26 0.52 0.38 0.88 0.33 0.71 0.34 0.63 0.04 3.86 1.57 0.15 3.85 18463 78 6831033 14.04 41.78 44.18 7733678
Shenzhen 广东深圳 38.6 259.87 253.02 0.27 0.18 123.66 1.87 13.00 16.31 5.19 13.76 7.08 10.86 12.69 12.42 5.43 1.81 1.94 7.66 5.38 1.70 11.81 1992 830 95815101 0.07 47.21 52.72 185268200
Zhuhai 广东珠海 13.0 104.74 63.15 0.74 0.03 41.76 0.45 1.93 1.45 0.88 2.13 1.27 1.85 1.39 0.93 0.42 0.81 0.18 2.25 1.09 0.45 3.14 1711 124 12085958 2.68 54.77 42.55 29761820
Shantou 广东汕头 24.4 524.11 32.28 0.04 0.02 9.47 0.65 3.13 1.04 0.45 1.99 0.56 1.42 0.37 0.34 0.37 0.63 0.10 5.85 1.98 0.23 3.64 2064 182 12089743 5.34 56.10 38.56 18975666
Jiangmen 广东江门 30.9 392.28 44.85 0.11   22.65 0.80 3.54 0.91 0.43 1.06 0.75 1.80 0.39 0.30 0.24 0.59 0.19 4.47 2.27 0.20 4.15 9568 129 15704191 7.45 55.54 37.01 38289057
Maoming 广东茂名 27.8 747.17 30.94 1.19 0.30 3.69 0.72 4.75 0.90 0.29 0.80 0.26 0.98 0.27 0.52 0.17 0.63 0.24 8.69 2.14 0.41 3.99 11458 70 14920857 18.40 39.59 42.01 13601493
Huizhou 广东惠州 23.6 337.28 80.39 0.11 0.03 57.55 0.73 2.19 1.25 0.35 1.10 0.79 1.87 0.89 0.73 0.42 0.72 0.14 4.09 1.86 0.36 5.21 11343 215 17299543 5.92 58.94 35.15 39051731
Heyuan 广东河源 9.4 358.39 24.68 0.13 0.28 11.02 0.71 1.09 0.64 0.16 0.46 0.30 0.58 0.24 0.42 0.21 0.24 0.05 3.69 1.19 0.15 3.09 15642 29 4751396 12.72 51.45 35.83 8327317
Yangjiang 广东阳江 15.8 282.81 18.24 0.57 0.03 2.79 0.47 3.20 0.59 0.29 0.96 0.26 0.58 0.56 0.26 0.15 0.37 0.05 3.04 1.17 0.12 2.78 7946 44 6398389 21.92 42.45 35.62 6934570
Zhongshan 广东中山 17.2 149.18 29.04     17.29 0.42 0.28 1.03 0.28 0.34 0.33 1.34 0.42 0.50 0.22 0.13 0.04 2.46 1.48 0.21 2.27 1800 41 18506521 2.74 58.04 39.22 50236309
Yunfu 广东云浮 17.9 282.76 17.48 0.07 0.33 6.81 0.46 0.60 0.24 0.20 0.90 0.14 0.48 0.11 0.10 0.09 0.20 0.04 3.02 0.91 0.11 2.67 7779 19 4009741 25.12 41.18 33.70 4663419
Nanning 广西南宁 23.4 707.37 70.55 1.54 0.15 14.43 1.11 6.78 3.18 0.90 4.50 1.43 2.62 1.64 3.23 2.54 1.51 0.16 9.77 4.43 1.14 9.49 22112 215 18002613 13.58 36.21 50.21 12854044
Liuzhou 广西柳州 48.9 372.69 37.99 0.79 0.25 13.26 0.67 2.31 1.59 0.49 1.49 0.52 1.21 0.54 2.25 0.66 1.16 0.24 4.48 2.37 0.28 3.43 18617 135 13153121 8.32 63.86 27.82 23887937
Guigang 广西贵港 36.8 523.81 15.31 0.21 0.04 2.49 0.40 0.66 0.75 0.07 0.49 0.01 0.45 0.04 0.15 0.25 0.42 0.02 5.01 1.42 0.05 2.38 10602 56 5446571 19.84 45.58 34.58 4702986
Laibin 广西来宾 21.1 260.10 11.85 0.91 0.56 2.24 0.58 0.32 0.21 0.14 0.28 0.03 0.31 0.07 0.20 0.32 0.31 0.01 2.57 1.02 0.08 1.69 13411 29 4048883 24.16 47.42 28.41 3682803
Chongqing 重庆 147.5 3303.45 248.75 1.71 9.53 57.42 6.42 43.32 13.45 2.55 11.17 4.25 9.75 4.88 4.30 5.39 3.38 0.77 33.78 10.89 2.41 23.38 82829 870 79255800 8.65 55.00 36.35 91435532
Chengdu 四川成都 41.6 1149.07 172.05 0.23 0.07 45.19 2.16 43.49 5.42 1.31 8.73 3.12 5.23 2.30 2.97 6.85 2.39 0.50 16.32 8.70 1.83 15.24 12132 456 55513336 5.14 44.69 50.17 58097349
Zigong 四川自贡 11.5 325.96 16.54 0.06 0.62 3.65 0.40 2.54 0.84 0.24 0.39 0.10 0.98 0.30 0.07 0.24 0.25 0.03 2.42 1.28 0.11 2.02 4373 80 6477251 13.07 57.25 29.67 11081674
Panzhihua 四川攀枝花 81.2 111.38 17.18 0.12 1.90 7.99 0.47 1.12 0.36 0.12 0.21 0.08 0.58 0.04 0.07 0.11 0.26 0.01 1.31 0.62 0.12 1.69 7440 55 5239883 4.10 73.79 22.11 9532489
Deyang 四川德阳 12.2 389.15 25.74 0.07 0.49 8.01 0.34 5.26 0.57 0.15 0.40 0.11 1.21 0.08 0.10 0.26 0.54 0.03 3.38 1.58 0.09 3.07 5911 54 9212679 16.54 57.82 25.63 16014090
Mianyang 四川绵阳 16.6 541.87 34.56 0.16 0.01 12.11 0.87 3.32 0.94 0.29 0.65 0.22 1.54 0.27 0.15 1.99 0.77 0.04 5.03 1.94 0.16 4.10 20249 103 9602153 17.34 48.77 33.89 12675301
Guiyang 贵州贵阳 40.4 337.16 70.34 0.30 1.01 14.90 1.42 16.79 2.44 1.14 5.13 1.74 1.77 2.60 1.86 1.68 1.04 0.73 5.92 2.80 0.93 6.14 8034 162 11218174 5.09 40.73 54.18 10583479
Zunyi 贵州遵义 23.6 784.16 30.34 0.13 0.26 5.51 1.00 1.53 1.42 0.30 1.30 0.11 1.00 0.23 0.38 0.59 0.68 0.10 7.16 2.00 0.18 6.46 30762 47 9087570 15.43 41.78 42.79 7937190
Kunming 云南昆明 80.9 583.99 98.96 0.80 1.49 21.21 1.54 14.62 8.24 1.76 7.05 2.85 2.96 2.10 3.59 3.56 1.21 0.59 9.29 4.20 1.56 9.54 21015 275 21203700 5.67 45.32 49.01 24361300
Xian 陕西西安 55.7 782.73 140.37 0.39 0.37 42.00 3.23 11.62 9.99 4.94 6.19 4.16 5.89 3.40 1.65 9.07 2.27 1.47 16.15 5.58 2.53 9.47 10108 327 32414900 4.32 43.48 52.20 31253569
Baoji 陕西宝鸡 26.6 381.09 31.65 0.50 0.65 10.85 0.92 2.08 1.98 0.34 1.71 0.32 0.89 0.14 0.11 0.50 0.51 0.05 4.42 1.99 0.22 3.47 18131 118 9760900 10.68 62.95 26.38 13168575
Xianyang 陕西咸阳 26.8 520.09 37.10 0.38 1.49 9.15 1.14 3.26 0.77 0.33 0.92 0.33 1.31 0.24 0.42 0.70 1.21 0.03 7.19 2.24 0.36 5.63 10196 81 10986810 18.50 52.18 29.32 13353500
Yulin 陕西榆林 54.1 364.50 25.91 0.62 3.78 1.40 1.94 0.56 1.16 0.19 0.65 0.09 0.65 0.13 0.24 0.38 1.23 0.01 4.69 1.52 0.30 6.37 43578 52 17566680 5.25 68.64 26.11 19599930
Lanzhou 甘肃兰州 43.1 323.54 51.36 0.16 1.35 12.50 1.53 8.74 1.75 0.54 1.90 0.70 2.10 0.59 1.17 2.59 0.89 0.08 5.68 1.97 1.05 6.07 13086 196 11003898 3.07 48.09 48.84 15926000
Jiayuguan 甘肃嘉峪关 22.9 21.80 5.01 0.01 0.01 3.55 0.10 0.02 0.04 0.04 0.05 0.04 0.13 0.01 0.04 0.02 0.12 0.01 0.23 0.12 0.05 0.42 2935 50 1843192 1.34 80.16 18.50 5155800
Baiyin 甘肃白银 22.0 180.39 15.34 0.46 2.49 3.81 0.59 0.40 0.37 0.12 0.32 0.03 0.51 0.03 0.05 0.15 0.21 0.07 2.74 0.37 0.07 2.55 21158 55 3111826 12.10 54.99 32.91 4299063
Wuwei 甘肃武威 4.9 191.26 9.89 1.12 0.34 1.24 0.38 0.38 0.46 0.06 0.22 0.04 0.48 0.26 0.27 0.22 0.35 0.01 1.68 0.74 0.28 1.36 33238 27 2287676 26.43 40.01 33.56 1755165
Xining 青海西宁 28.0 220.87 28.65 0.14 0.39 7.25 0.51 3.37 2.34 0.58 1.39 0.38 1.25 0.56 0.48 1.41 0.65 0.06 2.92 1.76 0.43 2.78 7655 67 6282800 3.89 51.05 45.05 7512207
Yinchuan 宁夏银川 95.5 158.80 30.08 1.22 5.15 4.68 2.48 1.64 0.90 0.41 0.85 0.24 1.68 0.49 1.02 0.94 0.70 0.02 2.65 1.37 0.50 3.14 9025 121 7694227 5.26 50.10 44.64 9355637
Urumchi 新疆乌鲁木齐 59.0 243.03 47.17 1.23 1.77 7.97 1.09 5.63 5.81 0.53 2.04 1.03 1.73 0.75 1.29 1.97 0.53 0.07 4.74 2.91 1.01 5.07 13788 343 13385172 1.49 44.86 53.65 16727154
Karamay 新疆克拉玛依 61.1 37.51 15.76 0.04 7.24 3.10 0.01 1.30 0.23 0.10 0.33 0.11 0.25 0.34 0.82 0.06 0.09 0.01 0.62 0.26 0.01 0.84 9548 57 7113531 0.49 89.75 9.76 13303969
Aletai 新疆阿勒泰 4.5 19.70 33677                                       11481 10.6         83849.5
Bayinguoleng 新疆巴音郭楞 18.0                                                        
Tulufan 新疆吐鲁番 11.1 28 27135                                       13589 13.4         372073

Data Records

A total of 365 data records (emissions-socioeconomic inventories) are contained in the datasets. Of these,

  • 182 are emissions inventories for cities (2010) [“China city-level emissions inventory, 2010”, Data Citation 1];

  • 182 are energy inventories for cities (2010) [“China city-level energy inventory, 2010”, Data Citation 1];

  • 1 is a socioeconomic inventory for cities (2010) [“China city-level socioeconomic inventory, 2010”, Data Citation 1];

The cities’ CO2 emissions inventories are constructed at an IPCC territorial administrative scope, including both energy-related emissions (from fossil fuel combustion) and process-related emissions (from cement production). The socioeconomic inventory presents GDP, population, employed population (with structure), GDP (with structure), and area of the 182 cities.

Technical Validation

Uncertainties

CO2 emissions inventories gather the contributions of economic activity to total CO2 emissions for a given time period and area. Inventories are critical to many environmental decision-making processes and scientific goals. Policymaking and scientific research require reliable inventories to ensure the effectiveness of the policy process. In both types of applications, it is important to understand the uncertainty in emissions inventories. Additionally, uncertainty analysis can improve the accuracy of emissions accounts. Regarding the city-level CO2 emissions inventories in this article, the literature shows that uncertainty regarding the process-related emissions in cement production is low. The inventories’ uncertainty mainly depends on energy-related emissions part44,50. The contributing sources of uncertainty for energy-related emissions accounting are associated with emission factors, activity data and other estimation parameters (Volume 1, Chapter 3, Page 6)41. The uncertainty induced by emissions factors and energy activity data are both quantified for the cities’ emission inventories.

Uncertainties in activity data and emission factors

China’s energy data are of relatively poor quality compared with those of developed countries, especially city-level data. The literature also shows that the uncertainties range widely from sector to sector. The coefficient of variation (CV; the standard deviation divided by the mean) is used to quantify the uncertainty. According to a field survey led by previous studies, the fossil fuel consumed in China’s power generation sector has the lowest CV (5%)51,52, compared with primary industry (30%)53, other manufacturing sectors (10%), construction (10%)41,54, transportation sector (16%)55, and residential energy use (20%)41. The sources of uncertainties could lie in the opaqueness in China’s statistical systems, especially on the “statistical approach on data collection, reporting and validation (Page 673)56 and the dependence of China’s statistics departments on other government departments. Such uncertainties result in a large gap between China’s national fossil fuel consumption data and the aggregated provincial data. To cover the gap, China has adjusted its energy data three times since 2004, resulting in a gap between the latest national fossil fuel consumption data and provincial aggregated data of 5%57. The gap between city-level aggregated energy consumption and the national overall data could be even larger.

Previous studies have debated China’s emission factors58–61. The range of emission factors across different sources is as high as 40%. This study collects emission factors from Liu, et al.44, which measured them based on a broad investigation of China’s fuel quality. Based on the statistical analysis of surveyed fuel quality, the CVs of coal-, oil-, and gas-related fuels are estimated as 3, 1, and 2%, respectively.

Monte Carlo simulations

Monte Carlo methods are used to simulate the uncertainties resulting from both fossil fuel combustion and emissions factors to estimate the overall uncertainty of the emissions41. Monte Carlo simulations select random values for the emission factor and activity data (fossil fuel consumption) from within their individual normal probability (density) functions and calculate the corresponding emission values (chapter 6 IPCC41). To perform Monte Carlo simulations, we first set up probability density functions for each input variable (emission factor and activity data). Both variables are assumed to follow a normal distribution44. Then, we randomly sample both the activity data and the emission factors 20,000 times and obtain 20,000 CO2 emission estimations. The uncertainties are obtained at a 97.5% confidence level and are calculated as the 97.5% confidence intervals of the estimates.

This article finds that the average uncertainties in the cities’ total CO2 emissions range from −;3.65 to 3.67% at a 97.5% confidence level (±47.5% confidence interval around the estimate). Hegang in Heilongjiang has the highest uncertainties in emissions of (−5.83, 5.86%), while Huizhou in Guangxi has the lowest value of (−0.91, 0.91%).

Limitations and future work

The cities’ emission inventories have some limitations that could lead to more uncertainty. Although these uncertainties may not be large enough to quantify, they are an indispensable component of the emission inventories’ uncertainties. First, this study only takes the energy-related and process-related emissions from seven industrial production processes into account in the emission accounts, and emissions emitted by other sources is missing, such as “agriculture”, “land-use change and forestry”, “waste”, and other industrial processes. Thus, the analysis incomplete. In the future, we will expand the emission scope to achieve more complete inventories for cities. Second, the cities’ emission factors for fossil fuels and industrial processes are substituted by national average emission factors during the process of accounting for cities’ CO2 emissions, resulting in inaccuracy. We hope that specific city-level emissions factors could be updated in the future to increase the accuracy of our results. If not, in our future research, we could employ provincial emission factors to obtain a more accurate emission inventory for the provinces. Third, due to the poor data quality for the cities, the EBTs of most cities are a downscaled version of the provincial table, assuming that the cities have the same sectoral energy intensity and per capita residential energy consumption with their provinces. Such assumptions bring additional uncertainties to cities’ emission inventories. In the future, a consistent time-series emission inventory dataset for Chinese cities will be completed. We will integrate the bottom-up estimations (calculated based on survey data from enterprises)14 and satellite observations to achieve more emission accounts for these cities. More specifically, the high-resolution bottom-up emissions and satellite images can confirm some of the cities’ emission sources (i.e. some super-emitting points). The night-light data will also be used to verify our top-down emissions inventories16,62.

Additional information

How to cite this article: Rashid, H. et al. An emissions-socioeconomic inventory of Chinese cities. Sci. Data. 6:190027 https://doi.org/10.1038/sdata.2019.27 (2019).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Material

sdata201927-isa1.zip (2.7KB, zip)
Supplementary Information
sdata201927-s2.docx (20.9KB, docx)

Acknowledgments

The authors acknowledge the efforts and “crowd-sourcing” work of the Applied Energy Summer School 2017 and 2018 held in Nanjing Normal University and Tsinghua University. This work was supported by the National Key R&D Programme of China (2016YFA0602604), the Natural Science Foundation of China (71533005, 71874097, 71503156, 91846301, 41629501, 41501605, 71873059, 71503156, 71773075, 71503168, and 71373153), the National Social Science Foundation of China (15CJY058), Chinese Academy of Engineering (2017-ZD-15-07), the UK Natural Environment Research Council (NE/N00714X/1 and NE/P019900/1), the Economic and Social Research Council (ES/L016028/1), the Royal Academy of Engineering (UK-CIAPP/425).

Footnotes

The authors declare no competing interests.

Data Citations

  1. Shan Y., Liu J., Liu Z., Shao S., Guan D. 2018. Figshare. [DOI]

References

  1. Shan Y. et al. City-level climate change mitigation in China. Science Advances 4, eaaq0390 (2018). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Tong K. et al. The collective contribution of Chinese cities to territorial and electricity-related CO2 emissions. Journal of Cleaner Production 189, 910–921 (2018). [Google Scholar]
  3. Van den Hoven J., Lokhorst G.-J. & Van de Poel I. Engineering and the problem of moral overload. Science and engineering ethics 18, 143–155 (2012). [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Wang Y., Song Q., He J. & Qi Y. Developing low-carbon cities through pilots. Climate Policy 15, S81–S103 (2015). [Google Scholar]
  5. Satterthwaite D. Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions. Environment and urbanization 20, 539–549 (2008). [Google Scholar]
  6. IEA. Cities, towns and renewable energy. (International Energy Agency, 2009). [Google Scholar]
  7. Dhakal S. GHG emissions from urbanization and opportunities for urban carbon mitigation. Current Opinion in Environmental Sustainability 2, 277–283, 10.1016/j.cosust.2010.05.007 (2010). [DOI] [Google Scholar]
  8. Dhakal S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 37, 4208–4219, 10.1016/j.enpol.2009.05.020 (2009). [DOI] [Google Scholar]
  9. Kan H., Chen B. & Hong C. Health impact of outdoor air pollution in China: current knowledge and future research needs. Environmental Health Perspectives 117, A187 (2009). [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wang H., Zhang R., Liu M. & Bi J. The carbon emissions of Chinese cities. Atmospheric Chemistry and Physics 12, 6197–6206 (2012). [Google Scholar]
  11. Glaeser E. L. & Kahn M. E. The greenness of cities: carbon dioxide emissions and urban development. Journal of urban economics 67, 404–418 (2010). [Google Scholar]
  12. Kennedy C. et al. Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 38, 4828–4837, 10.1016/j.enpol.2009.08.050 (2010). [DOI] [Google Scholar]
  13. Cai B. Characteristics analysis of CO2 emissions of cities in China: Based on 0.1 degree grid dataset. China Population, Resources and Environment 22, 151–157 (2012). [Google Scholar]
  14. Cai B. et al. China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resources, Conservation and Recycling 129, 232–239 (2018). [Google Scholar]
  15. Doll C. N. H., Muller J.-P. & Elvidge C. D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO: a Journal of the Human Environment 29, 157–162 (2000). [Google Scholar]
  16. Meng L., Graus W., Worrell E. & Huang B. Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (defense meteorological satellite program’s operational linescan system) nighttime light imagery: Methodological challenges and a case study for China. Energy 71, 468–478 (2014). [Google Scholar]
  17. Mi Z. et al. Consumption-based emission accounting for Chinese cities. Applied Energy 184, 1073–1081, 10.1016/j.apenergy.2016.06.094 (2016). [DOI] [Google Scholar]
  18. Auffhammer M., Sun W., Wu J. & Zheng S. The decomposition and dynamics of industrial carbon dioxide emissions for 287 Chinese cities in 1998–2009. Journal of Economic Surveys 30, 460–481 (2016). [Google Scholar]
  19. Ramaswami A., Hillman T., Janson B., Reiner M. & Thomas G. A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environmental science & technology 42, 6455–6461 (2008). [DOI] [PubMed] [Google Scholar]
  20. Hillman T. & Ramaswami A. Greenhouse gas emission footprints and energy use benchmarks for eight US cities. Environmental science & technology 44, 1902–1910 (2010). [DOI] [PubMed] [Google Scholar]
  21. Parshall L. et al. Modeling energy consumption and CO2 emissions at the urban scale: methodological challenges and insights from the United States. Energy Policy 38, 4765–4782 (2010). [Google Scholar]
  22. Markolf S. A., Matthews H. S., Azevedo I. L. & Hendrickson C. An integrated approach for estimating greenhouse gas emissions from 100 US metropolitan areas. Environmental Research Letters 12, 024003 (2017). [Google Scholar]
  23. Fragkias M., Lobo J., Strumsky D. & Seto K. C. Does size matter? Scaling of CO2 emissions and US urban areas. PLoS One 8, e64727 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ibrahim N., Sugar L., Hoornweg D. & Kennedy C. Greenhouse gas emissions from cities: comparison of international inventory frameworks. Local Environment 17, 223–241 (2012). [Google Scholar]
  25. D’Almeida Martins R. & da Costa Ferreira L. Climate change action at the city level: tales from two megacities in Brazil. Management of Environmental Quality: An International Journal 22, 344–357 (2011). [Google Scholar]
  26. Ali G. & Nitivattananon V. Exercising multidisciplinary approach to assess interrelationship between energy use, carbon emission and land use change in a metropolitan city of Pakistan. Renewable and Sustainable Energy Reviews 16, 775–786 (2012). [Google Scholar]
  27. Matese A., Gioli B., Vaccari F., Zaldei A. & Miglietta F. Carbon dioxide emissions of the city center of Firenze, Italy: measurement, evaluation, and source partitioning. Journal of Applied Meteorology and Climatology 48, 1940–1947 (2009). [Google Scholar]
  28. Harvey L. D. Tackling urban CO2 emissions in Toronto. Environment: Science and Policy for Sustainable Development 35, 16–44 (1993). [Google Scholar]
  29. Gomi K., Shimada K. & Matsuoka Y. A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city. Energy Policy 38, 4783–4796 (2010). [Google Scholar]
  30. Creutzig F., Baiocchi G., Bierkandt R., Pichler P. P. & Seto K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc Natl Acad Sci USA 112, 6283–5288, 10.1073/pnas.1315545112 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sugar L., Kennedy C. & Leman E. Greenhouse gas emissions from chinese cities. Journal of Industrial Ecology 16, 552–563, 10.1111/j.1530-9290.2012.00481.x (2012). [DOI] [Google Scholar]
  32. Zhou Y., Shan Y., Liu G. & Guan D. Emissions and low‐carbon development in Guangdong‐Hong Kong‐Macao Greater Bay Area cities. Applied Energy 228, 1683–1692 (2018). [Google Scholar]
  33. Xu X. et al. Patterns of CO2 emissions in 18 central Chinese cities from 2000 to 2014. Journal of Cleaner Production 172, 529–540, 10.1016/j.jclepro.2017.10.136 (2017). [DOI] [Google Scholar]
  34. Ramaswami A., Jiang D., Tong K. & Zhao J. Impact of the Economic Structure of Cities on Urban Scaling Factors: Implications for Urban Material and Energy Flows in China. Journal of Industrial Ecology 22, 392–405 (2017). [Google Scholar]
  35. Ramaswami A. et al. Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nature Climate Change 7, 736 (2017). [Google Scholar]
  36. NBS. National Data. National Bureau of Statistics, http://data.stats.gov.cn/easyquery.htm?cn=C01 (2018).
  37. IPCC. IPCC Guidelines for national greenhouse gas inventories 1996. (Intergovernmental Panel on Climate Change, 1996). [Google Scholar]
  38. Barrett J. et al. Consumption-based GHG emission accounting: a UK case study. Climate Policy 13, 451–470 (2013). [Google Scholar]
  39. Shan Y et al. China CO2 emission accounts 1997-2015. Scientific Data 5, 170201, 10.1038/sdata.2017.201 (2018). [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. National Administration for Quality Supervision and Inspection and Quarantine of China. National industries classification (GB/T 4754-2011), http://www.stats.gov.cn/statsinfo/auto2073/201406/t20140606_564743.html (2011).
  41. IPCC. IPCC Guidelines for national greenhouse gas inventories 2006. (Institute for Global Environmental Strategies (IGES), 2006). [Google Scholar]
  42. NDRC. Guildelines for provincial greenhouse gas inventories, http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf (2011). [Google Scholar]
  43. MEIC. National CO2 emissions, http://www.meicmodel.org/index.html (2017).
  44. Liu Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015). [DOI] [PubMed] [Google Scholar]
  45. NDRC. First biennial update report on climate change, http://qhs.ndrc.gov.cn/dtjj/201701/W020170123346264208002.pdf (2016).
  46. Shan Y. et al. Peak cement-related CO2 emissions and the changes in drivers in China. Journal of Industrial Ecology, in press, 10.1111/jiec.12839 (2019). [DOI] [Google Scholar]
  47. Shan Y., Liu Z. & Guan D. CO2 emissions from China’s lime industry. Applied Energy 166, 245–252, 10.1016/j.apenergy.2015.04.091 (2016). [DOI] [Google Scholar]
  48. Shan Y. et al. Methodology and applications of city level CO2 emission accounts in China. Journal of Cleaner Production 161, 1215–1225, 10.1016/j.jclepro.2017.06.075 (2017). [DOI] [Google Scholar]
  49. Bureau of Statistics. China city statistical yearbook 2011 [Chinese Document]. (China Statistics Press, 2011). [Google Scholar]
  50. Zhao Y., Nielsen C. P., Lei Y., McElroy M. B. & Hao J. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China. Atmospheric Chemistry and Physics 11, 2295–2308, 10.5194/acp-11-2295-2011 (2011). [DOI] [Google Scholar]
  51. Zhao Y. et al. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmospheric Environment 42, 8442–8452 (2008). [Google Scholar]
  52. Wu Y., Streets D. G., Wang S. X. & Hao J. M. Uncertainties in estimating mercury emissions from coal-fired power plants in China. Atmospheric Chemistry and Physics 10, 2937–2946 (2010). [Google Scholar]
  53. Wang S. X. & Zhang C. Y. Spatial and temporal distribution of air pollutant emissions from open burning of crop residues in China. Sciencepaper Online 3, 329–333 (2008). [Google Scholar]
  54. Zhang Q. et al. NOx emission trends for China, 1995–2004: The view from the ground and the view from space. Journal of Geophysical Research: Atmospheres 112, 1–18 (2007). [Google Scholar]
  55. Karvosenoja N. et al. Evaluation of the emissions and uncertainties of PM2.5 originated from vehicular traffic and domestic wood combustion in Finland. Boreal environment research 13, 465–474 (2008). [Google Scholar]
  56. Guan D., Liu Z., Geng Y., Lindner S. & Hubacek K. The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change, 10.1038/nclimate1560 (2012). [DOI] [Google Scholar]
  57. Zheng H. et al. How modifications of China’s energy data affect carbon mitigation targets. Energy policy 116, 337–343 (2018). [Google Scholar]
  58. Olivier J. G. J., Janssens-Maenhout G., Muntean M. & Peters J. A. H. W. Trends in global CO2 emissions: 2015 report.. (PBL Publishers, 2015). [Google Scholar]
  59. Le Quéré C. et al. Global carbon budget 2015. Earth System Science Data 7, 349–396 (2015). [Google Scholar]
  60. Korsbakken J. I., Peters G. P. & Andrew R. M. Uncertainties around reductions in China’s coal use and CO2 emissions. Nature Climate Change 6, 687–690 (2016). [Google Scholar]
  61. Jackson R. B. et al. Reaching peak emissions. Nature Climate Change 6, 7–10 (2016). [Google Scholar]
  62. Shi K. et al. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sensing 6, 1705–1724 (2014). [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Citations

  1. Shan Y., Liu J., Liu Z., Shao S., Guan D. 2018. Figshare. [DOI]

Supplementary Materials

sdata201927-isa1.zip (2.7KB, zip)
Supplementary Information
sdata201927-s2.docx (20.9KB, docx)

Articles from Scientific Data are provided here courtesy of Nature Publishing Group

RESOURCES