Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 8;75(Pt 3):338–341. doi: 10.1107/S2056989019001592

Crystal structure of a 1:1 adduct of tri­phenyl­tin chloride with 3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one

Hemant P Yennawar a, John Tierney b, Kevin C Cannon c,*
PMCID: PMC6399697  PMID: 30867944

This is the second reported crystal structure of an adduct of a 2,3-disubstituted 1,3-thia­zolidine-4-one ligand and tri­phenyl­tin chloride. The tin atom adopts a trigonal–bipyramidal coordination geometry with the O and Cl atoms in the axial sites.

Keywords: crystal structure, thia­zolidin-4-one, tin complex, C—H⋯Cl-metal hydrogen bond

Abstract

In the centrosymmetric (racemic) title compound, chlorido­(3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one-κO)tri­phenyl­tin(IV), [Sn(C6H5)3Cl(C15H19NOS)], the tin(IV) atom exhibits a trigonal–bipyramidal coordination geometry with the three phenyl groups in equatorial positions and the chloride anion and ligand oxygen atom present at axial sites [O—Sn—Cl = 175.07 (14)°]. The thia­zolidinone ring of the ligand adopts an envelope conformation with the S atom as the flap. The dihedral angles between the heterocycle ring plane (all atoms) are 44.3 (9)° with respect to the pendant C-phenyl plane and 34.3 (11)° to the N-cyclo­hexyl ring (all atoms). The C-phenyl and N-cyclo­hexyl ring are close to orthogonal to each other, with a dihedral angle of 81.1 (4)° between them. In the crystal, mol­ecules are linked by weak C—H⋯Cl hydrogen bonds to generate [001] chains.

Chemical context  

Substituted 1,3-thia­zolidin-4-ones themselves as well as ligands attached to various metals exhibit a wide range of biological activity (Jain et al., 2012; Kozlowski et al. 2002). The ligand of the title compound, (N)-3-xyclohexyl-2-phenyl-1,3-thia­zolidine-4-one, is easily prepared from N-cyclco­hexyl­idene aniline and thio­glycolic acid utilizing a method originally proposed by Surrey (1947). The crystal structure of (N)-3-cyclo­hexyl-2-phenyl-1,3-thia­zolidine-4-one has previously been reported (Cannon et al. 2013), as have a number of other 2,3-disubstituted-thia­zolidin-4-one structures (Yennawar et al., 2017; Vigorita et al., 1979). Furthermore, the X-ray crystal structure of 2,3-diphenyl-1,3-thia­zolidin-4-one as a 1:1 adduct with tri­phenyl­tin chloride has been described (Smith et al. 1995 ), and along with related complexes has biological activity against Cerotysistis Ulmi, the fungus that causes Dutch Elm Disease (Beraldo & de Lima, 2008).graphic file with name e-75-00338-scheme1.jpg

Herein, we report the synthesis and crystal structure of the 1:1 adduct of tri­phenyl­tin chloride with (N)-3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one.

Structural commentary  

The title compound (Fig. 1) shows a five-coordinate geometry around the tin atom (Table 1) with three phenyl groups placed equatorially, and a chloride ligand and an O-bonded thia­zolidinone ligand at the axial sites. The Cl—Sn—O(ligand) principal axis is almost 5° off its ideal linear geometry with a bond angle of 175.07 (14)°. The (N)-3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one ligand contains a chiral center at the 2-carbon atom (C21): in the arbitrarily chosen asymmetric unit, this atom has an R configuration, but crystal symmetry generates a racemic mixture.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Only one disorder component of the thia­zolidinone ring and its attached C22 phenyl ring are shown.

Table 1. Selected bond lengths (Å).

Sn1—C1 2.141 (4) Sn1—Cl1 2.4439 (19)
Sn1—C7 2.130 (4) Sn1—O1 2.488 (4)
Sn1—C13 2.119 (4)    

The most closely related structure previously reported is that of 2,3-diphenyl-1,3-thia­zolidin-4-one as a 1:1 adduct with tri­phenyl­tin chloride (Smith et al., 1995). Since this mol­ecule had a less bulky phenyl group at N3 (N1 in our numbering scheme) than the more bulky cyclo­hexyl group, the principal angle is almost exactly linear at 179.2°. Previously, using Mössbauer effect spectroscopy, the 2,3-diphenyl-1,3-thia­zolidin-4-one as a 1:1 adduct with tri­phenyl­tin chloride gave an r value (the ratio of quadrupole splitting to isomer shift) of 2.41, indicative of the tin with a coordination number greater than four. Although Mössbauer spectroscopy was not used in our study, we see the same coordination properties with the title mol­ecule in the X-ray structure. The Sn—O bond length was found to be 2.500 Å for the tin–di­phenyl­thia­zolidinone adduct, using Mössbauer techniques as well as the X-ray data, whereas, the X-ray data for the title compound yields an Sn—O bond length of 2.488 (4) Å. These values are almost the same and show no difference in having the presence of phenyl and a cyclo­hexyl group at C2 and N3 (C21 and N1 in our numbering scheme) versus a phenyl group at each location.

Supra­molecular features  

The surface of the title compound is primarily hydro­phobic due to four aromatic and one aliphatic ring resulting in inter­molecular van der Waals inter­actions (Fig. 2) between the various aromatic rings. A sole weak hydrogen bond between the chiral carbon atom (C21) with a chloride ion of the neighboring mol­ecule related by translation symmetry in the c-axis direction [H⋯Cl = 2.76 Å, C⋯Cl = 3.569 (9) Å, C—H⋯Cl = 140°] helps to consolidate the packing.

Figure 2.

Figure 2

Packing diagram for the title compound with C—H⋯Cl inter­actions indicated by dashed lines.

Database survey  

There is only one closely related structure previously reported and that is 2,3-diphenyl-1,3-thia­zolidin-4-one as a 1:1 adduct with tri­phenyl­tin chloride (Smith et al., 1995).

Synthesis and crystallization  

The synthesis of (N)-3-cyclo­hexyl-2-phenyl-1,3-thia­zolidine-4-one has been previously reported (Cannon et al., 2013).

The 1:1 adduct with tri­phenyl­tin chloride was prepared by dissolving 0.0023 mol of N-3-cyclo­hexhyl-2-phenyl-1,3-thia­zolidin-4-one in 15 ml of acetone and adding this solution dropwise to a 15 mL solution of tri­phenyl­tin chloride (0.0023 mol) in a 50 ml round-bottom flask while stirring at room temperature for 3 h. Stirring was then stopped and the solution was allowed to stand for an additional 10 h. A precipitate was apparent, which was filtered and the filtrate was reduced under vacuum on a rotary evaporator, dried under vacuum to give an oily residue, which formed crystals when heated in ligroin. Recrystallization from ligroin solution yielded 0.0022 mol (97% yield) of the title 1:1 complex in the form of colorless blocks: m.p. 372–375 K (no literature reports).

Tri­phenyl­tinchloride-3-cyclo­hexyl-2-phenyl-1,3-thia­zolidin-4-one: Yield (97%); m.p. 372–375 K, cm−1 1658.6 (C=O); 1H NMR (CDCl3): 7.78–7.27 (20 H, m, aromatics), 5.66 (1H, d, J = 1.9 Hz, C2), 3.89 (1H, dd, J = 1.9 Hz and J = 15.6 Hz, C5), 3.85–3.78 (1H, m, NCH), 3.58 (1H, d, J = 15.6 Hz, C5), 1.79–0.91 (10H, m, cyclo­hexyls); 13C NMR: 171.77 (C4), 142.98, 137.78, 136.34 (t, 25.3 Hz), 130.62, 129.32 (t, J = 32.2 Hz), 129.07, 128.88, 128.52, 126.38, 62.83 (C2), 56.30, 33.23 (C5), 31.03, 30.12, 26.10, 25.42. C33H34OClSnNS.

Refinement  

In spite of our search for a better crystal we had to work with one that was not optimal, as is evident from the high value of R int = 0.0721. Upon refinement we observed positional disorder in almost a fourth of the structure (nine out of thirty-eight non-H atoms). As a result, some refinement parameters such as the ADP max/min ratio (8.2) for one of the atoms are slightly above optimal values but the atomic connectivity is clearly established. Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (methyl­ene), with U iso(H) = 1.2U eq (aromatic or methyl­ene C) or 1.5U eq(methyl C).

Table 2. Experimental details.

Crystal data
Chemical formula [Sn(C6H5)3Cl(C15H19NOS)]
M r 646.81
Crystal system, space group Monoclinic, P21/c
Temperature (K) 218
a, b, c (Å) 15.360 (5), 18.879 (6), 10.992 (3)
β (°) 102.524 (5)
V3) 3111.8 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.15 × 0.11 × 0.10
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS, Bruker, 2001)
T min, T max 0.865, 0.907
No. of measured, independent and observed [I > 2σ(I)] reflections 24296, 7791, 5009
R int 0.072
(sin θ/λ)max−1) 0.673
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.083, 0.221, 1.04
No. of reflections 7791
No. of parameters 365
No. of restraints 133
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.50, −1.17

Computer programs: SMART and SAINT (Bruker, 2001), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019001592/hb7780sup1.cif

e-75-00338-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019001592/hb7780Isup2.hkl

e-75-00338-Isup2.hkl (381.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019001592/hb7780Isup3.mol

CCDC reference: 1894217

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Temple University, Department of Chemistry, for the use of their Bruker 500 MHz NMR spectrometer.

supplementary crystallographic information

Crystal data

[Sn(C6H5)3Cl(C15H19NOS)] F(000) = 1320
Mr = 646.81 Dx = 1.381 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.360 (5) Å Cell parameters from 4375 reflections
b = 18.879 (6) Å θ = 2.3–26.4°
c = 10.992 (3) Å µ = 1.00 mm1
β = 102.524 (5)° T = 218 K
V = 3111.8 (17) Å3 Block, colorless
Z = 4 0.15 × 0.11 × 0.10 mm

Data collection

Bruker CCD area detector diffractometer 7791 independent reflections
Radiation source: fine-focus sealed tube 5009 reflections with I > 2σ(I)
Parallel-graphite monochromator Rint = 0.072
phi and ω scans θmax = 28.6°, θmin = 1.7°
Absorption correction: multi-scan (SADABS, Bruker, 2001) h = −16→20
Tmin = 0.865, Tmax = 0.907 k = −25→25
24296 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0926P)2 + 6.5369P] where P = (Fo2 + 2Fc2)/3
7791 reflections (Δ/σ)max < 0.001
365 parameters Δρmax = 2.50 e Å3
133 restraints Δρmin = −1.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5942 (3) 0.0290 (3) 0.2921 (4) 0.0467 (14)
C2 0.5376 (4) 0.0374 (4) 0.1758 (4) 0.092 (3)
H2 0.5556 0.0224 0.1045 0.111*
C3 0.4542 (4) 0.0681 (4) 0.1662 (5) 0.116 (4)
H3 0.4163 0.0738 0.0884 0.139*
C4 0.4274 (3) 0.0905 (4) 0.2728 (7) 0.089 (3)
H4 0.3715 0.1111 0.2664 0.106*
C5 0.4839 (4) 0.0821 (4) 0.3891 (5) 0.097 (3)
H5 0.4660 0.0971 0.4604 0.116*
C6 0.5674 (4) 0.0513 (3) 0.3987 (4) 0.077 (2)
H6 0.6052 0.0457 0.4765 0.092*
C7 0.7266 (4) −0.1279 (2) 0.2527 (5) 0.0585 (17)
C12 0.6759 (5) −0.1492 (3) 0.1380 (5) 0.108 (4)
H12 0.6395 −0.1167 0.0872 0.130*
C11 0.6795 (5) −0.2190 (4) 0.0993 (6) 0.132 (4)
H11 0.6455 −0.2333 0.0225 0.158*
C10 0.7338 (6) −0.2676 (2) 0.1753 (8) 0.126 (4)
H10 0.7362 −0.3143 0.1494 0.151*
C9 0.7845 (5) −0.2463 (3) 0.2900 (8) 0.123 (4)
H9 0.8209 −0.2788 0.3409 0.148*
C8 0.7809 (4) −0.1765 (3) 0.3287 (5) 0.085 (3)
H8 0.8148 −0.1622 0.4055 0.102*
C13 0.8355 (3) 0.0451 (2) 0.3297 (6) 0.0504 (14)
C18 0.8226 (3) 0.1176 (3) 0.3135 (7) 0.104 (4)
H18 0.7653 0.1364 0.2996 0.125*
C17 0.8953 (5) 0.1621 (2) 0.3179 (9) 0.141 (6)
H17 0.8867 0.2107 0.3071 0.169*
C16 0.9809 (4) 0.1341 (3) 0.3387 (8) 0.115 (4)
H16 1.0296 0.1639 0.3417 0.138*
C15 0.9938 (3) 0.0615 (4) 0.3550 (7) 0.092 (3)
H15 1.0511 0.0428 0.3688 0.111*
C14 0.9211 (3) 0.0170 (2) 0.3505 (6) 0.075 (2)
H14 0.9298 −0.0315 0.3614 0.090*
C19 0.7557 (6) 0.0101 (4) 0.0116 (7) 0.0592 (19)
C20B 0.839 (2) −0.0392 (13) 0.0291 (17) 0.068 (6) 0.66 (6)
H20A 0.8263 −0.0855 0.0595 0.081* 0.66 (6)
H20B 0.8894 −0.0187 0.0872 0.081* 0.66 (6)
C21B 0.810 (2) 0.0427 (14) −0.166 (3) 0.064 (5) 0.66 (6)
H21B 0.7775 0.0400 −0.2531 0.077* 0.66 (6)
C22A 0.864 (3) 0.0842 (15) −0.190 (4) 0.065 (9) 0.34 (6)
C23A 0.872 (4) 0.1077 (19) −0.307 (4) 0.098 (15) 0.34 (6)
H23A 0.8325 0.0919 −0.3783 0.117* 0.34 (6)
C24A 0.940 (5) 0.155 (2) −0.317 (5) 0.12 (2) 0.34 (6)
H24A 0.9452 0.1706 −0.3956 0.147* 0.34 (6)
C25A 0.999 (4) 0.179 (2) −0.211 (6) 0.13 (2) 0.34 (6)
H25A 1.0439 0.2101 −0.2180 0.161* 0.34 (6)
C26A 0.990 (2) 0.155 (2) −0.094 (6) 0.125 (15) 0.34 (6)
H26A 1.0300 0.1709 −0.0232 0.150* 0.34 (6)
C27A 0.923 (3) 0.1079 (19) −0.084 (4) 0.080 (9) 0.34 (6)
H27A 0.9174 0.0922 −0.0058 0.096* 0.34 (6)
C20A 0.811 (3) −0.051 (3) 0.003 (4) 0.056 (8) 0.34 (6)
H20C 0.7807 −0.0935 0.0184 0.067* 0.34 (6)
H20D 0.8661 −0.0471 0.0667 0.067* 0.34 (6)
C21A 0.798 (4) 0.029 (3) −0.184 (6) 0.060 (7) 0.34 (6)
H21A 0.7564 0.0262 −0.2650 0.071* 0.34 (6)
C22B 0.8812 (14) 0.0986 (13) −0.158 (2) 0.076 (5) 0.66 (6)
C23B 0.9134 (19) 0.1135 (13) −0.264 (3) 0.103 (7) 0.66 (6)
H23B 0.8852 0.0945 −0.3402 0.124* 0.66 (6)
C24B 0.988 (2) 0.1569 (12) −0.255 (4) 0.132 (11) 0.66 (6)
H24B 1.0091 0.1669 −0.3264 0.158* 0.66 (6)
C25B 1.0296 (15) 0.1853 (13) −0.141 (4) 0.150 (13) 0.66 (6)
H25B 1.0792 0.2143 −0.1357 0.180* 0.66 (6)
C26B 0.9975 (14) 0.1704 (14) −0.035 (3) 0.128 (9) 0.66 (6)
H26B 1.0256 0.1894 0.0414 0.154* 0.66 (6)
C27B 0.9233 (15) 0.1271 (14) −0.043 (2) 0.094 (6) 0.66 (6)
H27B 0.9018 0.1171 0.0276 0.113* 0.66 (6)
C28 0.6744 (6) 0.1067 (4) −0.1129 (7) 0.0641 (19)
H28 0.6264 0.0907 −0.0735 0.077*
C29 0.7082 (7) 0.1766 (5) −0.0520 (10) 0.093 (3)
H29A 0.7557 0.1948 −0.0888 0.111*
H29B 0.7319 0.1695 0.0364 0.111*
C30 0.6307 (9) 0.2297 (6) −0.0715 (11) 0.120 (4)
H30A 0.5858 0.2131 −0.0284 0.144*
H30B 0.6524 0.2751 −0.0363 0.144*
C31 0.5898 (10) 0.2386 (6) −0.2066 (12) 0.123 (4)
H31A 0.5402 0.2713 −0.2162 0.148*
H31B 0.6336 0.2587 −0.2485 0.148*
C32 0.5578 (9) 0.1698 (7) −0.2659 (12) 0.122 (4)
H32A 0.5334 0.1770 −0.3541 0.146*
H32B 0.5106 0.1514 −0.2287 0.146*
C33 0.6344 (7) 0.1158 (5) −0.2490 (8) 0.086 (3)
H33A 0.6120 0.0707 −0.2849 0.103*
H33B 0.6796 0.1323 −0.2917 0.103*
Cl1 0.74786 (14) −0.04867 (12) 0.53404 (17) 0.0666 (5)
N1 0.7461 (5) 0.0513 (3) −0.0871 (5) 0.0578 (15)
O1 0.7073 (4) 0.0135 (3) 0.0899 (4) 0.0620 (13)
S1A 0.837 (2) −0.0549 (18) −0.145 (3) 0.067 (5) 0.34 (6)
S1B 0.861 (2) −0.0454 (11) −0.121 (2) 0.083 (4) 0.66 (6)
Sn1 0.72177 (3) −0.02084 (2) 0.31194 (4) 0.04302 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.037 (3) 0.044 (3) 0.059 (4) −0.008 (2) 0.010 (3) −0.002 (3)
C2 0.056 (5) 0.162 (10) 0.056 (4) 0.029 (6) 0.006 (4) −0.001 (5)
C3 0.060 (6) 0.167 (12) 0.107 (7) 0.032 (7) −0.010 (5) −0.004 (8)
C4 0.045 (5) 0.077 (6) 0.144 (8) 0.018 (4) 0.022 (4) −0.005 (6)
C5 0.081 (7) 0.103 (8) 0.116 (7) 0.023 (6) 0.042 (5) −0.008 (6)
C6 0.071 (5) 0.099 (6) 0.064 (5) 0.027 (5) 0.020 (4) −0.009 (5)
C7 0.062 (5) 0.050 (3) 0.072 (4) 0.005 (3) 0.035 (4) 0.006 (3)
C12 0.162 (11) 0.066 (5) 0.090 (7) −0.007 (6) 0.011 (6) −0.019 (5)
C11 0.195 (14) 0.075 (6) 0.141 (10) −0.037 (7) 0.068 (8) −0.042 (6)
C10 0.154 (12) 0.054 (5) 0.206 (12) −0.025 (5) 0.116 (9) −0.031 (6)
C9 0.132 (11) 0.057 (5) 0.201 (12) 0.025 (6) 0.080 (8) 0.022 (6)
C8 0.090 (7) 0.057 (4) 0.113 (7) 0.020 (4) 0.034 (5) 0.014 (4)
C13 0.042 (3) 0.056 (3) 0.056 (4) 0.005 (3) 0.016 (3) 0.004 (3)
C18 0.061 (5) 0.052 (4) 0.199 (12) −0.002 (4) 0.028 (7) 0.006 (6)
C17 0.083 (7) 0.074 (6) 0.257 (17) −0.023 (5) 0.016 (9) 0.024 (9)
C16 0.071 (5) 0.104 (6) 0.173 (12) −0.034 (5) 0.034 (7) 0.011 (8)
C15 0.054 (5) 0.115 (7) 0.117 (8) −0.004 (5) 0.037 (5) 0.009 (7)
C14 0.051 (4) 0.078 (5) 0.098 (7) 0.005 (4) 0.019 (4) 0.002 (5)
C19 0.086 (6) 0.055 (4) 0.042 (3) 0.008 (3) 0.025 (3) 0.006 (3)
C20B 0.112 (15) 0.075 (9) 0.016 (6) 0.041 (10) 0.015 (8) −0.020 (5)
C21B 0.114 (12) 0.046 (9) 0.041 (8) 0.014 (7) 0.038 (8) −0.006 (6)
C22A 0.09 (2) 0.037 (10) 0.082 (18) 0.008 (12) 0.054 (16) −0.017 (11)
C23A 0.16 (4) 0.048 (16) 0.12 (2) −0.01 (2) 0.10 (2) −0.001 (17)
C24A 0.14 (5) 0.06 (2) 0.21 (4) 0.00 (3) 0.13 (4) 0.02 (3)
C25A 0.12 (3) 0.043 (19) 0.28 (5) 0.00 (2) 0.13 (4) −0.04 (3)
C26A 0.05 (2) 0.09 (3) 0.23 (4) 0.015 (14) 0.02 (2) −0.01 (3)
C27A 0.053 (16) 0.050 (17) 0.14 (2) 0.033 (12) 0.017 (17) −0.008 (19)
C20A 0.060 (18) 0.080 (17) 0.021 (13) 0.016 (13) −0.003 (12) 0.016 (13)
C21A 0.10 (2) 0.042 (15) 0.050 (17) 0.004 (10) 0.037 (15) 0.011 (14)
C22B 0.079 (11) 0.069 (9) 0.093 (12) 0.024 (9) 0.047 (9) 0.015 (9)
C23B 0.112 (17) 0.082 (14) 0.142 (15) 0.032 (10) 0.087 (14) 0.025 (12)
C24B 0.11 (2) 0.066 (14) 0.25 (3) 0.041 (13) 0.12 (2) 0.047 (17)
C25B 0.081 (15) 0.085 (19) 0.29 (4) 0.027 (10) 0.057 (18) 0.05 (2)
C26B 0.071 (12) 0.079 (14) 0.22 (2) 0.021 (9) 0.012 (14) 0.015 (15)
C27B 0.076 (11) 0.070 (14) 0.136 (14) 0.018 (9) 0.021 (10) −0.015 (11)
C28 0.084 (6) 0.060 (4) 0.052 (4) 0.015 (4) 0.023 (4) 0.005 (3)
C29 0.099 (7) 0.072 (5) 0.099 (7) 0.022 (5) 0.006 (5) −0.027 (5)
C30 0.157 (11) 0.084 (7) 0.116 (7) 0.055 (7) 0.021 (7) −0.013 (6)
C31 0.145 (11) 0.097 (7) 0.126 (8) 0.057 (7) 0.024 (7) 0.017 (7)
C32 0.116 (10) 0.124 (8) 0.108 (8) 0.039 (7) −0.013 (7) 0.014 (6)
C33 0.106 (8) 0.078 (6) 0.065 (5) 0.011 (5) 0.002 (5) 0.003 (4)
Cl1 0.0649 (12) 0.0897 (14) 0.0434 (9) −0.0031 (10) 0.0077 (8) 0.0144 (9)
N1 0.080 (4) 0.056 (3) 0.044 (3) 0.015 (3) 0.026 (3) 0.005 (2)
O1 0.082 (4) 0.074 (3) 0.034 (2) 0.011 (3) 0.020 (2) 0.006 (2)
S1A 0.097 (12) 0.051 (7) 0.057 (9) 0.020 (6) 0.030 (7) 0.003 (6)
S1B 0.137 (12) 0.062 (5) 0.064 (6) 0.028 (6) 0.050 (7) 0.001 (4)
Sn1 0.0411 (3) 0.0463 (3) 0.0426 (3) 0.0028 (2) 0.01113 (18) 0.00347 (19)

Geometric parameters (Å, º)

Sn1—C1 2.141 (4) C21B—S1B 1.86 (4)
Sn1—C7 2.130 (4) C22A—C23A 1.3900
Sn1—C13 2.119 (4) C22A—C27A 1.3900
Sn1—Cl1 2.4439 (19) C22A—C21A 1.47 (4)
Sn1—O1 2.488 (4) C23A—H23A 0.9300
C1—C2 1.3900 C23A—C24A 1.3900
C1—C6 1.3900 C24A—H24A 0.9300
C2—H2 0.9300 C24A—C25A 1.3900
C2—C3 1.3900 C25A—H25A 0.9300
C3—H3 0.9300 C25A—C26A 1.3900
C3—C4 1.3900 C26A—H26A 0.9300
C4—H4 0.9300 C26A—C27A 1.3900
C4—C5 1.3900 C27A—H27A 0.9300
C5—H5 0.9300 C20A—H20C 0.9700
C5—C6 1.3900 C20A—H20D 0.9700
C6—H6 0.9300 C20A—S1A 1.76 (5)
C7—C12 1.3900 C21A—H21A 0.9800
C7—C8 1.3900 C21A—N1 1.52 (6)
C12—H12 0.9300 C21A—S1A 1.71 (7)
C12—C11 1.3900 C22B—C23B 1.3900
C11—H11 0.9300 C22B—C27B 1.3900
C11—C10 1.3900 C23B—H23B 0.9300
C10—H10 0.9300 C23B—C24B 1.3900
C10—C9 1.3900 C24B—H24B 0.9300
C9—H9 0.9300 C24B—C25B 1.3900
C9—C8 1.3900 C25B—H25B 0.9300
C8—H8 0.9300 C25B—C26B 1.3900
C13—C18 1.3900 C26B—H26B 0.9300
C13—C14 1.3900 C26B—C27B 1.3900
C18—H18 0.9300 C27B—H27B 0.9300
C18—C17 1.3900 C28—H28 0.9800
C17—H17 0.9300 C28—C29 1.519 (12)
C17—C16 1.3900 C28—C33 1.499 (11)
C16—H16 0.9300 C28—N1 1.501 (10)
C16—C15 1.3900 C29—H29A 0.9700
C15—H15 0.9300 C29—H29B 0.9700
C15—C14 1.3900 C29—C30 1.536 (13)
C14—H14 0.9300 C30—H30A 0.9700
C19—C20B 1.56 (3) C30—H30B 0.9700
C19—C20A 1.44 (4) C30—C31 1.491 (15)
C19—N1 1.317 (9) C31—H31A 0.9700
C19—O1 1.257 (8) C31—H31B 0.9700
C20B—H20A 0.9700 C31—C32 1.488 (17)
C20B—H20B 0.9700 C32—H32A 0.9700
C20B—S1B 1.76 (2) C32—H32B 0.9700
C21B—H21B 0.9800 C32—C33 1.537 (14)
C21B—C22B 1.50 (2) C33—H33A 0.9700
C21B—N1 1.46 (3) C33—H33B 0.9700
C2—C1—C6 120.0 C26A—C27A—C22A 120.0
C2—C1—Sn1 121.3 (3) C26A—C27A—H27A 120.0
C6—C1—Sn1 118.7 (3) C19—C20A—H20C 109.5
C1—C2—H2 120.0 C19—C20A—H20D 109.5
C1—C2—C3 120.0 C19—C20A—S1A 111 (2)
C3—C2—H2 120.0 H20C—C20A—H20D 108.1
C2—C3—H3 120.0 S1A—C20A—H20C 109.5
C2—C3—C4 120.0 S1A—C20A—H20D 109.5
C4—C3—H3 120.0 C22A—C21A—H21A 108.1
C3—C4—H4 120.0 C22A—C21A—N1 108 (4)
C5—C4—C3 120.0 C22A—C21A—S1A 118 (4)
C5—C4—H4 120.0 N1—C21A—H21A 108.1
C4—C5—H5 120.0 N1—C21A—S1A 107 (3)
C6—C5—C4 120.0 S1A—C21A—H21A 108.1
C6—C5—H5 120.0 C23B—C22B—C21B 118.2 (12)
C1—C6—H6 120.0 C23B—C22B—C27B 120.0
C5—C6—C1 120.0 C27B—C22B—C21B 121.1 (12)
C5—C6—H6 120.0 C22B—C23B—H23B 120.0
C12—C7—C8 120.0 C22B—C23B—C24B 120.0
C12—C7—Sn1 120.1 (3) C24B—C23B—H23B 120.0
C8—C7—Sn1 119.9 (3) C23B—C24B—H24B 120.0
C7—C12—H12 120.0 C23B—C24B—C25B 120.0
C11—C12—C7 120.0 C25B—C24B—H24B 120.0
C11—C12—H12 120.0 C24B—C25B—H25B 120.0
C12—C11—H11 120.0 C26B—C25B—C24B 120.0
C12—C11—C10 120.0 C26B—C25B—H25B 120.0
C10—C11—H11 120.0 C25B—C26B—H26B 120.0
C11—C10—H10 120.0 C25B—C26B—C27B 120.0
C9—C10—C11 120.0 C27B—C26B—H26B 120.0
C9—C10—H10 120.0 C22B—C27B—H27B 120.0
C10—C9—H9 120.0 C26B—C27B—C22B 120.0
C10—C9—C8 120.0 C26B—C27B—H27B 120.0
C8—C9—H9 120.0 C29—C28—H28 107.0
C7—C8—H8 120.0 C33—C28—H28 107.0
C9—C8—C7 120.0 C33—C28—C29 111.6 (7)
C9—C8—H8 120.0 C33—C28—N1 113.1 (6)
C18—C13—C14 120.0 N1—C28—H28 107.0
C18—C13—Sn1 118.4 (3) N1—C28—C29 110.8 (7)
C14—C13—Sn1 121.5 (3) C28—C29—H29A 109.9
C13—C18—H18 120.0 C28—C29—H29B 109.9
C13—C18—C17 120.0 C28—C29—C30 109.0 (9)
C17—C18—H18 120.0 H29A—C29—H29B 108.3
C18—C17—H17 120.0 C30—C29—H29A 109.9
C16—C17—C18 120.0 C30—C29—H29B 109.9
C16—C17—H17 120.0 C29—C30—H30A 109.4
C17—C16—H16 120.0 C29—C30—H30B 109.4
C17—C16—C15 120.0 H30A—C30—H30B 108.0
C15—C16—H16 120.0 C31—C30—C29 111.0 (9)
C16—C15—H15 120.0 C31—C30—H30A 109.4
C14—C15—C16 120.0 C31—C30—H30B 109.4
C14—C15—H15 120.0 C30—C31—H31A 109.3
C13—C14—H14 120.0 C30—C31—H31B 109.3
C15—C14—C13 120.0 H31A—C31—H31B 108.0
C15—C14—H14 120.0 C32—C31—C30 111.5 (10)
C20A—C19—C20B 19 (2) C32—C31—H31A 109.3
N1—C19—C20B 113.4 (10) C32—C31—H31B 109.3
N1—C19—C20A 112.3 (16) C31—C32—H32A 109.5
O1—C19—C20B 122.6 (10) C31—C32—H32B 109.5
O1—C19—C20A 122.1 (17) C31—C32—C33 110.7 (10)
O1—C19—N1 123.8 (7) H32A—C32—H32B 108.1
C19—C20B—H20A 111.0 C33—C32—H32A 109.5
C19—C20B—H20B 111.0 C33—C32—H32B 109.5
C19—C20B—S1B 104.0 (13) C28—C33—C32 109.5 (8)
H20A—C20B—H20B 109.0 C28—C33—H33A 109.8
S1B—C20B—H20A 111.0 C28—C33—H33B 109.8
S1B—C20B—H20B 111.0 C32—C33—H33A 109.8
C22B—C21B—H21B 108.2 C32—C33—H33B 109.8
C22B—C21B—S1B 111 (2) H33A—C33—H33B 108.2
N1—C21B—H21B 108.2 C19—N1—C21B 117.1 (14)
N1—C21B—C22B 117.3 (17) C19—N1—C21A 115 (2)
N1—C21B—S1B 103.6 (16) C19—N1—C28 120.9 (6)
S1B—C21B—H21B 108.2 C21B—N1—C21A 14 (3)
C23A—C22A—C27A 120.0 C21B—N1—C28 121.9 (13)
C23A—C22A—C21A 118 (2) C28—N1—C21A 123 (2)
C27A—C22A—C21A 121 (2) C19—O1—Sn1 135.9 (5)
C22A—C23A—H23A 120.0 C21A—S1A—C20A 93 (3)
C24A—C23A—C22A 120.0 C20B—S1B—C21B 92.3 (14)
C24A—C23A—H23A 120.0 C1—Sn1—Cl1 98.31 (14)
C23A—C24A—H24A 120.0 C1—Sn1—O1 84.26 (18)
C25A—C24A—C23A 120.0 C7—Sn1—C1 118.5 (2)
C25A—C24A—H24A 120.0 C7—Sn1—Cl1 95.29 (16)
C24A—C25A—H25A 120.0 C7—Sn1—O1 87.11 (19)
C24A—C25A—C26A 120.0 C13—Sn1—C1 118.0 (2)
C26A—C25A—H25A 120.0 C13—Sn1—C7 120.2 (2)
C25A—C26A—H26A 120.0 C13—Sn1—Cl1 94.63 (17)
C25A—C26A—C27A 120.0 C13—Sn1—O1 80.4 (2)
C27A—C26A—H26A 120.0 Cl1—Sn1—O1 175.07 (14)
C22A—C27A—H27A 120.0
C1—C2—C3—C4 0.0 C23A—C24A—C25A—C26A 0.0
C2—C1—C6—C5 0.0 C24A—C25A—C26A—C27A 0.0
C2—C1—Sn1—C7 −61.0 (4) C25A—C26A—C27A—C22A 0.0
C2—C1—Sn1—C13 98.6 (4) C27A—C22A—C23A—C24A 0.0
C2—C1—Sn1—Cl1 −161.6 (3) C27A—C22A—C21A—N1 53 (5)
C2—C1—Sn1—O1 22.6 (4) C27A—C22A—C21A—S1A −68 (5)
C2—C3—C4—C5 0.0 C20A—C19—C20B—S1B 68 (6)
C3—C4—C5—C6 0.0 C20A—C19—N1—C21B −18 (2)
C4—C5—C6—C1 0.0 C20A—C19—N1—C21A −3 (3)
C6—C1—C2—C3 0.0 C20A—C19—N1—C28 165 (2)
C6—C1—Sn1—C7 117.3 (3) C20A—C19—O1—Sn1 39 (3)
C6—C1—Sn1—C13 −83.2 (4) C21A—C22A—C23A—C24A −173 (4)
C6—C1—Sn1—Cl1 16.6 (3) C21A—C22A—C27A—C26A 173 (4)
C6—C1—Sn1—O1 −159.1 (4) C22B—C21B—N1—C19 −105 (2)
C7—C12—C11—C10 0.0 C22B—C21B—N1—C21A 169 (17)
C12—C7—C8—C9 0.0 C22B—C21B—N1—C28 72 (3)
C12—C7—Sn1—C1 46.3 (4) C22B—C21B—S1B—C20B 100.0 (17)
C12—C7—Sn1—C13 −112.8 (4) C22B—C23B—C24B—C25B 0.0
C12—C7—Sn1—Cl1 148.7 (3) C23B—C22B—C27B—C26B 0.0
C12—C7—Sn1—O1 −35.6 (4) C23B—C24B—C25B—C26B 0.0
C12—C11—C10—C9 0.0 C24B—C25B—C26B—C27B 0.0
C11—C10—C9—C8 0.0 C25B—C26B—C27B—C22B 0.0
C10—C9—C8—C7 0.0 C27B—C22B—C23B—C24B 0.0
C8—C7—C12—C11 0.0 C28—C29—C30—C31 −56.4 (14)
C8—C7—Sn1—C1 −134.1 (4) C29—C28—C33—C32 −58.0 (12)
C8—C7—Sn1—C13 66.9 (4) C29—C28—N1—C19 90.0 (10)
C8—C7—Sn1—Cl1 −31.6 (4) C29—C28—N1—C21B −87.1 (16)
C8—C7—Sn1—O1 144.1 (4) C29—C28—N1—C21A −103 (3)
C13—C18—C17—C16 0.0 C29—C30—C31—C32 57.4 (16)
C18—C13—C14—C15 0.0 C30—C31—C32—C33 −57.3 (16)
C18—C13—Sn1—C1 −7.3 (4) C31—C32—C33—C28 57.0 (14)
C18—C13—Sn1—C7 151.8 (4) C33—C28—C29—C30 57.6 (12)
C18—C13—Sn1—Cl1 −109.3 (4) C33—C28—N1—C19 −143.8 (8)
C18—C13—Sn1—O1 70.9 (4) C33—C28—N1—C21B 39.1 (17)
C18—C17—C16—C15 0.0 C33—C28—N1—C21A 23 (3)
C17—C16—C15—C14 0.0 N1—C19—C20B—S1B −22.9 (17)
C16—C15—C14—C13 0.0 N1—C19—C20A—S1A −7 (3)
C14—C13—C18—C17 0.0 N1—C19—O1—Sn1 −157.1 (6)
C14—C13—Sn1—C1 176.1 (3) N1—C21B—C22B—C23B −148.8 (19)
C14—C13—Sn1—C7 −24.8 (4) N1—C21B—C22B—C27B 41 (3)
C14—C13—Sn1—Cl1 74.1 (4) N1—C21B—S1B—C20B −26.7 (18)
C14—C13—Sn1—O1 −105.7 (4) N1—C21A—S1A—C20A −13 (4)
C19—C20B—S1B—C21B 27.5 (17) N1—C28—C29—C30 −175.3 (8)
C19—C20A—S1A—C21A 12 (4) N1—C28—C33—C32 176.3 (9)
C19—O1—Sn1—C1 175.4 (7) O1—C19—C20B—S1B 162.3 (11)
C19—O1—Sn1—C7 −65.6 (7) O1—C19—C20A—S1A 158.2 (17)
C19—O1—Sn1—C13 55.7 (7) O1—C19—N1—C21B 177.3 (15)
C19—O1—Sn1—Cl1 53.7 (18) O1—C19—N1—C21A −168 (3)
C20B—C19—C20A—S1A −104 (8) O1—C19—N1—C28 0.1 (12)
C20B—C19—N1—C21B 2.6 (17) S1A—C21A—N1—C19 11 (4)
C20B—C19—N1—C21A 18 (3) S1A—C21A—N1—C21B 112 (17)
C20B—C19—N1—C28 −174.6 (13) S1A—C21A—N1—C28 −156 (2)
C20B—C19—O1—Sn1 17.1 (17) S1B—C21B—C22B—C23B 92.4 (18)
C21B—C22B—C23B—C24B −170 (2) S1B—C21B—C22B—C27B −78 (2)
C21B—C22B—C27B—C26B 170 (2) S1B—C21B—N1—C19 17.8 (19)
C22A—C23A—C24A—C25A 0.0 S1B—C21B—N1—C21A −68 (14)
C22A—C21A—N1—C19 −116 (3) S1B—C21B—N1—C28 −165.0 (11)
C22A—C21A—N1—C21B −15 (12) Sn1—C1—C2—C3 178.2 (4)
C22A—C21A—N1—C28 77 (4) Sn1—C1—C6—C5 −178.3 (4)
C22A—C21A—S1A—C20A 109 (4) Sn1—C7—C12—C11 179.7 (4)
C23A—C22A—C27A—C26A 0.0 Sn1—C7—C8—C9 −179.7 (4)
C23A—C22A—C21A—N1 −134 (3) Sn1—C13—C18—C17 −176.6 (4)
C23A—C22A—C21A—S1A 106 (4) Sn1—C13—C14—C15 176.5 (4)

Funding Statement

This work was funded by NSF funding (CHEM-0131112) for the X-ray diffractometer grant .

References

  1. Beraldo, H. & de Lima, G. M. (2008). Tin Chemistry: Fundamentals, Frontiers and Applications, edited by A. Davies, M. Gielen, K. H. Pannell & E. R. T. Tiekink, p 448. Chichester: John Wiley & Sons.
  2. Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cannon, K., Mascavage, L., Kistler, K., Tierney, J., Yennawar, H. & Lagalante, A. (2013). Int. J. Chem. 5, 46–56.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395. [DOI] [PubMed]
  6. Kozlowski, C. A., Ulewicz, M., Walkowiak, W., Girek, T. J. & Jablonska, J. (2002). Miner. Eng. 15, 677–682.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smith, F. E., Hynes, R. C., Tierney, J., Zhang, Z. & Eng, G. (1995). Can. J. Chem. 73, 95–99.
  9. Surrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911–2. [DOI] [PubMed]
  10. Vigorita, M. G., Chimirri, A., Grasso, S. & Fenech, G. (1979). J. Heterocycl. Chem. 16, 1257–1261.
  11. Yennawar, H. P., Tierney, J. & Silverberg, L. J. (2017). IUCrData, 2, x171662.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019001592/hb7780sup1.cif

e-75-00338-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019001592/hb7780Isup2.hkl

e-75-00338-Isup2.hkl (381.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019001592/hb7780Isup3.mol

CCDC reference: 1894217

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES