Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 22;75(Pt 3):372–377. doi: 10.1107/S2056989019002354

Crystal structure, Hirshfeld surface analysis and DFT study of (2Z)-2-(4-fluoro­benzyl­idene)-4-(prop-2-yn-1-yl)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

Brahim Hni a,*, Nada Kheira Sebbar b,a, Tuncer Hökelek c, Younes Ouzidan d, Ahmed Moussaif e, Joel T Mague f, El Mokhtar Essassi a,g
PMCID: PMC6399692  PMID: 30867952

In the title compound, the heterocyclic portion of the di­hydro­benzo­thia­zine unit adopts a shallow boat conformation. The propynyl substituent is nearly perpendicular to the plane formed by the rails of the boat. In the crystal, inversion dimers are formed by weak C—H⋯F hydrogen bonds with the dimers forming oblique stacks along the a-axis direction.

Keywords: crystal structure, di­hydro­benzo­thia­zine, hydrogen bond, DFT, Hirshfeld surface

Abstract

The title compound, C18H12FNOS, is built up from a 4-fluoro­benzyl­idene moiety and a di­hydro­benzo­thia­zine unit with a propynyl substituent, with the heterocyclic portion of the di­hydro­benzo­thia­zine unit adopting a shallow boat conformation with the propynyl substituent nearly perpendicular to it. The two benzene rings are oriented at a dihedral angle of 43.02 (6)°. In the crystal, C—HFlurphen⋯FFlurphen (Flurphen = fluoro­phen­yl) hydrogen bonds link the mol­ecules into inversion dimers, enclosing R 2 2(8) ring motifs, with the dimers forming oblique stacks along the a-axis direction. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (33.9%), H⋯C/C⋯H (26.7%), H⋯F/F⋯H (10.9%) and C⋯C (10.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

Chemical context  

1,4-Benzo­thia­zine derivatives represent one of the most important classes of organic mol­ecules and have been studied extensively for their biological activities (Ellouz et al., 2017a ; Sebbar et al., 2016a ) and therapeutic applications such as analgesic (Wammack et al., 2002), anti-viral (Malagu et al., 1998; Rathore & Kumar, 2006) and anti-oxidant activities (Zia-ur-Rehman et al., 2009). Slight changes in the substitution pattern in the benzo­thia­zine nucleus can cause a distinguishable difference in their biological properties (Niewiadomy et al., 2011; Armenise et al., 2012). Recent research has been focused on existing mol­ecules and their modifications in order to reduce their side effects and to explore their other pharmacological and biological effects (Ellouz et al., 2017b ; Sebbar et al., 2016b ; Gautam et al., 2012). As a continuation of our research into the development of N-substituted 1,4-benzo­thia­zine derivatives and the evaluation of their potential pharmacological activities, we have studied the condensation reaction of propargyl bromide with (Z)-2-(4-fluoro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base, leading to the title compound namely (2Z)-2-(4-fluoro­benzyl­idene)-4-(prop-2-yn-1-yl)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one in good yield (Sebbar et al., 2017a , Ellouz et al., 2018), and we report herein its synthesis, the mol­ecular and crystal structures, along with the Hirshfeld surface analysis and density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level.graphic file with name e-75-00372-scheme1.jpg

Structural commentary  

The title compound, (I), is built up from a 4-fluoro­phenyl­methyl­idene moiety and a di­hydro­benzo­thia­zine unit with a propynyl substituent (Fig. 1). The benzene (A; C1–C6), ring is oriented at a dihedral angle of 43.02 (6)° with respect to the 4-fluorophenyl ring (C; C13–C18). The propynyl substituent is nearly perpendicular to the plane defined by C1, C6, C7 and C8, as shown by the C6—N1—C9—C10 torsion angle of 81.3 (2)°. A puckering analysis of the heterocyclic ring (B; S1/N1/C1/C6–C8) of the di­hydro­benzo­thia­zine unit shows that it adopts a shallow boat conformation with puckering parameters Q T = 0.3759 (14) Å, q 2 = 0.3639 (15) Å, q 3 = −0.0938 (17) Å, φ = 173.6 (3)° and θ = 104.5 (3)°. In the heterocyclic ring B, the C1—S1—C8 [101.73 (8)°], S1—C8—C7 [119.93 (12)°], C8—C7—N1 [119.23 (14)°], C7—N1—C6 [125.59 (14)°] and C6—C1—S1 [122.07 (13)°] bond angles are enlarged, while the N1—C6—C1 [120.91 (15)°] bond angle is narrowed when compared with the corresponding values in the closely related compounds 4-methyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (II) (Ellouz et al., 2017b ), 4-[(3-phenyl-4,5-di­hydro­isoxazol-5-yl) meth­yl]-2H-benzo[b][1,4]thia­zin-3(4H)-one, (III) (Sebbar et al., 2016a ) and (Z)-2-(2-chloro­benzyl­idene)-4-(prop-2-yn­yl)-2H-1,4-benzo­thia­zin-3(4H)-one, (IV), (Sebbar et al., 2017a ).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, C—HFlurphen⋯FFlurphen (Flurphen = fluoro­phen­yl) hydrogen bonds (Table 1) link the mol­ecules into inversion dimers enclosing Inline graphic(8) ring motifs, with the dimers forming oblique stacks along the a-axis direction (Figs. 2 and 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯F1ii 0.98 (2) 2.60 (2) 3.306 (2) 128.5 (17)

Symmetry code: (ii) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram viewed along the a-axis direction. The inter­molecular C—HFlurphen⋯FFlurphen (Flurphen = fluoro­phen­yl) hydrogen bonds are shown as dashed lines.

Figure 3.

Figure 3

A partial packing diagram viewed along the b-axis direction. The inter­molecular C—HFlurphen⋯FFlurphen (Flurphen = fluoro­phen­yl) hydrogen bonds are shown as dashed lines.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corres­ponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π– π inter­actions. Fig. 6 clearly suggest that there are no π– π inter­actions in (I).

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.0943 to 1.2826 a.u.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Figure 6.

Figure 6

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯F/F⋯H, C⋯C, H⋯O/O⋯H, H⋯S/S⋯H, C⋯N/N⋯C, C⋯S/S⋯C, C⋯F/F⋯C, S⋯S and H⋯N/N⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 7 bl, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 33.9% to the overall crystal packing, which is reflected in Fig. 7 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. In the absence of C—H⋯π inter­actions, the pair of scattered wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26.7% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 7 c, with the thick edges at d e + d i ∼2.70 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯F/F⋯H contacts (Fig. 7 d, the 10.9% contribution to the HS) arises from the C—H⋯F hydrogen bonds (Table 1) as well as from the H⋯F/F⋯H contacts (Table 2) and is shown as a pair of spikes with the tips at d e + d i = 2.52 Å. The C⋯C contacts (Fig. 7 e, 10.6% contribution to the HS) have an arrow-shaped distribution of points with the tip at d e = d i ∼1.68 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 7 f, 8.0% contribution to the HS) have a pair of spikes with the tips at d e + d i = 2.54 Å. Finally, the H⋯S/S⋯H contacts (Table 2; Fig. 7 g, 3.7% contribution) are viewed as A pair of wide spikes with the tips at d e + d i = 3.02 Å. The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯F/F⋯H, C⋯C, H⋯O/O⋯H and H⋯S/S⋯H inter­actions in Fig. 8 af, respectively.

Figure 7.

Figure 7

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯F/F⋯H, (e) C⋯C, (f) H⋯O/O⋯H, (g) H⋯S/S⋯H, (h) C⋯N/N⋯C, (i) C⋯S/S⋯C, (j) C⋯F/F⋯C, (k) S⋯S and (l) H⋯N/N⋯H inter­actions. The d i and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Selected interatomic distances (Å).

S1⋯N1 3.0702 (15) C10⋯C11vii 3.572 (3)
S1⋯C14 3.179 (2) C12⋯C18vii 3.343 (3)
S1⋯C2i 3.5158 (19) C13⋯C18vii 3.464 (2)
S1⋯H14 2.51 (3) C13⋯C17vii 3.439 (3)
S1⋯H2i 3.06 (2) C14⋯C17vii 3.404 (3)
F1⋯F1ii 3.051 (2) C14⋯C16vii 3.457 (3)
F1⋯C15ii 3.306 (3) C15⋯C16vii 3.495 (3)
F1⋯H4iii 2.59 (3) C4⋯H11viii 2.91 (3)
F1⋯H15ii 2.60 (2) C5⋯H9B 2.63 (2)
O1⋯C10 3.167 (3) C5⋯H11viii 2.80 (3)
O1⋯C18iv 3.388 (2) C6⋯H9B vi 2.85 (2)
O1⋯C18v 3.261 (2) C7⋯H9A vi 2.81 (2)
O1⋯H12 2.33 (2) C8⋯H14 2.97 (2)
O1⋯H9A vi 2.83 (2) C9⋯H5 2.48 (3)
O1⋯H9A 2.26 (2) C10⋯H5 2.60 (2)
O1⋯H12v 2.70 (2) C10⋯H9B vi 2.90 (2)
O1⋯H18iv 2.60 (2) C11⋯H5ix 2.81 (3)
O1⋯H18v 2.71 (2) C11⋯H9B vi 2.99 (2)
N1⋯H9B vi 2.85 (2) C11⋯H17iv 2.82 (3)
C5⋯C10 3.216 (2) H2⋯H2x 2.57 (4)
C7⋯C12vii 3.448 (3) H5⋯H9B 2.17 (3)
C7⋯C9vi 3.334 (3) H5⋯H11viii 2.52 (4)
C9⋯C10vii 3.504 (2) H9A⋯H18v 2.50 (3)
C9⋯C11vii 3.469 (3) H12⋯H18 2.32 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic.

Figure 8.

Figure 8

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯F/F⋯H, (d) C⋯C, (e) H⋯O/O⋯H and (f) H⋯S/S⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

DFT calculations  

The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement. The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole (Z)-2-(4-fluoro­benzyl­idene)-4-(prop-2-yn­yl)-2H-1,4-benzo­thia­zin-3(4H)-one ring. The energy band gap [ΔE = E LUMO - E HOMO] of the mol­ecule was about 3.92 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO were −5.85 and −1.93 eV, respectively.

Figure 9.

Figure 9

The energy band gap of the title compound.

Database survey  

Using the search fragment II (R 1 = Ph, R 2 = C) in the Cambridge Crystallographic Database (Groom et al., 2016; updated to Nov. 2018), 14 hits were registered with R 1 = Ph and R 2 = CH2COOH (Sebbar et al., 2016c ), IIa (Sebbar et al., 2016b ), n-octa­decyl (Sebbar et al., 2017b ), IIb (Ellouz et al., 2015), n-Bu (Sebbar, El Fal et al., 2014), IIc (Sebbar et al., 2016d ), IId (Sebbar et al., 2015), CH2C≡CH IIe (Sebbar, Zerzouf et al., 2014). In addition there are examples with R 1 = 4-ClC6H4 and R 2 = CH2Ph2 (Ellouz et al., 2016) IIf and R 1 = 2-ClC6H4, R 2 = CH2C≡CH (Sebbar et al., 2017c ). In the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitro­gen and sulfur atoms and that defined by nitro­gen and sulfur and the other two carbon atoms separating them ranging from ca. 29 (IIe) to 36° (IId). The other three (IIa, IIc, IIf) have the benzo­thia­zine unit nearly planar with the corresponding dihedral angle of ca 3–4°. In the case of IIa, the displacement ellipsoid for the sulfur atom shows a considerable elongation perpendicular to the mean plane of the heterocyclic ring, suggesting disorder, and a greater degree of non-planarity but for the other two, there is no obvious source for the near planarity.graphic file with name e-75-00372-scheme2.jpg

Synthesis and crystallization  

Propargyl bromide (4 mmol) was added to a mixture of (Z)-2-(4-fluoro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (1.6 mmol), potassium carbonate (4 mmol) and tetra-n-butyl ammonium bromide (0.15 mmol) in DMF (20 ml). Stirring was continued at room temperature for 24 h. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate–hexane (2/8) as eluent. The solid product obtained was recrystallized from ethanol to afford colourless crystals (yield: 89%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were located in a difference-Fourier map and freely refined.

Table 3. Experimental details.

Crystal data
Chemical formula C18H12FNOS
M r 309.35
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 150
a, b, c (Å) 4.0602 (2), 13.8983 (5), 14.2620 (5)
α, β, γ (°) 117.809 (2), 93.155 (2), 94.416 (2)
V3) 705.96 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.15
Crystal size (mm) 0.45 × 0.21 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.69, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 5323, 2595, 2256
R int 0.026
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.092, 1.04
No. of reflections 2595
No. of parameters 247
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.31

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019002354/lh5893sup1.cif

e-75-00372-sup1.cif (177KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002354/lh5893Isup2.hkl

e-75-00372-Isup2.hkl (207.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019002354/lh5893Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989019002354/lh5893Isup6.cml

CCDC reference: 1897371

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C18H12FNOS Z = 2
Mr = 309.35 F(000) = 320
Triclinic, P1 Dx = 1.455 Mg m3
a = 4.0602 (2) Å Cu Kα radiation, λ = 1.54178 Å
b = 13.8983 (5) Å Cell parameters from 4191 reflections
c = 14.2620 (5) Å θ = 3.6–72.3°
α = 117.809 (2)° µ = 2.15 mm1
β = 93.155 (2)° T = 150 K
γ = 94.416 (2)° Plate, light yellow
V = 705.96 (5) Å3 0.45 × 0.21 × 0.01 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2595 independent reflections
Radiation source: INCOATEC IµS micro-focus source 2256 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.026
Detector resolution: 10.4167 pixels mm-1 θmax = 72.2°, θmin = 3.6°
ω scans h = −4→4
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −17→15
Tmin = 0.69, Tmax = 0.97 l = −15→17
5323 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: difference Fourier map
wR(F2) = 0.092 All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.047P)2 + 0.2564P] where P = (Fo2 + 2Fc2)/3
2595 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.36900 (11) 0.48920 (3) 0.16432 (3) 0.02650 (14)
F1 −0.4439 (4) 0.02242 (10) 0.11539 (11) 0.0500 (4)
O1 0.6330 (3) 0.62345 (10) 0.47251 (9) 0.0274 (3)
N1 0.7395 (3) 0.69008 (11) 0.35897 (11) 0.0196 (3)
C1 0.4638 (4) 0.62082 (14) 0.17880 (13) 0.0216 (3)
C2 0.3701 (5) 0.63770 (16) 0.09280 (14) 0.0280 (4)
H2 0.244 (6) 0.5760 (19) 0.0305 (18) 0.040 (6)*
C3 0.4589 (5) 0.73747 (16) 0.09560 (15) 0.0302 (4)
H3 0.400 (5) 0.7482 (18) 0.0363 (18) 0.035 (6)*
C4 0.6386 (5) 0.82155 (16) 0.18618 (16) 0.0309 (4)
H4 0.717 (5) 0.8918 (19) 0.1894 (17) 0.037 (6)*
C5 0.7262 (4) 0.80684 (15) 0.27349 (14) 0.0253 (4)
H5 0.838 (6) 0.8665 (19) 0.3380 (18) 0.034 (6)*
C6 0.6440 (4) 0.70567 (14) 0.27073 (13) 0.0200 (3)
C7 0.5847 (4) 0.61287 (13) 0.38287 (13) 0.0201 (3)
C8 0.3693 (4) 0.51633 (13) 0.29720 (13) 0.0200 (3)
C9 0.9780 (4) 0.77412 (14) 0.44531 (14) 0.0226 (4)
H9A 1.078 (5) 0.7384 (17) 0.4841 (16) 0.027 (5)*
H9B 1.157 (5) 0.7991 (17) 0.4139 (16) 0.029 (5)*
C10 0.8244 (4) 0.86876 (14) 0.52130 (13) 0.0232 (4)
C11 0.7008 (5) 0.94494 (16) 0.58223 (16) 0.0323 (4)
H11 0.598 (7) 1.005 (2) 0.627 (2) 0.058 (8)*
C12 0.2140 (4) 0.44701 (14) 0.32673 (13) 0.0221 (4)
H12 0.239 (5) 0.4694 (17) 0.4023 (17) 0.027 (5)*
C13 0.0273 (4) 0.33862 (14) 0.26424 (13) 0.0224 (4)
C14 0.0509 (5) 0.26864 (15) 0.15586 (14) 0.0273 (4)
H14 0.190 (5) 0.2934 (18) 0.1155 (17) 0.033 (6)*
C15 −0.1081 (5) 0.16234 (16) 0.10546 (16) 0.0317 (4)
H15 −0.091 (6) 0.1127 (19) 0.0299 (19) 0.041 (6)*
C16 −0.2926 (5) 0.12750 (16) 0.16410 (17) 0.0337 (4)
C17 −0.3307 (5) 0.19315 (17) 0.26970 (16) 0.0334 (4)
H17 −0.461 (6) 0.166 (2) 0.3075 (19) 0.046 (7)*
C18 −0.1680 (4) 0.29876 (15) 0.31937 (15) 0.0258 (4)
H18 −0.184 (5) 0.3440 (17) 0.3957 (18) 0.029 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0385 (3) 0.0213 (2) 0.0162 (2) −0.00484 (17) 0.00200 (16) 0.00729 (18)
F1 0.0686 (9) 0.0280 (6) 0.0495 (8) −0.0221 (6) −0.0186 (6) 0.0217 (6)
O1 0.0346 (7) 0.0275 (7) 0.0186 (6) −0.0014 (5) −0.0013 (5) 0.0108 (5)
N1 0.0214 (7) 0.0177 (7) 0.0176 (7) 0.0015 (5) 0.0016 (5) 0.0067 (6)
C1 0.0221 (8) 0.0235 (9) 0.0208 (8) 0.0027 (6) 0.0047 (6) 0.0114 (7)
C2 0.0297 (10) 0.0330 (10) 0.0214 (9) 0.0033 (7) 0.0040 (7) 0.0129 (8)
C3 0.0378 (11) 0.0351 (11) 0.0255 (9) 0.0094 (8) 0.0076 (7) 0.0197 (9)
C4 0.0426 (11) 0.0257 (10) 0.0311 (10) 0.0083 (8) 0.0130 (8) 0.0173 (9)
C5 0.0291 (9) 0.0214 (9) 0.0247 (9) 0.0035 (7) 0.0070 (7) 0.0097 (8)
C6 0.0190 (8) 0.0212 (8) 0.0195 (8) 0.0044 (6) 0.0055 (6) 0.0087 (7)
C7 0.0214 (8) 0.0202 (8) 0.0182 (8) 0.0054 (6) 0.0032 (6) 0.0080 (7)
C8 0.0220 (8) 0.0178 (8) 0.0188 (8) 0.0030 (6) 0.0025 (6) 0.0073 (7)
C9 0.0198 (8) 0.0208 (8) 0.0229 (8) −0.0001 (6) −0.0004 (6) 0.0075 (7)
C10 0.0225 (8) 0.0215 (9) 0.0227 (8) −0.0046 (6) −0.0010 (6) 0.0095 (7)
C11 0.0336 (11) 0.0231 (10) 0.0321 (10) −0.0004 (8) 0.0083 (8) 0.0064 (9)
C12 0.0259 (9) 0.0224 (9) 0.0182 (8) 0.0044 (6) 0.0044 (6) 0.0092 (7)
C13 0.0229 (8) 0.0214 (9) 0.0248 (9) 0.0011 (6) −0.0006 (6) 0.0131 (7)
C14 0.0338 (10) 0.0230 (9) 0.0248 (9) 0.0007 (7) 0.0035 (7) 0.0115 (8)
C15 0.0413 (11) 0.0219 (9) 0.0271 (10) −0.0005 (8) −0.0038 (8) 0.0088 (8)
C16 0.0401 (11) 0.0216 (9) 0.0393 (11) −0.0087 (8) −0.0132 (8) 0.0178 (8)
C17 0.0338 (10) 0.0346 (11) 0.0381 (11) −0.0079 (8) −0.0064 (8) 0.0253 (10)
C18 0.0273 (9) 0.0293 (10) 0.0252 (9) 0.0007 (7) −0.0013 (7) 0.0173 (8)

Geometric parameters (Å, º)

S1—C8 1.7511 (17) C8—C12 1.348 (2)
S1—C1 1.7515 (17) C9—C10 1.471 (2)
F1—C16 1.364 (2) C9—H9A 0.99 (2)
O1—C7 1.219 (2) C9—H9B 0.99 (2)
N1—C7 1.387 (2) C10—C11 1.183 (3)
N1—C6 1.412 (2) C11—H11 0.93 (3)
N1—C9 1.473 (2) C12—C13 1.461 (2)
C1—C2 1.391 (2) C12—H12 0.97 (2)
C1—C6 1.401 (2) C13—C18 1.400 (2)
C2—C3 1.387 (3) C13—C14 1.404 (2)
C2—H2 0.98 (2) C14—C15 1.388 (3)
C3—C4 1.387 (3) C14—H14 0.98 (2)
C3—H3 0.95 (2) C15—C16 1.373 (3)
C4—C5 1.385 (3) C15—H15 0.98 (2)
C4—H4 0.98 (2) C16—C17 1.375 (3)
C5—C6 1.402 (2) C17—C18 1.386 (3)
C5—H5 0.96 (2) C17—H17 0.95 (2)
C7—C8 1.493 (2) C18—H18 0.98 (2)
S1···N1 3.0702 (15) C10···C11vii 3.572 (3)
S1···C14 3.179 (2) C12···C18vii 3.343 (3)
S1···C2i 3.5158 (19) C13···C18vii 3.464 (2)
S1···H14 2.51 (3) C13···C17vii 3.439 (3)
S1···H2i 3.06 (2) C14···C17vii 3.404 (3)
F1···F1ii 3.051 (2) C14···C16vii 3.457 (3)
F1···C15ii 3.306 (3) C15···C16vii 3.495 (3)
F1···H4iii 2.59 (3) C4···H11viii 2.91 (3)
F1···H15ii 2.60 (2) C5···H9B 2.63 (2)
O1···C10 3.167 (3) C5···H11viii 2.80 (3)
O1···C18iv 3.388 (2) C6···H9Bvi 2.85 (2)
O1···C18v 3.261 (2) C7···H9Avi 2.81 (2)
O1···H12 2.33 (2) C8···H14 2.97 (2)
O1···H9Avi 2.83 (2) C9···H5 2.48 (3)
O1···H9A 2.26 (2) C10···H5 2.60 (2)
O1···H12v 2.70 (2) C10···H9Bvi 2.90 (2)
O1···H18iv 2.60 (2) C11···H5ix 2.81 (3)
O1···H18v 2.71 (2) C11···H9Bvi 2.99 (2)
N1···H9Bvi 2.85 (2) C11···H17iv 2.82 (3)
C5···C10 3.216 (2) H2···H2x 2.57 (4)
C7···C12vii 3.448 (3) H5···H9B 2.17 (3)
C7···C9vi 3.334 (3) H5···H11viii 2.52 (4)
C9···C10vii 3.504 (2) H9A···H18v 2.50 (3)
C9···C11vii 3.469 (3) H12···H18 2.32 (3)
C8—S1—C1 101.73 (8) C10—C9—H9A 108.6 (12)
C7—N1—C6 125.59 (14) N1—C9—H9A 106.8 (12)
C7—N1—C9 114.59 (13) C10—C9—H9B 109.9 (12)
C6—N1—C9 118.68 (14) N1—C9—H9B 109.3 (12)
C2—C1—C6 120.19 (16) H9A—C9—H9B 108.7 (17)
C2—C1—S1 117.64 (14) C11—C10—C9 179.8 (2)
C6—C1—S1 122.07 (13) C10—C11—H11 177.1 (17)
C3—C2—C1 120.78 (17) C8—C12—C13 131.55 (16)
C3—C2—H2 122.1 (14) C8—C12—H12 115.9 (12)
C1—C2—H2 117.1 (14) C13—C12—H12 112.4 (12)
C4—C3—C2 119.25 (17) C18—C13—C14 117.96 (16)
C4—C3—H3 120.1 (14) C18—C13—C12 116.92 (16)
C2—C3—H3 120.7 (14) C14—C13—C12 124.90 (16)
C5—C4—C3 120.61 (17) C15—C14—C13 121.06 (17)
C5—C4—H4 117.9 (13) C15—C14—H14 118.9 (13)
C3—C4—H4 121.4 (13) C13—C14—H14 119.9 (13)
C4—C5—C6 120.64 (17) C16—C15—C14 118.26 (18)
C4—C5—H5 120.7 (14) C16—C15—H15 120.2 (14)
C6—C5—H5 118.6 (14) C14—C15—H15 121.5 (14)
C1—C6—C5 118.49 (16) F1—C16—C15 118.42 (19)
C1—C6—N1 120.91 (15) F1—C16—C17 118.38 (18)
C5—C6—N1 120.60 (15) C15—C16—C17 123.20 (18)
O1—C7—N1 119.59 (15) C16—C17—C18 117.97 (18)
O1—C7—C8 121.15 (15) C16—C17—H17 120.7 (15)
N1—C7—C8 119.23 (14) C18—C17—H17 121.4 (15)
C12—C8—C7 116.29 (15) C17—C18—C13 121.53 (18)
C12—C8—S1 123.30 (13) C17—C18—H18 117.9 (12)
C7—C8—S1 119.93 (12) C13—C18—H18 120.5 (12)
C10—C9—N1 113.47 (14)
C8—S1—C1—C2 −157.17 (14) N1—C7—C8—C12 −177.04 (15)
C8—S1—C1—C6 26.38 (15) O1—C7—C8—S1 −167.49 (13)
C6—C1—C2—C3 1.4 (3) N1—C7—C8—S1 10.7 (2)
S1—C1—C2—C3 −175.12 (14) C1—S1—C8—C12 159.13 (15)
C1—C2—C3—C4 −1.1 (3) C1—S1—C8—C7 −29.17 (15)
C2—C3—C4—C5 −0.6 (3) C7—N1—C9—C10 −87.21 (18)
C3—C4—C5—C6 2.0 (3) C6—N1—C9—C10 81.32 (18)
C2—C1—C6—C5 0.0 (2) C7—C8—C12—C13 −169.96 (16)
S1—C1—C6—C5 176.34 (13) S1—C8—C12—C13 2.0 (3)
C2—C1—C6—N1 179.64 (15) C8—C12—C13—C18 −165.58 (18)
S1—C1—C6—N1 −4.0 (2) C8—C12—C13—C14 19.9 (3)
C4—C5—C6—C1 −1.7 (3) C18—C13—C14—C15 −1.5 (3)
C4—C5—C6—N1 178.67 (16) C12—C13—C14—C15 172.96 (17)
C7—N1—C6—C1 −23.7 (2) C13—C14—C15—C16 0.7 (3)
C9—N1—C6—C1 169.12 (14) C14—C15—C16—F1 −178.73 (17)
C7—N1—C6—C5 155.92 (16) C14—C15—C16—C17 0.8 (3)
C9—N1—C6—C5 −11.2 (2) F1—C16—C17—C18 178.11 (17)
C6—N1—C7—O1 −162.11 (15) C15—C16—C17—C18 −1.5 (3)
C9—N1—C7—O1 5.5 (2) C16—C17—C18—C13 0.6 (3)
C6—N1—C7—C8 19.7 (2) C14—C13—C18—C17 0.8 (3)
C9—N1—C7—C8 −172.72 (14) C12—C13—C18—C17 −174.05 (16)
O1—C7—C8—C12 4.8 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x−1, −y, −z; (iii) x−1, y−1, z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z; (vii) x+1, y, z; (viii) −x+1, −y+2, −z+1; (ix) −x+2, −y+2, −z+1; (x) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···F1ii 0.98 (2) 2.60 (2) 3.306 (2) 128.5 (17)

Symmetry code: (ii) −x−1, −y, −z.

Funding Statement

This work was funded by National Science Foundation, MRI grant 1228232. Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hökelek.

References

  1. Armenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407–416. [DOI] [PubMed]
  2. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  5. Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.
  6. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. [DOI] [PMC free article] [PubMed]
  7. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCrData, 1, x160764.
  8. Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123. [DOI] [PMC free article] [PubMed]
  9. Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.
  10. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  11. Gautam, N., Ajmera, N., Gupta, S. & Gautam, D. C. (2012). Eur. J. Chem. 3, 106–111.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  14. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  15. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.
  18. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  19. Niewiadomy, A., Matysiak, J. & Karpińska, M. M. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 224–230. [DOI] [PubMed]
  20. Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682. [DOI] [PubMed]
  21. Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o686. [DOI] [PMC free article] [PubMed]
  22. Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823.
  23. Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424. [DOI] [PMC free article] [PubMed]
  24. Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCr Data 1, x161012.
  25. Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017b). IUCrData, 2, x170695.
  26. Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.
  27. Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017a). IUCrData, 2, x170889.
  28. Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170889.
  29. Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.
  30. Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614. [DOI] [PMC free article] [PubMed]
  31. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  32. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  33. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  34. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  35. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  36. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  37. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
  38. Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601. [DOI] [PubMed]
  39. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019002354/lh5893sup1.cif

e-75-00372-sup1.cif (177KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002354/lh5893Isup2.hkl

e-75-00372-Isup2.hkl (207.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019002354/lh5893Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989019002354/lh5893Isup6.cml

CCDC reference: 1897371

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES