Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 8;75(Pt 3):346–349. doi: 10.1107/S2056989019002081

CsGa(HAsO4)2, the first Ga representative of the RbAl(HAsO4)2 structure type

Karolina Schwendtner a,*, Uwe Kolitsch b
PMCID: PMC6399695  PMID: 30867946

The tetra­hedral-octa­hedral framework crystal structure of hydro­thermally synthesized CsGa(HAsO4)2 was solved by single-crystal X-ray diffraction. CsGa(HAsO4)2 crystallizes in the polar RbAl(HAsO4)2 structure type (R32).

Keywords: crystal structure, CsGa(HAsO4)2, arsenate, hydrogen arsenate

Abstract

The crystal structure of hydro­thermally synthesized (T = 493 K, 7 d) caesium gallium bis­[hydrogen arsenate(V)], CsGa(HAsO4)2, was solved by single-crystal X-ray diffraction. The compound crystallizes in the common RbAl(HAsO4)2 structure type (R32) and consists of a basic tetra­hedral–octa­hedral framework topology that houses Cs+ cations in its channels. The AsO4 tetra­hedron is disordered over two positions with site occupancy factors of 0.946 (1) and 0.054 (1). Strong hydrogen bonds strengthen the network. The structure was refined as inversion twin.

Chemical context  

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures are characterized by a broad range of different atomic arrangements. These topologies result in several inter­esting properties such as ion exchange (Masquelier et al., 1996) and ion conductivity (Chouchene et al., 2017), as well as unusual piezoelectric (Ren et al., 2015), magnetic (Ouerfelli et al., 2007) or non-linear optical features (frequency doubling; Sun et al., 2017).

CsGa(HAsO4)2 was obtained during our extensive experimental study of the system M +M 3+–As5+–O–(H) (M + = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M 3+ = Al, Ga, In, Sc, Fe, Cr, Tl), which resulted in the discovery of an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004, 2005, 2007a ,b ,c , 2017a , 2018a , 2019; Schwendtner, 2006). One atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994; rhombohedral, R Inline graphic c), and its two relatives, the CsAl2As(HAsO4)6 type (Schwendtner & Kolitsch, 2018a , rhombohedral, R Inline graphic c) and the RbAl(HAsO4)2 type (Schwendtner & Kolitsch, 2018a , rhombohedral, R32), were found to exhibit a large crystal–chemical flexibility, which allows the incorporation of a wide variety of M + and M 3+ cations. So far the RbFe(HPO4)2-type is represented by eight arsenate members with the following M + M 3+ combinations: TlAl, (NH4)Ga, RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b , 2018a ,b ,c ,e ). Six arsenates of the CsAl2As(HAsO4)6 type are known with the following M + M 3+ com­binations: RbGa, CsGa, TlGa, RbAl, CsAl and CsFe (Schwendtner & Kolitsch, 2018a ,c ,d ). CsGa(HAsO4)2 represents the third representative of the RbAl(HAsO4)2-type atomic arrangement, of which previously only the two M + M 3+ combinations RbAl and CsFe (Schwendtner & Kolitsch, 2018a ) were known. The 12-coordinated M + cations present in these types of compounds are rather large (M = Cs, Rb, Tl and NH4), with ionic radii ranging from 1.70 to 1.88 Å (Shannon, 1976). No members containing K+ or any smaller M + cations are presently known, suggesting that the ionic radius of K+ (1.64 Å, Shannon, 1976) is already slightly too small for this type of framework. The ionic radii of the six-coordinated M 3+ cations (M = Al, Cr, Fe, Ga, In) range from 0.535 to 0.800 Å (Shannon, 1976) and nearly all M 3+ cations we studied are represented in these types of compounds, with the exception of Sc3+ and Tl3+. Syntheses aimed at preparing (NH4)Sc(HAsO4)2, RbSc(HAsO4)2 and TlSc(HAsO4)2 instead led to the crystallization of the diarsenate compounds (NH4)ScAs2O7 (Kolitsch, 2004), RbScAs2O7 (Schwendtner & Kolitsch, 2004) and TlScAs2O7 (Baran et al., 2006), respectively.

There exist only three other Cs–Ga arsenates: The structurally closely related CsGa2As(HAsO4)6 (Schwendtner & Kolitsch, 2018b ), in which one third of the M 3+O6 octa­hedra are replaced by AsO6 octa­hedra; CsGa(H2AsO4)(H1.5AsO4)2 (Schwendtner & Kolitsch, 2005) which was encountered in the same synthesis batch as the title compound; and Cs2Ga3(As3O10)(AsO4)2 (Lin & Lii, 1996).

Structural commentary  

CsGa(HAsO4)2 is a representative of the RbAl(HAsO4)2 structure type (R32; Schwendtner & Kolitsch, 2018a ) and has a basic tetra­hedral–octa­hedral framework structure featuring inter­penetrating channels, which host the M + cations (Fig. 1). This structure type is closely related to the RbFe(HPO4)2 structure type (R Inline graphic c; Lii & Wu, 1994), the RbAl2As(HAsO4)6 type (R Inline graphic c; Schwendtner & Kolitsch, 2018a ) and the triclinic (NH4)Fe(HPO4)2 type (P Inline graphic; Yakubovich, 1993). The fundamental building unit in all these structure types contains M 3+O6 octa­hedra, which are connected via their six corners to six protonated AsO4 tetra­hedra, thereby forming an M 3+As6O24 unit. These units are in turn connected via three corners to other M 3+O6 octa­hedra. The free, protonated corner of each AsO4 tetra­hedron forms a medium-to-strong hydrogen bond (Table 1) to the neighbouring M 3+As6O24 group (Fig. 2 a,b). The M 3+As6O24 units are arranged in layers perpendicular to the c hex axis (Fig. 1). The units within these layers are held together by medium–strong hydrogen bonds (Table 2). Nearly all of the representatives of these closely related structure types show pseudo-hexa­gonal to pseudo-octa­hedral crystal habits. In line with this observation, CsGa(HAsO4)2 forms tiny pseudo-hexa­gonal platelets.

Figure 1.

Figure 1

General outline of the crystal structure of CsGa(HAsO4)2 viewed along a. Only the main AsO4 tetra­hedra are shown (the AsB-centred tetra­hedra are omitted for clarity). Hydrogen bonds are shown as blue dotted lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H⋯O3iii 0.81 (4) 1.78 (4) 2.589 (5) 175 (6)

Symmetry code: (iii) Inline graphic.

Figure 2.

Figure 2

Detailed view of the different layers in the structure of CsGa(HAsO4)2. The alternative AsBO4 tetra­hedra, the alternative hydrogen bonds and OB atoms are shown in transparent mode. (a) The layer showing the Ga1As6O24 group including the alternative AsBO4 tetra­hedra. (b) The layer showing the Ga2As6O24 group including the alternative AsBO4 tetra­hedra and the strongly overbonded Cs2 atom in its void.

Table 2. Selected bond lengths (Å).

Cs1—O4 (6×) 3.338 (3) As—O1 1.659 (3)
Cs1—O2 (6×) 3.451 (3) As—O2 1.667 (3)
Cs2—O4 (3×) 3.014 (3) As—O3 1.691 (3)
Cs2—O1 (3×) 3.445 (3) As—O4 1.740 (3)
Cs2—O4 (3×) 3.459 (3) AsB—O1 1.625 (7)
Cs2—O3 (3×) 3.516 (3) AsB—O3B 1.66 (6)
Ga1—O2 (3×) 1.958 (3) AsB—O4B i 1.69 (6)
Ga1—O3 (3×) 1.982 (3) AsB—O2B ii 1.76 (7)
Ga2—O1 (6×) 1.967 (3)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The two Cs atoms in the framework voids are 12-coordi­nated. While the average Cs1—O bond length, 3.395 Å, is slightly longer than the grand mean average of 3.377 Å (Gagné & Hawthorne, 2016), it fits the low bond-valence sum (BVS) of 0.84 valence units (v.u.) which was calculated with the bond-valence parameters of Gagné & Hawthorne (2015). In contrast, the average Cs2—O bond length is slightly shorter (3.359 Å) and the individual Cs2—O bond lengths (Table 2) show a much wider bond-length range, resulting in a much too high bond-valence sum of 1.38 v.u. This is mainly caused by four very short Cs2—O bond lengths of only 3.014 Å, although even shorter Cs—O bond lengths, as low as 2.910 Å, have been reported for 12-coordinated Cs+ cations (Gagné & Hawthorne, 2016).

The Ga atoms at the centre of the two GaO6 octa­hedra are also slightly overbonded with BVSs of 3.05 and 3.07 v.u., and average Ga—O bond lengths of 1.970 and 1.967 Å for Ga1 and Ga2, respectively. These values are somewhat shorter than the grand mean average for six-coordinated Ga of 1.978 Å (Gagné & Hawthorne, 2018). The AsO4 tetra­hedra show the typical bond-length geometry of HAsO4 groups with three short and one long As—O bond. The average As—O bond length (1.689 Å) is very close to the observed average of HAsO4 groups (1.687 Å; Schwendtner & Kolitsch, 2019), but the As—O bond length to the protonated O4 atom (1.740 Å, Table 2) is notably longer than the average of 1.728 Å for As—OH bonds in singly protonated AsO4 groups (Schwendtner & Kolitsch, 2019). The BVS for the As atom is close to ideal with 4.98 v.u. All its O ligands are underbonded to a varying degree, with BVSs ranging from 1.39 v.u. for O4 to 1.92 v.u. for O1.

The As atom is characterized by a split position. The AsB site, 1.27 Å away from the main As position, has a refined occupancy of about 5%. The AsB site shares one apical ligand (O1) with the main AsO4 tetra­hedron and has three additional low-occupancy O atoms (O2B, O3B and O4B) as remaining ligands. The split position can roughly be explained by a mirror plane in (110). The average AsB—O bond length of 1.684 Å is slightly shorter than the corresponding value of the main AsO4 tetra­hedron (1.689 Å), and the AsB—O bonds also show a wider bond-length range (Table 2). The calculated BVS for the AsB site (5.09 v.u.) is reasonable considering the high estimated uncertainty of this value in view of the relatively large positional and bond-length errors for the AsB site (Table 2).

Synthesis and crystallization  

Small pseudo-hexa­gonal colorless platelets of CsGa(HAsO4)2 were prepared hydro­thermally (T = 493 K, 7 d) in a Teflon-lined stainless steel autoclave from a mixture of Cs2CO3, Ga2O3 (approximate molar ratio Cs:Ga of 1:1), arsenic acid and distilled water. Enough arsenic acid was added to keep the pH between about 1.5 and 0.5. The Teflon cylinders were filled with distilled water up to approximately 80% of their inner volume. Initial and final pH values were about 1.5 and 1, respectively. The platelets were accompanied by large colourless glassy prisms of CsGa(H2AsO4)(H1.5AsO4)2 (Schwendtner & Kolitsch, 2005), which made up about 80% of the reaction products.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula CsGa(HAsO4)2
M r 482.49
Crystal system, space group Trigonal, R32:H
Temperature (K) 293
a, c (Å) 8.481 (1), 27.050 (5)
V3) 1685.0 (5)
Z 9
Radiation type Mo Kα
μ (mm−1) 17.24
Crystal size (mm) 0.03 × 0.03 × 0.01
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003)
T min, T max 0.626, 0.846
No. of measured, independent and observed [I > 2σ(I)] reflections 2738, 1375, 1283
R int 0.018
(sin θ/λ)max−1) 0.757
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.019, 0.042, 1.07
No. of reflections 1375
No. of parameters 76
No. of restraints 2
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.72, −0.74
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.46 (2)

Computer programs: COLLECT (Nonius, 2003), HKL DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publCIF (Westrip, 2010).

The refinement of CsGa(HAsO4)2 revealed a considerable residual electron-density peak of 5.1 e Å−3 1.27 Å away from As and 1.62 Å away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore was assumed to be an alternative flipped As position (sharing the same O1 atom), similar to what was encountered in related TlAl(HAsO4) and CsIn(HAsO4)2 (R Inline graphic c type; Schwendtner & Kolitsch, 2017b , 2018e ). An inclusion of the alternative position led to a considerable drop in the conventional R factor and weight parameters and the highest residual electron densities also decreased considerably. Three electron-density peaks between 1.15 and 1.19 e Å−3 close to this AsB position could be attributed to the O ligands of this flipped AsO4 tetra­hedra and, after including them into the structure model, the conventional R factor dropped from 3.5 to 1.99%. The remaining highest residual electron densities of 0.72 and −0.74 e Å−3 are located close to the Cs positions. The occupancy of the alternative As position (Fig. 2) refined to about 5%, while the independently refined occupancy of the main As position was about 95%. For the final refinement, the displacement parameters of the AsB, O2B, O3B and O4B sites were restrained to be the same as that of the main AsO4 tetra­hedron position, and the occupancy sums of both tetra­hedra were restrained to give a total occupancy of 1.00. The structure was refined as inversion twin with a Flack parameter of 0.46 (2).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019002081/vn2142sup1.cif

e-75-00346-sup1.cif (113.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002081/vn2142Isup2.hkl

e-75-00346-Isup2.hkl (112.4KB, hkl)

CCDC reference: 1895785

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

supplementary crystallographic information

Crystal data

CsGa(HAsO4)2 Dx = 4.279 Mg m3
Mr = 482.49 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32:H Cell parameters from 1370 reflections
a = 8.481 (1) Å θ = 2.3–32.5°
c = 27.050 (5) Å µ = 17.24 mm1
V = 1685.0 (5) Å3 T = 293 K
Z = 9 Tiny hexagonal platelets, colourless
F(000) = 1962 0.03 × 0.03 × 0.01 mm

Data collection

Nonius KappaCCD single-crystal four-circle diffractometer 1283 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.018
φ and ω scans θmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) h = −12→12
Tmin = 0.626, Tmax = 0.846 k = −10→10
2738 measured reflections l = −40→40
1375 independent reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0194P)2 + 2.6152P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.72 e Å3
1375 reflections Δρmin = −0.74 e Å3
76 parameters Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.00041 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Refined as an inversion twin
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.46 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.2225 (4) 0.1039 (5) 0.04039 (9) 0.0161 (5)
Cs1 0.333333 0.666667 0.166667 0.02717 (16)
Cs2 0.333333 0.666667 0.00046 (2) 0.02105 (12)
Ga1 0.000000 0.000000 0.17439 (2) 0.00792 (13)
Ga2 0.000000 0.000000 0.000000 0.00791 (17)
As 0.29653 (6) 0.22380 (6) 0.09219 (2) 0.00852 (10) 0.9461 (12)
O2 0.1465 (4) 0.2152 (5) 0.13347 (13) 0.0110 (6) 0.9461 (12)
O3 0.4566 (4) 0.1811 (5) 0.11541 (11) 0.0110 (5) 0.9461 (12)
O4 0.4135 (4) 0.4521 (4) 0.07510 (12) 0.0151 (5) 0.9461 (12)
AsB 0.2984 (10) 0.0710 (10) 0.0923 (3) 0.00852 (10) 0.0540 (12)
O2B 0.081 (9) 0.213 (10) 0.134 (2) 0.0110 (6) 0.0540 (12)
O3B 0.457 (7) 0.265 (8) 0.117 (2) 0.0110 (5) 0.0540 (12)
O4B 0.549 (8) 0.587 (7) 0.077 (2) 0.0151 (5) 0.0540 (12)
H 0.510 (7) 0.474 (8) 0.0874 (17) 0.017 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0123 (12) 0.0253 (16) 0.0101 (11) 0.0090 (14) −0.0040 (9) −0.0056 (13)
Cs1 0.0313 (2) 0.0313 (2) 0.0188 (3) 0.01567 (12) 0.000 0.000
Cs2 0.02470 (15) 0.02470 (15) 0.01374 (19) 0.01235 (8) 0.000 0.000
Ga1 0.00859 (18) 0.00859 (18) 0.0066 (3) 0.00430 (9) 0.000 0.000
Ga2 0.0088 (3) 0.0088 (3) 0.0062 (4) 0.00438 (13) 0.000 0.000
As 0.00777 (17) 0.01075 (19) 0.00680 (16) 0.00446 (15) −0.00031 (14) 0.00020 (14)
O2 0.0107 (14) 0.0127 (13) 0.0097 (12) 0.0060 (13) 0.0045 (11) 0.0008 (10)
O3 0.0110 (13) 0.0138 (14) 0.0104 (12) 0.0078 (10) −0.0029 (11) −0.0029 (11)
O4 0.0103 (14) 0.0123 (14) 0.0207 (14) 0.0042 (12) −0.0013 (12) 0.0052 (12)
AsB 0.00777 (17) 0.01075 (19) 0.00680 (16) 0.00446 (15) −0.00031 (14) 0.00020 (14)
O2B 0.0107 (14) 0.0127 (13) 0.0097 (12) 0.0060 (13) 0.0045 (11) 0.0008 (10)
O3B 0.0110 (13) 0.0138 (14) 0.0104 (12) 0.0078 (10) −0.0029 (11) −0.0029 (11)
O4B 0.0103 (14) 0.0123 (14) 0.0207 (14) 0.0042 (12) −0.0013 (12) 0.0052 (12)

Geometric parameters (Å, º)

O1—AsB 1.625 (7) Ga1—O3iv 1.982 (3)
O1—As 1.659 (3) Ga1—O3xi 1.982 (3)
O1—Ga2 1.967 (3) Ga1—O3xii 1.982 (3)
O1—Cs2i 3.445 (3) As—O2 1.667 (3)
Cs1—O4 3.338 (3) As—O3 1.691 (3)
Cs1—O4ii 3.338 (3) As—O4 1.740 (3)
Cs1—O4iii 3.338 (3) As—H 1.99 (6)
Cs1—O4iv 3.338 (3) O4—H 0.81 (4)
Cs1—O4v 3.338 (3) AsB—O3B 1.66 (6)
Cs1—O4vi 3.338 (3) AsB—O4Bxiii 1.69 (6)
Cs1—O2iv 3.451 (3) AsB—O2Bx 1.76 (7)
Cs1—O2ii 3.451 (3) O4B—H 0.88 (7)
Cs1—O2 3.451 (3) Cs1—O4 (6x) 3.338 (3)
Cs1—O2iii 3.451 (3) Cs1—O2 (6x) 3.451 (3)
Cs1—O2v 3.451 (3) Cs2—O4 (3x) 3.014 (3)
Cs1—O2vi 3.451 (3) Cs2—O1 (3x) 3.445 (3)
Cs1—H 3.46 (5) Cs2—O4 (3x) 3.459 (3)
Cs2—O4iii 3.014 (3) Cs2—O3 (3x) 3.516 (3)
Cs2—O4ii 3.014 (3) Ga1—O2 (3x) 1.958 (3)
Cs2—O4 3.014 (3) Ga1—O3 (3x) 1.982 (3)
Cs2—O4vii 3.459 (3) Ga2—O1 (6x) 1.967 (3)
Cs2—O4viii 3.459 (3) As—O1 1.659 (3)
Cs2—O4i 3.459 (3) As—O2 1.667 (3)
Cs2—O3i 3.516 (3) As—O3 1.691 (3)
Cs2—O3vii 3.516 (3) As—O4 1.740 (3)
Cs2—O3viii 3.516 (3) AsB—O1 1.625 (7)
Ga1—O2ix 1.958 (3) AsB—O3B 1.66 (6)
Ga1—O2 1.958 (3) AsB—O4Bxiii 1.69 (6)
Ga1—O2x 1.958 (3) AsB—O2Bx 1.76 (7)
As—O1—Ga2 136.69 (19) O1vii—Cs2—O4i 124.15 (7)
AsB—O1—Cs2i 87.7 (3) O1i—Cs2—O4i 46.56 (8)
As—O1—Cs2i 87.31 (11) O1viii—Cs2—O4i 63.74 (8)
Ga2—O1—Cs2i 127.46 (10) O4vii—Cs2—O4i 88.64 (8)
O4—Cs1—O4ii 70.99 (9) O4viii—Cs2—O4i 88.64 (8)
O4—Cs1—O4iii 70.99 (9) O4iii—Cs2—O3i 159.00 (8)
O4ii—Cs1—O4iii 70.99 (9) O4ii—Cs2—O3i 115.45 (8)
O4—Cs1—O4iv 99.40 (11) O4—Cs2—O3i 115.32 (8)
O4ii—Cs1—O4iv 123.13 (11) O1vii—Cs2—O3i 80.58 (7)
O4iii—Cs1—O4iv 160.35 (10) O1i—Cs2—O3i 45.29 (7)
O4—Cs1—O4v 123.13 (11) O1viii—Cs2—O3i 90.53 (7)
O4ii—Cs1—O4v 160.35 (10) O4vii—Cs2—O3i 43.57 (8)
O4iii—Cs1—O4v 99.40 (11) O4viii—Cs2—O3i 80.71 (8)
O4iv—Cs1—O4v 70.99 (9) O4i—Cs2—O3i 46.05 (8)
O4—Cs1—O4vi 160.35 (10) O4iii—Cs2—O3vii 115.45 (8)
O4ii—Cs1—O4vi 99.40 (11) O4ii—Cs2—O3vii 115.32 (8)
O4iii—Cs1—O4vi 123.13 (11) O4—Cs2—O3vii 159.00 (8)
O4iv—Cs1—O4vi 70.99 (9) O1vii—Cs2—O3vii 45.29 (7)
O4v—Cs1—O4vi 70.99 (9) O1i—Cs2—O3vii 90.53 (7)
O4—Cs1—O2iv 63.50 (8) O1viii—Cs2—O3vii 80.58 (7)
O4ii—Cs1—O2iv 126.94 (7) O4vii—Cs2—O3vii 46.05 (8)
O4iii—Cs1—O2iv 115.11 (8) O4viii—Cs2—O3vii 43.57 (8)
O4iv—Cs1—O2iv 46.21 (8) O4i—Cs2—O3vii 80.71 (8)
O4v—Cs1—O2iv 72.50 (8) O3i—Cs2—O3vii 46.22 (9)
O4vi—Cs1—O2iv 114.43 (8) O4iii—Cs2—O3viii 115.32 (8)
O4—Cs1—O2ii 114.43 (8) O4ii—Cs2—O3viii 159.00 (8)
O4ii—Cs1—O2ii 46.21 (8) O4—Cs2—O3viii 115.45 (8)
O4iii—Cs1—O2ii 72.51 (8) O1vii—Cs2—O3viii 90.53 (7)
O4iv—Cs1—O2ii 126.94 (8) O1i—Cs2—O3viii 80.58 (7)
O4v—Cs1—O2ii 115.11 (8) O1viii—Cs2—O3viii 45.29 (7)
O4vi—Cs1—O2ii 63.50 (8) O4vii—Cs2—O3viii 80.71 (8)
O2iv—Cs1—O2ii 169.02 (11) O4viii—Cs2—O3viii 46.05 (8)
O4—Cs1—O2 46.21 (8) O4i—Cs2—O3viii 43.57 (8)
O4ii—Cs1—O2 72.50 (8) O3i—Cs2—O3viii 46.22 (9)
O4iii—Cs1—O2 114.43 (8) O3vii—Cs2—O3viii 46.22 (9)
O4iv—Cs1—O2 63.50 (8) O2ix—Ga1—O2 91.18 (14)
O4v—Cs1—O2 126.94 (7) O2ix—Ga1—O2x 91.18 (14)
O4vi—Cs1—O2 115.11 (8) O2—Ga1—O2x 91.18 (14)
O2iv—Cs1—O2 56.73 (11) O2ix—Ga1—O3iv 176.98 (13)
O2ii—Cs1—O2 113.48 (5) O2—Ga1—O3iv 91.84 (14)
O4—Cs1—O2iii 72.50 (8) O2x—Ga1—O3iv 88.69 (14)
O4ii—Cs1—O2iii 114.43 (8) O2ix—Ga1—O3xi 88.69 (14)
O4iii—Cs1—O2iii 46.21 (8) O2—Ga1—O3xi 176.98 (13)
O4iv—Cs1—O2iii 115.11 (8) O2x—Ga1—O3xi 91.84 (14)
O4v—Cs1—O2iii 63.50 (9) O3iv—Ga1—O3xi 88.30 (14)
O4vi—Cs1—O2iii 126.94 (8) O2ix—Ga1—O3xii 91.84 (14)
O2iv—Cs1—O2iii 76.70 (11) O2—Ga1—O3xii 88.69 (14)
O2ii—Cs1—O2iii 113.48 (5) O2x—Ga1—O3xii 176.98 (13)
O2—Cs1—O2iii 113.48 (5) O3iv—Ga1—O3xii 88.30 (14)
O4—Cs1—O2v 126.94 (8) O3xi—Ga1—O3xii 88.30 (14)
O4ii—Cs1—O2v 115.11 (8) O2ix—Ga1—Cs2xiv 124.43 (10)
O4iii—Cs1—O2v 63.50 (9) O2—Ga1—Cs2xiv 124.43 (10)
O4iv—Cs1—O2v 114.43 (8) O2x—Ga1—Cs2xiv 124.43 (10)
O4v—Cs1—O2v 46.21 (8) O3iv—Ga1—Cs2xiv 53.54 (10)
O4vi—Cs1—O2v 72.50 (8) O3xi—Ga1—Cs2xiv 53.54 (10)
O2iv—Cs1—O2v 113.48 (5) O3xii—Ga1—Cs2xiv 53.54 (10)
O2ii—Cs1—O2v 76.70 (11) O1—Ga2—O1xv 176.3 (2)
O2—Cs1—O2v 169.02 (11) O1—Ga2—O1ix 92.14 (11)
O2iii—Cs1—O2v 56.74 (11) O1xv—Ga2—O1ix 90.55 (19)
O4—Cs1—O2vi 115.11 (8) O1—Ga2—O1xvi 85.29 (19)
O4ii—Cs1—O2vi 63.50 (8) O1xv—Ga2—O1xvi 92.13 (11)
O4iii—Cs1—O2vi 126.94 (7) O1ix—Ga2—O1xvi 176.3 (2)
O4iv—Cs1—O2vi 72.50 (8) O1—Ga2—O1x 92.14 (11)
O4v—Cs1—O2vi 114.43 (8) O1xv—Ga2—O1x 85.29 (19)
O4vi—Cs1—O2vi 46.21 (8) O1ix—Ga2—O1x 92.13 (11)
O2iv—Cs1—O2vi 113.48 (5) O1xvi—Ga2—O1x 90.55 (19)
O2ii—Cs1—O2vi 56.73 (11) O1—Ga2—O1i 90.55 (19)
O2—Cs1—O2vi 76.70 (11) O1xv—Ga2—O1i 92.13 (11)
O2iii—Cs1—O2vi 169.02 (11) O1ix—Ga2—O1i 85.29 (19)
O2v—Cs1—O2vi 113.48 (5) O1xvi—Ga2—O1i 92.13 (11)
O4—Cs1—H 13.6 (7) O1x—Ga2—O1i 176.3 (2)
O4ii—Cs1—H 84.3 (7) O1—As—O2 119.51 (15)
O4iii—Cs1—H 71.9 (10) O1—As—O3 106.29 (15)
O4iv—Cs1—H 94.7 (9) O2—As—O3 114.75 (17)
O4v—Cs1—H 109.6 (7) O1—As—O4 106.75 (16)
O4vi—Cs1—H 164.9 (10) O2—As—O4 102.97 (16)
O2iv—Cs1—H 53.6 (8) O3—As—O4 105.36 (17)
O2ii—Cs1—H 126.1 (7) O1—As—Cs2i 66.48 (10)
O2—Cs1—H 51.8 (10) O2—As—Cs2i 169.73 (12)
O2iii—Cs1—H 62.9 (9) O3—As—Cs2i 68.86 (11)
O2v—Cs1—H 119.3 (10) O4—As—Cs2i 66.81 (11)
O2vi—Cs1—H 126.0 (9) O1—As—Cs1 143.32 (12)
O4iii—Cs2—O4ii 80.04 (10) O2—As—Cs1 54.72 (12)
O4iii—Cs2—O4 80.04 (10) O3—As—Cs1 108.02 (11)
O4ii—Cs2—O4 80.04 (10) O4—As—Cs1 51.41 (11)
O4iii—Cs2—O1vii 90.97 (8) Cs2i—As—Cs1 115.260 (12)
O4ii—Cs2—O1vii 74.30 (8) O1—As—H 117.5 (13)
O4—Cs2—O1vii 153.94 (8) O2—As—H 110.9 (13)
O4iii—Cs2—O1i 153.94 (8) O3—As—H 81.6 (12)
O4ii—Cs2—O1i 90.97 (8) O4—As—H 24.0 (12)
O4—Cs2—O1i 74.30 (8) Cs2i—As—H 59.4 (13)
O1vii—Cs2—O1i 110.22 (4) Cs1—As—H 56.4 (13)
O4iii—Cs2—O1viii 74.30 (8) As—O2—Ga1 122.30 (19)
O4ii—Cs2—O1viii 153.94 (8) As—O2—Cs1 102.06 (14)
O4—Cs2—O1viii 90.97 (8) Ga1—O2—Cs1 127.77 (14)
O1vii—Cs2—O1viii 110.22 (4) As—O3—Ga1xvii 129.62 (19)
O1i—Cs2—O1viii 110.22 (4) As—O3—Cs2i 84.49 (12)
O4iii—Cs2—O4vii 136.20 (4) Ga1xvii—O3—Cs2i 99.51 (12)
O4ii—Cs2—O4vii 78.31 (9) As—O4—Cs2 132.43 (15)
O4—Cs2—O4vii 131.91 (5) As—O4—Cs1 104.56 (13)
O1vii—Cs2—O4vii 46.56 (8) Cs2—O4—Cs1 89.95 (9)
O1i—Cs2—O4vii 63.74 (8) As—O4—Cs2i 85.66 (12)
O1viii—Cs2—O4vii 124.15 (7) Cs2—O4—Cs2i 98.06 (9)
O4iii—Cs2—O4viii 78.31 (9) Cs1—O4—Cs2i 157.27 (10)
O4ii—Cs2—O4viii 131.91 (5) As—O4—H 96 (4)
O4—Cs2—O4viii 136.20 (4) Cs2—O4—H 130 (4)
O1vii—Cs2—O4viii 63.74 (8) Cs1—O4—H 92 (3)
O1i—Cs2—O4viii 124.15 (7) Cs2i—O4—H 67 (3)
O1viii—Cs2—O4viii 46.56 (8) O1—AsB—O3B 112 (2)
O4vii—Cs2—O4viii 88.64 (8) O1—AsB—O4Bxiii 105.6 (18)
O4iii—Cs2—O4i 131.91 (5) O3B—AsB—O4Bxiii 104 (3)
O4ii—Cs2—O4i 136.20 (4) O1—AsB—O2Bx 116 (2)
O4—Cs2—O4i 78.32 (9) AsBxviii—O4B—H 105 (6)

Symmetry codes: (i) y, x, −z; (ii) −x+y, −x+1, z; (iii) −y+1, xy+1, z; (iv) −x+2/3, −x+y+1/3, −z+1/3; (v) xy+2/3, −y+4/3, −z+1/3; (vi) y−1/3, x+1/3, −z+1/3; (vii) xy, −y+1, −z; (viii) −x+1, −x+y+1, −z; (ix) −y, xy, z; (x) −x+y, −x, z; (xi) y−1/3, x−2/3, −z+1/3; (xii) xy−1/3, −y+1/3, −z+1/3; (xiii) −y+1, xy, z; (xiv) x−1/3, y−2/3, z+1/3; (xv) −x, −x+y, −z; (xvi) xy, −y, −z; (xvii) y+2/3, x+1/3, −z+1/3; (xviii) −x+y+1, −x+1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H···O3xviii 0.81 (4) 1.78 (4) 2.589 (5) 175 (6)

Symmetry code: (xviii) −x+y+1, −x+1, z.

Funding Statement

This work was funded by Austrian Academy of Sciences grant Doc fForte Fellowship to K. Schwendtner.

References

  1. Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335–1340.
  2. Brandenburg, K. (2005). DIAMOND. Bonn, Germany.
  3. Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.
  4. Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. [DOI] [PMC free article] [PubMed]
  5. Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. [DOI] [PMC free article] [PubMed]
  6. Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.
  7. Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208.
  8. Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.
  9. Lin, K.-J. & Lii, K.-H. (1996). Chem. Commun. pp. 1137–1138.
  10. Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the, 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey, Fort Monmouth, NJ: US Army Research Laboratory.
  11. Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
  13. Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.
  14. Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.
  15. Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63.
  16. Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83. [DOI] [PubMed]
  17. Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. [DOI] [PubMed]
  18. Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. [DOI] [PubMed]
  19. Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. [DOI] [PubMed]
  20. Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.
  21. Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608. [DOI] [PubMed]
  22. Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586. [DOI] [PMC free article] [PubMed]
  23. Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721–727. [DOI] [PubMed]
  24. Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771. [DOI] [PMC free article] [PubMed]
  25. Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249. [DOI] [PMC free article] [PubMed]
  26. Schwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163–1167. [DOI] [PMC free article] [PubMed]
  27. Schwendtner, K. & Kolitsch, U. (2018e). Acta Cryst. E74, 1504–1508. [DOI] [PMC free article] [PubMed]
  28. Schwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C. Submitted.
  29. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  30. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  31. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  32. Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.
  33. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  34. Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019002081/vn2142sup1.cif

e-75-00346-sup1.cif (113.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002081/vn2142Isup2.hkl

e-75-00346-Isup2.hkl (112.4KB, hkl)

CCDC reference: 1895785

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES