Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 12;75(Pt 3):350–353. doi: 10.1107/S2056989019002068

Crystal structure of chlorido­{tris­[2-(iso­propyl­sulfan­yl)phen­yl]phosphane-κ4 P,S,S′,S′′}nickel(II) tri­fluoro­methane­sulfonate

Nobuhiro Takeda a,*, Rin Oma a, Masafumi Unno a
PMCID: PMC6399686  PMID: 30867947

The complex cation of the title compound has a five-coordinate slightly distorted trigonal–bipyramidal structure in which three S atoms are located in the equatorial positions, and one P and one Cl atom in the apical positions.

Keywords: crystal structure, nickel, five-coordinate, tripodal tetra­dentate ligand, phosphine, thio­ether

Abstract

The complex cation of the title compound, [NiCl{P(C6H4-2-S-i-Pr)3}](CF3SO3), has a slightly distorted trigonal–bipyramidal coordination geometry in which three S atoms are located in the equatorial plane, and one P and one Cl atom in the apical positions. In the cation, there are two intra­molecular C—H⋯S hydrogen bonds. In the crystal, there are some inter­molecular C—H⋯O and C—H⋯F hydrogen bonds formed between the cation and the anion. The tri­fluoro­methane­sulfonate anion and one of the methyl groups are both disordered over two sets of sites with occupancies of 0.629 (17):0.371 (17) and 0.786 (14):0.214 (14), respectively.

Chemical context  

Unusual five-coordinate nickel(II) complexes have been often obtained by use of polydentate ligands such as tripodal tetra­dentate ligands (Orioli, 1971; Morassi et al., 1973; Hierso et al., 2003). A variety of tripodal tetra­dentate ligands having phosphines and/or amines as coordinating sites have been used for the synthesis of five-coordinate nickel(II) complexes. However, for PS3-type tripodal tetra­dentate ligands in which three thio­ether moieties are tethered to a phosphine moiety, only one crystal structure (Haugen & Eisenberg, 1969) had been reported before we started our studies. Recently, we have synthesized new PS3-type tripodal tetra­dentate ligands, tris(2-iso­propyl­thio­phen­yl)phosphine, 1a and tris(2-tert-butyl­thio­phen­yl)phosphine, 1b (Fig. 1), and reported the syntheses and properties of their group 10 metal complexes (Takeda et al., 2010, 2016). Reaction of 1a with NiCl2·6H2O in the presence of NaBF4 gave the corresponding cationic five-coordinate nickel(II) complex, 2, while the reaction of 1b with NiCl2·6H2O resulted in the elimination of t-BuCl to afford a neutral five-coordinate nickel(II) complex, 4 (Fig. 1). In this paper, we describe the structure of the title compound, [NiCl(L)]CF3SO3 (L = 1a), 3, which was prepared by reaction of 1a with NiCl2·6H2O in the presence of an excess amount of NaCF3SO3 (Fig. 1).graphic file with name e-75-00350-scheme1.jpg

Figure 1.

Figure 1

Synthesis of nickel(II) complexes bearing the PS3-type tripodal tetra­dentate ligand.

Structural commentary  

The structure of the title compound, 3, is shown in Fig. 2. The triflate anion and one of the methyl groups are each disordered over two sets of sites with occupancies of 0.629 (17):0.371 (17) and 0.786 (14):0.214 (14), respectively. The complex cation of 3 has a five-coordinate slightly distorted trigonal–bipyramidal structure, in which one P atom and one Cl atom coordinate to the nickel center(II) in the apical positions [P1—Ni1—Cl1 177.83 (5)°] and three S atoms are located in the equatorial positions. In addition, there are two weak C—H⋯S intra­molecular hydrogen bonds (C26—H26B⋯S1 and C17—H17B⋯S3; Table 1). Table 2 presents selected bond lengths and angles of 3 along with those of the related complexes, complex 2 (Takeda et al., 2010) and the methyl derivative, [NiCl{P(C6H4-2-SCH3)3}]ClO4, 5 (Haugen & Eisenberg, 1969). The conformation of the Ni(S-i-Pr)3 unit of 3 is similar to that of complex 2, but different from that of 5, as shown in Fig. 3. This is probably due to the difference in the bulkiness between the isopropyl and methyl groups. In 3, the Ni1—S3 bond length [2.3072 (13) Å] is slightly longer than the Ni1—S1 and Ni1—S2 bond lengths [2.2574 (12) and 2.2612 (13) Å, respectively], and the S1—Ni1—S2 bond angle [122.83 (5)°] is slightly larger than the S2—Ni1—S3 and S3—Ni1—S1 bond angles [120.87 (5) and 116.04 (5)°, respectively]. This properties suggests that in complex 3 the five-coordinate trigonal–bipyramidal structure slightly approaches a four-coordinate square-planar structure by the elongation of the Ni—S3 bond. This is a similar tendency to the structure of 2, and the deviation from trigonal–bipyramidal structure in 3 is smaller than that in 2. The Ni—S bond lengths of 3 are very close to those of methyl derivative 5, while the S3—Ni—S1 bond angle of 5 [127.1 (3)°] is large as expected from the conformation B (Fig. 3).

Figure 2.

Figure 2

The mol­ecular structure of the title compound, 3. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms and minor disorder components are omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.42 3.336 (5) 162
C5—H5⋯O3B ii 0.95 2.55 3.328 (11) 140
C8—H8⋯F2A iii 0.98 2.53 3.318 (14) 138
C8—H8⋯F2B iii 0.98 2.50 3.30 (2) 139
C17—H17B⋯S3 0.98 2.82 3.652 (5) 143
C18—H18B⋯F3B iv 0.98 2.15 3.099 (12) 162
C20—H20⋯O1i 0.95 2.58 3.477 (5) 157
C22—H22⋯O2A v 0.95 2.31 3.127 (12) 144
C26—H26B⋯S1 0.98 2.85 3.762 (6) 156
C27B—H27D⋯O1 0.98 2.46 3.308 (19) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Table 2. Selected bond distances (Å) and angles (°) in complexes 2, 3 and 5 .

compounds 3 2 a 5 b
Ni1—P1 2.1124 (11) 2.1108 (7) 2.113 (7)
Ni1—S1 2.2574 (12) 2.2454 (7) 2.242 (8)
Ni1—S2 2.2612 (13) 2.2678 (7) 2.269 (6)
Ni1—S3 2.3072 (13) 2.3510 (7) 2.290 (7)
Ni1—Cl 2.2412 (11) 2.2437 (7) 2.227 (7)
       
P1—Ni1—Cl1 177.83 (5) 178.60 (3) 178.5 (3)
S2—Ni1—S3 120.87 (5) 109.53 (3) 112.1 (3)
S3—Ni1—S1 116.04 (5) 119.03 (3) 127.1 (3)
S1—Ni1—S2 122.83 (5) 130.74 (3) 120.6 (2)
P1—Ni1—S 88.16 (4)–88.1 (4) 86.9 – 87.5 88.0 – 88.7
Cl1—Ni1—S 89.88 (4)–93.48 (5) 92.0 – 94.5 90.7 – 92.4

Notes: (a) Takeda et al. (2010); (b) Haugen & Eisenberg (1969).

Figure 3.

Figure 3

The conformation diagrams of the Ni(SR)3 moieties (R = i-Pr or Me) for 3 (A) and 5 (B), viewed along the Ni—Cl bond.

Supra­molecular features  

In the crystal of 3, there are some hydrogen bonds between the cation and the anion (Fig. 4). The cation and the anion are linked into a tape structure along the b-axis direction via C—H⋯O and C—H⋯F hydrogen bonds (C2—H2⋯O1i, C8—H8⋯F2A iii, C8—H8⋯F2B iii, C20—H20⋯O1i and C22—H22⋯O2A v; symmetry codes as in Table 1) . The tapes are further linked by weak C—H⋯O and C—H⋯F hydrogen bonds formed between the cation and the minor component of the disordered anion (C5—H5⋯O3B ii and C18—H18B⋯F3B iv; Table 1), forming a three-dimensional network (Figs. 5 and 6).

Figure 4.

Figure 4

Intra­molecular C—H⋯S hydrogen bonds and inter­molecular C—H⋯O and C—H⋯F hydrogen bonds (blue dashed lines) in 3. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + Inline graphic, y − Inline graphic, −z + Inline graphic; (iii) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (iv) x + 1, y, z; (v) x + Inline graphic, −y + Inline graphic, z + Inline graphic.]

Figure 5.

Figure 5

A packing diagram of 3, viewed along the a axis. The C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines.

Figure 6.

Figure 6

A packing diagram of 3, viewed along the c axis. The C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines.

Database survey  

A search of the Cambridge Structural Database (CSD; Groom et al., 2016) using WebCSD found four structures of nickel complexes having three Ni—S, one Ni—P and one Ni—Cl bonds. The structures of the complexes, [NiCl{P(C6H4-2-SMe)3}]ClO4, 5 (refcode: CMTPPN; Haugen & Eisenberg, 1969) and [NiCl{P(C6H4-2-S-i-Pr)3}]BF4, 2 (FULMOP; Takeda et al., 2010), are similar to that of the cationic choloridonickel(II) complex 3. The structures of the other two complexes, [Ph3P=N=PPh3][NiCl{P(C6H3-3-SiMe3-2-S)3}] (YETYOM; Lee et al., 2006) and [NiCl{P(C6H4-2-S)(C6H4-2-S-t-Bu)2}], 4 (EZOQAN; Takeda et al., 2016), are different from that of complex 3. The former is an anionic nickel(III) complex having three thiol­ato ( SR), one chlorido and one phosphine ligands, and the latter, 4, is a neutral nickel(II) complex having two thio­ether, one thiol­ato, one chlorido and one phosphine ligands.

Synthesis and crystallization  

A mixture of tris­(2-iso­propyl­thio­phen­yl)phosphine, 1a (0.141 g, 0.291 mmol), NiCl2·6H2O (0.060 g, 0.25 mmol) and NaCF3SO3 (0.345 g, 2.01 mmol) in di­chloro­methane (5 ml) was stirred at room temperature for 4 d. After removal of the solvent under reduced pressure, recrystallization of the residue from a chloro­form/hexane solution gave the title compound, 3, as blue crystals (0.168 g, 91%).

M.p. 485 K (decomp.) 1H NMR (300 MHz, CDCl3): δ 1.31 (d, 3 J HH = 6.7 Hz, 18H), 3.73 (sepd, 3 J HH = 6.7 Hz, 4 J HP = 1.6 Hz, 3H), 7.71 (tdd, 3 J HH = 8.3 Hz, J HP = 2.2 Hz, 4 J HH = 1.0 Hz, 3H), 7.80 (ddd, 3 J HH = 8.3 Hz, 4 J HP = 3.3 Hz, 4 J HH = 1.0 Hz, 3H), 7.91 (tdd, 3 J HH = 8.3 Hz, J HP = 2.5 Hz, 4 J HH = 1.0 Hz, 3H), 8.68 (dd, 3 J HH = 8.3 Hz, 3 J HP = 8.3 Hz, 3H). 13C{1H} NMR (150 MHz, CDCl3): δ 22.3 (s, CH3), 50.7 (s, CH), 132.9 (d, J CP = 7.2 Hz, CH), 133.4 (d, J CP = 13.0 Hz, CH), 133.6 (s, CH), 134.8 (s, CH), 135.3 (d, 1 J CP =63.6 Hz, C), 137.0 (d, 2 J CP = 23.1 Hz, C), the peak of CF3 could not be detected. 31P NMR (162 MHz, CDCl3): δ 103.3. 19F NMR (376 MHz, CDCl3): δ −77.92. IR (KBr): 516.9, 532.3, 551.6, 572.8, 638.4, 673.1, 727.1, 740.6, 779.2, 879.5, 931.6, 1029.9, 1056.9 (S=O), 1116.7, 1157.2 (S=O),1224.7, 1242.1, 1249.8, 1265.2, 1274.9, 1282.6, 1369.4, 1388.7, 1433.0, 1460.0, 1568.0, 1635.5, 2868.0, 2927.7, 2968.2, 3055.0, 3082.0, 3301.9, 3319.3, 3392.6, 3406.1, 3423.4, 3444.6, 3477.4, 3489.0. UV–vis (CHCl3): λ max 246 ( 35000), 332 ( 5700), 474 ( 350), 639 nm ( 2000). Analysis calculated for C28H33ClF3NiO3PS4: C 46.20, H 4.57%. Found: C 45.38, H 4.55%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined as riding atoms with U iso(H) =1.5U eq(C) for methyl or 1.2U eq(C) for aromatic and methine H atoms. The methyl groups were allowed to rotate freely around the C—C bond. The triflate anion exhibits disorder and was modelled with occupancies of 0.629 (17) and 0.371 (17). The geometric parameters of the minor component were restrained to be similar to those of the major component by using SAME restraint. In addition, one of the methyl groups in the complex cation exhibits disorder and was modelled with occupancies of 0.786 (14) and 0.214 (14). The C25—C27A and C25—C27B bond lengths were restrained to be equal to each other by using SADI restraint.

Table 3. Experimental details.

Crystal data
Chemical formula [NiCl(C27H33PS3)](CF3SO3)
M r 727.91
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 13.428 (3), 14.008 (3), 17.110 (3)
β (°) 93.164 (4)
V3) 3213.5 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.04
Crystal size (mm) 0.10 × 0.08 × 0.02
 
Data collection
Diffractometer Rigaku CrystalClear-SM Expert 2.1 b29
Absorption correction Numerical (CrystalClear; Rigaku, 2013)
T min, T max 0.924, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 51723, 7359, 5054
R int 0.096
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.144, 1.08
No. of reflections 7359
No. of parameters 451
No. of restraints 20
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.35

Computer programs: CrystalClear (Rigaku, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019002068/is5507sup1.cif

e-75-00350-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002068/is5507Isup2.hkl

e-75-00350-Isup2.hkl (584.6KB, hkl)

CCDC reference: 1895701

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[NiCl(C27H33PS3)](CF3SO3) F(000) = 1504
Mr = 727.91 Dx = 1.505 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
a = 13.428 (3) Å Cell parameters from 5728 reflections
b = 14.008 (3) Å θ = 2.8–27.5°
c = 17.110 (3) Å µ = 1.04 mm1
β = 93.164 (4)° T = 120 K
V = 3213.5 (11) Å3 Prism, blue
Z = 4 0.10 × 0.08 × 0.02 mm

Data collection

Rigaku CrystalClear-SM Expert 2.1 b29 diffractometer 7359 independent reflections
Radiation source: Rotating Anode 5054 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.096
Detector resolution: 5.8140 pixels mm-1 θmax = 27.5°, θmin = 2.8°
profile data from ω–scans h = −17→17
Absorption correction: numerical (CrystalClear; Rigaku, 2013) k = −18→18
Tmin = 0.924, Tmax = 0.971 l = −22→22
51723 measured reflections

Refinement

Refinement on F2 20 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0517P)2 + 5.7574P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
7359 reflections Δρmax = 0.75 e Å3
451 parameters Δρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.75663 (4) 0.31726 (4) 0.35830 (3) 0.02972 (15)
Cl1 0.77545 (8) 0.29069 (9) 0.23080 (6) 0.0409 (3)
P1 0.73682 (7) 0.33699 (7) 0.47886 (5) 0.0246 (2)
C1 0.6229 (3) 0.2789 (3) 0.5066 (2) 0.0262 (8)
C2 0.5845 (3) 0.2845 (3) 0.5811 (2) 0.0321 (9)
H2 0.6179 0.3205 0.6216 0.039*
C3 0.4967 (3) 0.2363 (3) 0.5944 (3) 0.0384 (10)
H3 0.4706 0.2389 0.6448 0.046*
C4 0.4466 (3) 0.1846 (3) 0.5360 (3) 0.0381 (10)
H4 0.3872 0.1516 0.5468 0.046*
C5 0.4822 (3) 0.1805 (3) 0.4619 (3) 0.0358 (10)
H5 0.4465 0.1470 0.4210 0.043*
C6 0.5721 (3) 0.2269 (3) 0.4482 (2) 0.0274 (8)
S1 0.61937 (8) 0.22394 (8) 0.35266 (6) 0.0304 (2)
C7 0.6643 (3) 0.0991 (3) 0.3441 (3) 0.0386 (10)
H7 0.7114 0.0985 0.3008 0.046*
C8 0.7218 (4) 0.0635 (4) 0.4164 (3) 0.0491 (12)
H8 0.6777 0.0613 0.4601 0.074*
H8A 0.7778 0.1066 0.4294 0.074*
H8B 0.7473 −0.0008 0.4067 0.074*
C9 0.5777 (4) 0.0336 (4) 0.3189 (3) 0.0570 (14)
H9 0.6037 −0.0287 0.3038 0.085*
H9A 0.5396 0.0620 0.2743 0.085*
H9B 0.5342 0.0254 0.3625 0.085*
C10 0.8429 (3) 0.2904 (3) 0.5377 (2) 0.0297 (9)
C11 0.8506 (4) 0.2885 (3) 0.6188 (2) 0.0364 (10)
H11 0.7951 0.3060 0.6479 0.044*
C12 0.9387 (4) 0.2611 (4) 0.6570 (3) 0.0460 (12)
H12 0.9448 0.2618 0.7126 0.055*
C13 1.0190 (4) 0.2325 (4) 0.6148 (3) 0.0515 (13)
H13 1.0798 0.2145 0.6418 0.062*
C14 1.0113 (3) 0.2299 (4) 0.5342 (3) 0.0471 (12)
H14 1.0653 0.2075 0.5056 0.057*
C15 0.9229 (3) 0.2607 (3) 0.4950 (3) 0.0364 (10)
S2 0.91100 (8) 0.26050 (9) 0.39095 (6) 0.0383 (3)
C16 1.0134 (4) 0.3448 (4) 0.3714 (3) 0.0515 (13)
H16 1.0729 0.3224 0.4041 0.062*
C17 0.9930 (4) 0.4436 (4) 0.3978 (3) 0.0529 (13)
H17 1.0532 0.4825 0.3946 0.079*
H17A 0.9732 0.4421 0.4521 0.079*
H17B 0.9390 0.4713 0.3643 0.079*
C18 1.0401 (4) 0.3352 (5) 0.2900 (3) 0.0659 (16)
H18 0.9819 0.3502 0.2550 0.099*
H18A 1.0617 0.2696 0.2805 0.099*
H18B 1.0945 0.3794 0.2799 0.099*
C19 0.7307 (3) 0.4636 (3) 0.5007 (2) 0.0270 (8)
C20 0.7291 (3) 0.5015 (3) 0.5767 (2) 0.0297 (9)
H20 0.7287 0.4601 0.6206 0.036*
C21 0.7283 (3) 0.5992 (3) 0.5871 (3) 0.0341 (9)
H21 0.7258 0.6248 0.6383 0.041*
C22 0.7312 (3) 0.6603 (3) 0.5236 (3) 0.0370 (10)
H22 0.7312 0.7274 0.5315 0.044*
C23 0.7340 (3) 0.6238 (3) 0.4487 (3) 0.0372 (10)
H23 0.7375 0.6657 0.4053 0.045*
C24 0.7317 (3) 0.5263 (3) 0.4371 (2) 0.0288 (9)
S3 0.72947 (8) 0.47865 (8) 0.34063 (6) 0.0310 (2)
C25 0.6003 (3) 0.5122 (5) 0.3077 (3) 0.0551 (15)
H25A 0.5974 0.5834 0.3110 0.066* 0.786 (14)
H25B 0.5936 0.4535 0.2745 0.066* 0.214 (14)
C26 0.5214 (3) 0.4751 (4) 0.3611 (3) 0.0459 (12)
H26 0.4550 0.4935 0.3396 0.069*
H26A 0.5329 0.5027 0.4135 0.069*
H26B 0.5257 0.4054 0.3645 0.069*
C27A 0.5825 (5) 0.4890 (6) 0.2262 (3) 0.049 (2) 0.786 (14)
H27A 0.5843 0.4195 0.2195 0.074* 0.786 (14)
H27B 0.6342 0.5184 0.1959 0.074* 0.786 (14)
H27C 0.5170 0.5132 0.2076 0.074* 0.786 (14)
C27B 0.5769 (15) 0.5677 (16) 0.2455 (12) 0.040 (7) 0.214 (14)
H27D 0.5064 0.5589 0.2292 0.059* 0.214 (14)
H27E 0.6184 0.5502 0.2024 0.059* 0.214 (14)
H27F 0.5887 0.6348 0.2596 0.059* 0.214 (14)
S4A 0.2594 (6) 0.5996 (6) 0.1890 (4) 0.0617 (17) 0.629 (17)
O1 0.3353 (3) 0.6108 (2) 0.25204 (19) 0.0508 (9)
O2A 0.2747 (16) 0.6526 (8) 0.1192 (6) 0.119 (6) 0.629 (17)
O3A 0.1589 (6) 0.6058 (12) 0.2106 (7) 0.114 (6) 0.629 (17)
C28A 0.2734 (13) 0.4774 (10) 0.1571 (6) 0.061 (6) 0.629 (17)
F1A 0.3485 (7) 0.4632 (8) 0.1181 (5) 0.070 (2) 0.629 (17)
F2A 0.1947 (10) 0.4527 (12) 0.1075 (7) 0.104 (5) 0.629 (17)
F3A 0.2727 (9) 0.4177 (5) 0.2155 (4) 0.083 (3) 0.629 (17)
S4B 0.2809 (6) 0.6234 (5) 0.1799 (4) 0.0279 (14) 0.371 (17)
O2B 0.3381 (11) 0.6469 (12) 0.1159 (7) 0.056 (4) 0.371 (17)
O3B 0.1917 (9) 0.6754 (11) 0.1844 (6) 0.055 (4) 0.371 (17)
C28B 0.2460 (16) 0.4994 (15) 0.1619 (11) 0.060 (9) 0.371 (17)
F1B 0.320 (2) 0.4458 (15) 0.152 (2) 0.160 (17) 0.371 (17)
F2B 0.1807 (14) 0.4953 (11) 0.0986 (11) 0.061 (4) 0.371 (17)
F3B 0.1961 (17) 0.4693 (15) 0.2206 (8) 0.116 (10) 0.371 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0264 (3) 0.0409 (3) 0.0222 (3) −0.0057 (2) 0.0052 (2) −0.0053 (2)
Cl1 0.0365 (6) 0.0615 (8) 0.0254 (5) −0.0050 (5) 0.0077 (4) −0.0094 (5)
P1 0.0243 (5) 0.0283 (5) 0.0214 (5) −0.0028 (4) 0.0023 (4) −0.0017 (4)
C1 0.024 (2) 0.027 (2) 0.028 (2) 0.0007 (16) 0.0046 (15) 0.0029 (16)
C2 0.035 (2) 0.033 (2) 0.029 (2) −0.0028 (19) 0.0064 (17) −0.0028 (17)
C3 0.044 (3) 0.035 (2) 0.038 (2) 0.001 (2) 0.019 (2) 0.0055 (19)
C4 0.030 (2) 0.034 (2) 0.051 (3) −0.0036 (19) 0.014 (2) 0.006 (2)
C5 0.031 (2) 0.034 (2) 0.042 (2) −0.0056 (19) 0.0038 (18) −0.0005 (19)
C6 0.022 (2) 0.029 (2) 0.032 (2) −0.0018 (17) 0.0046 (16) 0.0003 (16)
S1 0.0306 (5) 0.0352 (6) 0.0255 (5) −0.0062 (4) 0.0021 (4) −0.0049 (4)
C7 0.045 (3) 0.035 (2) 0.038 (2) −0.005 (2) 0.014 (2) −0.0136 (19)
C8 0.056 (3) 0.042 (3) 0.051 (3) 0.008 (2) 0.014 (2) 0.002 (2)
C9 0.065 (4) 0.038 (3) 0.068 (4) −0.014 (3) 0.009 (3) −0.020 (3)
C10 0.028 (2) 0.027 (2) 0.034 (2) −0.0057 (17) −0.0026 (17) −0.0012 (16)
C11 0.047 (3) 0.032 (2) 0.030 (2) 0.001 (2) −0.0038 (19) 0.0004 (17)
C12 0.052 (3) 0.046 (3) 0.039 (3) 0.001 (2) −0.010 (2) 0.005 (2)
C13 0.039 (3) 0.059 (3) 0.054 (3) −0.002 (3) −0.015 (2) 0.009 (3)
C14 0.027 (2) 0.063 (3) 0.052 (3) 0.005 (2) 0.001 (2) 0.008 (2)
C15 0.027 (2) 0.041 (3) 0.041 (2) −0.0025 (19) −0.0005 (18) 0.0003 (19)
S2 0.0317 (6) 0.0464 (7) 0.0379 (6) 0.0025 (5) 0.0105 (4) −0.0053 (5)
C16 0.028 (2) 0.068 (4) 0.061 (3) −0.005 (2) 0.018 (2) 0.002 (3)
C17 0.040 (3) 0.064 (4) 0.055 (3) −0.022 (3) 0.007 (2) −0.005 (3)
C18 0.057 (4) 0.091 (5) 0.052 (3) −0.002 (3) 0.020 (3) −0.004 (3)
C19 0.0209 (19) 0.030 (2) 0.031 (2) −0.0013 (16) 0.0051 (15) −0.0012 (16)
C20 0.025 (2) 0.035 (2) 0.029 (2) −0.0009 (17) 0.0050 (16) 0.0011 (16)
C21 0.032 (2) 0.033 (2) 0.038 (2) −0.0042 (19) 0.0028 (18) −0.0078 (18)
C22 0.031 (2) 0.029 (2) 0.051 (3) 0.0009 (18) 0.0029 (19) −0.0011 (19)
C23 0.036 (2) 0.031 (2) 0.044 (3) 0.0018 (19) 0.0061 (19) 0.0096 (19)
C24 0.025 (2) 0.035 (2) 0.027 (2) −0.0007 (17) 0.0060 (16) 0.0035 (16)
S3 0.0256 (5) 0.0430 (6) 0.0247 (5) −0.0003 (4) 0.0048 (4) 0.0063 (4)
C25 0.029 (3) 0.096 (4) 0.040 (3) 0.009 (3) 0.002 (2) 0.022 (3)
C26 0.024 (2) 0.067 (3) 0.046 (3) 0.005 (2) 0.0067 (19) 0.014 (2)
C27A 0.034 (3) 0.079 (6) 0.035 (3) −0.003 (3) 0.000 (3) −0.005 (3)
C27B 0.022 (11) 0.032 (14) 0.065 (16) 0.010 (9) 0.010 (10) 0.005 (11)
S4A 0.082 (4) 0.063 (3) 0.0385 (19) 0.032 (3) −0.009 (2) −0.001 (2)
O1 0.059 (2) 0.054 (2) 0.0383 (18) −0.0034 (18) −0.0051 (16) 0.0042 (15)
O2A 0.229 (17) 0.066 (6) 0.057 (6) 0.046 (10) −0.024 (8) 0.009 (4)
O3A 0.059 (5) 0.171 (15) 0.111 (8) 0.051 (7) −0.012 (5) −0.075 (9)
C28A 0.078 (12) 0.074 (12) 0.033 (7) −0.028 (10) 0.015 (7) −0.016 (8)
F1A 0.079 (5) 0.070 (5) 0.065 (4) 0.014 (3) 0.029 (4) −0.008 (3)
F2A 0.093 (7) 0.151 (12) 0.066 (6) −0.020 (8) −0.005 (5) −0.050 (8)
F3A 0.135 (8) 0.055 (4) 0.061 (4) −0.023 (5) 0.026 (4) 0.002 (3)
S4B 0.036 (2) 0.032 (3) 0.015 (2) −0.0002 (19) 0.0013 (14) 0.0037 (16)
O2B 0.069 (9) 0.068 (9) 0.031 (6) −0.027 (8) 0.007 (6) 0.018 (5)
O3B 0.051 (7) 0.065 (9) 0.046 (6) 0.024 (6) −0.013 (5) −0.013 (6)
C28B 0.048 (12) 0.060 (13) 0.070 (19) 0.008 (10) −0.023 (11) 0.021 (11)
F1B 0.25 (4) 0.056 (12) 0.17 (3) 0.068 (17) −0.03 (2) −0.033 (16)
F2B 0.054 (7) 0.066 (9) 0.061 (7) −0.004 (6) −0.017 (5) −0.025 (6)
F3B 0.153 (18) 0.106 (15) 0.086 (9) −0.096 (15) −0.020 (9) 0.047 (8)

Geometric parameters (Å, º)

Ni1—P1 2.1124 (11) C17—H17A 0.9800
Ni1—Cl1 2.2412 (11) C17—H17B 0.9800
Ni1—S1 2.2574 (12) C18—H18 0.9800
Ni1—S2 2.2612 (13) C18—H18A 0.9800
Ni1—S3 2.3072 (13) C18—H18B 0.9800
P1—C19 1.815 (4) C19—C24 1.398 (5)
P1—C1 1.819 (4) C19—C20 1.406 (5)
P1—C10 1.820 (4) C20—C21 1.380 (6)
C1—C6 1.385 (5) C20—H20 0.9500
C1—C2 1.403 (5) C21—C22 1.385 (6)
C2—C3 1.388 (6) C21—H21 0.9500
C2—H2 0.9500 C22—C23 1.382 (6)
C3—C4 1.379 (6) C22—H22 0.9500
C3—H3 0.9500 C23—C24 1.380 (6)
C4—C5 1.381 (6) C23—H23 0.9500
C4—H4 0.9500 C24—S3 1.779 (4)
C5—C6 1.401 (6) S3—C25 1.854 (5)
C5—H5 0.9500 C25—C27B 1.341 (15)
C6—S1 1.787 (4) C25—C27A 1.440 (7)
S1—C7 1.858 (5) C25—C26 1.528 (6)
C7—C8 1.507 (7) C25—H25A 1.0000
C7—C9 1.524 (7) C25—H25B 1.0000
C7—H7 1.0000 C26—H26 0.9800
C8—H8 0.9800 C26—H26A 0.9800
C8—H8A 0.9800 C26—H26B 0.9800
C8—H8B 0.9800 C27A—H27A 0.9800
C9—H9 0.9800 C27A—H27B 0.9800
C9—H9A 0.9800 C27A—H27C 0.9800
C9—H9B 0.9800 C27B—H27D 0.9800
C10—C11 1.386 (6) C27B—H27E 0.9800
C10—C15 1.396 (6) C27B—H27F 0.9800
C11—C12 1.375 (6) S4A—O3A 1.421 (8)
C11—H11 0.9500 S4A—O2A 1.432 (9)
C12—C13 1.390 (7) S4A—O1 1.450 (7)
C12—H12 0.9500 S4A—C28A 1.809 (14)
C13—C14 1.378 (7) O1—S4B 1.410 (8)
C13—H13 0.9500 C28A—F1A 1.255 (19)
C14—C15 1.398 (6) C28A—F3A 1.302 (13)
C14—H14 0.9500 C28A—F2A 1.364 (14)
C15—S2 1.779 (4) S4B—O3B 1.408 (11)
S2—C16 1.857 (5) S4B—O2B 1.410 (10)
C16—C18 1.462 (7) S4B—C28B 1.822 (17)
C16—C17 1.487 (8) C28B—F1B 1.26 (2)
C16—H16 1.0000 C28B—F3B 1.307 (17)
C17—H17 0.9800 C28B—F2B 1.357 (17)
P1—Ni1—Cl1 177.83 (5) H17—C17—H17A 109.5
P1—Ni1—S1 88.34 (4) C16—C17—H17B 109.5
Cl1—Ni1—S1 89.88 (4) H17—C17—H17B 109.5
P1—Ni1—S2 88.16 (4) H17A—C17—H17B 109.5
Cl1—Ni1—S2 91.78 (4) C16—C18—H18 109.5
S1—Ni1—S2 122.83 (5) C16—C18—H18A 109.5
P1—Ni1—S3 88.41 (4) H18—C18—H18A 109.5
Cl1—Ni1—S3 93.48 (5) C16—C18—H18B 109.5
S1—Ni1—S3 116.04 (5) H18—C18—H18B 109.5
S2—Ni1—S3 120.87 (5) H18A—C18—H18B 109.5
C19—P1—C1 109.59 (18) C24—C19—C20 119.0 (4)
C19—P1—C10 106.25 (18) C24—C19—P1 116.8 (3)
C1—P1—C10 109.81 (18) C20—C19—P1 124.2 (3)
C19—P1—Ni1 109.76 (13) C21—C20—C19 119.6 (4)
C1—P1—Ni1 110.45 (13) C21—C20—H20 120.2
C10—P1—Ni1 110.90 (14) C19—C20—H20 120.2
C6—C1—C2 119.5 (4) C20—C21—C22 120.8 (4)
C6—C1—P1 115.8 (3) C20—C21—H21 119.6
C2—C1—P1 124.7 (3) C22—C21—H21 119.6
C3—C2—C1 118.7 (4) C23—C22—C21 120.1 (4)
C3—C2—H2 120.7 C23—C22—H22 120.0
C1—C2—H2 120.7 C21—C22—H22 120.0
C4—C3—C2 121.4 (4) C24—C23—C22 119.9 (4)
C4—C3—H3 119.3 C24—C23—H23 120.1
C2—C3—H3 119.3 C22—C23—H23 120.1
C3—C4—C5 120.5 (4) C23—C24—C19 120.7 (4)
C3—C4—H4 119.7 C23—C24—S3 120.2 (3)
C5—C4—H4 119.7 C19—C24—S3 119.1 (3)
C4—C5—C6 118.6 (4) C24—S3—C25 98.9 (2)
C4—C5—H5 120.7 C24—S3—Ni1 104.55 (14)
C6—C5—H5 120.7 C25—S3—Ni1 115.2 (2)
C1—C6—C5 121.2 (4) C27B—C25—C26 122.1 (9)
C1—C6—S1 119.1 (3) C27A—C25—C26 114.8 (5)
C5—C6—S1 119.7 (3) C27B—C25—S3 124.2 (9)
C6—S1—C7 103.16 (19) C27A—C25—S3 109.8 (4)
C6—S1—Ni1 106.14 (13) C26—C25—S3 113.6 (3)
C7—S1—Ni1 106.29 (15) C27A—C25—H25A 105.9
C8—C7—C9 112.4 (4) C26—C25—H25A 105.9
C8—C7—S1 113.6 (3) S3—C25—H25A 105.9
C9—C7—S1 110.1 (3) C27B—C25—H25B 91.0
C8—C7—H7 106.8 C26—C25—H25B 91.0
C9—C7—H7 106.8 S3—C25—H25B 91.0
S1—C7—H7 106.8 C25—C26—H26 109.5
C7—C8—H8 109.5 C25—C26—H26A 109.5
C7—C8—H8A 109.5 H26—C26—H26A 109.5
H8—C8—H8A 109.5 C25—C26—H26B 109.5
C7—C8—H8B 109.5 H26—C26—H26B 109.5
H8—C8—H8B 109.5 H26A—C26—H26B 109.5
H8A—C8—H8B 109.5 C25—C27A—H27A 109.5
C7—C9—H9 109.5 C25—C27A—H27B 109.5
C7—C9—H9A 109.5 H27A—C27A—H27B 109.5
H9—C9—H9A 109.5 C25—C27A—H27C 109.5
C7—C9—H9B 109.5 H27A—C27A—H27C 109.5
H9—C9—H9B 109.5 H27B—C27A—H27C 109.5
H9A—C9—H9B 109.5 C25—C27B—H27D 109.5
C11—C10—C15 120.1 (4) C25—C27B—H27E 109.5
C11—C10—P1 125.0 (3) H27D—C27B—H27E 109.5
C15—C10—P1 114.7 (3) C25—C27B—H27F 109.5
C12—C11—C10 119.7 (4) H27D—C27B—H27F 109.5
C12—C11—H11 120.1 H27E—C27B—H27F 109.5
C10—C11—H11 120.1 O3A—S4A—O2A 111.6 (8)
C11—C12—C13 120.4 (4) O3A—S4A—O1 116.0 (5)
C11—C12—H12 119.8 O2A—S4A—O1 115.9 (7)
C13—C12—H12 119.8 O3A—S4A—C28A 104.6 (8)
C14—C13—C12 120.7 (4) O2A—S4A—C28A 102.6 (6)
C14—C13—H13 119.6 O1—S4A—C28A 104.2 (6)
C12—C13—H13 119.6 F1A—C28A—F3A 110.3 (14)
C13—C14—C15 119.1 (5) F1A—C28A—F2A 104.3 (11)
C13—C14—H14 120.4 F3A—C28A—F2A 106.0 (10)
C15—C14—H14 120.4 F1A—C28A—S4A 114.2 (9)
C10—C15—C14 119.9 (4) F3A—C28A—S4A 111.8 (9)
C10—C15—S2 119.7 (3) F2A—C28A—S4A 109.7 (12)
C14—C15—S2 120.4 (3) O3B—S4B—O1 114.7 (7)
C15—S2—C16 98.8 (2) O3B—S4B—O2B 115.0 (9)
C15—S2—Ni1 106.11 (14) O1—S4B—O2B 115.6 (7)
C16—S2—Ni1 114.20 (18) O3B—S4B—C28B 106.9 (9)
C18—C16—C17 115.8 (5) O1—S4B—C28B 98.3 (7)
C18—C16—S2 109.6 (4) O2B—S4B—C28B 103.7 (9)
C17—C16—S2 112.7 (3) F1B—C28B—F3B 111 (2)
C18—C16—H16 106.0 F1B—C28B—F2B 110.3 (19)
C17—C16—H16 106.0 F3B—C28B—F2B 105.3 (16)
S2—C16—H16 106.0 F1B—C28B—S4B 113.1 (17)
C16—C17—H17 109.5 F3B—C28B—S4B 108.4 (13)
C16—C17—H17A 109.5 F2B—C28B—S4B 109.0 (14)
C19—P1—C1—C6 125.3 (3) C15—S2—C16—C17 −66.9 (4)
C10—P1—C1—C6 −118.4 (3) Ni1—S2—C16—C17 45.3 (4)
Ni1—P1—C1—C6 4.2 (3) C1—P1—C19—C24 −116.7 (3)
C19—P1—C1—C2 −54.1 (4) C10—P1—C19—C24 124.7 (3)
C10—P1—C1—C2 62.3 (4) Ni1—P1—C19—C24 4.8 (3)
Ni1—P1—C1—C2 −175.1 (3) C1—P1—C19—C20 66.1 (4)
C6—C1—C2—C3 0.9 (6) C10—P1—C19—C20 −52.5 (4)
P1—C1—C2—C3 −179.8 (3) Ni1—P1—C19—C20 −172.5 (3)
C1—C2—C3—C4 −0.8 (7) C24—C19—C20—C21 0.2 (6)
C2—C3—C4—C5 −0.8 (7) P1—C19—C20—C21 177.5 (3)
C3—C4—C5—C6 2.4 (7) C19—C20—C21—C22 −1.4 (6)
C2—C1—C6—C5 0.7 (6) C20—C21—C22—C23 0.5 (7)
P1—C1—C6—C5 −178.6 (3) C21—C22—C23—C24 1.4 (7)
C2—C1—C6—S1 177.8 (3) C22—C23—C24—C19 −2.6 (6)
P1—C1—C6—S1 −1.6 (4) C22—C23—C24—S3 177.1 (3)
C4—C5—C6—C1 −2.3 (6) C20—C19—C24—C23 1.7 (6)
C4—C5—C6—S1 −179.4 (3) P1—C19—C24—C23 −175.7 (3)
C1—C6—S1—C7 110.1 (3) C20—C19—C24—S3 −177.9 (3)
C5—C6—S1—C7 −72.9 (4) P1—C19—C24—S3 4.7 (4)
C1—C6—S1—Ni1 −1.5 (4) C23—C24—S3—C25 −71.4 (4)
C5—C6—S1—Ni1 175.6 (3) C19—C24—S3—C25 108.3 (4)
C6—S1—C7—C8 −43.9 (4) C23—C24—S3—Ni1 169.5 (3)
Ni1—S1—C7—C8 67.5 (3) C19—C24—S3—Ni1 −10.9 (3)
C6—S1—C7—C9 83.1 (4) C24—S3—C25—C27B 121.1 (14)
Ni1—S1—C7—C9 −165.4 (3) Ni1—S3—C25—C27B −128.1 (14)
C19—P1—C10—C11 63.9 (4) C24—S3—C25—C27A 174.4 (5)
C1—P1—C10—C11 −54.5 (4) Ni1—S3—C25—C27A −74.8 (5)
Ni1—P1—C10—C11 −176.9 (3) C24—S3—C25—C26 −55.5 (5)
C19—P1—C10—C15 −112.0 (3) Ni1—S3—C25—C26 55.3 (5)
C1—P1—C10—C15 129.6 (3) O3A—S4A—C28A—F1A 163.6 (10)
Ni1—P1—C10—C15 7.2 (4) O2A—S4A—C28A—F1A 47.0 (12)
C15—C10—C11—C12 2.7 (6) O1—S4A—C28A—F1A −74.3 (10)
P1—C10—C11—C12 −172.9 (3) O3A—S4A—C28A—F3A −70.4 (13)
C10—C11—C12—C13 −2.0 (7) O2A—S4A—C28A—F3A 173.0 (12)
C11—C12—C13—C14 −0.8 (8) O1—S4A—C28A—F3A 51.8 (13)
C12—C13—C14—C15 2.9 (8) O3A—S4A—C28A—F2A 46.9 (11)
C11—C10—C15—C14 −0.6 (7) O2A—S4A—C28A—F2A −69.7 (12)
P1—C10—C15—C14 175.5 (4) O1—S4A—C28A—F2A 169.1 (9)
C11—C10—C15—S2 178.4 (3) O3B—S4B—C28B—F1B 176 (2)
P1—C10—C15—S2 −5.5 (5) O1—S4B—C28B—F1B −65 (2)
C13—C14—C15—C10 −2.2 (7) O2B—S4B—C28B—F1B 54 (2)
C13—C14—C15—S2 178.8 (4) O3B—S4B—C28B—F3B −61.0 (16)
C10—C15—S2—C16 119.9 (4) O1—S4B—C28B—F3B 58.1 (15)
C14—C15—S2—C16 −61.1 (4) O2B—S4B—C28B—F3B 177.1 (14)
C10—C15—S2—Ni1 1.5 (4) O3B—S4B—C28B—F2B 53.1 (16)
C14—C15—S2—Ni1 −179.5 (4) O1—S4B—C28B—F2B 172.2 (14)
C15—S2—C16—C18 162.6 (4) O2B—S4B—C28B—F2B −68.9 (16)
Ni1—S2—C16—C18 −85.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.95 2.42 3.336 (5) 162
C5—H5···O3Bii 0.95 2.55 3.328 (11) 140
C8—H8···F2Aiii 0.98 2.53 3.318 (14) 138
C8—H8···F2Biii 0.98 2.50 3.30 (2) 139
C17—H17B···S3 0.98 2.82 3.652 (5) 143
C18—H18B···F3Biv 0.98 2.15 3.099 (12) 162
C20—H20···O1i 0.95 2.58 3.477 (5) 157
C22—H22···O2Av 0.95 2.31 3.127 (12) 144
C26—H26B···S1 0.98 2.85 3.762 (6) 156
C27B—H27D···O1 0.98 2.46 3.308 (19) 144

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1/2, −y+3/2, z+1/2.

Funding Statement

This work was funded by Japan Society for the Promotion of Science grant . New Energy and Industrial Technology Development Organization grant .

References

  1. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  2. Haugen, L. P. & Eisenberg, R. (1969). Inorg. Chem. 8, 1072–1078.
  3. Hierso, J.-C., Amardeil, R., Bentabet, E., Broussier, R., Gautheron, B., Meunier, P. & Kalck, P. (2003). Coord. Chem. Rev. 236, 143–206.
  4. Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.
  5. Lee, C.-M., Chuang, Y.-L., Chiang, C.-Y., Lee, G.-H. & Liaw, W.-F. (2006). Inorg. Chem. 45, 10895–10904. [DOI] [PubMed]
  6. Morassi, R., Bertini, I. & Sacconi, L. (1973). Coord. Chem. Rev. 11, 343–402.
  7. Orioli, P. L. (1971). Coord. Chem. Rev. 6, 285–308.
  8. Rigaku (2013). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Takeda, N., Tanaka, Y., Oma, R., Sakakibara, F. & Unno, M. (2016). Bull. Chem. Soc. Jpn, 89, 922–930.
  12. Takeda, N., Tanaka, Y., Sakakibara, F. & Unno, M. (2010). Bull. Chem. Soc. Jpn, 83, 157–164.
  13. Wakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019002068/is5507sup1.cif

e-75-00350-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002068/is5507Isup2.hkl

e-75-00350-Isup2.hkl (584.6KB, hkl)

CCDC reference: 1895701

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES