Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 12;75(Pt 3):354–357. doi: 10.1107/S205698901900207X

Crystal structure of 3-meth­oxy-4-[2-(thia­zol-2-yl)diazen-1-yl]aniline monohydrate

Nutchanikan Phiromphu a, Kittipong Chainok b, Apisit Songsasen a, Tanwawan Duangthongyou a,*
PMCID: PMC6399690  PMID: 30867948

In the title hydrated azo dye, the benzene and thia­zole make a dihedral angle of 4.69 (17)°. In the crystal, hydrogen bonds, C—H⋯π and π–π inter­actions resulting in the formation of a three-dimensional framework.

Keywords: crystal structure, azo dye, thia­zole ring, hydrogen bonding, C—H⋯π inter­action

Abstract

In the title hydrated azo dye, C10H10N4OS·H2O, the benzene and thia­zole, are nearly coplanar, with a dihedral angle between their mean planes of 4.69 (17)°. The aromatic rings on the –N=N– moiety exhibit a trans configuration. The crystal structure features many types of inter­molecular inter­actions involving all the functional groups – strong hydrogen bonds (N⋯H and O⋯H), weak hydrogen bonds (C—H⋯O and C—H⋯N), C—H⋯π and π–π inter­actions – resulting in the formation of a three-dimensional framework.

Chemical context  

Thia­zolylazo compounds contain a thia­zole ring and an azo group (–N=N–). Azo dyes have wide range applications in the cosmetic, food, textile industry, chemical sensing, and pharmaceutical (Weglarz-Tomczak & Gorecki, 2012) fields. 4-(2-Thia­zolylazo) resorcinol (TAR) was the first thia­zolylazo dye (Jensen, 1960). Changing the substituent groups on the azo bond (Hovind, 1975) changes the coordination properties with metal ions, as in the complexation of 1-(2-thia­zolylazo)-2-naphthol (TAN) with transition metals (Omar et al., 2005). Cleavage of the azo bond occurs in reductive metabolism of mammalian systems (Levine, 1991) that can decrease or increase any toxic or carcinogenic effects of the dyes. Sutthivaiyakit et al. (1998) described the preparation of a new chelating silica with 2-(2-thia­zolylazo)-5-amino­anisole used for a stationary phase in high-pressure liquid chromatography. In this work, we report the structure of 3-meth­oxy-4-[2-(thia­zol-2-yl)diazen-1-yl]aniline monohydrate, also known as 2-(2-thia­zolylazo)-5-amino­anisole (p-amino TAA), (I). Future work will study its complexation with metal ions.graphic file with name e-75-00354-scheme1.jpg

Structural commentary  

The mol­ecular structure of (I) is shown in Fig. 1. The thia­zole and benzene rings are arranged trans to the azo bridge (–N2=N3–). The meth­oxy and amino groups on the benzene ring are co-planar with the ring with atoms O1 and N4 deviating by −0.010 (2) and −0.019 (4) Å, respectively. The dihedral angle between the thia­zole and benzene rings is 4.69 (17)°, nearly coplanar.

Figure 1.

Figure 1

The mol­ecular structure of compound (I) with the atom labelling and 50% probability displacement ellipsoids

Supra­molecular features  

In the crystal, three-dimensional structure is generated by contribution of strong and weak hydrogen bonding, C—H⋯π inter­actions and offset π–π inter­action. The strong hydrogen bonds (Fig. 2 a, Table 1), which involve the amine (NH2), azo (–N=N–) and thia­zole groups and the water mol­ecule of crystallization [N4—H4B⋯O3, O3—H3A⋯N1ii, O3—H3B⋯N3iii, N4—H4A⋯N2i] are the primary inter­actions responsible for the formation of the three dimensional structure. In addition, the crystal structure is supported by other inter­molecular inter­actions as a secondary weak inter­actions, C—H⋯X (X = O and N), C—H⋯π and offset π—π inter­actions. The weak hydrogen bonds are formed between the C—H moieties in the benzene and thia­zole rings with amine, azo, meth­oxy groups of adjacent mol­ecules and water mol­ecules [C1—H1⋯O3vii, C2—H2⋯N2v, C8—H8⋯O1vi and C9—H9⋯N4iv. The C—H⋯π inter­actions involve the meth­oxy group and ring carbon atoms [C10—H10C⋯C3ii, C10—H10A⋯C6iii and C10—H10A⋯C7iii while the offset π–π inter­action is formed between benzene and thia­zole rings with a centroid–centroid distance of 3.850 (5) Å, symmetry operation 1 − x, 2 − y, 1 − z (Fig. 2 b, Table 1).

Figure 2.

Figure 2

(a) The packing of the crystal by strong hydrogen bonds and (b) secondary inter­actions. Symmetry codes: (i) −x + Inline graphic, y − Inline graphic, −z + Inline graphic; (ii) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (v) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (vi) x + Inline graphic, −y + Inline graphic, z − Inline graphic; (vii) x − 1, y + 1, z.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N2i 0.87 (1) 2.30 (2) 3.137 (5) 162 (3)
N4—H4B⋯O3 0.87 (1) 2.08 (1) 2.946 (5) 173 (4)
O3—H3A⋯N1ii 0.84 (1) 2.12 (2) 2.954 (5) 169 (6)
O3—H3B⋯N3iii 0.84 (1) 2.43 (3) 3.186 (5) 150 (5)
C9—H9⋯N4iv 0.93 2.69 3.587 (5) 162
C2—H2⋯N2v 0.93 2.87 3.798 (5) 176
C8—H8⋯O1vi 0.93 2.72 3.452 (5) 136
C1—H1⋯O3vii 0.93 2.56 3.463 (5) 165
C10—H10C⋯C3ii 0.96 2.89 3.655 (5) 137
C10—H10A⋯C6iii 0.96 2.83 3.551 (5) 132
C10—H10A⋯C7iii 0.96 2.86 3.502 (5) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Hirshfeld surface analysis  

Hirshfeld surfaces and fingerprint plots were generated using CrystalExplorer (Hirshfeld, 1977; McKinnon et al., 2004). Fig. 3 shows the Hirshfeld surface of compound (I) mapped over d norm (−0.5129 to 1.1405 Å) and the shape index (−1.0 to 1.0 Å). The red spots in the Hirshfeld surface represent short N⋯H and O⋯H contacts and correspond to hydrogen-bonding inter­actions between (NH2)N—H⋯N(azo), (H2O)O—H⋯N(azo), (H2O)O—H⋯N(thia­zole) and (NH2)N—H⋯O(H2O). The pale-red spots result from the weak C—H⋯O(H2O) and C—H⋯N(NH2) hydrogen-bonding inter­actions. The white spots in Fig.3a represent long contacts [C—H⋯N(azo) and C—H⋯O(OCH3)]. On the shape index surface (Fig. 3 b), convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups. In addition, concave red regions represent C—H⋯π and offset π–π inter­actions. The amino group behaves as both a donor and an acceptor. The methyl part of the meth­oxy group acts as a donor while the oxygen atom is an acceptor.

Figure 3.

Figure 3

Hirshfeld surfaces for compound (I), mapped with (a) d norm and (b) shape-index.

The two-dimensional fingerprint plots (Fig. 4) qu­antify the contributions of each type of inter­molecular inter­action to the Hirshfeld surface (McKinnon et al., 2007). The largest contribution with 30.0% of the surface is from H⋯H contacts, which represent van der Waals inter­actions, followed by C⋯H contacts involved in C—H⋯π inter­actions (20.0%). In the N⋯H plot (18.8% contribution), the two sharp peaks correspond to strong hydrogen bonds. Finally, the O⋯H (9.3%), S⋯H (11.1%) and C⋯C (3.3%) contacts correspond to hydrogen bonds and offset π–π inter­actions, respectively.

Figure 4.

Figure 4

Two-dimensional fingerprints for compound (I), showing H⋯H, C⋯H, N⋯H, S⋯H and O⋯H contacts.

Database survey  

Related compounds to (I) are substituted thia­zolylazo derivatives, for example 4-(2-thia­zolylazo) resorcinol (TAR), 1-(2-thia­zolylazo)-2-naphthol (TAN) and 2-(2-thia­zolylazo)-4-methyl­phenol (TAC) (Jensen, 1960). These thia­zolylazo derivatives are used as chelating agents with metal ions (Farias et al., 1992). In the crystal structure of 1-(2-thia­zolylazo)-2-naphthol (TAN; Kurahashi, 1976), the azo group adopts a trans configuration and the phenolic oxygen atom is linked to an azo nitro­gen atom by intra­molecular hydrogen bonding. The crystal structure features only van der Waals inter­actions. To form complexes with metal ions, both thia­zole and naphthol rings are rotated by 180° to coordinate to the metal through the phenolic oxygen atom, the azo nitro­gen atom adjacent to the naphthol ring and the thia­zole nitro­gen atom, resulting the formation of five-membered chelate rings. Complexes of TAR and TAC are formed in a similar way due to the presence of a hydroxyl group in the structure (Karipcin et al., 2010). 3-[2-(1,3-Thia­zol-2-yl)diazen-1-yl]pyridine-2,6-di­amine monohydrate (Chotima et al., 2018) has been used as a chelating ligand to form a complex with AuIII ion (Piyasaengthong et al., 2015). The crystal structure is stabilized by hydrogen bonding between the amine group, water and the thia­zole nitro­gen atom along with π–π inter­actions between pairs of pyridine rings and pairs of thia­zole rings, resulting in the formation of a layered structure. In addition, weak C—H⋯S hydrogen bonds between adjacent thia­zole rings further contribute to the crystal packing, generating a three-dimensional network.

Synthesis and crystallization  

2-Amino­thia­zole (9.986 mmol) was dissolved in 6 M HCl (16 ml), and 8.236 mmol of sodium nitrate solution was added slowly under stirring at low temperature 268–273 K until the diazo­nium salt was obtained. m-Anisidine (1.12 ml in 40 ml of 4 M HCl) was slowly dropped into the mixture and stirred at a temperature between 268 and 273 K for 1 h. After the reaction was complete, conc. NH3 was dropped into the mixture (pH 6) until the red–orange crude produce appeared. The products were filtered, washed with cold water, purified by column chromatography and recrystallized from an aceto­nitrile–water (1:1) mixture by vapour diffusion.

1H NMR (400 MHz, DMSO-d 6): δ 3.806 (3H, s, Hc), 6.364 (1H, dd, Hf, J = 8.7, 2.7 Hz) , 6.374 (1H, t, Hd, J = 2.8 Hz), 7.546 (1H, d, Hg, J = 8.9 Hz) ,7.629 (1H, d, Ha, J = 3.40 Hz), 7.697 (2H, s, He), 7.883 (1H, d, Hb, J = 3.42 Hz). Mass spectroscopy: m/z 235.0654 [C10H11N4OS+], 205.0548 [C9H9N4S.+], 150.0662 [C7H8N3O.+], 122.0601 [C7H8NO.+]. IR (KBr cm−1): 3,413 cm−1 (s, N—H); 821 cm−1 (w, NH2); 1,617 (m, C=N); 1,222 cm−1 (w, C—N stretch aromatic amine); 1,103 cm−1 (m, C—N stretch amine); 1,152 cm−1 (m, C—S); 1,541cm−1 (m, N=N); 1,021 cm−1 (w, C—O stretch). Elemental analysis calculated for C10H10N4OS·H2O: C, 51.27; H, 4.30; N, 23.92. Found: C, 51.34; H, 4.20; N, 23.98.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Water and amino H atoms were refined freely while those of aromatic and methyl groups were placed in calculated positions (C—H = 0.93 and 0.96 Å, respectively) and included in the cycles of refinement using a riding model with U iso = 1.2 U eq(C-aromatic) and 1.5U eq (C-meth­yl).

Table 2. Experimental details.

Crystal data
Chemical formula C10H10N4OS·H2O
M r 252.30
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 9.051 (5), 11.526 (5), 10.893 (6)
β (°) 90.345 (16)
V3) 1136.5 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.14 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.585, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 13093, 2164, 995
R int 0.164
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.055, 0.131, 0.93
No. of reflections 2164
No. of parameters 172
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.26

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901900207X/dx2014sup1.cif

e-75-00354-sup1.cif (315.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901900207X/dx2014Isup2.hkl

e-75-00354-Isup2.hkl (119.1KB, hkl)

CCDC reference: 1895710

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank the Department of Chemistry, Faculty of Science, Kasetsart University, for support to facilitate our research.

supplementary crystallographic information

Crystal data

C10H10N4OS·H2O F(000) = 528
Mr = 252.30 Dx = 1.475 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.051 (5) Å Cell parameters from 395 reflections
b = 11.526 (5) Å θ = 2.9–19.0°
c = 10.893 (6) Å µ = 0.28 mm1
β = 90.345 (16)° T = 298 K
V = 1136.5 (10) Å3 Block, brown
Z = 4 0.14 × 0.06 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer 2164 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 995 reflections with I > 2σ(I)
Mirror optics monochromator Rint = 0.164
Detector resolution: 7.9 pixels mm-1 θmax = 25.8°, θmin = 2.6°
φ and ω scans h = −10→11
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −14→12
Tmin = 0.585, Tmax = 0.745 l = −13→13
13093 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0242P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131 (Δ/σ)max < 0.001
S = 0.93 Δρmax = 0.26 e Å3
2164 reflections Δρmin = −0.25 e Å3
172 parameters Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraints Extinction coefficient: 0.009 (2)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22221 (11) 1.00037 (9) 0.49942 (9) 0.0393 (4)
O1 0.4757 (3) 0.6793 (2) 0.5996 (2) 0.0379 (7)
O3 0.8582 (4) 0.3028 (3) 0.5520 (4) 0.0512 (9)
N1 0.3051 (4) 1.0873 (3) 0.2927 (3) 0.0374 (9)
N2 0.4373 (3) 0.9181 (3) 0.3421 (3) 0.0324 (8)
N3 0.4436 (3) 0.8375 (3) 0.4254 (3) 0.0297 (8)
N4 0.8772 (4) 0.5020 (3) 0.3833 (4) 0.0421 (9)
C1 0.1384 (4) 1.1242 (3) 0.4478 (4) 0.0387 (11)
H1 0.063837 1.163516 0.488936 0.046*
C2 0.1954 (4) 1.1567 (3) 0.3399 (4) 0.0393 (11)
H2 0.162460 1.222749 0.298950 0.047*
C3 0.3298 (4) 1.0010 (3) 0.3686 (3) 0.0280 (9)
C4 0.5502 (4) 0.7542 (3) 0.4088 (3) 0.0283 (10)
C5 0.5698 (4) 0.6708 (3) 0.5038 (3) 0.0285 (9)
C6 0.6797 (4) 0.5880 (3) 0.4951 (3) 0.0313 (10)
H6 0.692487 0.534501 0.558164 0.038*
C7 0.7720 (4) 0.5838 (3) 0.3925 (4) 0.0304 (10)
C8 0.7527 (4) 0.6669 (3) 0.2975 (3) 0.0364 (11)
H8 0.813766 0.665287 0.229219 0.044*
C9 0.6462 (4) 0.7479 (3) 0.3060 (3) 0.0347 (10)
H9 0.634945 0.801384 0.242785 0.042*
C10 0.5045 (4) 0.6082 (3) 0.7052 (3) 0.0448 (12)
H10A 0.495963 0.527893 0.682871 0.067*
H10B 0.434175 0.625874 0.768158 0.067*
H10C 0.602526 0.623236 0.735301 0.067*
H4A 0.927 (4) 0.496 (3) 0.316 (2) 0.056 (14)*
H4B 0.877 (5) 0.446 (3) 0.437 (3) 0.078 (18)*
H3A 0.853 (7) 0.340 (5) 0.618 (3) 0.15 (3)*
H3B 0.776 (3) 0.276 (4) 0.530 (4) 0.10 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0428 (7) 0.0371 (6) 0.0381 (7) 0.0005 (6) 0.0105 (5) 0.0034 (6)
O1 0.0423 (18) 0.0405 (16) 0.0312 (18) 0.0105 (14) 0.0138 (14) 0.0063 (14)
O3 0.053 (3) 0.0464 (19) 0.055 (2) −0.0033 (18) 0.010 (2) −0.0018 (18)
N1 0.043 (2) 0.036 (2) 0.033 (2) 0.0055 (18) 0.0006 (17) 0.0102 (18)
N2 0.030 (2) 0.0297 (19) 0.037 (2) 0.0021 (16) 0.0040 (16) 0.0022 (17)
N3 0.028 (2) 0.0277 (18) 0.034 (2) −0.0010 (16) 0.0017 (15) 0.0006 (17)
N4 0.045 (2) 0.038 (2) 0.044 (3) 0.010 (2) 0.016 (2) 0.000 (2)
C1 0.036 (3) 0.034 (2) 0.046 (3) 0.007 (2) 0.003 (2) −0.005 (2)
C2 0.045 (3) 0.028 (2) 0.045 (3) 0.006 (2) −0.005 (2) −0.001 (2)
C3 0.026 (2) 0.026 (2) 0.032 (2) −0.005 (2) 0.0027 (18) 0.000 (2)
C4 0.029 (2) 0.031 (2) 0.026 (3) −0.002 (2) 0.008 (2) −0.004 (2)
C5 0.031 (2) 0.028 (2) 0.027 (2) −0.006 (2) 0.0057 (19) −0.001 (2)
C6 0.037 (3) 0.025 (2) 0.032 (3) 0.001 (2) 0.004 (2) 0.0031 (19)
C7 0.027 (2) 0.029 (2) 0.035 (3) −0.003 (2) 0.006 (2) −0.006 (2)
C8 0.038 (3) 0.040 (2) 0.031 (3) −0.003 (2) 0.010 (2) 0.002 (2)
C9 0.041 (3) 0.033 (2) 0.030 (3) −0.001 (2) −0.002 (2) 0.0031 (19)
C10 0.049 (3) 0.055 (3) 0.031 (3) 0.006 (2) 0.011 (2) 0.009 (2)

Geometric parameters (Å, º)

S1—C1 1.710 (4) C1—C2 1.340 (5)
S1—C3 1.731 (4) C2—H2 0.9300
O1—C5 1.355 (4) C4—C5 1.422 (5)
O1—C10 1.435 (4) C4—C9 1.423 (5)
O3—H3A 0.842 (10) C5—C6 1.382 (5)
O3—H3B 0.840 (10) C6—H6 0.9300
N1—C2 1.377 (5) C6—C7 1.401 (5)
N1—C3 1.312 (4) C7—C8 1.420 (5)
N2—N3 1.299 (4) C8—H8 0.9300
N2—C3 1.396 (4) C8—C9 1.345 (5)
N3—C4 1.374 (4) C9—H9 0.9300
N4—C7 1.344 (5) C10—H10A 0.9600
N4—H4A 0.865 (10) C10—H10B 0.9600
N4—H4B 0.868 (10) C10—H10C 0.9600
C1—H1 0.9300
C1—S1—C3 88.6 (2) O1—C5—C4 115.8 (3)
C5—O1—C10 117.7 (3) O1—C5—C6 123.9 (3)
H3A—O3—H3B 112 (5) C6—C5—C4 120.2 (3)
C3—N1—C2 109.0 (3) C5—C6—H6 119.6
N3—N2—C3 111.9 (3) C5—C6—C7 120.8 (3)
N2—N3—C4 115.8 (3) C7—C6—H6 119.6
C7—N4—H4A 120 (3) N4—C7—C6 120.7 (4)
C7—N4—H4B 118 (3) N4—C7—C8 120.2 (4)
H4A—N4—H4B 121 (4) C6—C7—C8 119.1 (3)
S1—C1—H1 124.8 C7—C8—H8 119.9
C2—C1—S1 110.5 (3) C9—C8—C7 120.2 (4)
C2—C1—H1 124.8 C9—C8—H8 119.9
N1—C2—H2 121.7 C4—C9—H9 119.0
C1—C2—N1 116.6 (3) C8—C9—C4 122.1 (4)
C1—C2—H2 121.7 C8—C9—H9 119.0
N1—C3—S1 115.3 (3) O1—C10—H10A 109.5
N1—C3—N2 120.4 (3) O1—C10—H10B 109.5
N2—C3—S1 124.3 (3) O1—C10—H10C 109.5
N3—C4—C5 117.5 (3) H10A—C10—H10B 109.5
N3—C4—C9 124.9 (3) H10A—C10—H10C 109.5
C5—C4—C9 117.6 (3) H10B—C10—H10C 109.5
S1—C1—C2—N1 0.2 (5) C3—S1—C1—C2 −0.2 (3)
O1—C5—C6—C7 179.3 (3) C3—N1—C2—C1 −0.1 (5)
N2—N3—C4—C5 174.2 (3) C3—N2—N3—C4 −177.8 (3)
N2—N3—C4—C9 −3.2 (5) C4—C5—C6—C7 −0.8 (5)
N3—N2—C3—S1 2.3 (4) C5—C4—C9—C8 −0.2 (5)
N3—N2—C3—N1 −178.1 (3) C5—C6—C7—N4 −178.9 (3)
N3—C4—C5—O1 2.8 (5) C5—C6—C7—C8 0.8 (5)
N3—C4—C5—C6 −177.0 (3) C6—C7—C8—C9 −0.5 (6)
N3—C4—C9—C8 177.1 (3) C7—C8—C9—C4 0.2 (6)
N4—C7—C8—C9 179.2 (4) C9—C4—C5—O1 −179.6 (3)
C1—S1—C3—N1 0.2 (3) C9—C4—C5—C6 0.5 (5)
C1—S1—C3—N2 179.7 (3) C10—O1—C5—C4 −171.3 (3)
C2—N1—C3—S1 −0.1 (4) C10—O1—C5—C6 8.6 (5)
C2—N1—C3—N2 −179.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N2i 0.87 (1) 2.30 (2) 3.137 (5) 162 (3)
N4—H4B···O3 0.87 (1) 2.08 (1) 2.946 (5) 173 (4)
O3—H3A···N1ii 0.84 (1) 2.12 (2) 2.954 (5) 169 (6)
O3—H3B···N3iii 0.84 (1) 2.43 (3) 3.186 (5) 150 (5)
C9—H9···N4iv 0.93 2.69 3.587 (5) 162
C2—H2···N2v 0.93 2.87 3.798 (5) 176
C8—H8···O1vi 0.93 2.72 3.452 (5) 136
C1—H1···O3vii 0.93 2.56 3.463 (5) 165
C10—H10C···C3ii 0.96 2.89 3.655 (5) 137
C10—H10A···C6iii 0.96 2.83 3.551 (5) 132
C10—H10A···C7iii 0.96 2.86 3.502 (5) 125

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, y+1/2, −z+1/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) x+1/2, −y+3/2, z−1/2; (vii) x−1, y+1, z.

References

  1. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chotima, R., Boonseng, B., Piyasaengthong, A., Songsasen, A. & Chainok, K. (2018). Acta Cryst. E74, 563–565. [DOI] [PMC free article] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Farias, P. A. M., Ferreira, S. L. C., Ohara, A. K., Bastos, M. B. & Goulart, M. S. (1992). Talanta, 39, 1245–1253. [DOI] [PubMed]
  5. Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
  6. Hovind, R. H. (1975). Analyst, 100, 769–796.
  7. Jensen, B. S. (1960). Acta Chem. Scand. 14, 927–932.
  8. Karipcin, F., Dede, B., Percin-Ozkorucuklu, S. & Kabalcilar, E. (2010). Dyes Pigments, 84, 14–18.
  9. Kurahashi, M. (1976). Bull. Chem. Soc. Jpn, 49, 2927–2933.
  10. Levine, W. G. (1991). Drug Metab. Rev. 23(3-4), 253-309. [DOI] [PubMed]
  11. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  12. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  13. Omar, M. M. & Mohamed, G. G. (2005). Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 929–936. [DOI] [PubMed]
  14. Piyasaengthong, A., Boonyalai, N., Suramitr, S. & Songsasen, A. (2015). Inorg. Chem. Commun. 59, 88–90.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Sutthivaiyakit, P., Kettrup, A. & Sutthivaiyakit, S. (1998). Fresenius Environ. Bull. 7, 18–27.
  18. Weglarz-Tomczak, E. & Gorecki, L. (2012). CHEMIK. 66, 1298–1307.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901900207X/dx2014sup1.cif

e-75-00354-sup1.cif (315.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901900207X/dx2014Isup2.hkl

e-75-00354-Isup2.hkl (119.1KB, hkl)

CCDC reference: 1895710

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES