Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 28;75(Pt 3):405–409. doi: 10.1107/S2056989019002627

Synthesis and crystal structure of 1,3-di-tert-butyl-2-chloro-4,4-diphenyl-1,3,2λ3,4-di­aza­phospha­siletidine

Dennis Mo a, Walter Frank a,*
PMCID: PMC6399688  PMID: 30867959

A new Si,Si-diphenyl-, P-chloro­functionalized di­aza­phosphasiletidine has been synthesized. The crystal structure of the highly moisture-sensitive four-membered heterocyclic mol­ecular compound, which has a remarkably elongated P—Cl bond, is described and compared with related compounds and their arrangement of mol­ecules in the solid state.

Keywords: di­aza­phosphasiletidine, four-membered heterocycle, crystal structure, long P—Cl bond

Abstract

The chemical reaction of di­lithium N,N′-di(tbut­yl)-Si,Si-di­phenyl­silanedi­amide and PCl3 yielded an off-white solid. Sublimation of the crude product under reduced pressure at elevated temperature gave colourless prismatic crystals of the title compound, C20H28ClN2PSi, which crystallizes in the non-centrosymmetric monoclinic space group Cc. The asymmetric unit of the crystal structure contains one mol­ecule and it is dominated by the central SiN2P four-membered ring, which is almost planar with a mean deviation of the atoms from the best plane of 0.014 Å. The angles between the plane defined by the silicon atom and the two nitro­gen atoms and the best planes of the Si-phenyl groups are 85.1 (2) and 77.4 (2)°, with the tilt of the phenyl rings in the opposite direction. Both tert-butyl groups suffer from a two-position rotational disorder with site occupancies of 0.752 (6)/0.248 (6) and 0.878 (9)/0.122 (9). The P—Cl bond [2.2078 (17) Å] is remarkably elongated compared to the P—Cl distance in PCl3 [2.034 Å; Galy & Enjalbert (1982). J. Solid State Chem. 44, 1–23].

Chemical context  

Di­aza­phosphasiletidines are heterocyclic compounds that contain an SiN2P four-membered ring as the central building block. The first synthesis was described in the year 1963 (Fink, 1963) and compounds of the class have attracted considerable attention in phospho­rus chemistry (e.g. Scherer et al., 1982; Veith et al., 1988; Frank et al., 1996; Mo et al., 2018). The P-chloro­substituted di­aza­phosphasiletidines are well known members of this class and syntheses of such compounds have been described in the literature over a couple of decades (Klingebiel et al., 1976; Veith et al., 1988; Eichhorn & Nöth, 2000). They have found widespread use as reagents for reactions based on the P-chloro­functionalization. Our research group, for instance, has shown that they play a crucial role in the preparation of di­spiro­cyclic tetra­phosphetes (Frank et al., 1996; Breuers et al., 2015) and di­aza­phosphasiletidine adducts with P-coordination (Veith et al., 1988; Gün et al., 2017). However, due to their high moisture sensitivity, the structural characterization of such P-chloro­derivatives by X-ray diffraction remains a challenge. There are only two reports on the crystal structure of P-chloro­substituted di­aza­phosphasiletidines of type Me2Si(NR)2PCl, namely 2-chloro-1,3-bis­(2,4,6-tri­methyl­phen­yl)-4,4-dimethyl-1,3,2λ3,4-di­aza­phosphasiletidine (A; Breuers & Frank, 2016) and 1,3-di-tert-butyl-2-chloro-4,4-dimethyl-1,3,2λ3,4-di­aza­phosphasiletidine (B; Gün et al., 2017), and there is only one report on a structure of type Ph2Si(NR)2PCl, namely 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-di­aza­phosphasiletidine (C; Mo et al., 2018). Crystals of the first structurally characterized chloro-substituted di­aza­phosphasiletidine A contained approximately 12% of a second compound, namely 2-chloro-1,3-bis­(2,4,6-tri­methyl­phen­yl)-4-chloro-4-methyl-1,3,2λ3,4-di­aza­phosphasiletidine. With respect to this impurity, an Si,Si-diphenyl-substituted di­aza­phosphasiletidine (C) has successfully been introduced to preparative chemistry to avoid problems related to the content of Si,P-bis­(chloro)­functionalized species present in samples of the Si,Si-di­methyl ­derivative. However, the crystal-structure determination of C suffered from severe disorder. All the aspects mentioned before persuaded us to focus on preparation of single crystals of the title compound suitable for structure determination. After extensive attempts, we were finally able to grow single crystals by slow sublimation in vacuo and confirmed its composition and its structure via X-ray diffraction.graphic file with name e-75-00405-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound contains one mol­ecule (Fig. 1). The central feature of this di­aza­phosphasiletidine mol­ecule, the SiN2P four-membered ring, is almost planar. The nitro­gen atoms exhibit a trigonal–planar coordination sphere [sums of bond angles 359.9° (N1) and 359.4° (N2)]. The phospho­rus and silicon atoms bear the main ring strain [N1—Si1—N2 = 82.08 (19)° and N1—P1—N2 = 85.4 (2)°]. The Si–N bond lengths [Si1—N1 = 1.736 (4) Å and Si1—N2 =1.749 (4) Å] exceed the expected length of an Si—N single bond [1.724 (4) Å; Brown et al., 1985] but correspond to those in directly related cyclo­silaza­nes (Breuers et al., 2016; Gün et al., 2017; Clegg et al., 1981, 1984; Shah et al., 1996; Anagho et al., 2005). In contrast, the P—N distances are shorter [P1—N1 = 1.689 (4) Å and P1—N2 = 1.684 (4) Å] than reported for a typical single bond [1.704 (9) Å; Brown et al., 1985], but they also correspond to those in AC. The P—Cl bond of the title compound is remarkably elongated [P1—Cl1 = 2.2078 (17) Å] compared to the P—Cl distance in PCl3 (2.034 Å; Galy et al., 1982) and exceeds the sum of the covalence radii (Hollemann et al., 2007). A comparison of the average Si—N, P—N and P—Cl distances in the title compound and the analogous distances of in the previously published P-chloro-substituted di­aza­phosphasiletidines AC gives no evidence of substitution effects except for the P—Cl distance in B [2.2498 (6) Å, due to dimerization]: Si—N = 1.743 (4) Å average (in the title compound) vs 1.7441 (17) Å in A, 1.7474 (14) Å in B and 1.7406 (15) Å in C (average values); P—N = 1.687 (4) Å vs 1.6856 (17) Å (A), 1.6815 (14) Å (B), 1.6910 (16) Å (C); P—Cl 2.2078 (17) Å vs 2.1813 (7) Å (A), 2.2498 (6) Å (B) (dimerization), 2.1965 (17) Å (C). The tert-butyl groups in the title compound are rotationally disordered (see Refinement).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Supra­molecular features  

Fig. 2 shows the arrangement of mol­ecules in the non-centrosymmetric solid of the title compound. Taking into account its absolute structure, in the crystal under investigation the P—Cl bond vectors are oriented approximately parallel to the c axis, but point in the opposite direction. The nearest inter­molecular contact is between the Cl atom and the meta-H atom of one of the Si-bonded phenyl groups of a neighbouring mol­ecule (symmetry code: x, y, –z). In the figure, this contact is indicated by dashed lines. However, the geometric features of this contact [C⋯Cl 3.677 (6); C—H 0.95; H⋯Cl 2.90 Å; C—H⋯Cl 139°] indicate that if at all, it is a borderline case of a directed bonding inter­action.

Figure 2.

Figure 2

Packing of the mol­ecules of the title compound in the solid state. The closest contact of the Cl atom to neighbouring mol­ecules is indicated by dashed lines.

Database survey  

A search in the Cambridge Structural Database (Version 5.40, November 2018; Groom et al., 2016) for di­aza­phosphasiletidines in general yielded 143 hits. However, only three of these structures contain an Si,Si-diphenyl fragment instead of the common Si,Si-dimethyl fragment. On the other hand, only seven of the aforementioned 143 structures exhibit P-chloro­functionalization. Of these, BADLUO (Nieger et al., 2002) is a λ5 P-chloro­(imino)­phospho­rane, VUHTOJ (Holt­hausen & Weigand, 2016) contains a complex N,N′-tri­methyl­silyl-Si-di­spiro­cyclic cation incorporating a tricylic P5 fragment. ILEKER is the N,N′-dimesityl derivative A, mentioned above (Breuers & Frank, 2016). DEXTOS is the Si,Si-dimethyl derivative B, mentioned above, accompanied in Gün et al. (2017) by its BCl3 adduct DEXTUY and its W(CO)5 complex DEXVAG. The structure of the only Si,Si-diphenyl-P-chloro derivative (C), 2-chloro-1,3-bis(2-methyl­butan-2-yl)-4,4-diphenyl-1,3,2λ3,4-di­aza­phosphasiletidine (YETCAE; Mo et al., 2018) suffers heavily from a combination of several types of disorder of the N,N′-alkyl substituents.

In compound B, mol­ecules are connected via very weak P—Cl bridging bonds, which leads to a weak state of dimerization. Generally, the strength of association of mol­ecules via E—Cl bridging bonds increases from P to Bi in related di­aza­sileditines of type Me2Si(NR)2 ECl. Me2Si(NtBu)2AsCl contains dimers and in the anti­mony and the bis­muth analogues the mol­ecules are connected into chains via bridging Cl atoms (Veith & Bertsch, 1988; Veith et al., 1988). In contrast, the solid-state structures of the title compound, A, C, Ph2Si(NtBu)2AsCl (Belter, 2016) and Me2Si(NDipp)2SbCl (Ma et al., 2013) do not exhibit inter­molecular E⋯Cl inter­actions and consist of isolated mol­ecules.

Synthesis and crystallization  

The title compound was prepared (Fig. 3) according to generally known procedures under an argon atmosphere in oven-dried glassware using Schlenk techniques, modifying a published protocol (Eichhorn & Nöth, 2000). 5.5 g (16.8 mmol) of N,N′-di(tbut­yl)-Si,Si-di­phenyl­silanedi­amine were dissolved in 60 ml n-pentane. 13.6 ml of a n-butyl­lithium solution (c = 2.5 mol/l in n-hexane, 16.8 mmol) were added at 263 K. The reaction mixture was stirred for 24 h at room temperature. Cooling to 178 K and addition of 1.5 ml (16.8 mmol) PCl3 yielded an off-white suspension. This was stirred for 3 h. After filtration and removal of the solvent under reduced pressure, the crude product was obtained as an off-white solid. Sublimation at 333 K under reduced pressure yielded colourless crystals within a couple of hours (77% yield based on PCl3). 1H NMR (300 MHz, CDCl3, 298 K): δ (p.p.m.) 1.17 (d, 4 J (P,H) = 0.9 Hz, 18H,C(CH 3)3), 7.48 (m, 6H, m-, p-CH), 7.86 (m, 2H,o-CH), 8.08 (m, 2H, o-CH). 13C{1H} NMR (75 MHz, CDCl3, 298 K): δ(p.p.m.) 32.9 [d, 3 J(P,C) = 7.1 Hz, 6 C, C(CH3)3], 52.6 [d, 2 J(P,C) = 7.9 Hz, 2 C, C(CH3)3], 128.3–136.3 (12 C, Ar-C). 31P{1H} NMR (121 MHz, CDCl3, 298 K): δ (p.p.m.) 214.4 (s) EI–MS spectra were obtained using a Finnigan TSQ 7000 instrument. EI–MS: m/z (%) 390 (11) [M +], 375 (100) [M +—C(CH3)3]. IR spectra were measured using a Bio-Rad Excalibur FTS 3500 FT–IR spectrometer with ATR-unit, 4000–560 cm−1: 3070(w), 3050(w), 3026(sh), 3014(sh), 2956(vs), 2927(s), 2903(sh), 2868(m), 1964(vw), 1903(vw), 1827(vw), 1774(vw), 1588(w), 1429(s), 1305(vw), 1207(s), 1113(s), 1102(sh), 1055(s), 1042(sh), 889(vs), 820(w), 755(sh), 739(s), 696(s). Analysis calculated for C20H28ClN2PSi (326.56 g mol−1): C 61.44, H 7.22, N 7.17; found C 61.10, H 7.56, N 7.08, m.p.: 393.5 K.

Figure 3.

Figure 3

Reaction scheme for the preparation of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. Positions of the majority of the hydrogen atoms were identified via subsequent Fourier syntheses. In the refinement, a riding model was applied using idealized C—H bond lengths (0.95–0.98 Å) as well as H—C—H and C—C—H angles. In addition, the H atoms of the CH3 groups were allowed to rotate around the neighboring C—C bonds. The U iso values were set to 1.5U eq(Cmeth­yl) and 1.2U eq(Car). To account for residual electron density in the regions of the two tert-butyl groups and for elongated anisotropic displacement ellipsoids of several carbon atoms that did not appear to be physically meaningful, a two-position disorder for each tert-butyl group was introduced with partial occupation sites for all carbon atoms but the tertiary ones C1 and C5 [occupancy ratio 0.752 (6):0.248 (6) ratio (group containing C1) and 0.878 (9):0.122 (9) ratio (C5); in Figs. 1 and 2 disorder is omitted for clarity]. Appropriate same distance and anisotropic displacement restraints and some equivalent anisotropic displacement parameters had to be applied to stabilize the geometry of the minor occupancy parts of the partial occupation site models. The correct absolute structure of the non-centrosymmetric structural model is confirmed by the Flack parameter (Table 1).

Table 1. Experimental details.

Crystal data
Chemical formula C20H28ClN2PSi
M r 390.95
Crystal system, space group Monoclinic, C c
Temperature (K) 173
a, b, c (Å) 13.4004 (7), 15.6272 (6), 10.3817 (5)
β (°) 95.739 (4)
V3) 2163.14 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.44 × 0.38 × 0.21
 
Data collection
Diffractometer Stoe IPDS
Absorption correction Multi-scan (SHELXTL; Sheldrick, 2008)
T min, T max 0.688, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 11994, 5765, 4920
R int 0.064
(sin θ/λ)max−1) 0.684
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.063, 0.104, 1.50
No. of reflections 5765
No. of parameters 255
No. of restraints 32
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.27
Absolute structure Flack x determined using 1837 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.08 (8)

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXT (Sheldrick, 2015a ), DIAMOND (Brandenburg, 2016), SHELXL2014/7 (Sheldrick, 2015b ) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019002627/pk2614sup1.cif

e-75-00405-sup1.cif (381.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002627/pk2614Isup2.hkl

e-75-00405-Isup2.hkl (458.6KB, hkl)

CCDC reference: 1898427

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank E. Hammes and P. Roloff for technical support.

supplementary crystallographic information

Crystal data

C20H28ClN2PSi Dx = 1.201 Mg m3
Mr = 390.95 Melting point: 393.5 K
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 13.4004 (7) Å Cell parameters from 12536 reflections
b = 15.6272 (6) Å θ = 2.6–29.7°
c = 10.3817 (5) Å µ = 0.31 mm1
β = 95.739 (4)° T = 173 K
V = 2163.14 (18) Å3 Prismatic, colourless
Z = 4 0.44 × 0.38 × 0.21 mm
F(000) = 832

Data collection

Stoe IPDS diffractometer 5765 independent reflections
Radiation source: sealed tube 4920 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.064
ω scans θmax = 29.1°, θmin = 2.6°
Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008) h = −18→18
Tmin = 0.688, Tmax = 0.875 k = −20→21
11994 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.008P)2 + 1.4244P] where P = (Fo2 + 2Fc2)/3
S = 1.50 (Δ/σ)max = 0.001
5765 reflections Δρmax = 0.26 e Å3
255 parameters Δρmin = −0.27 e Å3
32 restraints Absolute structure: Flack x determined using 1837 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.08 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.72280 (12) 0.34044 (10) 0.44721 (13) 0.0555 (4)
P1 0.75140 (9) 0.32990 (8) 0.65977 (11) 0.0340 (3)
Si1 0.63594 (9) 0.21721 (8) 0.74331 (11) 0.0292 (3)
N1 0.6359 (3) 0.3262 (2) 0.7115 (4) 0.0327 (9)
N2 0.7534 (3) 0.2234 (3) 0.6842 (4) 0.0347 (9)
C1 0.5626 (4) 0.3962 (3) 0.7149 (5) 0.0403 (11)
C2 0.4879 (6) 0.3880 (5) 0.5905 (9) 0.059 (2) 0.752 (6)
H21 0.4348 0.4309 0.5925 0.089* 0.752 (6)
H22 0.4582 0.3306 0.5867 0.089* 0.752 (6)
H23 0.5238 0.3972 0.5139 0.089* 0.752 (6)
C3 0.5049 (7) 0.3845 (6) 0.8317 (10) 0.073 (3) 0.752 (6)
H31 0.4508 0.4268 0.8292 0.110* 0.752 (6)
H32 0.5503 0.3924 0.9109 0.110* 0.752 (6)
H33 0.4763 0.3268 0.8307 0.110* 0.752 (6)
C4 0.6140 (6) 0.4825 (4) 0.7091 (9) 0.0531 (19) 0.752 (6)
H41 0.5638 0.5282 0.7083 0.080* 0.752 (6)
H42 0.6484 0.4858 0.6303 0.080* 0.752 (6)
H43 0.6630 0.4892 0.7851 0.080* 0.752 (6)
C2A 0.5825 (18) 0.4340 (15) 0.8546 (19) 0.059 (2) 0.248 (6)
H24 0.5403 0.4847 0.8622 0.089* 0.248 (6)
H25 0.6533 0.4502 0.8713 0.089* 0.248 (6)
H26 0.5664 0.3909 0.9179 0.089* 0.248 (6)
C3A 0.579 (2) 0.4643 (16) 0.619 (3) 0.073 (3) 0.248 (6)
H34 0.5288 0.5095 0.6240 0.110* 0.248 (6)
H35 0.5728 0.4397 0.5319 0.110* 0.248 (6)
H36 0.6463 0.4885 0.6386 0.110* 0.248 (6)
C4A 0.4558 (13) 0.3610 (13) 0.712 (3) 0.0531 (19) 0.248 (6)
H44 0.4086 0.4085 0.7168 0.080* 0.248 (6)
H45 0.4514 0.3224 0.7853 0.080* 0.248 (6)
H46 0.4391 0.3295 0.6307 0.080* 0.248 (6)
C5 0.8384 (4) 0.1638 (4) 0.6749 (5) 0.0464 (12)
C6 0.9360 (5) 0.2115 (6) 0.6854 (13) 0.084 (3) 0.878 (9)
H61 0.9906 0.1718 0.6721 0.126* 0.878 (9)
H62 0.9480 0.2374 0.7716 0.126* 0.878 (9)
H63 0.9332 0.2566 0.6194 0.126* 0.878 (9)
C7 0.8229 (6) 0.1177 (5) 0.5448 (8) 0.071 (2) 0.878 (9)
H71 0.8780 0.0773 0.5377 0.106* 0.878 (9)
H72 0.8215 0.1597 0.4745 0.106* 0.878 (9)
H73 0.7591 0.0865 0.5386 0.106* 0.878 (9)
C8 0.8350 (6) 0.0952 (6) 0.7785 (8) 0.075 (3) 0.878 (9)
H81 0.8821 0.0493 0.7628 0.112* 0.878 (9)
H82 0.7670 0.0718 0.7755 0.112* 0.878 (9)
H83 0.8539 0.1204 0.8639 0.112* 0.878 (9)
C6A 0.799 (4) 0.075 (2) 0.647 (9) 0.084 (3) 0.122 (9)
H64 0.8552 0.0353 0.6409 0.126* 0.122 (9)
H65 0.7599 0.0560 0.7170 0.126* 0.122 (9)
H66 0.7558 0.0744 0.5649 0.126* 0.122 (9)
C7A 0.890 (4) 0.160 (4) 0.814 (3) 0.071 (2) 0.122 (9)
H74 0.9482 0.1210 0.8164 0.106* 0.122 (9)
H75 0.9131 0.2169 0.8416 0.106* 0.122 (9)
H76 0.8430 0.1381 0.8722 0.106* 0.122 (9)
C8A 0.915 (4) 0.216 (4) 0.608 (7) 0.075 (3) 0.122 (9)
H84 0.9742 0.1814 0.5984 0.112* 0.122 (9)
H85 0.8848 0.2350 0.5230 0.112* 0.122 (9)
H86 0.9345 0.2668 0.6612 0.112* 0.122 (9)
C9 0.6452 (4) 0.1891 (3) 0.9186 (4) 0.0350 (10)
C10 0.6963 (4) 0.2448 (4) 1.0070 (5) 0.0455 (12)
H101 0.7210 0.2975 0.9776 0.055*
C11 0.7117 (4) 0.2239 (4) 1.1385 (5) 0.0547 (14)
H111 0.7460 0.2627 1.1979 0.066*
C12 0.6774 (5) 0.1475 (5) 1.1817 (5) 0.0598 (16)
H121 0.6877 0.1338 1.2712 0.072*
C13 0.6286 (5) 0.0909 (4) 1.0973 (5) 0.0596 (16)
H131 0.6052 0.0379 1.1276 0.072*
C14 0.6134 (4) 0.1115 (3) 0.9657 (5) 0.0451 (12)
H141 0.5805 0.0715 0.9070 0.054*
C15 0.5370 (3) 0.1539 (3) 0.6457 (4) 0.0350 (10)
C16 0.4537 (4) 0.1194 (4) 0.6972 (6) 0.0493 (13)
H161 0.4452 0.1282 0.7860 0.059*
C17 0.3831 (4) 0.0724 (4) 0.6203 (7) 0.0622 (17)
H171 0.3274 0.0483 0.6571 0.075*
C18 0.3932 (5) 0.0604 (4) 0.4901 (7) 0.0632 (18)
H181 0.3452 0.0274 0.4380 0.076*
C19 0.4732 (5) 0.0966 (4) 0.4362 (6) 0.0534 (14)
H191 0.4796 0.0899 0.3464 0.064*
C20 0.5442 (4) 0.1429 (3) 0.5136 (5) 0.0417 (11)
H201 0.5990 0.1677 0.4758 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0735 (10) 0.0566 (9) 0.0376 (6) 0.0008 (8) 0.0126 (6) 0.0061 (6)
P1 0.0318 (6) 0.0347 (6) 0.0360 (6) −0.0002 (6) 0.0057 (5) −0.0022 (5)
Si1 0.0298 (6) 0.0277 (6) 0.0301 (6) 0.0026 (5) 0.0030 (4) −0.0025 (5)
N1 0.032 (2) 0.0295 (19) 0.038 (2) 0.0074 (17) 0.0075 (17) −0.0009 (15)
N2 0.031 (2) 0.039 (2) 0.034 (2) 0.0092 (18) 0.0066 (17) 0.0012 (17)
C1 0.035 (3) 0.032 (2) 0.055 (3) 0.008 (2) 0.007 (2) −0.005 (2)
C2 0.041 (4) 0.045 (4) 0.088 (6) 0.015 (3) −0.013 (4) −0.005 (4)
C3 0.067 (6) 0.063 (5) 0.098 (7) 0.026 (5) 0.041 (5) 0.004 (5)
C4 0.046 (4) 0.035 (3) 0.076 (5) 0.008 (3) −0.001 (4) −0.007 (3)
C2A 0.041 (4) 0.045 (4) 0.088 (6) 0.015 (3) −0.013 (4) −0.005 (4)
C3A 0.067 (6) 0.063 (5) 0.098 (7) 0.026 (5) 0.041 (5) 0.004 (5)
C4A 0.046 (4) 0.035 (3) 0.076 (5) 0.008 (3) −0.001 (4) −0.007 (3)
C5 0.036 (3) 0.046 (3) 0.058 (3) 0.016 (2) 0.008 (2) −0.003 (3)
C6 0.030 (3) 0.070 (5) 0.151 (9) 0.010 (4) 0.002 (4) −0.032 (6)
C7 0.061 (5) 0.067 (5) 0.087 (6) 0.024 (4) 0.020 (4) −0.025 (4)
C8 0.062 (5) 0.072 (5) 0.094 (6) 0.043 (4) 0.024 (4) 0.026 (5)
C6A 0.030 (3) 0.070 (5) 0.151 (9) 0.010 (4) 0.002 (4) −0.032 (6)
C7A 0.061 (5) 0.067 (5) 0.087 (6) 0.024 (4) 0.020 (4) −0.025 (4)
C8A 0.062 (5) 0.072 (5) 0.094 (6) 0.043 (4) 0.024 (4) 0.026 (5)
C9 0.036 (2) 0.038 (2) 0.031 (2) 0.0016 (19) 0.0042 (18) −0.0014 (19)
C10 0.046 (3) 0.050 (3) 0.040 (3) −0.003 (2) 0.006 (2) −0.004 (2)
C11 0.055 (3) 0.074 (4) 0.034 (3) −0.007 (3) −0.003 (2) −0.008 (3)
C12 0.061 (4) 0.090 (5) 0.028 (2) −0.002 (4) 0.002 (2) 0.008 (3)
C13 0.071 (4) 0.063 (4) 0.045 (3) 0.004 (3) 0.009 (3) 0.016 (3)
C14 0.053 (3) 0.041 (3) 0.041 (3) −0.005 (2) 0.003 (2) 0.004 (2)
C15 0.036 (2) 0.029 (2) 0.038 (2) 0.0033 (19) −0.0021 (18) 0.0018 (19)
C16 0.038 (3) 0.055 (3) 0.054 (3) −0.007 (3) 0.002 (2) 0.003 (3)
C17 0.042 (3) 0.064 (4) 0.077 (4) −0.012 (3) −0.007 (3) 0.016 (3)
C18 0.054 (4) 0.051 (3) 0.078 (4) −0.010 (3) −0.028 (3) 0.002 (3)
C19 0.064 (4) 0.049 (3) 0.043 (3) 0.005 (3) −0.014 (3) −0.009 (2)
C20 0.046 (3) 0.038 (3) 0.040 (2) 0.003 (2) −0.001 (2) −0.003 (2)

Geometric parameters (Å, º)

Cl1—P1 2.2078 (17) C6—H62 0.9800
P1—N2 1.684 (4) C6—H63 0.9800
P1—N1 1.689 (4) C7—H71 0.9800
Si1—N1 1.736 (4) C7—H72 0.9800
Si1—N2 1.749 (4) C7—H73 0.9800
Si1—C9 1.864 (5) C8—H81 0.9800
Si1—C15 1.869 (5) C8—H82 0.9800
N1—C1 1.473 (6) C8—H83 0.9800
N2—C5 1.481 (6) C6A—H64 0.9800
C1—C3A 1.487 (18) C6A—H65 0.9800
C1—C3 1.512 (9) C6A—H66 0.9800
C1—C4 1.518 (8) C7A—H74 0.9800
C1—C4A 1.530 (17) C7A—H75 0.9800
C1—C2 1.559 (8) C7A—H76 0.9800
C1—C2A 1.564 (17) C8A—H84 0.9800
C2—H21 0.9800 C8A—H85 0.9800
C2—H22 0.9800 C8A—H86 0.9800
C2—H23 0.9800 C9—C14 1.390 (7)
C3—H31 0.9800 C9—C10 1.394 (7)
C3—H32 0.9800 C10—C11 1.398 (7)
C3—H33 0.9800 C10—H101 0.9500
C4—H41 0.9800 C11—C12 1.372 (9)
C4—H42 0.9800 C11—H111 0.9500
C4—H43 0.9800 C12—C13 1.365 (9)
C2A—H24 0.9800 C12—H121 0.9500
C2A—H25 0.9800 C13—C14 1.399 (7)
C2A—H26 0.9800 C13—H131 0.9500
C3A—H34 0.9800 C14—H141 0.9500
C3A—H35 0.9800 C15—C16 1.394 (7)
C3A—H36 0.9800 C15—C20 1.395 (6)
C4A—H44 0.9800 C16—C17 1.386 (8)
C4A—H45 0.9800 C16—H161 0.9500
C4A—H46 0.9800 C17—C18 1.385 (9)
C5—C6 1.500 (9) C17—H171 0.9500
C5—C6A 1.51 (2) C18—C19 1.379 (9)
C5—C8 1.523 (9) C18—H181 0.9500
C5—C7 1.526 (8) C19—C20 1.386 (7)
C5—C8A 1.53 (2) C19—H191 0.9500
C5—C7A 1.54 (2) C20—H201 0.9500
C6—H61 0.9800
N2—P1—N1 85.4 (2) C8A—C5—C7A 101 (4)
N2—P1—Cl1 102.87 (15) C5—C6—H61 109.5
N1—P1—Cl1 104.31 (15) C5—C6—H62 109.5
N1—Si1—N2 82.08 (19) H61—C6—H62 109.5
N1—Si1—C9 114.6 (2) C5—C6—H63 109.5
N2—Si1—C9 112.4 (2) H61—C6—H63 109.5
N1—Si1—C15 115.4 (2) H62—C6—H63 109.5
N2—Si1—C15 117.0 (2) C5—C7—H71 109.5
C9—Si1—C15 112.3 (2) C5—C7—H72 109.5
C1—N1—P1 128.1 (3) H71—C7—H72 109.5
C1—N1—Si1 135.4 (3) C5—C7—H73 109.5
P1—N1—Si1 96.37 (19) H71—C7—H73 109.5
C5—N2—P1 127.8 (4) H72—C7—H73 109.5
C5—N2—Si1 135.5 (3) C5—C8—H81 109.5
P1—N2—Si1 96.1 (2) C5—C8—H82 109.5
N1—C1—C3A 111.8 (10) H81—C8—H82 109.5
N1—C1—C3 109.0 (5) C5—C8—H83 109.5
N1—C1—C4 110.6 (4) H81—C8—H83 109.5
C3—C1—C4 114.2 (6) H82—C8—H83 109.5
N1—C1—C4A 110.9 (9) C5—C6A—H64 109.5
C3A—C1—C4A 116.3 (17) C5—C6A—H65 109.5
N1—C1—C2 107.0 (4) H64—C6A—H65 109.5
C3—C1—C2 108.5 (6) C5—C6A—H66 109.5
C4—C1—C2 107.3 (6) H64—C6A—H66 109.5
N1—C1—C2A 104.5 (9) H65—C6A—H66 109.5
C3A—C1—C2A 109.1 (17) C5—C7A—H74 109.5
C4A—C1—C2A 103.2 (15) C5—C7A—H75 109.5
C1—C2—H21 109.5 H74—C7A—H75 109.5
C1—C2—H22 109.5 C5—C7A—H76 109.5
H21—C2—H22 109.5 H74—C7A—H76 109.5
C1—C2—H23 109.5 H75—C7A—H76 109.5
H21—C2—H23 109.5 C5—C8A—H84 109.5
H22—C2—H23 109.5 C5—C8A—H85 109.5
C1—C3—H31 109.5 H84—C8A—H85 109.5
C1—C3—H32 109.5 C5—C8A—H86 109.5
H31—C3—H32 109.5 H84—C8A—H86 109.5
C1—C3—H33 109.5 H85—C8A—H86 109.5
H31—C3—H33 109.5 C14—C9—C10 117.4 (4)
H32—C3—H33 109.5 C14—C9—Si1 123.8 (4)
C1—C4—H41 109.5 C10—C9—Si1 118.5 (4)
C1—C4—H42 109.5 C9—C10—C11 120.8 (5)
H41—C4—H42 109.5 C9—C10—H101 119.6
C1—C4—H43 109.5 C11—C10—H101 119.6
H41—C4—H43 109.5 C12—C11—C10 120.1 (5)
H42—C4—H43 109.5 C12—C11—H111 120.0
C1—C2A—H24 109.5 C10—C11—H111 120.0
C1—C2A—H25 109.5 C13—C12—C11 120.6 (5)
H24—C2A—H25 109.5 C13—C12—H121 119.7
C1—C2A—H26 109.5 C11—C12—H121 119.7
H24—C2A—H26 109.5 C12—C13—C14 119.4 (6)
H25—C2A—H26 109.5 C12—C13—H131 120.3
C1—C3A—H34 109.5 C14—C13—H131 120.3
C1—C3A—H35 109.5 C9—C14—C13 121.7 (5)
H34—C3A—H35 109.5 C9—C14—H141 119.2
C1—C3A—H36 109.5 C13—C14—H141 119.2
H34—C3A—H36 109.5 C16—C15—C20 117.7 (5)
H35—C3A—H36 109.5 C16—C15—Si1 123.3 (4)
C1—C4A—H44 109.5 C20—C15—Si1 118.9 (4)
C1—C4A—H45 109.5 C17—C16—C15 120.7 (6)
H44—C4A—H45 109.5 C17—C16—H161 119.6
C1—C4A—H46 109.5 C15—C16—H161 119.6
H44—C4A—H46 109.5 C18—C17—C16 120.4 (6)
H45—C4A—H46 109.5 C18—C17—H171 119.8
N2—C5—C6 110.7 (5) C16—C17—H171 119.8
N2—C5—C6A 109.6 (19) C19—C18—C17 119.8 (5)
N2—C5—C8 108.6 (4) C19—C18—H181 120.1
C6—C5—C8 112.7 (7) C17—C18—H181 120.1
N2—C5—C7 108.4 (4) C18—C19—C20 119.6 (5)
C6—C5—C7 109.8 (6) C18—C19—H191 120.2
C8—C5—C7 106.4 (6) C20—C19—H191 120.2
N2—C5—C8A 104 (2) C19—C20—C15 121.6 (5)
C6A—C5—C8A 130 (4) C19—C20—H201 119.2
N2—C5—C7A 104.2 (19) C15—C20—H201 119.2
C6A—C5—C7A 105 (4)
N2—P1—N1—C1 −174.3 (4) P1—N2—C5—C8 144.0 (5)
Cl1—P1—N1—C1 −72.2 (4) Si1—N2—C5—C8 −24.2 (8)
N2—P1—N1—Si1 1.9 (2) P1—N2—C5—C7 −100.8 (6)
Cl1—P1—N1—Si1 104.00 (16) Si1—N2—C5—C7 91.0 (6)
N2—Si1—N1—C1 173.9 (4) P1—N2—C5—C8A −13 (3)
C9—Si1—N1—C1 −75.0 (5) Si1—N2—C5—C8A 179 (3)
C15—Si1—N1—C1 57.8 (5) P1—N2—C5—C7A 92 (3)
N2—Si1—N1—P1 −1.8 (2) Si1—N2—C5—C7A −76 (3)
C9—Si1—N1—P1 109.3 (2) N1—Si1—C9—C14 157.3 (4)
C15—Si1—N1—P1 −118.0 (2) N2—Si1—C9—C14 −111.2 (4)
N1—P1—N2—C5 −173.6 (4) C15—Si1—C9—C14 23.1 (5)
Cl1—P1—N2—C5 82.8 (4) N1—Si1—C9—C10 −29.7 (5)
N1—P1—N2—Si1 −1.9 (2) N2—Si1—C9—C10 61.8 (4)
Cl1—P1—N2—Si1 −105.51 (15) C15—Si1—C9—C10 −163.9 (4)
N1—Si1—N2—C5 172.4 (5) C14—C9—C10—C11 −2.0 (8)
C9—Si1—N2—C5 59.0 (5) Si1—C9—C10—C11 −175.4 (4)
C15—Si1—N2—C5 −73.0 (5) C9—C10—C11—C12 0.7 (9)
N1—Si1—N2—P1 1.8 (2) C10—C11—C12—C13 0.4 (10)
C9—Si1—N2—P1 −111.6 (2) C11—C12—C13—C14 −0.2 (10)
C15—Si1—N2—P1 116.4 (2) C10—C9—C14—C13 2.2 (8)
P1—N1—C1—C3A 24.1 (17) Si1—C9—C14—C13 175.3 (4)
Si1—N1—C1—C3A −150.6 (16) C12—C13—C14—C9 −1.1 (9)
P1—N1—C1—C3 −145.9 (6) N1—Si1—C15—C16 −107.9 (4)
Si1—N1—C1—C3 39.5 (8) N2—Si1—C15—C16 158.0 (4)
P1—N1—C1—C4 −19.6 (7) C9—Si1—C15—C16 25.9 (5)
Si1—N1—C1—C4 165.8 (5) N1—Si1—C15—C20 69.6 (4)
P1—N1—C1—C4A 155.6 (12) N2—Si1—C15—C20 −24.4 (4)
Si1—N1—C1—C4A −19.0 (13) C9—Si1—C15—C20 −156.5 (4)
P1—N1—C1—C2 97.0 (5) C20—C15—C16—C17 2.9 (8)
Si1—N1—C1—C2 −77.7 (6) Si1—C15—C16—C17 −179.5 (5)
P1—N1—C1—C2A −93.8 (12) C15—C16—C17—C18 −1.3 (9)
Si1—N1—C1—C2A 91.6 (12) C16—C17—C18—C19 −1.0 (10)
P1—N2—C5—C6 19.7 (8) C17—C18—C19—C20 1.6 (9)
Si1—N2—C5—C6 −148.5 (7) C18—C19—C20—C15 0.0 (9)
P1—N2—C5—C6A −156 (4) C16—C15—C20—C19 −2.3 (7)
Si1—N2—C5—C6A 36 (4) Si1—C15—C20—C19 −180.0 (4)

References

  1. Anagho, L. E., Bickley, J. F., Steiner, A. & Stahl, L. (2005). Angew. Chem. Int. Ed. 44, 3271–3275. [DOI] [PubMed]
  2. Belter, L. (2016). PhD thesis, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
  3. Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Breuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529–532.
  5. Breuers, V., Lehmann, C. W. & Frank, W. (2015). Chem. Eur. J. 21, 4596–4606. [DOI] [PubMed]
  6. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  7. Clegg, W., Haase, M., Sheldrick, G. M. & Vater, N. (1984). Acta Cryst. C40, 871–873.
  8. Clegg, W., Klingebiel, U., Sheldrick, G. M. & Vater, N. (1981). Z. Anorg. Allg. Chem. 482, 88–94.
  9. Eichhorn, B. & Nöth, H. (2000). Z. Naturforsch. Teil B, 55, 352–360.
  10. Fink, W. (1963). Chem. Ber. 96, 1071–1079.
  11. Frank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512–1514.
  12. Galy, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1–23.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873–882.
  15. Hollemann, A. F. & Wiberg, N. (2007). Lehrbuch der Anorganischen Chemie, 102th ed. Berlin: de Gruyter.
  16. Holthausen, M. H. & Weigand, J. J. (2016). Dalton Trans. 45, 1953–1961. [DOI] [PubMed]
  17. Klingebiel, U., Werner, P. & Meller, A. (1976). Monatsh. Chem. 107, 939–943.
  18. Ma, X., Ding, Y., Roesky, H. W., Sun, S. & Yang, Z. (2013). Z. Anorg. Allg. Chem. 639, 49–52.
  19. Mo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139–142.
  20. Nieger, M., Niecke, E. & Detsch, R. (2002). Private communication (refcode CCDC178897). CSD Cambridge, England.
  21. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  22. Scherer, O. J., Püttmann, M., Krüger, C. & Wolmershäuser, G. (1982). Chem. Ber. 115, 2076–2124.
  23. Shah, S. A. A., Roesky, H. W., Lubini, P. & Schmidt, H.-G. (1996). Acta Cryst. C52, 2810–2811.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Stoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
  28. Veith, M. & Bertsch, B. (1988). Z. Anorg. Allg. Chem. 557, 7–22.
  29. Veith, M., Bertsch, B. & Huch, V. (1988). Z. Anorg. Allg. Chem. 559, 73–88.
  30. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019002627/pk2614sup1.cif

e-75-00405-sup1.cif (381.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002627/pk2614Isup2.hkl

e-75-00405-Isup2.hkl (458.6KB, hkl)

CCDC reference: 1898427

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES