Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 12;75(Pt 3):358–361. doi: 10.1107/S2056989019001531

Crystal structure and magnetic properties of (tris­{4-[1-(2-meth­oxy­eth­yl)imidazol-2-yl]-3-aza­but-3-enyl}amine)­iron(II) bis­(hexa­fluorido­phosphate)

Kateryna Znovjyak a,b,*, Igor O Fritsky a,b, Iryna A Golenya a, Tatiana Y Sliva a, Matti Haukka c
PMCID: PMC6399689  PMID: 30867949

The title compound, [Fe(C27H41N10O3)](PF6)2, is an example of an iron(II) spin-crossover compound. In this compound, C⋯F and CH⋯F/O contacts, present between the cations and anions, extend the structure into a three-dimensional supra­molecular network.

Keywords: crystal structure, spin crossover, spin transition

Abstract

In the complex cation of the title compound, [Fe(C27H41N10O3)](PF6)2, the tripodal tris­{4-[1-(2-meth­oxy­eth­yl)imidazol-2-yl]-3-aza­but-3-en­yl}amine ligand is coordinated to an FeII ion through the nitro­gen atoms of three imidazole and three imino groups. The Fe atom exhibits a distorted octa­hedral geometry. In the crystal, l and d anti­podes are arranged in layers in the bc plane. Weak C⋯F and C—H⋯F/O contacts exist between the ligands of the complex cation and the PF6 anions, generating a three-dimensional network. At 120 K, the FeII ion is in a low-spin state, with an average Fe—N bond distance of 1.970 (2) Å. On heating, the FeII ion converts to the high-spin state, as demonstrated by magnetic susceptibility measurements.

Chemical context  

One of the most investigated groups of switchable mol­ecular materials are the pseudo-octa­hedral FeII spin-crossover (SCO) complexes, which can change between high-spin (HS, t 2g 4 e g 2) and low-spin (LS, t 2g 6 e g 0) electronic states on application of physicochemical stimuli. The LS-to-HS conversion involves an electron transfer between the e g and t 2g orbitals and is strongly coupled to structural changes in the coordination sphere of the FeII ions, affecting the Fe–ligand bond lengths and angles (Gütlich & Goodwin, 2004). The spin-state change is reversible and can be controlled, for example by the action of temperature, pressure or light. It is accompanied by a change in a number of physical properties, including magnetic susceptibility, colour, dielectric constant and NLO properties (König, 1991; Nakamoto et al., 2005; Bonhommeau et al., 2006, 2012). Tripod-based iron(II) complexes represent one of the well-studied classes of SCO complexes owing to the suitable ligand-field strength and readily achievable functionalization of their complex ligands (Hardie et al., 2004; Seredyuk et al., 2007; Klug et al., 2012; Hagiwara et al., 2014), particularly with aliphatic chains (Seredyuk et al., 2008a ,b , 2013, 2014).graphic file with name e-75-00358-scheme1.jpg

In this work, we report the synthesis, structure and magnetic properties of a new FeII complex based on the tripodal ligand tris­{4-[1-(2-meth­oxy­eth­yl)imidazol-2-yl]-3-aza­but-3-en­yl}amine, which can be crystallized in the presence of hexa­fluorido­phosphate anions (Fig. 1).

Figure 1.

Figure 1

Mol­ecular structure of the complex cation and anions of the title compound showing the atom labelling. Short C⋯F contacts less than the sum of the van der Waals radii are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) x, Inline graphic − y, −Inline graphic + z; (ii) −1 + x, Inline graphic − y, −Inline graphic + z; (iii) x, Inline graphic − y, −Inline graphic + z; (iv) −x, −Inline graphic + y, Inline graphic − z; (v) −x, 1 − y, −z; (vi) −1 + x, Inline graphic − y, −Inline graphic + z.

Structural commentary  

The unit cell of the title compound contains two pairs of crystallographically identical complex cations of l and d chirality and eight PF6 counter-ions (on two crystallographically distinct sites) to balance the charge. In the complex cation, the FeII ion is wrapped by three 1-(2-meth­oxy­eth­yl)-imidazol-2-yl­imino moieties, defining a pseudo-octa­hedral [FeN6] coordination environment (Fig. 1). The average Fe—N bond length is 1.970 Å and is typical for the low-spin state of the FeII ion (Gütlich & Goodwin, 2004) (Table 1). The average trigonal distortion parameters, Φ = Σi 24(60 − θ i)/24 [where θ i is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990)] and Σ = Σi 12(|θ i − 90|) [where θ i is the deviation from 90° of the cis-N—Fe—N angles in the coordination sphere (Drew et al., 1995)] are 57.72 and 5.23°, respectively. These values are comparable to those reported previously for a similar low-spin compound with n-butyl substituents (Sered­yuk et al., 2013). The capping tertiary nitro­gen atom, N4, is situated at a distance of 3.375 (2) Å from the Fe atom and does not participate in coordination to the metal ion. Each of the methyl­ene groups of the 2-meth­oxy­ethyl substituents directly attached to the imidazole moieties shows a gauche conformation, whilst the remaining methyl­ene groups are in a trans conformation.

Table 1. Selected bond lengths (Å).

Fe1—N1 1.954 (2) Fe1—N6 1.975 (2)
Fe1—N9 1.959 (2) Fe1—N5 1.978 (2)
Fe1—N7 1.967 (2) Fe1—N3 1.989 (2)

Supra­molecular features  

Supra­molecular inter­actions occur between the complex cations and PF6 anions, with van der Waals contacts, C⋯F, lying in the range 2.934 (2)–3.137 (2) Å, linking the ions into two-dimensional layers running parallel to [011] (Fig. 2). These contacts are observed mostly for the carbon atoms belonging to the imidazole moieties of the ligand (Table 2). In addition, there are numerous C—H⋯F and C—H⋯O contacts between the complex cations and anions, extending the crystal structure into a three-dimensional supra­molecular network.

Figure 2.

Figure 2

Crystal packing of the title compound viewed along [001] with C⋯F contacts shown as dashed red lines.

Table 2. Table of contacts (Å) shorter than the sum of the van der Waals radii.

Contact Length Symmetry operation on atom 2
C1⋯F12 3.137 (3) x, 1 − y, −z
C2⋯F8 2.957 (4) x, Inline graphic − y, −Inline graphic + z
C12⋯F11 3.044 (3) x, −Inline graphic + y, Inline graphic − z
C13⋯F11 2.934 (3) x, −Inline graphic + y, Inline graphic − z
C21⋯F1 2.902 (3) 1 − x, −Inline graphic + y, Inline graphic − z
C22⋯F1 3.022 (3) 1 − x, −Inline graphic + y, Inline graphic − z
C25⋯F10 3.074 (4) x, Inline graphic − y, −Inline graphic + z

Magnetic properties  

Variable-temperature magnetic susceptibility measurements were performed on single crystals (20 mg) of the title compound using a Quantum Design MPMS2 superconducting quantum inter­ference device (SQUID) susceptometer operating at 1 T in the temperature range 2–300 K. Experimental susceptibilities were corrected for the diamagnetism of the holder (gelatine capsule) and of the constituent atoms by the application of Pascal’s constants. The magnetic behaviour of the compound recorded at 1 K min−1 between 150 and 300 K, is shown in Fig. 3 in the form of χ M T vs T (χ M is the molar magnetic susceptibility and T is the temperature). At 300 K, the χ M T value is close to 1.8 cm3 K mol−1, displaying at this temperature an incomplete transition of the FeII ion to the paramagnetic high-spin state (S = 2). On cooling, a gradual decrease of χ M T value down to 0.07 cm3 K mol−1 is observed corresponding to an almost compete transformation to the diamagnetic low-spin state (S = 0). This corroborates well with the observed short average Fe—N bond length at 120 K and identifies the low-spin state of the central iron(II) ion.

Figure 3.

Figure 3

A χ M T versus T plot for the title compound.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, update November 2017; Groom et al., 2016) for complexes containing the FeII ion wrapped by a tripodal ligand with a tris­{imidazol-2-yl-3-aza­but-3-en­yl}amine fragment yielded 29 hits, for which the Fe—N bond lengths lie in the ranges 1.926–2.016 and 2.151–2.286 Å for the low-spin and high-spin spin states of the FeII ion, respectively.

Synthesis and crystallization  

A filtered solution of FeCl2·4H2O (0.043 g, 0.21 mmol) in absolute ethanol (5 mL) was added dropwise to a boiling solution of 1-(2-meth­oxy­eth­yl)imidazole-2-carbaldehyde (0.10 g, 0.65 mmol), tris­(2-ethano­lamine)­amine (0.031 g, 0.21 mmol) and [NBu4]PF6 (0.17 g, 0.43 mmol) in 5 ml of absolute ethanol. The resulting dark red–purple solution was stirred for 5 min. After standing for several days under ambient conditions, well-shaped red needles of the title compound were formed. Elemental analysis for C27H41F12FeN10O3P2 (found): C, 36.58, H, 4.98, N, 15.55%; (calculated): C, 36.77, H, 4.85, N, 15.32.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and U iso(H) = 1.2–1.5U eq(parent atom). The highest peak is located 1.21 Å from atom C24 and the deepest hole is located 0.65 Å from atom P2.

Table 3. Experimental details.

Crystal data
Chemical formula [Fe(C27H41N10O3)](PF6)2
M r 899.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 15.82801 (19), 14.36708 (15), 17.4210 (2)
β (°) 112.0778 (13)
V3) 3671.09 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.10
Crystal size (mm) 0.39 × 0.04 × 0.02
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.565, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 58436, 7717, 6787
R int 0.071
(sin θ/λ)max−1) 0.631
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.126, 1.02
No. of reflections 7717
No. of parameters 499
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.43, −0.63

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019001531/cq2029sup1.cif

e-75-00358-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019001531/cq2029Isup2.hkl

e-75-00358-Isup2.hkl (612.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019001531/cq2029Isup3.cdx

CCDC reference: 1893862

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Fe(C27H41N10O3)](PF6)2 F(000) = 1844
Mr = 899.49 Dx = 1.627 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 15.82801 (19) Å Cell parameters from 25415 reflections
b = 14.36708 (15) Å θ = 4.1–76.3°
c = 17.4210 (2) Å µ = 5.10 mm1
β = 112.0778 (13)° T = 120 K
V = 3671.09 (8) Å3 Needle, red
Z = 4 0.39 × 0.04 × 0.02 mm

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer 7717 independent reflections
Radiation source: micro-source 6787 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.071
Detector resolution: 10.3953 pixels mm-1 θmax = 76.6°, θmin = 3.0°
φ scans and ω scans with κ offset h = −19→19
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −15→18
Tmin = 0.565, Tmax = 1.000 l = −21→21
58436 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0673P)2 + 4.9233P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
7717 reflections Δρmax = 1.43 e Å3
499 parameters Δρmin = −0.62 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.21730 (2) 0.13001 (3) 0.05119 (2) 0.01414 (10)
O1 0.39620 (14) −0.06399 (16) −0.08365 (13) 0.0315 (5)
O2 −0.14217 (15) 0.43315 (15) −0.14865 (12) 0.0292 (4)
O3 0.37325 (18) 0.45880 (18) −0.02627 (15) 0.0404 (5)
N1 0.18253 (14) 0.04448 (15) −0.04284 (13) 0.0176 (4)
N2 0.21644 (14) −0.08197 (16) −0.09714 (13) 0.0193 (4)
N3 0.29591 (13) 0.02238 (15) 0.10600 (12) 0.0160 (4)
N4 0.24016 (15) 0.07020 (16) 0.24537 (13) 0.0211 (4)
N5 0.27060 (14) 0.22006 (15) 0.14262 (12) 0.0171 (4)
N6 0.10842 (14) 0.09446 (15) 0.07388 (13) 0.0179 (4)
N7 0.13194 (14) 0.22565 (15) −0.01479 (13) 0.0176 (4)
N8 −0.00982 (14) 0.27774 (16) −0.06646 (13) 0.0198 (4)
N9 0.31665 (14) 0.17875 (15) 0.02162 (13) 0.0175 (4)
N10 0.42701 (15) 0.28182 (16) 0.04425 (14) 0.0208 (4)
C1 0.13063 (17) 0.04344 (19) −0.12578 (15) 0.0212 (5)
H1 0.0872 0.0893 −0.1549 0.025*
C2 0.15162 (18) −0.0345 (2) −0.15976 (15) 0.0220 (5)
H2 0.1259 −0.0524 −0.2164 0.026*
C3 0.26895 (18) −0.16235 (19) −0.10707 (17) 0.0233 (5)
H3A 0.2273 −0.2075 −0.1460 0.028*
H3B 0.2989 −0.1937 −0.0530 0.028*
C4 0.34030 (19) −0.1311 (2) −0.13980 (17) 0.0258 (6)
H4A 0.3775 −0.1848 −0.1439 0.031*
H4B 0.3107 −0.1034 −0.1956 0.031*
C5 0.4613 (2) −0.0253 (2) −0.1123 (2) 0.0354 (7)
H5A 0.4299 0.0035 −0.1667 0.053*
H5B 0.5018 −0.0746 −0.1172 0.053*
H5C 0.4973 0.0219 −0.0730 0.053*
C6 0.23381 (16) −0.03225 (18) −0.02678 (15) 0.0174 (5)
C7 0.29764 (16) −0.04447 (18) 0.05679 (15) 0.0178 (5)
H7 0.3373 −0.0966 0.0742 0.021*
C8 0.35865 (17) 0.01820 (19) 0.19243 (15) 0.0192 (5)
H8A 0.3928 0.0775 0.2074 0.023*
H8B 0.4032 −0.0325 0.1991 0.023*
C9 0.30844 (18) 0.00118 (19) 0.25133 (15) 0.0208 (5)
H9A 0.2789 −0.0607 0.2392 0.025*
H9B 0.3537 −0.0001 0.3090 0.025*
C10 0.14596 (18) 0.0435 (2) 0.21910 (16) 0.0235 (5)
H10A 0.1111 0.0956 0.2301 0.028*
H10B 0.1411 −0.0103 0.2527 0.028*
C11 0.10253 (17) 0.01741 (19) 0.12726 (16) 0.0220 (5)
H11A 0.1339 −0.0379 0.1167 0.026*
H11B 0.0377 0.0010 0.1133 0.026*
C12 0.03435 (17) 0.13940 (18) 0.03302 (15) 0.0185 (5)
H12 −0.0230 0.1251 0.0358 0.022*
C13 0.04749 (17) 0.21344 (18) −0.01724 (15) 0.0186 (5)
C14 −0.10876 (17) 0.2835 (2) −0.08629 (17) 0.0237 (5)
H14A −0.1247 0.2420 −0.0484 0.028*
H14B −0.1415 0.2607 −0.1435 0.028*
C15 −0.14067 (18) 0.3809 (2) −0.07905 (17) 0.0240 (5)
H15A −0.2024 0.3789 −0.0773 0.029*
H15B −0.0988 0.4103 −0.0274 0.029*
C16 −0.1742 (3) 0.5244 (2) −0.1468 (2) 0.0396 (8)
H16A −0.1724 0.5595 −0.1944 0.059*
H16B −0.1355 0.5552 −0.0954 0.059*
H16C −0.2371 0.5220 −0.1493 0.059*
C17 0.04125 (18) 0.3342 (2) −0.09604 (16) 0.0227 (5)
H17 0.0200 0.3858 −0.1322 0.027*
C18 0.12892 (18) 0.30127 (19) −0.06317 (16) 0.0211 (5)
H18 0.1795 0.3270 −0.0726 0.025*
C19 0.26791 (18) 0.16265 (19) 0.27611 (15) 0.0219 (5)
H19A 0.3352 0.1641 0.3033 0.026*
H19B 0.2426 0.1771 0.3188 0.026*
C20 0.23784 (18) 0.23851 (19) 0.20961 (16) 0.0208 (5)
H20A 0.1704 0.2422 0.1862 0.025*
H20B 0.2617 0.2994 0.2353 0.025*
C21 0.33576 (17) 0.27120 (18) 0.13860 (15) 0.0187 (5)
H21 0.3638 0.3194 0.1771 0.022*
C22 0.36201 (17) 0.24818 (18) 0.06987 (15) 0.0181 (5)
C23 0.48204 (19) 0.3653 (2) 0.07504 (19) 0.0286 (6)
H23A 0.5271 0.3709 0.0483 0.034*
H23B 0.5161 0.3593 0.1355 0.034*
C24 0.4245 (2) 0.4521 (2) 0.0580 (2) 0.0361 (7)
H24 0.4234 0.4956 0.0987 0.043*
C25 0.2978 (2) 0.5214 (3) −0.0437 (2) 0.0400 (8)
H25A 0.2640 0.5246 −0.1037 0.060*
H25B 0.3204 0.5835 −0.0226 0.060*
H25C 0.2573 0.4989 −0.0168 0.060*
C26 0.42143 (18) 0.2312 (2) −0.02411 (17) 0.0246 (5)
H26 0.4579 0.2393 −0.0562 0.030*
C27 0.35384 (18) 0.1669 (2) −0.03755 (16) 0.0219 (5)
H27 0.3356 0.1217 −0.0805 0.026*
P1 0.42153 (4) 0.71698 (5) 0.17349 (4) 0.02010 (15)
F1 0.47941 (12) 0.70753 (14) 0.27046 (10) 0.0325 (4)
F2 0.36482 (15) 0.72759 (15) 0.07629 (11) 0.0449 (5)
F3 0.49897 (13) 0.66092 (13) 0.15446 (12) 0.0343 (4)
F4 0.37056 (12) 0.62183 (12) 0.17462 (11) 0.0304 (4)
F5 0.34493 (13) 0.77432 (14) 0.19246 (13) 0.0405 (5)
F6 0.47373 (13) 0.81263 (12) 0.17197 (12) 0.0356 (4)
P2 0.03848 (5) 0.82009 (5) 0.32494 (4) 0.02474 (16)
F7 0.01914 (14) 0.92862 (13) 0.30856 (12) 0.0368 (4)
F8 0.05638 (15) 0.71109 (14) 0.34195 (15) 0.0481 (5)
F9 0.08112 (16) 0.81600 (16) 0.25507 (14) 0.0491 (6)
F10 0.13629 (13) 0.84253 (17) 0.39345 (14) 0.0483 (5)
F11 −0.00539 (13) 0.82390 (15) 0.39448 (11) 0.0378 (4)
F12 −0.05994 (12) 0.79688 (14) 0.25731 (10) 0.0337 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.01229 (17) 0.01787 (19) 0.01052 (18) 0.00178 (14) 0.00231 (13) 0.00087 (14)
O1 0.0251 (10) 0.0421 (12) 0.0297 (11) −0.0081 (9) 0.0130 (8) −0.0144 (9)
O2 0.0355 (11) 0.0300 (11) 0.0248 (10) 0.0132 (9) 0.0143 (9) 0.0101 (8)
O3 0.0493 (14) 0.0407 (13) 0.0338 (12) 0.0089 (11) 0.0186 (11) 0.0024 (10)
N1 0.0162 (9) 0.0205 (10) 0.0129 (9) 0.0023 (8) 0.0019 (8) 0.0024 (8)
N2 0.0185 (10) 0.0237 (11) 0.0139 (10) 0.0000 (8) 0.0042 (8) −0.0036 (8)
N3 0.0140 (9) 0.0208 (10) 0.0111 (9) −0.0005 (8) 0.0023 (7) 0.0007 (8)
N4 0.0187 (10) 0.0247 (11) 0.0173 (10) 0.0005 (8) 0.0038 (8) 0.0004 (9)
N5 0.0172 (9) 0.0201 (10) 0.0130 (9) 0.0044 (8) 0.0045 (8) 0.0016 (8)
N6 0.0176 (9) 0.0208 (10) 0.0140 (9) −0.0007 (8) 0.0044 (8) −0.0003 (8)
N7 0.0170 (10) 0.0211 (10) 0.0134 (9) 0.0018 (8) 0.0044 (8) 0.0005 (8)
N8 0.0165 (10) 0.0250 (11) 0.0145 (10) 0.0051 (8) 0.0020 (8) 0.0022 (8)
N9 0.0170 (9) 0.0212 (10) 0.0137 (9) 0.0045 (8) 0.0052 (8) 0.0026 (8)
N10 0.0181 (10) 0.0239 (11) 0.0199 (10) −0.0006 (8) 0.0064 (8) 0.0032 (9)
C1 0.0177 (11) 0.0264 (13) 0.0135 (11) −0.0011 (10) −0.0009 (9) 0.0013 (10)
C2 0.0213 (12) 0.0278 (13) 0.0118 (11) −0.0021 (10) 0.0003 (9) −0.0004 (10)
C3 0.0246 (13) 0.0250 (13) 0.0193 (12) 0.0028 (10) 0.0070 (10) −0.0043 (10)
C4 0.0257 (13) 0.0315 (15) 0.0206 (13) 0.0000 (11) 0.0093 (11) −0.0071 (11)
C5 0.0286 (14) 0.0434 (18) 0.0387 (17) −0.0051 (13) 0.0177 (13) −0.0081 (14)
C6 0.0145 (10) 0.0225 (12) 0.0137 (11) 0.0003 (9) 0.0035 (9) 0.0006 (9)
C7 0.0158 (10) 0.0210 (12) 0.0146 (11) 0.0007 (9) 0.0036 (9) −0.0002 (9)
C8 0.0181 (11) 0.0245 (12) 0.0114 (11) 0.0039 (9) 0.0016 (9) 0.0009 (9)
C9 0.0227 (12) 0.0257 (13) 0.0115 (11) 0.0031 (10) 0.0035 (9) 0.0040 (9)
C10 0.0200 (12) 0.0318 (14) 0.0185 (12) −0.0013 (10) 0.0072 (10) 0.0055 (11)
C11 0.0189 (11) 0.0224 (12) 0.0230 (13) −0.0039 (10) 0.0059 (10) 0.0049 (10)
C12 0.0147 (11) 0.0236 (12) 0.0146 (11) 0.0005 (9) 0.0024 (9) −0.0012 (9)
C13 0.0166 (11) 0.0221 (12) 0.0141 (11) 0.0026 (9) 0.0024 (9) −0.0013 (9)
C14 0.0139 (11) 0.0291 (14) 0.0226 (13) 0.0041 (10) 0.0007 (9) 0.0045 (11)
C15 0.0210 (12) 0.0310 (14) 0.0187 (12) 0.0076 (10) 0.0060 (10) 0.0055 (11)
C16 0.0484 (19) 0.0282 (16) 0.050 (2) 0.0149 (14) 0.0279 (16) 0.0110 (14)
C17 0.0243 (13) 0.0268 (13) 0.0158 (12) 0.0050 (10) 0.0064 (10) 0.0061 (10)
C18 0.0210 (12) 0.0251 (13) 0.0164 (11) 0.0028 (10) 0.0061 (9) 0.0032 (10)
C19 0.0260 (12) 0.0268 (13) 0.0138 (11) −0.0009 (10) 0.0085 (10) −0.0022 (10)
C20 0.0237 (12) 0.0232 (13) 0.0181 (12) 0.0014 (10) 0.0109 (10) −0.0030 (10)
C21 0.0180 (11) 0.0207 (12) 0.0153 (11) 0.0026 (9) 0.0039 (9) 0.0006 (9)
C22 0.0157 (11) 0.0212 (12) 0.0159 (11) 0.0022 (9) 0.0044 (9) 0.0031 (9)
C23 0.0236 (13) 0.0311 (15) 0.0293 (14) −0.0089 (11) 0.0078 (11) 0.0017 (12)
C24 0.0379 (16) 0.0291 (15) 0.0367 (17) −0.0025 (13) 0.0088 (14) 0.0015 (13)
C25 0.0394 (17) 0.0387 (18) 0.0374 (18) 0.0091 (14) 0.0094 (14) −0.0064 (14)
C26 0.0224 (12) 0.0323 (15) 0.0212 (13) 0.0024 (11) 0.0104 (10) 0.0048 (11)
C27 0.0233 (12) 0.0293 (14) 0.0149 (11) 0.0026 (10) 0.0094 (10) 0.0009 (10)
P1 0.0189 (3) 0.0224 (3) 0.0168 (3) 0.0011 (2) 0.0042 (2) 0.0028 (2)
F1 0.0279 (8) 0.0445 (10) 0.0181 (8) −0.0065 (7) 0.0004 (6) 0.0019 (7)
F2 0.0534 (12) 0.0462 (12) 0.0196 (9) 0.0020 (10) −0.0038 (8) 0.0091 (8)
F3 0.0359 (9) 0.0329 (9) 0.0426 (10) 0.0074 (8) 0.0244 (8) 0.0055 (8)
F4 0.0274 (8) 0.0296 (9) 0.0299 (9) −0.0083 (7) 0.0058 (7) 0.0008 (7)
F5 0.0313 (9) 0.0393 (10) 0.0544 (12) 0.0089 (8) 0.0201 (9) −0.0018 (9)
F6 0.0390 (10) 0.0236 (8) 0.0458 (11) −0.0041 (7) 0.0176 (8) 0.0052 (8)
P2 0.0239 (3) 0.0271 (4) 0.0206 (3) −0.0021 (3) 0.0054 (3) 0.0010 (3)
F7 0.0443 (10) 0.0284 (9) 0.0430 (10) −0.0032 (8) 0.0224 (9) 0.0016 (8)
F8 0.0415 (11) 0.0326 (10) 0.0684 (15) 0.0070 (8) 0.0184 (10) 0.0106 (10)
F9 0.0595 (13) 0.0526 (13) 0.0541 (13) −0.0195 (10) 0.0431 (11) −0.0200 (10)
F10 0.0242 (9) 0.0645 (14) 0.0450 (12) −0.0050 (9) 0.0002 (8) −0.0091 (10)
F11 0.0395 (10) 0.0535 (12) 0.0204 (8) −0.0055 (9) 0.0112 (7) 0.0039 (8)
F12 0.0313 (9) 0.0427 (10) 0.0227 (8) −0.0081 (8) 0.0051 (7) 0.0015 (7)

Geometric parameters (Å, º)

Fe1—N1 1.954 (2) C8—H8B 0.9900
Fe1—N9 1.959 (2) C9—H9A 0.9900
Fe1—N7 1.967 (2) C9—H9B 0.9900
Fe1—N6 1.975 (2) C10—C11 1.532 (4)
Fe1—N5 1.978 (2) C10—H10A 0.9900
Fe1—N3 1.989 (2) C10—H10B 0.9900
O1—C5 1.417 (4) C11—H11A 0.9900
O1—C4 1.421 (3) C11—H11B 0.9900
O2—C16 1.411 (4) C12—C13 1.442 (4)
O2—C15 1.419 (3) C12—H12 0.9500
O3—C24 1.388 (4) C14—C15 1.509 (4)
O3—C25 1.433 (4) C14—H14A 0.9900
N1—C6 1.335 (3) C14—H14B 0.9900
N1—C1 1.368 (3) C15—H15A 0.9900
N2—C6 1.355 (3) C15—H15B 0.9900
N2—C2 1.366 (3) C16—H16A 0.9800
N2—C3 1.471 (3) C16—H16B 0.9800
N3—C7 1.295 (3) C16—H16C 0.9800
N3—C8 1.461 (3) C17—C18 1.371 (4)
N4—C10 1.438 (3) C17—H17 0.9500
N4—C19 1.438 (3) C18—H18 0.9500
N4—C9 1.441 (3) C19—C20 1.530 (4)
N5—C21 1.289 (3) C19—H19A 0.9900
N5—C20 1.468 (3) C19—H19B 0.9900
N6—C12 1.293 (3) C20—H20A 0.9900
N6—C11 1.471 (3) C20—H20B 0.9900
N7—C13 1.333 (3) C21—C22 1.446 (3)
N7—C18 1.365 (3) C21—H21 0.9500
N8—C13 1.351 (3) C23—C24 1.506 (4)
N8—C17 1.374 (4) C23—H23A 0.9900
N8—C14 1.474 (3) C23—H23B 0.9900
N9—C22 1.328 (3) C24—H24 0.9500
N9—C27 1.376 (3) C25—H25A 0.9800
N10—C22 1.355 (3) C25—H25B 0.9800
N10—C26 1.370 (4) C25—H25C 0.9800
N10—C23 1.461 (3) C26—C27 1.366 (4)
C1—C2 1.365 (4) C26—H26 0.9500
C1—H1 0.9500 C27—H27 0.9500
C2—H2 0.9500 P1—F4 1.5912 (17)
C3—C4 1.512 (4) P1—F1 1.5964 (17)
C3—H3A 0.9900 P1—F2 1.5980 (18)
C3—H3B 0.9900 P1—F5 1.5997 (19)
C4—H4A 0.9900 P1—F3 1.6021 (18)
C4—H4B 0.9900 P1—F6 1.6089 (18)
C5—H5A 0.9800 P2—F10 1.593 (2)
C5—H5B 0.9800 P2—F7 1.594 (2)
C5—H5C 0.9800 P2—F12 1.5957 (18)
C6—C7 1.437 (3) P2—F8 1.599 (2)
C7—H7 0.9500 P2—F9 1.599 (2)
C8—C9 1.535 (3) P2—F11 1.6077 (19)
C8—H8A 0.9900
N1—Fe1—N9 90.30 (9) H11A—C11—H11B 108.0
N1—Fe1—N7 91.96 (9) N6—C12—C13 113.3 (2)
N9—Fe1—N7 92.27 (9) N6—C12—H12 123.4
N1—Fe1—N6 90.75 (9) C13—C12—H12 123.4
N9—Fe1—N6 172.91 (9) N7—C13—N8 110.9 (2)
N7—Fe1—N6 80.69 (9) N7—C13—C12 116.7 (2)
N1—Fe1—N5 170.70 (9) N8—C13—C12 132.4 (2)
N9—Fe1—N5 80.58 (9) N8—C14—C15 113.1 (2)
N7—Fe1—N5 90.29 (9) N8—C14—H14A 109.0
N6—Fe1—N5 98.53 (9) C15—C14—H14A 109.0
N1—Fe1—N3 80.90 (9) N8—C14—H14B 109.0
N9—Fe1—N3 89.14 (8) C15—C14—H14B 109.0
N7—Fe1—N3 172.73 (9) H14A—C14—H14B 107.8
N6—Fe1—N3 97.95 (9) O2—C15—C14 108.6 (2)
N5—Fe1—N3 96.98 (8) O2—C15—H15A 110.0
C5—O1—C4 111.7 (2) C14—C15—H15A 110.0
C16—O2—C15 111.3 (2) O2—C15—H15B 110.0
C24—O3—C25 112.1 (3) C14—C15—H15B 110.0
C6—N1—C1 106.8 (2) H15A—C15—H15B 108.4
C6—N1—Fe1 112.71 (16) O2—C16—H16A 109.5
C1—N1—Fe1 139.51 (18) O2—C16—H16B 109.5
C6—N2—C2 107.2 (2) H16A—C16—H16B 109.5
C6—N2—C3 126.1 (2) O2—C16—H16C 109.5
C2—N2—C3 125.9 (2) H16A—C16—H16C 109.5
C7—N3—C8 118.5 (2) H16B—C16—H16C 109.5
C7—N3—Fe1 115.09 (16) C18—C17—N8 106.6 (2)
C8—N3—Fe1 125.94 (16) C18—C17—H17 126.7
C10—N4—C19 120.0 (2) N8—C17—H17 126.7
C10—N4—C9 119.9 (2) N7—C18—C17 109.1 (2)
C19—N4—C9 119.5 (2) N7—C18—H18 125.4
C21—N5—C20 118.0 (2) C17—C18—H18 125.4
C21—N5—Fe1 115.90 (17) N4—C19—C20 114.3 (2)
C20—N5—Fe1 125.94 (17) N4—C19—H19A 108.7
C12—N6—C11 117.7 (2) C20—C19—H19A 108.7
C12—N6—Fe1 116.09 (18) N4—C19—H19B 108.7
C11—N6—Fe1 126.06 (17) C20—C19—H19B 108.7
C13—N7—C18 106.4 (2) H19A—C19—H19B 107.6
C13—N7—Fe1 112.78 (17) N5—C20—C19 111.8 (2)
C18—N7—Fe1 140.72 (18) N5—C20—H20A 109.3
C13—N8—C17 107.0 (2) C19—C20—H20A 109.3
C13—N8—C14 126.0 (2) N5—C20—H20B 109.3
C17—N8—C14 127.0 (2) C19—C20—H20B 109.3
C22—N9—C27 106.6 (2) H20A—C20—H20B 107.9
C22—N9—Fe1 113.49 (17) N5—C21—C22 113.5 (2)
C27—N9—Fe1 139.85 (19) N5—C21—H21 123.2
C22—N10—C26 106.7 (2) C22—C21—H21 123.2
C22—N10—C23 126.4 (2) N9—C22—N10 110.9 (2)
C26—N10—C23 126.2 (2) N9—C22—C21 116.2 (2)
C2—C1—N1 108.6 (2) N10—C22—C21 133.0 (2)
C2—C1—H1 125.7 N10—C23—C24 112.0 (2)
N1—C1—H1 125.7 N10—C23—H23A 109.2
C1—C2—N2 107.2 (2) C24—C23—H23A 109.2
C1—C2—H2 126.4 N10—C23—H23B 109.2
N2—C2—H2 126.4 C24—C23—H23B 109.2
N2—C3—C4 110.3 (2) H23A—C23—H23B 107.9
N2—C3—H3A 109.6 O3—C24—C23 109.6 (3)
C4—C3—H3A 109.6 O3—C24—H24 125.2
N2—C3—H3B 109.6 C23—C24—H24 125.2
C4—C3—H3B 109.6 O3—C25—H25A 109.5
H3A—C3—H3B 108.1 O3—C25—H25B 109.5
O1—C4—C3 107.6 (2) H25A—C25—H25B 109.5
O1—C4—H4A 110.2 O3—C25—H25C 109.5
C3—C4—H4A 110.2 H25A—C25—H25C 109.5
O1—C4—H4B 110.2 H25B—C25—H25C 109.5
C3—C4—H4B 110.2 C27—C26—N10 107.4 (2)
H4A—C4—H4B 108.5 C27—C26—H26 126.3
O1—C5—H5A 109.5 N10—C26—H26 126.3
O1—C5—H5B 109.5 C26—C27—N9 108.4 (2)
H5A—C5—H5B 109.5 C26—C27—H27 125.8
O1—C5—H5C 109.5 N9—C27—H27 125.8
H5A—C5—H5C 109.5 F4—P1—F1 90.33 (10)
H5B—C5—H5C 109.5 F4—P1—F2 90.56 (11)
N1—C6—N2 110.2 (2) F1—P1—F2 179.05 (12)
N1—C6—C7 117.0 (2) F4—P1—F5 90.73 (10)
N2—C6—C7 132.7 (2) F1—P1—F5 90.18 (11)
N3—C7—C6 113.5 (2) F2—P1—F5 90.13 (12)
N3—C7—H7 123.3 F4—P1—F3 90.09 (10)
C6—C7—H7 123.3 F1—P1—F3 89.82 (10)
N3—C8—C9 111.9 (2) F2—P1—F3 89.85 (11)
N3—C8—H8A 109.2 F5—P1—F3 179.18 (11)
C9—C8—H8A 109.2 F4—P1—F6 179.42 (11)
N3—C8—H8B 109.2 F1—P1—F6 89.77 (10)
C9—C8—H8B 109.2 F2—P1—F6 89.34 (11)
H8A—C8—H8B 107.9 F5—P1—F6 89.84 (11)
N4—C9—C8 113.9 (2) F3—P1—F6 89.34 (10)
N4—C9—H9A 108.8 F10—P2—F7 90.19 (12)
C8—C9—H9A 108.8 F10—P2—F12 179.16 (12)
N4—C9—H9B 108.8 F7—P2—F12 90.22 (11)
C8—C9—H9B 108.8 F10—P2—F8 90.28 (13)
H9A—C9—H9B 107.7 F7—P2—F8 178.96 (12)
N4—C10—C11 113.7 (2) F12—P2—F8 89.31 (11)
N4—C10—H10A 108.8 F10—P2—F9 90.48 (13)
C11—C10—H10A 108.8 F7—P2—F9 90.41 (11)
N4—C10—H10B 108.8 F12—P2—F9 90.25 (11)
C11—C10—H10B 108.8 F8—P2—F9 90.52 (13)
H10A—C10—H10B 107.7 F10—P2—F11 90.11 (11)
N6—C11—C10 111.5 (2) F7—P2—F11 89.62 (11)
N6—C11—H11A 109.3 F12—P2—F11 89.16 (10)
C10—C11—H11A 109.3 F8—P2—F11 89.45 (12)
N6—C11—H11B 109.3 F9—P2—F11 179.41 (12)
C10—C11—H11B 109.3
C6—N1—C1—C2 −0.4 (3) C17—N8—C13—C12 177.0 (3)
Fe1—N1—C1—C2 166.7 (2) C14—N8—C13—C12 −4.9 (4)
N1—C1—C2—N2 0.4 (3) N6—C12—C13—N7 −0.2 (3)
C6—N2—C2—C1 −0.2 (3) N6—C12—C13—N8 −177.7 (3)
C3—N2—C2—C1 −170.2 (2) C13—N8—C14—C15 133.9 (3)
C6—N2—C3—C4 −94.1 (3) C17—N8—C14—C15 −48.3 (4)
C2—N2—C3—C4 74.0 (3) C16—O2—C15—C14 178.2 (3)
C5—O1—C4—C3 −175.7 (2) N8—C14—C15—O2 75.4 (3)
N2—C3—C4—O1 57.1 (3) C13—N8—C17—C18 0.1 (3)
C1—N1—C6—N2 0.3 (3) C14—N8—C17—C18 −178.1 (2)
Fe1—N1—C6—N2 −170.66 (16) C13—N7—C18—C17 −0.8 (3)
C1—N1—C6—C7 177.3 (2) Fe1—N7—C18—C17 176.0 (2)
Fe1—N1—C6—C7 6.4 (3) N8—C17—C18—N7 0.5 (3)
C2—N2—C6—N1 −0.1 (3) C10—N4—C19—C20 −71.8 (3)
C3—N2—C6—N1 169.9 (2) C9—N4—C19—C20 116.5 (3)
C2—N2—C6—C7 −176.5 (3) C21—N5—C20—C19 −107.4 (3)
C3—N2—C6—C7 −6.5 (4) Fe1—N5—C20—C19 78.0 (3)
C8—N3—C7—C6 −179.3 (2) N4—C19—C20—N5 −56.6 (3)
Fe1—N3—C7—C6 −6.9 (3) C20—N5—C21—C22 −179.2 (2)
N1—C6—C7—N3 0.3 (3) Fe1—N5—C21—C22 −4.0 (3)
N2—C6—C7—N3 176.5 (3) C27—N9—C22—N10 0.1 (3)
C7—N3—C8—C9 −110.9 (3) Fe1—N9—C22—N10 −177.21 (16)
Fe1—N3—C8—C9 77.5 (3) C27—N9—C22—C21 −178.3 (2)
C10—N4—C9—C8 117.3 (3) Fe1—N9—C22—C21 4.4 (3)
C19—N4—C9—C8 −70.9 (3) C26—N10—C22—N9 0.5 (3)
N3—C8—C9—N4 −57.6 (3) C23—N10—C22—N9 171.5 (2)
C19—N4—C10—C11 117.7 (3) C26—N10—C22—C21 178.5 (3)
C9—N4—C10—C11 −70.6 (3) C23—N10—C22—C21 −10.5 (4)
C12—N6—C11—C10 −107.0 (3) N5—C21—C22—N9 −0.3 (3)
Fe1—N6—C11—C10 78.3 (3) N5—C21—C22—N10 −178.2 (3)
N4—C10—C11—N6 −58.0 (3) C22—N10—C23—C24 −62.9 (4)
C11—N6—C12—C13 179.9 (2) C26—N10—C23—C24 106.3 (3)
Fe1—N6—C12—C13 −4.8 (3) C25—O3—C24—C23 161.7 (3)
C18—N7—C13—N8 0.9 (3) N10—C23—C24—O3 −56.1 (3)
Fe1—N7—C13—N8 −176.94 (16) C22—N10—C26—C27 −0.9 (3)
C18—N7—C13—C12 −177.1 (2) C23—N10—C26—C27 −171.9 (2)
Fe1—N7—C13—C12 5.1 (3) N10—C26—C27—N9 1.0 (3)
C17—N8—C13—N7 −0.6 (3) C22—N9—C27—C26 −0.7 (3)
C14—N8—C13—N7 177.5 (2) Fe1—N9—C27—C26 175.5 (2)

Funding Statement

This work was funded by H2020 Marie Skłodowska-Curie Actions grant 734322.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Bonhommeau, S., Guillon, T., Daku, L. M. L. , Demont, P., Costa, J. S., Létard, J. F., Molnár, G. & Bousseksou, A. (2006). Angew. Chem. Int. Ed. 45, 1625–1629. [DOI] [PubMed]
  3. Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C116, 11251–11255.
  4. Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.
  5. Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. 1035–1038.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.
  8. Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952.
  9. Hardie, M. J., Kilner, C. A. & Halcrow, M. A. (2004). Acta Cryst. C60, m177–m179. [DOI] [PubMed]
  10. Klug, C. M., McDaniel, A. M., Fiedler, S. R., Schulte, K. A., Newell, B. S. & Shores, M. P. (2012). Dalton Trans. 41, 12577–12585. [DOI] [PubMed]
  11. König, E. (1991). Struct. Bond. 76, 51–152.
  12. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  13. Nakamoto, A., Kojima, N., XiaoJun, L., Moritomo, Y. & Nakamura, A. (2005). Polyhedron, 24, 2909–2912.
  14. Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008a). Adv. Funct. Mater. 18, 2089–2101.
  15. Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008b). J. Am. Chem. Soc. 130, 1431–1439. [DOI] [PubMed]
  16. Seredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135–1145.
  17. Seredyuk, M., Muñoz, M. C., Castro, M., Romero-Morcillo, T., Gaspar, A. B. & Real, J. A. (2013). Chem. Eur. J. 19, 6591–6596. [DOI] [PubMed]
  18. Seredyuk, M., Muñoz, M. C., Ksenofontov, V., Gütlich, P., Galyametdinov, Y. & Real, J. A. (2014). Inorg. Chem. 53, 8442–8454. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019001531/cq2029sup1.cif

e-75-00358-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019001531/cq2029Isup2.hkl

e-75-00358-Isup2.hkl (612.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019001531/cq2029Isup3.cdx

CCDC reference: 1893862

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES