Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 8;75(Pt 3):332–337. doi: 10.1107/S2056989019002056

Crystal structures of two nickel(II) macrocyclic salts: (5,7,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) bis­(perchlorate) monohydrate and (5,7,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) dibromide trihydrate

Peter W R Corfield a,*, Virgil L Goedken b,
PMCID: PMC6399696  PMID: 30867943

The crystal structure of the perchlorate salt of a cis-hexa­methyl-substituted Ni-14 macrocycle contains two diastereomeric macrocyclic cations in the asymmetric unit, one with two NH protons on each side of the cation, and the other with all four NH protons on the same side. The latter diastereomer is also found in the crystal structure of a bromide trihydrate salt of the same Ni-14 macrocycle.

Keywords: crystal structure, nickel, macrocycle, cyclam, diasteriomers

Abstract

The crystal structure of the Ni-14 macrocycle salt, (5,7,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) bis­(perchlorate) hemihydrate, [Ni(C16H36N4)]2(ClO4)4·H2O, contains two different diasteriomeric macrocyclic cations in the asymmetric unit, one with two NH protons on each side of the cation (Ia), and the other with all four NH protons on the same side (Ib). The crystal structure of the bromide trihydrate salt of the same Ni-14 macrocyclic cation, namely (5,7,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) dibromide trihydrate, [Ni(C16H36N4)]Br2·3H2O (II), contains only the same diastereomer as Ib, with the four N—H bonds on the same side. The geometry around the Ni atom differs slightly between the two diastereomeric cations, as the mean Ni—N distance in Ia is 1.952 (2) Å, while that for Ib and II is 1.928 (2) Å. The hexa­methyl substitution in all three macrocyclic cations has the two dimethyl-substituted C atoms cis to one another, different from the trans 5,5,7,12,12,14-hexa­methyl Ni-14 cations found in all but one of the many published crystal structures of hexa­methyl Ni-14 macrocycles. In each of the two crystal structures, the anions, water mol­ecules, and N—H protons of the macrocyclic cations form extensive hydrogen-bonded zigzag chains propagating along [001] in I and [010] in II.

Chemical context  

Reports of the formation of cyclic Schiff base–amine complexes of Ni by condensation of acetone with tris­(ethyl­enedi­amine)­nickel(II) salts and their reduction to 14-membered macrocyclic tetra­amine complexes (Curtis, 1960, 1964) led to extensive research on these and similar complexes in the 1960s and 1970s in the hope of using such metal-template reactions in chemical synthesis and of understanding the role of macrocyclic ligands in metalloproteins such as hemoglobin. Their chemical inertness enables chemical reactions of the ligand without losing stereochemistry of the N atoms (Busch, 1978) and allows characterization of numerous possible isomers (Warner & Busch, 1969). Crystal structures of isomers of the macrocyclic nickel complexes continue to appear (e.g. Shi et al., 2010; Curtis et al., 2016). The major product of the condensation referred to above is a 5,5,7,12,12,14-hexa­methyl-1,4,8,11,tetraaza­cyclo­tetra­deca-4,14-dienenickel(II) ion, where the dimethyl-substituted C atoms are trans to each other, and most chemical and structural studies have been concerned with these compounds and their oxidized or reduced species. The 5,7,7,12,12,14-hexa­methyl-1,4,8,11,tetra­aza­cyclo­tetra­deca­nenickel(II) com­pounds presented here, abbreviated as cis-[Nime6cyclam]2+, where the dimethyl-substituted C atoms are cis to one another, are derived from the minor product of the condensation, which has received less attention.graphic file with name e-75-00332-scheme1.jpg

Structural commentary  

Compound I crystallizes as a double salt, containing two independent cis-[Nime6cyclam]2+ cations, with structures Ia and Ib in the scheme, four ClO4 anions, and one water of hydration in the asymmetric unit. Compound II crystallizes as a trihydrate built from cis-[Nime6cyclam]2+ cations, with structure II in the scheme, two Br anions and three water mol­ecules. The configurations of cations Ib and II are the same. Figs. 1–3 display the cations, anions, and packing diagram for compound I, while Figs. 4–6 give the cation, packing diagram and proposed hydrogen-bonding network for II.

Figure 1.

Figure 1

The [Nime6cyclam]2+ cations in the asymmetric unit of the double salt I. Displacement ellipsoids are drawn at the 50% probability level. The cation centered on Ni1 is structure Ia in the text, and the other cation is Ib.

Figure 2.

Figure 2

The perchlorate anions and water mol­ecule in the asymmetric unit of double salt I, showing their relationship with the cations, and hydrogen bonds formed. The disordered ClO4 (2) anion does not appear to form any hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

Projection down the a axis for the double salt, I, showing the hydrogen-bonded network extending along the c-axis direction. Ions and the water mol­ecule in the asymmetric unit are in bold.

Figure 4.

Figure 4

The [Nime6cyclam]2+cation in the macrocycle bromide salt II. Displacement ellipsoids are at the 50% probability level.

Figure 5.

Figure 5

Projection down the c axis for the macrocycle bromide salt II. The asymmetric unit is in bold. Bromide ions are green, and water mol­ecules red.

Figure 6.

Figure 6

Details of the proposed hydrogen-bond network for the macrocycle bromide salt II. Displacement ellipsoids are at the 50% probability level, with anions and solvent in the asymmetric unit drawn in bold. Bromide ions are green, and water O atoms red. Putative hydrogen bonds involving water mol­ecules for which protons were not found are in cyan while other hydrogen bonds are black. Water O atoms and Br1 at the top of the figure are related to the corresponding atoms at the bottom via the translation vector (0, ½, −½).

In each cation, the nickel atom is in square-planar coord­in­ation to the macrocycle, with the Ni and four N atoms in a close to planar arrangement. All six-membered chelate rings are in the chair form, and all singly substituted methyl groups are in the equatorial position. In the reference mol­ecule for Ia there are two NH atoms above and two below the N4 plane, designated as uudd, in an RRSS configuration, whereas cations Ib and II are diastereomers of Ia, with all four NH atoms lying on the same side of the mol­ecule, uuuu, and the N atoms in an RSRS configuration. Cation Ia is roughly planar in overall shape, whereas the N—H geometry in Ib and II makes the cations in these structures more bowl shaped. The configurational differences at N appear to affect the Ni—N bond lengths slightly: the mean Ni—N distance in Ia is 1.952 (2) Å while that for Ib and II is 1.928 (2) Å.

The conformations of the five-membered chelate rings in the reference cations shown in the scheme are λ on the left and δ on the right for Ia, and λ on the right and δ on the left for Ib and II. (Mirror-related cations are present in both crystals.) The twists of these five-membered rings necessarily differentiate between the top and bottom six-membered chelate rings in Ib and II, whereas this is not the case in Ia. In diastereomers Ib and II, the top plane (N4, C5, C7, N8) is bent at a less steep angle to the NiN4 coordination plane than the bottom plane (N11, C12, C14, N1) (add 20 to atom numbers for structure Ib) and the outer C atoms C6 and C13 are at widely different distances from the NiN4 plane. Thus in Ib and II, the angles between the NiN4 plane and the N2C2 plane of the top chelate ring are 29.6 (1) and 31.7 (3)°, respectively, while corresponding angles for the bottom rings are 52.7 (2) and 57.1 (2)°. The top outer carbon C6 is 0.317 (6) Å from the N4 plane in Ib and 0.407 (10) Å in II, while the corresponding distances for the bottom outer atom C13 are respectively 1.176 (5) and 1.314 (11) Å. The Ni coordination geometry reflects this difference between the top and bottom of the mol­ecule, with the top N4—Ni—N8 angle opened out to 94.58 (12)° in Ib and 94.79 (19)° in II, compared with bottom angles N1—Ni—N11 of 88.72 (12) and 87.73 (19)°, respectively. The five-membered chelate ring angles at the Ni atom, N1—Ni—N4 and N8—Ni—N11, average 88.48 (16)° in these two structures.

Mol­ecule Ia is less-buckled, with angles between the N4 plane and central planes of the chelate chairs more nearly equal, at 27.6 (2)° for the top chair and 31.9 (2)° for the bottom, and outer C atom distances from the N4 plane of 0.250 (6) Å for C6 at the top, and −0.389 (6) for C13 at the bottom. The Ni coordination plane is more nearly symmetrical, with six-membered chelate angles N4—Ni1—N8 of 93.49 (14)° (top) and N1—Ni1—N11 of 92.88 (13)° (bottom), and five-membered chelate angles averaging 86.87 (13)°, somewhat smaller than for Ib and II.

In both of the Ib and II cations, hydrogen bonding of an anion or of a solvent mol­ecule brings an O atom close to the axial direction of the Ni atom on the same side of the cation as the four NH bonds, though at distances too long to be regarded as due to Ni—O bonding. In Ib, perchlorate atom O31 is at 2.799 (3) Å from atom Ni2, while in II, water mol­ecule O1 is at 2.863 (10) Å from the Ni atom.

Supra­molecular features  

Details of hydrogen bonding are given in Tables 1 and 2. The N—H bonds in all three cations form hydrogen bonds; to water or perchlorate O atoms in I, and to water O atoms or Br ions in II.

Table 1. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O44 0.98 2.61 3.279 (9) 126
N4—H4⋯O14 0.98 2.02 2.941 (4) 157
N8—H8⋯OW 0.98 1.99 2.965 (5) 175
N11—H11⋯O43 0.98 2.11 3.028 (10) 155
N11—H11⋯O46 0.98 2.45 3.36 (3) 155
N21—H21⋯O13 0.98 2.14 3.093 (4) 165
N24—H24⋯O33 0.98 2.12 3.033 (5) 154
N28—H28⋯O45i 0.98 2.30 3.146 (16) 144
N31—H31⋯O12 0.98 2.16 3.083 (4) 156
OW—HW1⋯O41i 0.82 (1) 2.38 (2) 3.162 (11) 162 (5)
OW—HW1⋯O47i 0.82 (1) 2.37 (3) 3.139 (18) 157 (5)
OW—HW2⋯O12 0.82 (1) 2.45 (3) 3.181 (6) 149 (6)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br2 0.81 (6) 2.66 (6) 3.461 (5) 169 (6)
N4—H4⋯O1 0.80 (6) 2.80 (7) 3.283 (11) 121 (5)
N4—H4⋯O3 0.80 (6) 2.25 (6) 3.008 (13) 159 (6)
N8—H8⋯Br1 0.83 (6) 2.63 (6) 3.444 (5) 164 (5)
N11—H11⋯Br2 0.89 (6) 2.63 (6) 3.466 (4) 159 (5)

In the double salt I, hydrogen bonding between the cations, the four perchlorate ions ClO4 (1)–ClO4 (4) and the water mol­ecule form a one-dimensional network extending along the c-axis direction, as shown in Fig. 3. Three of the four O atoms in the relatively ordered ClO4 (1) anion link the two reference mol­ecules together by N—H⋯O hydrogen bonds. Neither of the alternative orientations for ClO4 (2) form any N—H⋯O or O—H⋯O H bonds. These disordered ions lie in a hydro­phobic cavity in the crystal structure, and may be held in position by C—H⋯O bonds. The relatively ordered ion ClO4 (3) is tethered by only one hydrogen bond, while each orientation for disordered ClO4 (4) is hydrogen bonded to the water mol­ecule and to either one or two N—H groups of the cations. The water mol­ecule is well stabilized in its position by three separate hydrogen bonds.

The cyclam cation in II forms hydrogen bonds to the Br ions via N1—H1, N8—H8 and N11—H11, while N4—H4 hydrogen-bonds to water mol­ecule O3. O3 appears to form rather short hydrogen bonds with water mol­ecules O1 and O2, as well as with O3 rotated by the crystallographic twofold axis at x = y = Inline graphic, with respective O⋯O distances of 2.671 (11), 2.635 (10) and 2.638 (12) Å. Exact details of the hydrogen-bonding network are not clear, as none of the water H atoms could be located with assurance (see Refinement section) However, distances O1⋯Br2 = 3.341 (9) Å, O2 ⋯ Br1 = 3.347 (9) Å, and O2 ⋯ Br2(x, y − Inline graphic, z + Inline graphic) = 3.332 (8) Å are consistent with water–bromide ion hydrogen bonding, which would give rise to the hydrogen-bonding network suggested in Fig. 6. Short ribbons along the (0, Inline graphic, −Inline graphic) direction linked to each other via presumed O3⋯O3 hydrogen bonds across the twofold axes lead to the formation of extended zigzag chains along the b-axis direction.

The shortest (C)H⋯(C)H distances are 2.61 Å in I, between H27F and H32B(x, Inline graphic − y, Inline graphic + z), with just four other contacts less than 2.70, and 2.47 Å in II, between H9B and H12E(Inline graphic − x, −Inline graphic + y, −Inline graphic + z), with five other contacts less than 2.70 Å.

Database survey  

A search in the Cambridge Structural Database (CSD, Version of 2017; Groom et al., 2016) for cis-[Nime6cyclam]2+ structures produced only one hit (TICCOX; Wang et al., 1996). This structure has a configuration with all NH atoms on the same side of the mol­ecule, or uuuu, with a configuration the same as that of the structures Ib and II in the present work. The sole other cis-cyclam structure of any kind has Cu as the chelated metal ion (HMTZCP; Ochiai et al., 1978), with a configuration the same as that of structure Ia.

Of 38 3D trans-[Nime6cyclam]2+structures found in the CSD, 26 have the NH configuration uudd of cation Ia in the present work, five have a udud configuration, and five have the NH configuration uuuu (or equivalently dddd), but with λλ or δδ conformations for the five-membered chelate rings, different from the conformations of Ib and II in the present work. In these 36 structures, there need be no difference between the geometries of the six-membered chelate rings, and indeed, minus a few exceptions, both N—Ni—N six-membered ring chelate angles are identical, with a mean of 93.2 (4)°. The last two trans structures [LIFYEG (Ou et al., 2013), NIBTET (Curtis et al., 1973)] have cations with the same conformation as in Ib and II, and with the same differentiation in six-membered ring N—Ni—N chelate angles as in the present work.

A search for structures where Ni2+ is coordinated solely by the unsubstituted cyclam ligand gave 20 hits. Of these, one had the RRRR configuration, or udud, with alternate NH atoms pointing upwards and downwards, while 19 had the RRSS configuration, or uudd, as in the present Ia structure, the more stable isomer according to Bosnich et al. (1965). None of these unsubstituted Ni-cyclam structures had the RSRS configuration, or uuuu, with all NH atoms on the same side of the mol­ecule, as in the present Ib and II structures. Presumably this particular configuration is stabilized by the methyl substituent groups.

Synthesis and crystallization  

The double salt I was prepared in Daryle H. Busch’s laboratories by methods described in Curtis (1967). The bromide salt II was prepared by a solution of I in methanol/KBr/HBr, precipitation with ether, and recrystallization from hot aqueous HBr.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

  I II
Crystal data
Chemical formula [Ni(C16H36N4)]2(ClO4)4·H2O [Ni(C16H36N4)]Br2·3H2O
M r 1102.21 557.06
Crystal system, space group Monoclinic, P21/c Orthorhombic, F d d2
Temperature (K) 295 295
a, b, c (Å) 8.906 (4), 29.412 (11), 19.505 (9) 60.3649 (18), 19.8364 (9), 7.9773 (3)
α, β, γ (°) 90, 107.030 (19), 90 90, 90, 90
V3) 4885 (4) 9552.2 (6)
Z 4 16
Radiation type Cu Kα Mo Kα
μ (mm−1) 3.60 4.17
Colour Orange Yellow
Crystal size (mm) 0.52 × 0.25 × 0.11 0.37 × 0.15 × 0.10
 
Data collection
Diffractometer Picker 4-circle Enraf–Nonius KappaCCD
Radiation source sealed X-ray tube fine-focus sealed tube
Absorption correction Gaussian (Busing & Levy, 1957) Part of the refinement model (ΔF) (SCALEPACK; Otwinowski & Minor, 1997)
T min, T max 0.454, 0.686 0.34, 0.67
No. of measured, independent and observed [I > 2σ(I)] reflections 7450, 6870, 4899 41142, 5382, 4897
R int 0.060 0.096
θmax (°) 58.4 27.5
(sin θ/λ)max−1) 0.552 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.109, 1.04 0.035, 0.085, 1.04
No. of reflections 6870 5382
No. of parameters 686 253
No. of restraints 184 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.31 0.88, −0.56

Data reduction followed procedures in Corfield et al. (1973). Structure solution was by the heavy-atom method with local programs. Computer programs: Corfield & Gainsford (1972), KappaCCD Server Software (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXL2017 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Data for I were collected at The Ohio State University many years ago. As was the custom then, reflection data were stored as F values, so that those reflections for which F 2 values were negative were stored with values of zero. During the preparation of this manuscript, we found that the original absorption correction had been carried out with an incorrect value for the absorption coefficient, μ. While correcting this problem, we converted the reflection data into the F 2 values used in the final refinements. Thermal parameters for the perchlorate O atoms in I are all large, indicating probable positional disorder, common for these anions. After extensive modeling attempts, ClO4 ions 1 and 3 were refined with an ordered model, while ClO4 ions 2 and 4 were refined in two alternative orientations, with 50% occupancy each and a common Cl atom in ClO4 (2), and occupancies of 65.0 (8)% and 35.0 (8)% and separate sites for the disordered Cl atoms in ClO4 (4). Initially, tight restraints on the ClO4 geometry were imposed, but these were relaxed during the final refinements. However, it proved useful to impose restraints on the thermal parameters for the O atoms with the Shelx RIGU command, and a DFIX command was used to prevent the too close approach of two O atoms from different perchlorate groups.

Crystal data for compound II, the bromide salt, were originally obtained with the same Picker four-circle diffractometer as used for compound I. (Three octa­nts merged to give 1916 observations; Gaussian absorption correction applied; R 1 = 0.026 for 1780 observed > 2σ, R 2 = 0.078, NV = 241, GOOF = 0.876, Δρ = −0.42 to +0.60 e Å−3.) We recollected data on the same crystal much later with the KappaCCD system at Fordham University to expand the data set and because some of the previous processing details had been lost. Refinements with the two sets of data gave very similar results, with no bond length or inter­ior bond angle differing by more than 2.0σ and average difference 0.7σ. Twinning by reflection about the (001) plane, perpendicular to the polar twofold axis in Fdd2, was indicated by the Flack parameter of 0.57 (2) as well as by the low value of 0.030 found for R merg if the observed I(hkl) and I(hk Inline graphic) intensities were merged, compared with 0.070 if the calculated intensities for an untwinned crystal were merged.

As noted in the section on Supra­molecular features, the water mol­ecules refined to positions rather close to one another. It was necessary to introduce anti-bumping restraints in the SHELXL refinements to avoid unreasonably short O⋯O contacts. Difference maps at the end of the least-squares refinements were dominated by features associated with the Br ions, and were uninformative regarding the positions of H atoms, even when calculated with only low-angle data. Thus, none of the H atoms on the water mol­ecules were located. Potential positions for some water H atoms could be derived from the presumed hydrogen-bonding pattern, but refinements including these atoms were inconclusive. We tried refining the SHELXL BASF factor to see if this improved the difference maps, obtaining BASF = 0.58 (2), with negligible changes in the difference map or R factors. Hence our final refinements assume equal contributions from each twin component. The close proximity of O3 to the crystallographic twofold axis suggests disorder of at least the H atoms on O3, and the large U eq value for O3 suggests probable disorder of the O3 atoms themselves. It was possible to generate two closely positioned sites for O3, but extensive efforts to refine a suitable disordered model for O3 did not improve the R factors, nor give more reasonable U eq values for the disordered O3 atoms, while difference maps from these refinements did not give any useful information either on water H atoms. In light of these factors, we have not reported a model with a disordered O3 atom.

In both compounds, H atoms on the cation were constrained to idealized positions, with C—H distances of 0.97 Å for the methyl­ene groups, 0.98 Å for the methine CH groups, and 0.96 Å for the methyl groups, while the U eq factors for these H atoms were set at 1.2 times the U iso of the bonded atoms for methyl­ene and methine groups, and 1.5 times for the methyl groups. All NH atoms were refined, with U eq values set at 1.2 times the U iso for their bonded N atom in I and 1.0 times U iso for II.

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989019002056/pk2613sup1.cif

e-75-00332-sup1.cif (556.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002056/pk2613Isup2.hkl

e-75-00332-Isup2.hkl (376.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019002056/pk2613IIsup3.hkl

e-75-00332-IIsup3.hkl (295.3KB, hkl)

CCDC references: 1895686, 1895685

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are extremely grateful for the support and encouragement of Daryle H. Busch and for the assistance of Graeme J. Gainsford at The Ohio State University, where much of the experimental work was carried out. We are also grateful to the Office of the Dean at Fordham University for its generous financial support.

supplementary crystallographic information

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I). Crystal data

[Ni(C16H36N4)]2(ClO4)4·H2O F(000) = 2328
Mr = 1102.21 Dx = 1.499 Mg m3Dm = 1.49 Mg m3Dm measured by flotation in chloroform/carbon tetrachloride mixtures
Monoclinic, P21/c Cu Kα radiation, λ = 1.5418 Å
a = 8.906 (4) Å Cell parameters from 28 reflections
b = 29.412 (11) Å θ = 5.2–28.2°
c = 19.505 (9) Å µ = 3.60 mm1
β = 107.030 (19)° T = 295 K
V = 4885 (4) Å3 Needle, orange
Z = 4 0.52 × 0.25 × 0.11 mm

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I). Data collection

Picker 4-circle diffractometer 4899 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube Rint = 0.060
Oriented graphite 200 reflection monochromator θmax = 58.4°, θmin = 2.8°
θ/2θ scans h = 0→9
Absorption correction: gaussian (Busing & Levy, 1957) k = 0→32
Tmin = 0.454, Tmax = 0.686 l = −21→21
7450 measured reflections 3 standard reflections every 200 reflections
6870 independent reflections intensity decay: +2(5)

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I). Refinement

Refinement on F2 Primary atom site location: heavy-atom method
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: mixed
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.016P)2 + 2.P] where P = (Fo2 + 2Fc2)/3
6870 reflections (Δ/σ)max = 0.001
686 parameters Δρmax = 0.30 e Å3
184 restraints Δρmin = −0.30 e Å3

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.33013 (7) 0.23109 (2) −0.03275 (3) 0.04565 (18)
N1 0.1761 (4) 0.22148 (10) −0.12620 (15) 0.0485 (8)
H1 0.197135 0.244899 −0.157932 0.058*
C2 0.0171 (5) 0.23125 (15) −0.1204 (2) 0.0625 (11)
H2A −0.025056 0.204666 −0.103052 0.075*
H2B −0.053194 0.239506 −0.166885 0.075*
C3 0.0328 (5) 0.26965 (15) −0.0690 (2) 0.0666 (12)
H3A 0.058301 0.297432 −0.090027 0.080*
H3B −0.065282 0.274219 −0.057861 0.080*
N4 0.1597 (4) 0.25839 (10) −0.00289 (15) 0.0486 (8)
H4 0.117301 0.233348 0.018922 0.058*
C5 0.1831 (5) 0.29636 (14) 0.0503 (2) 0.0633 (12)
H5 0.204365 0.324159 0.027016 0.076*
C6 0.3218 (5) 0.28734 (14) 0.1143 (2) 0.0664 (12)
H6A 0.304739 0.258561 0.135098 0.080*
H6B 0.324884 0.310785 0.149625 0.080*
C7 0.4812 (5) 0.28563 (15) 0.1010 (2) 0.0683 (12)
N8 0.4865 (4) 0.24318 (11) 0.05883 (16) 0.0550 (8)
H8 0.474060 0.218272 0.090082 0.066*
C9 0.6423 (5) 0.23559 (19) 0.0486 (2) 0.0823 (15)
H9A 0.720540 0.231303 0.094621 0.099*
H9B 0.672292 0.261661 0.025142 0.099*
C10 0.6320 (6) 0.19438 (18) 0.0036 (3) 0.0879 (16)
H10A 0.614938 0.167630 0.029429 0.105*
H10B 0.728654 0.190295 −0.009098 0.105*
N11 0.4978 (4) 0.20118 (10) −0.06199 (16) 0.0533 (8)
H11 0.534956 0.224885 −0.088376 0.064*
C12 0.4711 (5) 0.16056 (14) −0.1118 (2) 0.0636 (11)
C13 0.3333 (5) 0.17096 (15) −0.1773 (2) 0.0690 (12)
H13A 0.356791 0.198604 −0.199267 0.083*
H13B 0.324394 0.146555 −0.211698 0.083*
C14 0.1776 (5) 0.17674 (13) −0.1638 (2) 0.0592 (11)
H14 0.165234 0.152268 −0.131766 0.071*
C5A 0.0356 (6) 0.30423 (17) 0.0732 (3) 0.0869 (15)
H5A1 −0.049541 0.312685 0.032148 0.130*
H5A2 0.054457 0.328153 0.108138 0.130*
H5A3 0.008990 0.276807 0.093638 0.130*
C7A 0.5102 (7) 0.32751 (16) 0.0600 (3) 0.0999 (18)
H7A1 0.618224 0.328121 0.060308 0.150*
H7A2 0.486747 0.354513 0.082492 0.150*
H7A3 0.443885 0.326135 0.011349 0.150*
C7B 0.6055 (6) 0.2824 (2) 0.1752 (3) 0.110 (2)
H7B1 0.708755 0.283359 0.169304 0.164*
H7B2 0.592127 0.254428 0.198026 0.164*
H7B3 0.592894 0.307561 0.204499 0.164*
C12A 0.6159 (6) 0.15410 (19) −0.1381 (3) 0.0979 (17)
H12A 0.702796 0.144134 −0.098918 0.147*
H12B 0.641932 0.182432 −0.156237 0.147*
H12C 0.593787 0.131693 −0.175486 0.147*
C12B 0.4445 (7) 0.11789 (15) −0.0729 (3) 0.0946 (17)
H12D 0.543013 0.107441 −0.041676 0.142*
H12E 0.399218 0.094643 −0.107233 0.142*
H12F 0.374442 0.124680 −0.045039 0.142*
C14A 0.0443 (5) 0.17299 (15) −0.2336 (2) 0.0746 (13)
H14A −0.054456 0.172069 −0.223149 0.112*
H14B 0.056985 0.145700 −0.258362 0.112*
H14C 0.046527 0.198861 −0.263348 0.112*
Ni2 0.05959 (6) 0.05839 (2) 0.25539 (3) 0.03924 (17)
N21 −0.1278 (3) 0.05912 (10) 0.17423 (15) 0.0458 (7)
H21 −0.104191 0.078124 0.137427 0.055*
C22 −0.2528 (5) 0.08287 (15) 0.1966 (2) 0.0635 (11)
H22A −0.355426 0.073191 0.166936 0.076*
H22B −0.244200 0.115468 0.191214 0.076*
C23 −0.2330 (4) 0.07126 (14) 0.2733 (2) 0.0600 (11)
H23A −0.302809 0.089655 0.291809 0.072*
H23B −0.257880 0.039484 0.277655 0.072*
N24 −0.0664 (3) 0.08048 (10) 0.31420 (15) 0.0470 (8)
H24 −0.055655 0.113641 0.314496 0.056*
C25 −0.0287 (5) 0.06706 (14) 0.3911 (2) 0.0573 (10)
H25 −0.045248 0.034216 0.393331 0.069*
C26 0.1421 (5) 0.07703 (14) 0.42877 (19) 0.0578 (11)
H26A 0.159090 0.073180 0.479875 0.069*
H26B 0.161403 0.108758 0.420735 0.069*
C27 0.2636 (5) 0.04865 (13) 0.40731 (19) 0.0531 (10)
N28 0.2554 (3) 0.06168 (10) 0.33122 (14) 0.0441 (7)
H28 0.283461 0.093988 0.334118 0.053*
C29 0.3799 (4) 0.03908 (15) 0.3064 (2) 0.0588 (11)
H29A 0.481942 0.051537 0.331708 0.071*
H29B 0.381236 0.006718 0.316162 0.071*
C30 0.3462 (4) 0.04692 (14) 0.2288 (2) 0.0557 (10)
H30A 0.409650 0.026684 0.209428 0.067*
H30B 0.372762 0.077978 0.220239 0.067*
N31 0.1765 (3) 0.03858 (9) 0.19211 (14) 0.0421 (7)
H31 0.148791 0.060096 0.151995 0.050*
C32 0.1288 (5) −0.00772 (12) 0.15832 (19) 0.0483 (9)
C33 −0.0400 (4) −0.00298 (13) 0.11006 (19) 0.0515 (10)
H33A −0.038622 0.018142 0.072057 0.062*
H33B −0.071470 −0.032286 0.087650 0.062*
C34 −0.1677 (4) 0.01252 (13) 0.1419 (2) 0.0518 (10)
H34 −0.173451 −0.008818 0.179632 0.062*
C25A −0.1327 (6) 0.09093 (19) 0.4291 (2) 0.0884 (16)
H25A −0.238226 0.079776 0.410899 0.133*
H25B −0.131361 0.123076 0.420719 0.133*
H25C −0.094300 0.085053 0.479626 0.133*
C27A 0.4261 (5) 0.06038 (16) 0.4582 (2) 0.0758 (13)
H27A 0.503880 0.041184 0.447818 0.114*
H27B 0.425999 0.055662 0.506881 0.114*
H27C 0.450018 0.091620 0.451699 0.114*
C27B 0.2314 (5) −0.00229 (13) 0.4118 (2) 0.0705 (13)
H27D 0.317339 −0.019414 0.404701 0.106*
H27E 0.136392 −0.010190 0.375432 0.106*
H27F 0.220133 −0.009180 0.458190 0.106*
C32A 0.1411 (5) −0.04402 (13) 0.2156 (2) 0.0653 (12)
H32A 0.248832 −0.047298 0.243634 0.098*
H32B 0.103155 −0.072465 0.192932 0.098*
H32C 0.079130 −0.035147 0.246139 0.098*
C32B 0.2321 (5) −0.02093 (15) 0.1112 (2) 0.0683 (12)
H32D 0.238820 0.004179 0.080827 0.102*
H32E 0.186955 −0.046664 0.082207 0.102*
H32F 0.335303 −0.028603 0.141077 0.102*
C34A −0.3247 (5) 0.01198 (16) 0.0823 (2) 0.0732 (13)
H34A −0.409332 0.015369 0.103082 0.110*
H34B −0.335778 −0.016353 0.056878 0.110*
H34C −0.327140 0.036600 0.049674 0.110*
Cl1 0.04648 (14) 0.12152 (3) 0.02020 (5) 0.0627 (3)
O11 0.0208 (4) 0.11563 (11) −0.05487 (15) 0.0871 (10)
O12 0.1777 (4) 0.09572 (13) 0.05975 (19) 0.1046 (12)
O13 −0.0888 (4) 0.10628 (11) 0.03875 (16) 0.0824 (9)
O14 0.0730 (6) 0.16810 (10) 0.03803 (18) 0.1168 (15)
Cl2 −0.30063 (16) −0.05995 (4) 0.32668 (7) 0.0744 (3)
O21 −0.317 (2) −0.0287 (6) 0.3798 (9) 0.108 (5) 0.5
O22 −0.4040 (14) −0.0460 (6) 0.2612 (7) 0.136 (6) 0.5
O23 −0.305 (3) −0.1036 (4) 0.3459 (11) 0.167 (7) 0.5
O24 −0.1491 (10) −0.0529 (4) 0.3129 (7) 0.125 (3) 0.5
O25 −0.279 (3) −0.0260 (6) 0.3745 (12) 0.149 (8) 0.5
O26 −0.319 (3) −0.0460 (6) 0.2625 (9) 0.224 (10) 0.5
O27 −0.204 (3) −0.0931 (8) 0.3517 (16) 0.261 (11) 0.5
O28 −0.4420 (17) −0.0831 (5) 0.3231 (8) 0.194 (6) 0.5
Cl3 0.06049 (14) 0.18122 (3) 0.22458 (6) 0.0676 (3)
O31 0.1373 (4) 0.14274 (10) 0.20864 (17) 0.0921 (11)
O32 0.1437 (6) 0.22121 (11) 0.2232 (2) 0.1241 (15)
O33 0.0440 (6) 0.17559 (12) 0.2931 (2) 0.1381 (18)
O34 −0.0876 (5) 0.18279 (19) 0.1739 (3) 0.169 (2)
Cl4A 0.5256 (7) 0.3146 (2) −0.1429 (3) 0.0736 (9) 0.650 (8)
O41 0.5146 (12) 0.3523 (3) −0.1872 (5) 0.132 (5) 0.650 (8)
O42 0.6606 (14) 0.3181 (5) −0.0781 (5) 0.126 (4) 0.650 (8)
O43 0.5089 (18) 0.2745 (4) −0.1693 (6) 0.192 (5) 0.650 (8)
O44 0.3937 (8) 0.3124 (3) −0.1183 (3) 0.138 (3) 0.650 (8)
Cl4B 0.5700 (13) 0.3152 (4) −0.1545 (7) 0.0736 (9) 0.350 (8)
O45 0.489 (2) 0.3555 (6) −0.1438 (10) 0.142 (9) 0.350 (8)
O46 0.661 (3) 0.2972 (9) −0.1007 (12) 0.136 (8) 0.350 (8)
O47 0.657 (2) 0.3202 (5) −0.1969 (8) 0.164 (7) 0.350 (8)
O48 0.4912 (13) 0.2824 (8) −0.2072 (9) 0.148 (7) 0.350 (8)
OW 0.4397 (5) 0.16490 (14) 0.1461 (2) 0.0980 (11)
HW1 0.475 (6) 0.165 (2) 0.1897 (7) 0.147*
HW2 0.354 (4) 0.152 (2) 0.134 (3) 0.147*

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0521 (4) 0.0436 (4) 0.0405 (3) 0.0037 (3) 0.0125 (3) 0.0048 (3)
N1 0.059 (2) 0.0434 (18) 0.0428 (17) −0.0001 (15) 0.0138 (15) 0.0058 (14)
C2 0.060 (3) 0.073 (3) 0.051 (2) 0.010 (2) 0.011 (2) 0.005 (2)
C3 0.067 (3) 0.076 (3) 0.056 (3) 0.020 (2) 0.016 (2) 0.005 (2)
N4 0.056 (2) 0.0442 (18) 0.0462 (18) 0.0025 (15) 0.0161 (16) 0.0039 (14)
C5 0.087 (3) 0.052 (2) 0.056 (3) 0.000 (2) 0.029 (2) −0.003 (2)
C6 0.093 (4) 0.059 (3) 0.052 (3) −0.006 (2) 0.029 (3) −0.006 (2)
C7 0.075 (3) 0.070 (3) 0.061 (3) −0.017 (2) 0.023 (2) −0.011 (2)
N8 0.061 (2) 0.054 (2) 0.0459 (19) −0.0004 (17) 0.0093 (16) 0.0042 (15)
C9 0.054 (3) 0.110 (4) 0.068 (3) 0.011 (3) −0.005 (2) −0.003 (3)
C10 0.072 (3) 0.104 (4) 0.077 (3) 0.037 (3) 0.006 (3) −0.005 (3)
N11 0.056 (2) 0.0523 (19) 0.0514 (19) 0.0105 (16) 0.0159 (16) 0.0073 (15)
C12 0.072 (3) 0.052 (3) 0.071 (3) 0.008 (2) 0.028 (2) −0.004 (2)
C13 0.090 (4) 0.064 (3) 0.057 (3) −0.012 (3) 0.028 (3) −0.011 (2)
C14 0.078 (3) 0.047 (2) 0.053 (2) −0.004 (2) 0.020 (2) −0.0026 (19)
C5A 0.106 (4) 0.095 (4) 0.072 (3) 0.024 (3) 0.043 (3) −0.006 (3)
C7A 0.138 (5) 0.068 (3) 0.113 (4) −0.029 (3) 0.067 (4) −0.008 (3)
C7B 0.094 (4) 0.152 (6) 0.072 (3) −0.035 (4) 0.008 (3) −0.036 (4)
C12A 0.101 (4) 0.101 (4) 0.104 (4) 0.023 (3) 0.051 (3) −0.015 (3)
C12B 0.120 (5) 0.057 (3) 0.107 (4) 0.014 (3) 0.034 (4) 0.021 (3)
C14A 0.087 (4) 0.070 (3) 0.058 (3) −0.011 (3) 0.008 (3) −0.010 (2)
Ni2 0.0378 (3) 0.0382 (3) 0.0413 (3) 0.0012 (3) 0.0109 (3) 0.0022 (3)
N21 0.0398 (17) 0.0485 (18) 0.0473 (17) 0.0015 (15) 0.0096 (14) 0.0041 (14)
C22 0.049 (3) 0.066 (3) 0.070 (3) 0.008 (2) 0.009 (2) −0.005 (2)
C23 0.041 (2) 0.067 (3) 0.075 (3) 0.004 (2) 0.022 (2) −0.011 (2)
N24 0.0465 (19) 0.0460 (18) 0.0502 (18) 0.0002 (15) 0.0169 (15) −0.0003 (14)
C25 0.060 (3) 0.065 (3) 0.053 (2) 0.000 (2) 0.027 (2) 0.005 (2)
C26 0.071 (3) 0.062 (3) 0.041 (2) −0.001 (2) 0.016 (2) 0.0021 (19)
C27 0.052 (2) 0.058 (3) 0.045 (2) 0.003 (2) 0.0084 (19) 0.0082 (19)
N28 0.0449 (18) 0.0434 (17) 0.0436 (17) 0.0034 (14) 0.0122 (14) 0.0014 (14)
C29 0.043 (2) 0.071 (3) 0.060 (3) 0.002 (2) 0.011 (2) −0.005 (2)
C30 0.042 (2) 0.065 (3) 0.062 (3) −0.004 (2) 0.018 (2) −0.008 (2)
N31 0.0437 (18) 0.0418 (17) 0.0420 (16) −0.0031 (14) 0.0145 (14) −0.0004 (13)
C32 0.059 (3) 0.040 (2) 0.049 (2) −0.0022 (19) 0.0186 (19) −0.0043 (17)
C33 0.059 (3) 0.047 (2) 0.047 (2) −0.008 (2) 0.013 (2) −0.0030 (18)
C34 0.052 (2) 0.050 (2) 0.051 (2) −0.0119 (19) 0.0110 (19) 0.0015 (18)
C25A 0.084 (4) 0.122 (4) 0.072 (3) 0.006 (3) 0.042 (3) −0.011 (3)
C27A 0.068 (3) 0.097 (4) 0.050 (2) 0.003 (3) −0.001 (2) 0.002 (2)
C27B 0.080 (3) 0.059 (3) 0.069 (3) 0.008 (2) 0.015 (2) 0.021 (2)
C32A 0.079 (3) 0.045 (2) 0.069 (3) 0.002 (2) 0.016 (2) 0.009 (2)
C32B 0.072 (3) 0.066 (3) 0.071 (3) 0.004 (2) 0.027 (2) −0.020 (2)
C34A 0.053 (3) 0.084 (3) 0.072 (3) −0.013 (2) 0.003 (2) −0.012 (2)
Cl1 0.0884 (8) 0.0480 (6) 0.0518 (6) −0.0145 (6) 0.0208 (6) 0.0056 (5)
O11 0.126 (3) 0.090 (2) 0.0525 (17) −0.024 (2) 0.0374 (19) −0.0008 (16)
O12 0.091 (2) 0.116 (3) 0.103 (3) 0.017 (2) 0.022 (2) 0.039 (2)
O13 0.099 (2) 0.083 (2) 0.075 (2) −0.0148 (19) 0.0415 (19) 0.0139 (17)
O14 0.209 (4) 0.0520 (19) 0.088 (2) −0.046 (2) 0.041 (3) −0.0035 (17)
Cl2 0.0928 (9) 0.0517 (7) 0.0814 (8) 0.0066 (7) 0.0297 (7) 0.0028 (6)
O21 0.154 (11) 0.102 (8) 0.083 (6) 0.065 (9) 0.056 (7) 0.011 (5)
O22 0.101 (7) 0.162 (12) 0.103 (7) 0.053 (7) −0.035 (6) −0.021 (7)
O23 0.27 (2) 0.037 (4) 0.242 (16) 0.018 (9) 0.153 (17) 0.054 (6)
O24 0.068 (5) 0.160 (9) 0.166 (9) 0.007 (5) 0.061 (5) 0.016 (7)
O25 0.235 (18) 0.099 (8) 0.138 (10) −0.069 (9) 0.094 (10) −0.055 (7)
O26 0.47 (3) 0.128 (12) 0.122 (9) −0.061 (18) 0.161 (15) 0.026 (8)
O27 0.250 (18) 0.193 (19) 0.33 (2) 0.157 (17) 0.07 (2) 0.041 (16)
O28 0.169 (10) 0.165 (12) 0.228 (14) −0.083 (9) 0.027 (10) 0.033 (11)
Cl3 0.0846 (8) 0.0481 (6) 0.0707 (7) 0.0035 (6) 0.0235 (6) 0.0008 (5)
O31 0.133 (3) 0.0535 (18) 0.097 (2) 0.0242 (19) 0.045 (2) 0.0007 (17)
O32 0.192 (4) 0.053 (2) 0.142 (3) −0.033 (2) 0.072 (3) 0.006 (2)
O33 0.263 (6) 0.084 (3) 0.106 (3) −0.037 (3) 0.113 (3) −0.024 (2)
O34 0.092 (3) 0.207 (5) 0.178 (5) 0.035 (3) −0.005 (3) 0.019 (4)
Cl4A 0.083 (3) 0.0633 (8) 0.074 (2) −0.008 (2) 0.0223 (15) 0.0158 (12)
O41 0.118 (7) 0.092 (6) 0.149 (8) −0.043 (5) −0.015 (6) 0.073 (6)
O42 0.086 (5) 0.210 (13) 0.075 (6) 0.005 (7) 0.010 (4) 0.020 (5)
O43 0.393 (16) 0.079 (5) 0.116 (8) −0.050 (7) 0.094 (8) −0.006 (6)
O44 0.093 (5) 0.223 (9) 0.097 (5) −0.045 (5) 0.024 (4) 0.011 (5)
Cl4B 0.083 (3) 0.0633 (8) 0.074 (2) −0.008 (2) 0.0223 (15) 0.0158 (12)
O45 0.140 (14) 0.098 (11) 0.158 (17) 0.061 (10) −0.003 (12) −0.026 (11)
O46 0.123 (12) 0.18 (2) 0.092 (11) 0.071 (13) 0.016 (9) 0.031 (11)
O47 0.273 (17) 0.138 (12) 0.129 (10) −0.023 (11) 0.136 (12) −0.011 (9)
O48 0.214 (15) 0.125 (14) 0.105 (12) 0.006 (9) 0.045 (10) −0.055 (11)
OW 0.098 (3) 0.099 (3) 0.089 (2) −0.011 (2) 0.015 (2) 0.019 (2)

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I). Geometric parameters (Å, º)

Ni1—N1 1.954 (3) N24—C25 1.491 (5)
Ni1—N4 1.950 (3) N24—H24 0.9800
Ni1—N8 1.949 (3) C25—C26 1.511 (5)
Ni1—N11 1.956 (3) C25—C25A 1.517 (5)
N1—C2 1.481 (5) C25—H25 0.9800
N1—C14 1.508 (5) C26—C27 1.520 (5)
N1—H1 0.9800 C26—H26A 0.9700
C2—C3 1.489 (5) C26—H26B 0.9700
C2—H2A 0.9700 C27—N28 1.514 (4)
C2—H2B 0.9700 C27—C27B 1.533 (5)
C3—N4 1.482 (5) C27—C27A 1.535 (5)
C3—H3A 0.9700 N28—C29 1.489 (5)
C3—H3B 0.9700 N28—H28 0.9800
N4—C5 1.496 (5) C29—C30 1.474 (5)
N4—H4 0.9800 C29—H29A 0.9700
C5—C6 1.500 (6) C29—H29B 0.9700
C5—C5A 1.524 (6) C30—N31 1.490 (4)
C5—H5 0.9800 C30—H30A 0.9700
C6—C7 1.517 (6) C30—H30B 0.9700
C6—H6A 0.9700 N31—C32 1.518 (4)
C6—H6B 0.9700 N31—H31 0.9800
C7—N8 1.504 (5) C32—C32A 1.525 (5)
C7—C7A 1.532 (6) C32—C32B 1.528 (5)
C7—C7B 1.547 (6) C32—C33 1.529 (5)
N8—C9 1.475 (5) C33—C34 1.517 (5)
N8—H8 0.9800 C33—H33A 0.9700
C9—C10 1.484 (6) C33—H33B 0.9700
C9—H9A 0.9700 C34—C34A 1.534 (5)
C9—H9B 0.9700 C34—H34 0.9800
C10—N11 1.487 (5) C25A—H25A 0.9600
C10—H10A 0.9700 C25A—H25B 0.9600
C10—H10B 0.9700 C25A—H25C 0.9600
N11—C12 1.515 (5) C27A—H27A 0.9600
N11—H11 0.9800 C27A—H27B 0.9600
C12—C13 1.521 (6) C27A—H27C 0.9600
C12—C12B 1.522 (6) C27B—H27D 0.9600
C12—C12A 1.532 (6) C27B—H27E 0.9600
C13—C14 1.495 (6) C27B—H27F 0.9600
C13—H13A 0.9700 C32A—H32A 0.9600
C13—H13B 0.9700 C32A—H32B 0.9600
C14—C14A 1.527 (5) C32A—H32C 0.9600
C14—H14 0.9800 C32B—H32D 0.9600
C5A—H5A1 0.9600 C32B—H32E 0.9600
C5A—H5A2 0.9600 C32B—H32F 0.9600
C5A—H5A3 0.9600 C34A—H34A 0.9600
C7A—H7A1 0.9600 C34A—H34B 0.9600
C7A—H7A2 0.9600 C34A—H34C 0.9600
C7A—H7A3 0.9600 Cl1—O14 1.416 (3)
C7B—H7B1 0.9600 Cl1—O12 1.417 (3)
C7B—H7B2 0.9600 Cl1—O11 1.425 (3)
C7B—H7B3 0.9600 Cl1—O13 1.428 (3)
C12A—H12A 0.9600 Cl2—O26 1.281 (13)
C12A—H12B 0.9600 Cl2—O27 1.299 (17)
C12A—H12C 0.9600 Cl2—O23 1.341 (10)
C12B—H12D 0.9600 Cl2—O25 1.342 (17)
C12B—H12E 0.9600 Cl2—O22 1.399 (11)
C12B—H12F 0.9600 Cl2—O28 1.414 (11)
C14A—H14A 0.9600 Cl2—O21 1.424 (17)
C14A—H14B 0.9600 Cl2—O24 1.466 (7)
C14A—H14C 0.9600 Cl3—O32 1.395 (3)
Ni2—N21 1.935 (3) Cl3—O33 1.397 (4)
Ni2—N24 1.937 (3) Cl3—O34 1.398 (4)
Ni2—N28 1.931 (3) Cl3—O31 1.403 (3)
Ni2—N31 1.924 (3) Cl4A—O43 1.279 (12)
Ni2—O31 2.799 (3) Cl4A—O41 1.391 (9)
N21—C22 1.484 (5) Cl4A—O44 1.394 (8)
N21—C34 1.507 (4) Cl4A—O42 1.471 (11)
N21—H21 0.9800 Cl4B—O46 1.24 (3)
C22—C23 1.494 (5) Cl4B—O47 1.300 (15)
C22—H22A 0.9700 Cl4B—O48 1.434 (19)
C22—H22B 0.9700 Cl4B—O45 1.44 (2)
C23—N24 1.489 (4) O47—O48 1.82 (2)
C23—H23A 0.9700 OW—HW1 0.815 (10)
C23—H23B 0.9700 OW—HW2 0.821 (10)
N8—Ni1—N4 93.49 (14) N24—C23—C22 107.6 (3)
N8—Ni1—N1 177.45 (13) N24—C23—H23A 110.2
N4—Ni1—N1 86.74 (13) C22—C23—H23A 110.2
N8—Ni1—N11 87.00 (14) N24—C23—H23B 110.2
N4—Ni1—N11 177.59 (13) C22—C23—H23B 110.2
N1—Ni1—N11 92.88 (13) H23A—C23—H23B 108.5
C2—N1—C14 110.6 (3) C23—N24—C25 112.7 (3)
C2—N1—Ni1 109.0 (2) C23—N24—Ni2 106.3 (2)
C14—N1—Ni1 118.4 (2) C25—N24—Ni2 120.5 (2)
C2—N1—H1 106.0 C23—N24—H24 105.3
C14—N1—H1 106.0 C25—N24—H24 105.3
Ni1—N1—H1 106.0 Ni2—N24—H24 105.3
N1—C2—C3 107.1 (3) N24—C25—C26 109.6 (3)
N1—C2—H2A 110.3 N24—C25—C25A 112.2 (3)
C3—C2—H2A 110.3 C26—C25—C25A 110.1 (3)
N1—C2—H2B 110.3 N24—C25—H25 108.2
C3—C2—H2B 110.3 C26—C25—H25 108.2
H2A—C2—H2B 108.5 C25A—C25—H25 108.2
N4—C3—C2 108.3 (3) C25—C26—C27 117.1 (3)
N4—C3—H3A 110.0 C25—C26—H26A 108.0
C2—C3—H3A 110.0 C27—C26—H26A 108.0
N4—C3—H3B 110.0 C25—C26—H26B 108.0
C2—C3—H3B 110.0 C27—C26—H26B 108.0
H3A—C3—H3B 108.4 H26A—C26—H26B 107.3
C3—N4—C5 110.6 (3) N28—C27—C26 107.3 (3)
C3—N4—Ni1 107.1 (2) N28—C27—C27B 110.3 (3)
C5—N4—Ni1 123.5 (3) C26—C27—C27B 111.1 (3)
C3—N4—H4 104.7 N28—C27—C27A 110.0 (3)
C5—N4—H4 104.7 C26—C27—C27A 108.1 (3)
Ni1—N4—H4 104.7 C27B—C27—C27A 109.8 (3)
N4—C5—C6 111.0 (3) C29—N28—C27 112.3 (3)
N4—C5—C5A 111.1 (4) C29—N28—Ni2 108.7 (2)
C6—C5—C5A 110.7 (4) C27—N28—Ni2 120.8 (2)
N4—C5—H5 108.0 C29—N28—H28 104.5
C6—C5—H5 108.0 C27—N28—H28 104.5
C5A—C5—H5 108.0 Ni2—N28—H28 104.5
C5—C6—C7 116.6 (4) C30—C29—N28 108.5 (3)
C5—C6—H6A 108.1 C30—C29—H29A 110.0
C7—C6—H6A 108.1 N28—C29—H29A 110.0
C5—C6—H6B 108.1 C30—C29—H29B 110.0
C7—C6—H6B 108.1 N28—C29—H29B 110.0
H6A—C6—H6B 107.3 H29A—C29—H29B 108.4
N8—C7—C6 107.6 (3) C29—C30—N31 109.9 (3)
N8—C7—C7A 110.2 (4) C29—C30—H30A 109.7
C6—C7—C7A 111.8 (4) N31—C30—H30A 109.7
N8—C7—C7B 109.5 (4) C29—C30—H30B 109.7
C6—C7—C7B 107.0 (4) N31—C30—H30B 109.7
C7A—C7—C7B 110.7 (4) H30A—C30—H30B 108.2
C9—N8—C7 112.4 (3) C30—N31—C32 118.1 (3)
C9—N8—Ni1 107.2 (2) C30—N31—Ni2 107.8 (2)
C7—N8—Ni1 121.6 (3) C32—N31—Ni2 114.5 (2)
C9—N8—H8 104.7 C30—N31—H31 105.0
C7—N8—H8 104.7 C32—N31—H31 105.0
Ni1—N8—H8 104.7 Ni2—N31—H31 105.0
N8—C9—C10 107.9 (4) N31—C32—C32A 111.0 (3)
N8—C9—H9A 110.1 N31—C32—C32B 110.4 (3)
C10—C9—H9A 110.1 C32A—C32—C32B 109.6 (3)
N8—C9—H9B 110.1 N31—C32—C33 106.6 (3)
C10—C9—H9B 110.1 C32A—C32—C33 111.2 (3)
H9A—C9—H9B 108.4 C32B—C32—C33 108.0 (3)
C9—C10—N11 107.1 (4) C34—C33—C32 119.7 (3)
C9—C10—H10A 110.3 C34—C33—H33A 107.4
N11—C10—H10A 110.3 C32—C33—H33A 107.4
C9—C10—H10B 110.3 C34—C33—H33B 107.4
N11—C10—H10B 110.3 C32—C33—H33B 107.4
H10A—C10—H10B 108.6 H33A—C33—H33B 106.9
C10—N11—C12 112.4 (3) N21—C34—C33 109.4 (3)
C10—N11—Ni1 107.5 (3) N21—C34—C34A 112.2 (3)
C12—N11—Ni1 123.5 (3) C33—C34—C34A 108.2 (3)
C10—N11—H11 103.7 N21—C34—H34 109.0
C12—N11—H11 103.7 C33—C34—H34 109.0
Ni1—N11—H11 103.7 C34A—C34—H34 109.0
N11—C12—C13 108.4 (3) C25—C25A—H25A 109.5
N11—C12—C12B 110.3 (4) C25—C25A—H25B 109.5
C13—C12—C12B 112.3 (4) H25A—C25A—H25B 109.5
N11—C12—C12A 108.9 (4) C25—C25A—H25C 109.5
C13—C12—C12A 107.2 (4) H25A—C25A—H25C 109.5
C12B—C12—C12A 109.5 (4) H25B—C25A—H25C 109.5
C14—C13—C12 115.9 (4) C27—C27A—H27A 109.5
C14—C13—H13A 108.3 C27—C27A—H27B 109.5
C12—C13—H13A 108.3 H27A—C27A—H27B 109.5
C14—C13—H13B 108.3 C27—C27A—H27C 109.5
C12—C13—H13B 108.3 H27A—C27A—H27C 109.5
H13A—C13—H13B 107.4 H27B—C27A—H27C 109.5
C13—C14—N1 109.0 (3) C27—C27B—H27D 109.5
C13—C14—C14A 110.7 (3) C27—C27B—H27E 109.5
N1—C14—C14A 112.4 (3) H27D—C27B—H27E 109.5
C13—C14—H14 108.2 C27—C27B—H27F 109.5
N1—C14—H14 108.2 H27D—C27B—H27F 109.5
C14A—C14—H14 108.2 H27E—C27B—H27F 109.5
C5—C5A—H5A1 109.5 C32—C32A—H32A 109.5
C5—C5A—H5A2 109.5 C32—C32A—H32B 109.5
H5A1—C5A—H5A2 109.5 H32A—C32A—H32B 109.5
C5—C5A—H5A3 109.5 C32—C32A—H32C 109.5
H5A1—C5A—H5A3 109.5 H32A—C32A—H32C 109.5
H5A2—C5A—H5A3 109.5 H32B—C32A—H32C 109.5
C7—C7A—H7A1 109.5 C32—C32B—H32D 109.5
C7—C7A—H7A2 109.5 C32—C32B—H32E 109.5
H7A1—C7A—H7A2 109.5 H32D—C32B—H32E 109.5
C7—C7A—H7A3 109.5 C32—C32B—H32F 109.5
H7A1—C7A—H7A3 109.5 H32D—C32B—H32F 109.5
H7A2—C7A—H7A3 109.5 H32E—C32B—H32F 109.5
C7—C7B—H7B1 109.5 C34—C34A—H34A 109.5
C7—C7B—H7B2 109.5 C34—C34A—H34B 109.5
H7B1—C7B—H7B2 109.5 H34A—C34A—H34B 109.5
C7—C7B—H7B3 109.5 C34—C34A—H34C 109.5
H7B1—C7B—H7B3 109.5 H34A—C34A—H34C 109.5
H7B2—C7B—H7B3 109.5 H34B—C34A—H34C 109.5
C12—C12A—H12A 109.5 O14—Cl1—O12 109.4 (3)
C12—C12A—H12B 109.5 O14—Cl1—O11 109.59 (19)
H12A—C12A—H12B 109.5 O12—Cl1—O11 110.7 (2)
C12—C12A—H12C 109.5 O14—Cl1—O13 109.5 (2)
H12A—C12A—H12C 109.5 O12—Cl1—O13 108.4 (2)
H12B—C12A—H12C 109.5 O11—Cl1—O13 109.2 (2)
C12—C12B—H12D 109.5 O26—Cl2—O27 119.2 (16)
C12—C12B—H12E 109.5 O26—Cl2—O25 113.0 (13)
H12D—C12B—H12E 109.5 O27—Cl2—O25 110.6 (16)
C12—C12B—H12F 109.5 O23—Cl2—O22 118.0 (12)
H12D—C12B—H12F 109.5 O26—Cl2—O28 104.5 (12)
H12E—C12B—H12F 109.5 O27—Cl2—O28 98.1 (12)
C14—C14A—H14A 109.5 O25—Cl2—O28 109.8 (12)
C14—C14A—H14B 109.5 O23—Cl2—O21 113.5 (11)
H14A—C14A—H14B 109.5 O22—Cl2—O21 107.2 (9)
C14—C14A—H14C 109.5 O23—Cl2—O24 106.9 (8)
H14A—C14A—H14C 109.5 O22—Cl2—O24 100.8 (7)
H14B—C14A—H14C 109.5 O21—Cl2—O24 109.7 (10)
N31—Ni2—N28 88.24 (12) O32—Cl3—O33 108.9 (2)
N31—Ni2—N21 88.72 (12) O32—Cl3—O34 110.8 (3)
N28—Ni2—N21 174.45 (13) O33—Cl3—O34 109.8 (3)
N31—Ni2—N24 176.44 (12) O32—Cl3—O31 112.3 (3)
N28—Ni2—N24 94.58 (12) O33—Cl3—O31 108.1 (2)
N21—Ni2—N24 88.30 (13) O34—Cl3—O31 106.8 (3)
N31—Ni2—O31 80.07 (11) Cl3—O31—Ni2 117.4 (2)
N28—Ni2—O31 87.20 (12) O43—Cl4A—O41 120.3 (7)
N21—Ni2—O31 87.70 (12) O43—Cl4A—O44 94.8 (8)
N24—Ni2—O31 97.88 (11) O41—Cl4A—O44 109.8 (7)
C22—N21—C34 116.5 (3) O43—Cl4A—O42 112.3 (9)
C22—N21—Ni2 107.8 (2) O41—Cl4A—O42 111.7 (8)
C34—N21—Ni2 111.9 (2) O44—Cl4A—O42 105.5 (6)
C22—N21—H21 106.7 O46—Cl4B—O47 102.8 (18)
C34—N21—H21 106.7 O46—Cl4B—O48 112.5 (17)
Ni2—N21—H21 106.7 O47—Cl4B—O48 83.1 (11)
N21—C22—C23 107.9 (3) O46—Cl4B—O45 117.4 (15)
N21—C22—H22A 110.1 O47—Cl4B—O45 114.7 (14)
C23—C22—H22A 110.1 O48—Cl4B—O45 119.9 (13)
N21—C22—H22B 110.1 Cl4B—O47—O48 51.6 (9)
C23—C22—H22B 110.1 Cl4B—O48—O47 45.3 (6)
H22A—C22—H22B 108.4 HW1—OW—HW2 110 (2)
C14—N1—C2—C3 167.3 (3) C22—C23—N24—Ni2 −41.8 (3)
Ni1—N1—C2—C3 35.5 (4) C23—N24—C25—C26 179.5 (3)
N1—C2—C3—N4 −51.0 (4) Ni2—N24—C25—C26 52.6 (4)
C2—C3—N4—C5 178.8 (3) C23—N24—C25—C25A −57.8 (4)
C2—C3—N4—Ni1 41.8 (4) Ni2—N24—C25—C25A 175.3 (3)
C3—N4—C5—C6 −174.3 (3) N24—C25—C26—C27 −67.9 (4)
Ni1—N4—C5—C6 −45.6 (4) C25A—C25—C26—C27 168.2 (4)
C3—N4—C5—C5A 62.1 (4) C25—C26—C27—N28 68.2 (4)
Ni1—N4—C5—C5A −169.2 (3) C25—C26—C27—C27B −52.5 (5)
N4—C5—C6—C7 64.8 (5) C25—C26—C27—C27A −173.2 (3)
C5A—C5—C6—C7 −171.4 (4) C26—C27—N28—C29 174.7 (3)
C5—C6—C7—N8 −69.8 (5) C27B—C27—N28—C29 −64.1 (4)
C5—C6—C7—C7A 51.2 (5) C27A—C27—N28—C29 57.3 (4)
C5—C6—C7—C7B 172.6 (4) C26—C27—N28—Ni2 −55.0 (4)
C6—C7—N8—C9 −174.5 (4) C27B—C27—N28—Ni2 66.2 (4)
C7A—C7—N8—C9 63.4 (5) C27A—C27—N28—Ni2 −172.4 (3)
C7B—C7—N8—C9 −58.7 (5) C27—N28—C29—C30 169.9 (3)
C6—C7—N8—Ni1 56.4 (4) Ni2—N28—C29—C30 33.7 (4)
C7A—C7—N8—Ni1 −65.7 (5) N28—C29—C30—N31 −45.5 (4)
C7B—C7—N8—Ni1 172.3 (3) C29—C30—N31—C32 −96.4 (4)
C7—N8—C9—C10 −177.3 (4) C29—C30—N31—Ni2 35.3 (4)
Ni1—N8—C9—C10 −41.0 (4) C30—N31—C32—C32A 72.3 (4)
N8—C9—C10—N11 53.2 (5) Ni2—N31—C32—C32A −56.4 (4)
C9—C10—N11—C12 −178.2 (4) C30—N31—C32—C32B −49.4 (4)
C9—C10—N11—Ni1 −39.1 (5) Ni2—N31—C32—C32B −178.1 (2)
C10—N11—C12—C13 −179.4 (4) C30—N31—C32—C33 −166.5 (3)
Ni1—N11—C12—C13 49.1 (4) Ni2—N31—C32—C33 64.9 (3)
C10—N11—C12—C12B 57.2 (5) N31—C32—C33—C34 −58.1 (4)
Ni1—N11—C12—C12B −74.3 (4) C32A—C32—C33—C34 63.1 (4)
C10—N11—C12—C12A −63.1 (5) C32B—C32—C33—C34 −176.6 (3)
Ni1—N11—C12—C12A 165.4 (3) C22—N21—C34—C33 169.8 (3)
N11—C12—C13—C14 −64.9 (5) Ni2—N21—C34—C33 −65.5 (3)
C12B—C12—C13—C14 57.3 (5) C22—N21—C34—C34A 49.7 (4)
C12A—C12—C13—C14 177.7 (4) Ni2—N21—C34—C34A 174.4 (3)
C12—C13—C14—N1 72.6 (4) C32—C33—C34—N21 60.2 (4)
C12—C13—C14—C14A −163.3 (4) C32—C33—C34—C34A −177.4 (3)
C2—N1—C14—C13 172.6 (3) O32—Cl3—O31—Ni2 158.2 (2)
Ni1—N1—C14—C13 −60.6 (4) O33—Cl3—O31—Ni2 38.0 (3)
C2—N1—C14—C14A 49.5 (4) O34—Cl3—O31—Ni2 −80.2 (3)
Ni1—N1—C14—C14A 176.2 (3) O46—Cl4B—O47—O48 111.6 (17)
C34—N21—C22—C23 91.2 (4) O45—Cl4B—O47—O48 −119.9 (16)
Ni2—N21—C22—C23 −35.6 (4) O46—Cl4B—O48—O47 −101.1 (19)
N21—C22—C23—N24 51.4 (4) O45—Cl4B—O48—O47 114.6 (17)
C22—C23—N24—C25 −175.9 (3)

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O44 0.98 2.61 3.279 (9) 126
N4—H4···O14 0.98 2.02 2.941 (4) 157
N8—H8···OW 0.98 1.99 2.965 (5) 175
N11—H11···O43 0.98 2.11 3.028 (10) 155
N11—H11···O46 0.98 2.45 3.36 (3) 155
N21—H21···O13 0.98 2.14 3.093 (4) 165
N24—H24···O33 0.98 2.12 3.033 (5) 154
N28—H28···O45i 0.98 2.30 3.146 (16) 144
N31—H31···O12 0.98 2.16 3.083 (4) 156
OW—HW1···O41i 0.82 (1) 2.38 (2) 3.162 (11) 162 (5)
OW—HW1···O47i 0.82 (1) 2.37 (3) 3.139 (18) 157 (5)
OW—HW2···O12 0.82 (1) 2.45 (3) 3.181 (6) 149 (6)

Symmetry code: (i) x, −y+1/2, z+1/2.

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II). Crystal data

[Ni(C16H36N4)]Br2·3H2O Dx = 1.549 Mg m3Dm = 1.530 (3) Mg m3Dm measured by Flotation in chloroform/carbon tetrachloride mixtures
Mr = 557.06 Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, Fdd2 Cell parameters from 6096 reflections
a = 60.3649 (18) Å θ = 0.4–27.5°
b = 19.8364 (9) Å µ = 4.17 mm1
c = 7.9773 (3) Å T = 295 K
V = 9552.2 (6) Å3 Rod, yellow
Z = 16 0.37 × 0.15 × 0.10 mm
F(000) = 4608

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II). Data collection

Enraf–Nonius KappaCCD diffractometer 5382 independent reflections
Radiation source: fine-focus sealed tube 4897 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.096
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 2.2°
combination of ω and φ scans h = −78→+78
Absorption correction: part of the refinement model (ΔF) (SCALEPACK; Otwinowski & Minor, 1997) k = −25→+25
Tmin = 0.34, Tmax = 0.67 l = −10→+10
41142 measured reflections

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.040P)2 + 35.P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5382 reflections Δρmax = 0.88 e Å3
253 parameters Δρmin = −0.56 e Å3
4 restraints Absolute structure: Twinning involves inversion,with Flack parameter corresponding to twin-fraction occupancies
Primary atom site location: heavy-atom method

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component perfect inversion twin.

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.15971 (2) 0.23829 (3) 0.64516 (9) 0.0645 (2)
Br2 0.20453 (2) 0.49097 (4) 0.45452 (7) 0.05935 (18)
Ni 0.18885 (2) 0.41205 (3) 0.92870 (8) 0.03245 (13)
N1 0.21367 (7) 0.4693 (2) 0.8794 (6) 0.0407 (10)
H1 0.2135 (10) 0.476 (3) 0.779 (8) 0.041*
C2 0.23414 (8) 0.4296 (3) 0.9187 (10) 0.0532 (14)
H2A 0.237732 0.400071 0.825597 0.064*
H2B 0.246536 0.459778 0.936969 0.064*
C3 0.22999 (9) 0.3892 (3) 1.0713 (9) 0.0547 (15)
H3A 0.228730 0.418374 1.168391 0.066*
H3B 0.242077 0.357842 1.090118 0.066*
N4 0.20894 (8) 0.3519 (2) 1.0439 (7) 0.0457 (11)
H4 0.2107 (10) 0.322 (3) 0.979 (8) 0.046*
C5 0.20145 (9) 0.3155 (3) 1.1970 (9) 0.0554 (14)
H5 0.198881 0.348705 1.285962 0.067*
C6 0.17993 (9) 0.2782 (3) 1.1644 (9) 0.0497 (13)
H6A 0.176834 0.250079 1.261144 0.060*
H6B 0.182237 0.248293 1.069725 0.060*
C7 0.15935 (9) 0.3206 (3) 1.1287 (7) 0.0405 (11)
N8 0.16302 (6) 0.3557 (2) 0.9622 (6) 0.0359 (9)
H8 0.1650 (9) 0.328 (3) 0.884 (8) 0.036*
C9 0.14319 (7) 0.3923 (2) 0.8992 (7) 0.0397 (11)
H9A 0.136777 0.419087 0.988532 0.048*
H9B 0.132137 0.360243 0.861173 0.048*
C10 0.15002 (9) 0.4369 (3) 0.7573 (7) 0.0434 (12)
H10A 0.152516 0.410081 0.657488 0.052*
H10B 0.138332 0.469111 0.733394 0.052*
N11 0.17079 (7) 0.4736 (2) 0.8034 (6) 0.0353 (8)
H11 0.1758 (9) 0.480 (2) 0.700 (8) 0.035*
C12 0.16868 (8) 0.5426 (2) 0.8824 (7) 0.0405 (11)
C13 0.19218 (9) 0.5742 (3) 0.8846 (7) 0.0442 (12)
H13A 0.196503 0.582262 0.769260 0.053*
H13B 0.191057 0.617843 0.938697 0.053*
C14 0.21089 (8) 0.5358 (3) 0.9689 (7) 0.0426 (11)
H14 0.206878 0.527186 1.085942 0.051*
C5A 0.21918 (13) 0.2649 (4) 1.2584 (14) 0.098 (4)
H5A1 0.231669 0.289119 1.302265 0.147*
H5A2 0.223883 0.237223 1.166271 0.147*
H5A3 0.213000 0.236900 1.344699 0.147*
C7A 0.13939 (11) 0.2730 (3) 1.1164 (9) 0.0587 (16)
H7A1 0.140979 0.244693 1.019498 0.088*
H7A2 0.126039 0.299016 1.106629 0.088*
H7A3 0.138659 0.245500 1.215218 0.088*
C7B 0.15541 (11) 0.3721 (3) 1.2670 (8) 0.0520 (14)
H7B1 0.141211 0.392963 1.251117 0.078*
H7B2 0.166781 0.405897 1.263101 0.078*
H7B3 0.155744 0.349927 1.373886 0.078*
C12A 0.15366 (12) 0.5887 (3) 0.7761 (10) 0.0657 (19)
H12A 0.158590 0.588079 0.661714 0.098*
H12B 0.154366 0.633877 0.818647 0.098*
H12C 0.138661 0.572708 0.781776 0.098*
C12B 0.15975 (10) 0.5374 (3) 1.0602 (8) 0.0493 (13)
H12D 0.169109 0.508202 1.124882 0.074*
H12E 0.144991 0.519431 1.057561 0.074*
H12F 0.159513 0.581408 1.110415 0.074*
C14A 0.23179 (10) 0.5796 (4) 0.9644 (12) 0.072 (2)
H14A 0.243228 0.558536 1.029552 0.109*
H14B 0.228530 0.623221 1.010142 0.109*
H14C 0.236705 0.584401 0.850538 0.109*
O1 0.20252 (16) 0.3394 (5) 0.6365 (12) 0.148 (3)
O2 0.19992 (17) 0.1516 (4) 0.8373 (16) 0.167 (4)
O3 0.22816 (10) 0.2518 (5) 0.801 (2) 0.248 (9)

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0804 (4) 0.0507 (3) 0.0625 (4) −0.0051 (3) −0.0021 (3) −0.0088 (3)
Br2 0.0611 (3) 0.0760 (4) 0.0409 (3) −0.0070 (3) 0.0056 (3) 0.0004 (3)
Ni 0.0272 (2) 0.0338 (3) 0.0364 (3) −0.0001 (2) −0.0010 (2) −0.0003 (2)
N1 0.032 (2) 0.046 (2) 0.044 (3) −0.0035 (17) 0.0034 (18) 0.001 (2)
C2 0.027 (2) 0.060 (3) 0.072 (4) 0.000 (2) 0.003 (3) −0.002 (3)
C3 0.030 (2) 0.060 (3) 0.075 (4) 0.007 (2) −0.010 (3) 0.001 (3)
N4 0.033 (2) 0.044 (3) 0.060 (3) 0.0056 (19) −0.002 (2) −0.004 (2)
C5 0.050 (3) 0.058 (3) 0.059 (4) 0.009 (2) −0.008 (3) 0.018 (3)
C6 0.049 (3) 0.037 (3) 0.063 (4) 0.005 (2) −0.002 (3) 0.010 (3)
C7 0.040 (3) 0.042 (3) 0.040 (3) −0.003 (2) −0.002 (2) 0.004 (2)
N8 0.0347 (19) 0.033 (2) 0.040 (2) −0.0016 (15) −0.0019 (18) −0.0017 (17)
C9 0.030 (2) 0.041 (2) 0.048 (3) −0.0043 (18) −0.007 (2) 0.003 (2)
C10 0.044 (3) 0.043 (3) 0.044 (3) −0.001 (2) −0.014 (2) 0.002 (2)
N11 0.033 (2) 0.039 (2) 0.035 (2) −0.0016 (16) −0.0002 (17) 0.0037 (17)
C12 0.037 (2) 0.033 (2) 0.052 (3) 0.0020 (19) −0.003 (2) 0.000 (2)
C13 0.046 (3) 0.036 (2) 0.051 (3) −0.006 (2) 0.003 (2) 0.006 (2)
C14 0.039 (2) 0.045 (3) 0.043 (3) −0.006 (2) 0.003 (2) −0.005 (2)
C5A 0.067 (5) 0.088 (6) 0.140 (10) 0.017 (4) −0.015 (5) 0.063 (6)
C7A 0.055 (3) 0.057 (4) 0.064 (4) −0.018 (3) 0.002 (3) 0.012 (3)
C7B 0.059 (4) 0.058 (4) 0.040 (3) 0.006 (3) 0.004 (3) 0.002 (3)
C12A 0.063 (4) 0.045 (3) 0.089 (5) 0.005 (3) −0.013 (4) 0.014 (3)
C12B 0.046 (3) 0.043 (3) 0.060 (4) −0.003 (2) 0.016 (3) −0.010 (3)
C14A 0.050 (3) 0.064 (4) 0.104 (6) −0.017 (3) −0.001 (4) −0.015 (4)
O1 0.173 (8) 0.150 (8) 0.121 (8) −0.029 (6) 0.007 (6) −0.015 (6)
O2 0.192 (9) 0.094 (5) 0.216 (12) 0.025 (6) −0.060 (8) −0.008 (7)
O3 0.246 (15) 0.156 (9) 0.34 (2) −0.014 (10) 0.074 (15) −0.093 (12)

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II). Geometric parameters (Å, º)

Br1—O2 3.346 (9) C10—H10A 0.9700
Br2—O1 3.341 (9) C10—H10B 0.9700
Ni—N11 1.918 (4) N11—C12 1.512 (6)
Ni—N1 1.921 (4) N11—H11 0.89 (6)
Ni—N4 1.934 (5) C12—C12B 1.521 (8)
Ni—N8 1.937 (4) C12—C12A 1.541 (8)
Ni—O1 2.863 (10) C12—C13 1.551 (7)
N1—C2 1.499 (7) C13—C14 1.519 (7)
N1—C14 1.509 (7) C13—H13A 0.9700
N1—H1 0.81 (6) C13—H13B 0.9700
C2—C3 1.479 (10) C14—C14A 1.531 (7)
C2—H2A 0.9700 C14—H14 0.9800
C2—H2B 0.9700 C5A—H5A1 0.9600
C3—N4 1.486 (7) C5A—H5A2 0.9600
C3—H3A 0.9700 C5A—H5A3 0.9600
C3—H3B 0.9700 C7A—H7A1 0.9600
N4—C5 1.489 (8) C7A—H7A2 0.9600
N4—H4 0.80 (6) C7A—H7A3 0.9600
C5—C6 1.518 (8) C7B—H7B1 0.9600
C5—C5A 1.548 (8) C7B—H7B2 0.9600
C5—H5 0.9800 C7B—H7B3 0.9600
C6—C7 1.528 (7) C12A—H12A 0.9600
C6—H6A 0.9700 C12A—H12B 0.9600
C6—H6B 0.9700 C12A—H12C 0.9600
C7—N8 1.515 (7) C12B—H12D 0.9600
C7—C7B 1.522 (8) C12B—H12E 0.9600
C7—C7A 1.535 (7) C12B—H12F 0.9600
N8—C9 1.487 (6) C14A—H14A 0.9600
N8—H8 0.83 (6) C14A—H14B 0.9600
C9—C10 1.496 (7) C14A—H14C 0.9600
C9—H9A 0.9700 O1—O3 2.671 (11)
C9—H9B 0.9700 O2—O3 2.635 (10)
C10—N11 1.495 (6) O3—O3i 2.637 (12)
N11—Ni—N1 87.73 (19) C10—N11—C12 118.1 (4)
N11—Ni—N4 175.6 (2) C10—N11—Ni 107.2 (3)
N1—Ni—N4 88.5 (2) C12—N11—Ni 114.0 (3)
N11—Ni—N8 88.93 (18) C10—N11—H11 97 (3)
N1—Ni—N8 175.8 (2) C12—N11—H11 107 (3)
N4—Ni—N8 94.79 (19) Ni—N11—H11 112 (3)
N11—Ni—O1 93.4 (2) N11—C12—C12B 110.9 (4)
N1—Ni—O1 84.6 (2) N11—C12—C12A 110.9 (5)
N4—Ni—O1 84.0 (2) C12B—C12—C12A 110.1 (5)
N8—Ni—O1 93.1 (2) N11—C12—C13 107.1 (4)
C2—N1—C14 116.9 (5) C12B—C12—C13 109.9 (4)
C2—N1—Ni 106.8 (3) C12A—C12—C13 107.7 (4)
C14—N1—Ni 109.5 (3) C14—C13—C12 118.9 (4)
C2—N1—H1 108 (4) C14—C13—H13A 107.6
C14—N1—H1 108 (4) C12—C13—H13A 107.6
Ni—N1—H1 107 (4) C14—C13—H13B 107.6
C3—C2—N1 108.5 (5) C12—C13—H13B 107.6
C3—C2—H2A 110.0 H13A—C13—H13B 107.0
N1—C2—H2A 110.0 N1—C14—C13 108.1 (4)
C3—C2—H2B 110.0 N1—C14—C14A 113.1 (5)
N1—C2—H2B 110.0 C13—C14—C14A 108.6 (5)
H2A—C2—H2B 108.4 N1—C14—H14 109.0
C2—C3—N4 107.0 (5) C13—C14—H14 109.0
C2—C3—H3A 110.3 C14A—C14—H14 109.0
N4—C3—H3A 110.3 C5—C5A—H5A1 109.5
C2—C3—H3B 110.3 C5—C5A—H5A2 109.5
N4—C3—H3B 110.3 H5A1—C5A—H5A2 109.5
H3A—C3—H3B 108.6 C5—C5A—H5A3 109.5
C5—N4—C3 112.3 (5) H5A1—C5A—H5A3 109.5
C5—N4—Ni 119.9 (3) H5A2—C5A—H5A3 109.5
C3—N4—Ni 107.4 (4) C7—C7A—H7A1 109.5
C5—N4—H4 102 (5) C7—C7A—H7A2 109.5
C3—N4—H4 111 (4) H7A1—C7A—H7A2 109.5
Ni—N4—H4 104 (5) C7—C7A—H7A3 109.5
N4—C5—C6 110.9 (5) H7A1—C7A—H7A3 109.5
N4—C5—C5A 111.4 (6) H7A2—C7A—H7A3 109.5
C6—C5—C5A 109.2 (5) C7—C7B—H7B1 109.5
N4—C5—H5 108.4 C7—C7B—H7B2 109.5
C6—C5—H5 108.4 H7B1—C7B—H7B2 109.5
C5A—C5—H5 108.4 C7—C7B—H7B3 109.5
C5—C6—C7 117.3 (4) H7B1—C7B—H7B3 109.5
C5—C6—H6A 108.0 H7B2—C7B—H7B3 109.5
C7—C6—H6A 108.0 C12—C12A—H12A 109.5
C5—C6—H6B 108.0 C12—C12A—H12B 109.5
C7—C6—H6B 108.0 H12A—C12A—H12B 109.5
H6A—C6—H6B 107.2 C12—C12A—H12C 109.5
N8—C7—C7B 110.5 (4) H12A—C12A—H12C 109.5
N8—C7—C6 107.3 (4) H12B—C12A—H12C 109.5
C7B—C7—C6 111.2 (5) C12—C12B—H12D 109.5
N8—C7—C7A 110.0 (4) C12—C12B—H12E 109.5
C7B—C7—C7A 109.7 (5) H12D—C12B—H12E 109.5
C6—C7—C7A 108.1 (4) C12—C12B—H12F 109.5
C9—N8—C7 113.7 (4) H12D—C12B—H12F 109.5
C9—N8—Ni 108.7 (3) H12E—C12B—H12F 109.5
C7—N8—Ni 120.2 (3) C14—C14A—H14A 109.5
C9—N8—H8 101 (4) C14—C14A—H14B 109.5
C7—N8—H8 112 (4) H14A—C14A—H14B 109.5
Ni—N8—H8 99 (4) C14—C14A—H14C 109.5
N8—C9—C10 108.9 (4) H14A—C14A—H14C 109.5
N8—C9—H9A 109.9 H14B—C14A—H14C 109.5
C10—C9—H9A 109.9 O3—O1—Ni 95.4 (4)
N8—C9—H9B 109.9 O3—O1—Br2 141.1 (4)
C10—C9—H9B 109.9 Ni—O1—Br2 84.9 (2)
H9A—C9—H9B 108.3 O3—O2—Br1 91.8 (3)
N11—C10—C9 109.4 (4) O3—O2—Br2ii 134.3 (4)
N11—C10—H10A 109.8 Br1—O2—Br2ii 132.9 (3)
C9—C10—H10A 109.8 O3i—O3—O2 128.8 (6)
N11—C10—H10B 109.8 O3i—O3—O1 126.6 (5)
C9—C10—H10B 109.8 O2—O3—O1 99.8 (4)
H10A—C10—H10B 108.2
C14—N1—C2—C3 84.7 (6) C7—N8—C9—C10 167.4 (4)
Ni—N1—C2—C3 −38.3 (6) Ni—N8—C9—C10 30.6 (5)
N1—C2—C3—N4 51.3 (6) N8—C9—C10—N11 −45.2 (6)
C2—C3—N4—C5 −173.1 (5) C9—C10—N11—C12 −92.8 (5)
C2—C3—N4—Ni −39.2 (6) C9—C10—N11—Ni 37.6 (5)
C3—N4—C5—C6 180.0 (5) C10—N11—C12—C12B 70.9 (6)
Ni—N4—C5—C6 52.4 (6) Ni—N11—C12—C12B −56.3 (5)
C3—N4—C5—C5A −58.2 (8) C10—N11—C12—C12A −51.8 (6)
Ni—N4—C5—C5A 174.2 (5) Ni—N11—C12—C12A −179.1 (4)
N4—C5—C6—C7 −66.1 (7) C10—N11—C12—C13 −169.1 (4)
C5A—C5—C6—C7 170.9 (7) Ni—N11—C12—C13 63.6 (5)
C5—C6—C7—N8 66.7 (7) N11—C12—C13—C14 −55.5 (6)
C5—C6—C7—C7B −54.3 (7) C12B—C12—C13—C14 65.0 (6)
C5—C6—C7—C7A −174.7 (6) C12A—C12—C13—C14 −174.9 (5)
C7B—C7—N8—C9 −66.0 (5) C2—N1—C14—C13 167.8 (4)
C6—C7—N8—C9 172.6 (4) Ni—N1—C14—C13 −70.6 (5)
C7A—C7—N8—C9 55.2 (6) C2—N1—C14—C14A 47.6 (8)
C7B—C7—N8—Ni 65.4 (5) Ni—N1—C14—C14A 169.1 (5)
C6—C7—N8—Ni −56.1 (5) C12—C13—C14—N1 60.7 (6)
C7A—C7—N8—Ni −173.4 (4) C12—C13—C14—C14A −176.2 (5)

Symmetry codes: (i) −x+1/2, −y+1/2, z; (ii) x, y−1/2, z+1/2.

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Br2 0.81 (6) 2.66 (6) 3.461 (5) 169 (6)
N4—H4···O1 0.80 (6) 2.80 (7) 3.283 (11) 121 (5)
N4—H4···O3 0.80 (6) 2.25 (6) 3.008 (13) 159 (6)
N8—H8···Br1 0.83 (6) 2.63 (6) 3.444 (5) 164 (5)
N11—H11···Br2 0.89 (6) 2.63 (6) 3.466 (4) 159 (5)

Funding Statement

This work was funded by National Science Foundation grant GP8534.

References

  1. Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Busch, D. H. (1978). Acc. Chem. Res. 11, 392–400.
  4. Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180–182.
  5. Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734–1740.
  6. Corfield, P. W. R. & Gainsford, G. J. (1972). Local versions of standard programs, written at Ohio State University.
  7. Curtis, N. F. (1960). J. Chem. Soc. pp. 4409–4413.
  8. Curtis, N. F. (1964). J. Chem. Soc. pp. 2644–2650.
  9. Curtis, N. F. (1967). J. Chem. Soc. C, pp. 1979–1980.
  10. Curtis, N. F., Coles, M. P. & Wikaira, J. (2016). Polyhedron, 110, 282–290.
  11. Curtis, N. F., Swann, D. A. & Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1963–1974.
  12. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
  15. Ochiai, E., Rettig, S. J. & Trotter, J. (1978). Can. J. Chem. 56, 267–272.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Ou, G.-C., Yuan, X.-Y. & Li, Z.-Z. (2013). Chin. J. Struct. Chem. 32, 375–380.
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Shi, F., Chen, X., Rong, R. & Bao, Q. (2010). Acta Cryst. E66, m665–m666. [DOI] [PMC free article] [PubMed]
  20. Wang, A., Lee, T.-J., Chen, B.-H., Yuan, Y.-Z. & Chung, C.-S. (1996). Acta Cryst. C52, 3033–3035.
  21. Warner, L. G. & Busch, D. H. (1969). J. Am. Chem. Soc. 91, 4092–4101.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989019002056/pk2613sup1.cif

e-75-00332-sup1.cif (556.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002056/pk2613Isup2.hkl

e-75-00332-Isup2.hkl (376.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019002056/pk2613IIsup3.hkl

e-75-00332-IIsup3.hkl (295.3KB, hkl)

CCDC references: 1895686, 1895685

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES