Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 28;75(Pt 3):414–417. doi: 10.1107/S2056989019002743

Crystal structure of idelalisib tert-butanol monosolvate dihydrate

Sven Nerdinger a, Marijan Stefinovic a, Frank Richter a, Jacek Olma b, Michal Brysz b, Tracy Walker c, Volker Kahlenberg d, Thomas Gelbrich e,*
PMCID: PMC6399699  PMID: 30867961

Mol­ecules of the three components, idelalisib, tert-butanol and water, are linked into a hydrogen-bonded chain structure with the topology of a 2,3,4,5-connected 4-nodal net.

Keywords: crystal structure, hydrogen bonding, hydrate, solvate, pharmaceuticals

Abstract

In the title structure, 5-fluoro-3-phenyl-2-[(1S)-1-(9H-purin-6-yl­amino)­prop­yl]quinazolin-4(3H)-one (= idelalisib) tert-butanol monosolvate dihydrate, C22H18FN7O·C4H10O·2H2O, the idelalisib mol­ecule displays planar quinazoline and purine systems which are nearly perpendicular to one another. Seven distinct hydrogen-bonding inter­actions link the idelalisib, t-BuOH and water mol­ecules into a complex chain structure with the topology of a 2,3,4,5-connected 4-nodal net having the point symbol (3.4.52.62)(3.4.52.64.72)(3.5.6)(5).

Chemical context  

Idelalisib is a novel, orally available small-mol­ecule inhibitor of phosphatidylinositol 3-kinase delta (PI3Kdelta). This compound was developed for the oral treatment of chronic lymphocytic leukemia and is currently marketed under the trade name Zydelig by Gilead Sciences, Inc. Carra et al. (2013) reported the existence of seven solid forms of idelalisib and unit-cell parameters for five of these, namely for two polymorphs, an i-PrOH solvate hydrate, a DMF and a DMSO solvate. The current study is part of an investigation of a modified synthetic route for idelalisib, which ultimately resulted in improved yields compared to the original synthesis by Kesicki & Zhichkin (2005).graphic file with name e-75-00414-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound, (I), contains one formula unit, i.e. a mol­ecule each of idelalisib and of t-BuOH as well as two water mol­ecules, denoted as w1 (O37) and w2 (O38) (Fig. 1). The conformation of the idelalisib mol­ecule can be described in terms of the relative orientations adopted by the three planar fragments of the quinazoline group N1>C10, the phenyl ring C11>C16, and the purine group C20 >C28. The mean planes of the phenyl and purine units both lie approximately perpendicular to the quinazoline mean plane and form dihedral angles of 88.10 (8) and 86.97 (6)°, respectively, with the latter. The dihedral angle between the phenyl and purine mean planes is 73.75 (7)°. The torsion angles around the C30—C18 bond are C31—C30—C18—C6 = 165.5 (2)° (propyl group) and C31—C30—C18—N19 = −71.6 (3)°.

Figure 1.

Figure 1

Asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as spheres of arbitrary size.

Supra­molecular features  

The endocyclic NH group of the purine unit donates a hydrogen bond to the t-BuOH mol­ecule, via N25—H25⋯O36(−x + 1, y + 1, −z + 2). Additionally, the secondary amino function attached to the pyrimidine ring of the purine fragment donates a hydrogen bond to a w2 water mol­ecule, via N19—H19⋯O38. In turn, the idelalisib mol­ecule accepts three hydrogen bonds. Its quinazoline group is linked to the w1 water mol­ecule via an O37—H37A⋯N5 bond, and additionally each of N23 and N27 of the purine group is hydrogen-bonded to a water mol­ecule of type w2 [O38—H38A⋯N23(x, y − 1, z)] or w1 [O37—H37B⋯N27(−x + 1, y, −z + 2)]. Moreover, the water mol­ecule w1 is an acceptor for two H-bonds, O36—H36⋯O37 from a t-BuOH mol­ecule and O38—H38B⋯O37 from a w2-type water mol­ecule. There are no hydrogen bonds between neighbouring idelalisib mol­ecules. Overall, the seven classical hydrogen-bonding inter­actions listed in Table 1 result in a chain that possesses a central twofold rotational axis and propagates parallel to the b axis (Fig. 2). Each idelalisib mol­ecule represents a five-connected node within this hydrogen-bonded chain structure and is linked to one t-BuOH, two w1 and two w2 mol­ecules. The t-BuOH mol­ecule is a two-connected node and serves as a bridge between an idelalisib and a w1 mol­ecule. The water mol­ecule w1 is four-connected (2 × idelalisib, 1 × t-BuOH, 1 × w2), whilst w2 serves as a three-connected node (2 × idelalisib, 1 × w1). The hydrogen-bonded chain of (I) has the topology of the 2,3,4,5-connected 4-nodal 1D net depicted in Fig. 3, which has the point symbol (3.4.52.62)(3.4.52.64.72)(3.5.6)(5). The topology of the hydrogen-bonded structure was determined and classified with the programs ADS and IsoTest of the TOPOS package (Blatov, 2006) in the manner described by Baburin & Blatov (2007).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H19⋯O38 0.88 (2) 2.09 (2) 2.963 (3) 170 (3)
N25—H25⋯O36i 0.87 (2) 1.88 (2) 2.750 (3) 173 (4)
O36—H36⋯O37 0.82 (3) 1.92 (3) 2.741 (3) 174 (5)
O37—H37A⋯N5 0.86 (2) 2.09 (2) 2.939 (3) 172 (3)
O37—H37B⋯N27ii 0.90 (2) 2.06 (3) 2.888 (3) 153 (4)
O38—H38A⋯N23iii 0.87 (2) 2.04 (2) 2.905 (3) 172 (3)
O38—H38B⋯O37 0.88 (2) 2.09 (3) 2.921 (4) 158 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Hydrogen-bonded chain structure of (I), viewed along the a axis. H, N and O atoms directly engaged in hydrogen bonding are drawn as spheres. All other H atoms are omitted for clarity.

Figure 3.

Figure 3

2,3,4,5-Connected 4-nodal topological net representing the hydrogen-bonded chain structure of (I) which is based on the seven inter­molecular inter­actions listed in Table 1.

Database survey  

The most recent version 5.40 (November 2018) of the Cambridge Structural Database (Groom et al., 2016) does not contain any data for solid forms of idelalisib.

The bond parameters of the quinazoline system are in agreement with the relevant features in two polymorphs of 3-phenyl­quinazolin-4(3H)-one (Zhou et al., 2008; Yu et al., 2018), in 2-[2-(4-nitro­phen­yl)vin­yl]-3-phenyl­quinazolin-4(3H)-one (Nosova et al., 2012) and 2-di­ethyl­amino-3-phenyl­quinazolin-4(3H)-one (Xie & Li, 2006). Likewise, the structural parameters of the purine skeleton are consistent with the relevant reference structures such as 1- and 7-(β-d-ribo­furanos­yl)adenine (Framski et al., 2006).

Synthesis and crystallization  

The preparation of idelalisib was carried out according to the scheme displayed in Fig. 4, which represents a modification of the original synthesis by Kesicki & Zhichkin (2005), and yielded the polymorphic form I described by Carra et al. (2013). To amorphous idelalisib (180 mg), which was obtained by lyophilization of form I in dioxane, were added 500 µL of t-BuOH/water 95:5 (v/v) at 296 K. The amorphous material was dissolved. Precipitation of solid material was observed after 5 min of stirring of the solution. The suspension was then stirred at 296 K for five days, which was followed by centrifugation and separation of the precipitate. Subsequent drying of the solid material yielded the title compound (I) as a crystalline, free-flowing white powder (120 mg, 55%).

Figure 4.

Figure 4

Synthetic scheme for the preparation of idelalisib.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were identified in Fourier-difference maps. Methyl H atoms were idealized (C—H = 0.98 Å) and included as rigid groups allowed to rotate but not to tip and were refined with U iso(H) = 1.5U eq(C) of the parent carbon atom. All other hydrogen atoms bonded to carbon atoms were positioned geometrically (C—H = 0.95 Å) and refined with U iso(H) = 1.5U eq(C) of the parent carbon atom. Hydrogen atoms of OH and NH groups were refined with restrained distances [O—H = 0.84 (1) Å; N—H = 0.88 (1) Å] and their U iso parameters were refined freely. The absolute structure was established by anomalous-dispersion effects (Table 2).

Table 2. Experimental details.

Crystal data
Chemical formula C22H18FN7O·C4H10O·2H2O
M r 525.58
Crystal system, space group Monoclinic, C2
Temperature (K) 173
a, b, c (Å) 21.3758 (6), 9.2781 (3), 13.9722 (5)
β (°) 102.654 (3)
V3) 2703.75 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.34 × 0.26 × 0.18
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Ruby, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.835, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8990, 5111, 4751
R int 0.020
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.098, 1.07
No. of reflections 5111
No. of parameters 375
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.18
Absolute structure Flack x determined using 1997 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.1 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SIR2002 (Burla et al., 2003), SHELXL2014 (Sheldrick, 2015), XP (Bruker, 1998), Mercury (Macrae et al., 2006), TOPOS (Blatov, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The largest residual peak of 0.73 e Å−3 is located 1.00 Å from C30. An alternative refinement of a disorder model with a split C30 position was attempted but resulted in a few unreasonably short intra­mol­ecular H⋯H distances for the minor disorder fragment. This feature could not be eliminated even with the application of an anti-bumping restraint.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019002743/wm5487sup1.cif

e-75-00414-sup1.cif (340.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002743/wm5487Isup2.hkl

e-75-00414-Isup2.hkl (406.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019002743/wm5487Isup3.cml

CCDC reference: 1898812

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C22H18FN7O·C4H10O·2H2O F(000) = 1112
Mr = 525.58 Dx = 1.291 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 21.3758 (6) Å Cell parameters from 5110 reflections
b = 9.2781 (3) Å θ = 2.7–28.3°
c = 13.9722 (5) Å µ = 0.09 mm1
β = 102.654 (3)° T = 173 K
V = 2703.75 (15) Å3 Irregular fragment, colourless
Z = 4 0.34 × 0.26 × 0.18 mm

Data collection

Rigaku Oxford Diffraction Xcalibur, Ruby, Gemini ultra diffractometer 5111 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 4751 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Detector resolution: 10.3575 pixels mm-1 θmax = 26.0°, θmin = 2.2°
ω scans h = −20→26
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) k = −10→11
Tmin = 0.835, Tmax = 1.000 l = −16→12
8990 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0448P)2 + 1.4882P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
5111 reflections Δρmax = 0.27 e Å3
375 parameters Δρmin = −0.18 e Å3
10 restraints Absolute structure: Flack x determined using 1997 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.1 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.31764 (11) 0.8629 (3) 0.59496 (16) 0.0225 (5)
C2 0.25203 (13) 0.8986 (3) 0.5816 (2) 0.0269 (6)
C3 0.22506 (13) 0.8657 (3) 0.6664 (2) 0.0238 (6)
C4 0.26486 (13) 0.8111 (3) 0.7519 (2) 0.0220 (6)
N5 0.32934 (10) 0.7807 (2) 0.75732 (16) 0.0205 (5)
C6 0.35268 (13) 0.8049 (3) 0.68133 (18) 0.0190 (5)
C7 0.16088 (14) 0.8885 (3) 0.6679 (2) 0.0301 (7)
C8 0.13634 (14) 0.8634 (4) 0.7481 (3) 0.0357 (7)
H8 0.0922 0.8796 0.7461 0.043*
C9 0.17702 (16) 0.8135 (4) 0.8331 (2) 0.0350 (7)
H9 0.1609 0.7983 0.8905 0.042*
C10 0.24025 (14) 0.7861 (3) 0.8347 (2) 0.0266 (6)
H10 0.2674 0.7498 0.8928 0.032*
C11 0.34784 (13) 0.8965 (4) 0.5149 (2) 0.0281 (7)
C12 0.35269 (15) 0.7897 (4) 0.4473 (2) 0.0367 (8)
H12 0.3343 0.6973 0.4514 0.044*
C13 0.38504 (18) 0.8210 (5) 0.3736 (3) 0.0519 (11)
H13 0.3891 0.7492 0.3269 0.062*
C14 0.4111 (2) 0.9557 (6) 0.3681 (3) 0.0635 (14)
H14 0.4335 0.9760 0.3179 0.076*
C15 0.40512 (18) 1.0609 (5) 0.4347 (3) 0.0559 (12)
H15 0.4229 1.1538 0.4297 0.067*
C16 0.37325 (15) 1.0323 (4) 0.5091 (2) 0.0395 (8)
H16 0.3690 1.1048 0.5553 0.047*
O17 0.22461 (10) 0.9541 (3) 0.50590 (16) 0.0443 (6)
C18 0.42053 (13) 0.7557 (3) 0.68211 (19) 0.0206 (6)
H18 0.4364 0.8091 0.6300 0.025*
N19 0.46407 (11) 0.7818 (3) 0.77607 (17) 0.0210 (5)
H19 0.4813 (14) 0.709 (3) 0.813 (2) 0.021 (8)*
C20 0.48111 (12) 0.9170 (3) 0.8058 (2) 0.0200 (6)
N21 0.45009 (11) 1.0276 (3) 0.75290 (17) 0.0249 (5)
C22 0.46761 (14) 1.1613 (3) 0.7819 (2) 0.0275 (7)
H22 0.4447 1.2358 0.7424 0.033*
N23 0.51255 (12) 1.2060 (3) 0.85799 (19) 0.0278 (6)
C24 0.54192 (13) 1.0929 (3) 0.9097 (2) 0.0216 (6)
N25 0.58955 (11) 1.0964 (3) 0.99228 (18) 0.0242 (5)
H25 0.6096 (17) 1.174 (3) 1.017 (3) 0.043 (11)*
C26 0.60377 (13) 0.9565 (3) 1.0169 (2) 0.0251 (6)
H26 0.6358 0.9289 1.0724 0.030*
N27 0.56911 (11) 0.8628 (3) 0.95710 (17) 0.0227 (5)
C28 0.52953 (12) 0.9492 (3) 0.88899 (19) 0.0193 (6)
F29 0.12046 (8) 0.9365 (2) 0.58583 (14) 0.0450 (5)
C30 0.41885 (13) 0.5942 (3) 0.6584 (2) 0.0233 (6)
H30A 0.4119 0.5392 0.7159 0.028*
H30B 0.3824 0.5742 0.6028 0.028*
C31 0.48062 (15) 0.5434 (4) 0.6322 (2) 0.0379 (8)
H31A 0.5164 0.5557 0.6889 0.057*
H31B 0.4887 0.6004 0.5771 0.057*
H31C 0.4766 0.4414 0.6136 0.057*
C32 0.28332 (15) 0.3199 (3) 0.8427 (2) 0.0338 (7)
C33 0.2706 (2) 0.1621 (5) 0.8256 (4) 0.0719 (15)
H33A 0.2641 0.1171 0.8862 0.108*
H33B 0.3073 0.1170 0.8060 0.108*
H33C 0.2320 0.1490 0.7736 0.108*
C34 0.23156 (19) 0.3891 (5) 0.8861 (3) 0.0569 (11)
H34A 0.2445 0.4875 0.9073 0.085*
H34B 0.2254 0.3326 0.9426 0.085*
H34C 0.1913 0.3920 0.8365 0.085*
C35 0.28984 (18) 0.3982 (5) 0.7512 (3) 0.0461 (9)
H35A 0.3226 0.3509 0.7230 0.069*
H35B 0.3024 0.4983 0.7674 0.069*
H35C 0.2487 0.3964 0.7035 0.069*
O36 0.34320 (12) 0.3280 (2) 0.91451 (19) 0.0419 (6)
H36 0.353 (2) 0.414 (3) 0.920 (3) 0.063 (14)*
O37 0.38596 (12) 0.6073 (2) 0.93073 (17) 0.0386 (6)
H37A 0.3696 (17) 0.665 (4) 0.884 (2) 0.044 (11)*
H37B 0.402 (2) 0.665 (4) 0.982 (2) 0.068 (14)*
O38 0.50757 (12) 0.5153 (2) 0.88771 (17) 0.0361 (5)
H38A 0.5126 (16) 0.424 (3) 0.877 (3) 0.040 (10)*
H38B 0.4728 (15) 0.523 (4) 0.911 (3) 0.064 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0200 (11) 0.0277 (12) 0.0181 (11) 0.0050 (10) 0.0007 (9) 0.0021 (9)
C2 0.0222 (13) 0.0359 (17) 0.0212 (14) 0.0069 (13) 0.0014 (11) 0.0031 (12)
C3 0.0207 (13) 0.0223 (14) 0.0277 (15) 0.0022 (12) 0.0036 (11) 0.0008 (12)
C4 0.0228 (13) 0.0172 (13) 0.0246 (14) −0.0006 (11) 0.0023 (11) 0.0004 (11)
N5 0.0192 (11) 0.0211 (12) 0.0193 (12) 0.0023 (9) 0.0005 (9) 0.0003 (9)
C6 0.0203 (13) 0.0168 (12) 0.0179 (13) 0.0009 (11) 0.0000 (10) −0.0006 (10)
C7 0.0206 (14) 0.0323 (18) 0.0351 (17) 0.0040 (13) 0.0009 (12) 0.0059 (13)
C8 0.0213 (14) 0.0426 (18) 0.0464 (19) 0.0062 (14) 0.0142 (14) 0.0094 (15)
C9 0.0323 (16) 0.0390 (18) 0.0376 (18) −0.0005 (14) 0.0160 (14) 0.0070 (15)
C10 0.0253 (15) 0.0266 (16) 0.0278 (15) 0.0023 (12) 0.0051 (12) 0.0046 (12)
C11 0.0218 (13) 0.0403 (18) 0.0208 (14) 0.0120 (13) 0.0015 (11) 0.0085 (12)
C12 0.0312 (16) 0.055 (2) 0.0221 (15) 0.0162 (16) 0.0016 (13) 0.0000 (15)
C13 0.041 (2) 0.088 (3) 0.0276 (18) 0.026 (2) 0.0085 (16) 0.0061 (19)
C14 0.041 (2) 0.116 (4) 0.039 (2) 0.022 (3) 0.0210 (17) 0.028 (3)
C15 0.043 (2) 0.073 (3) 0.052 (2) 0.002 (2) 0.0115 (18) 0.035 (2)
C16 0.0358 (17) 0.048 (2) 0.0333 (18) 0.0057 (16) 0.0041 (14) 0.0154 (16)
O17 0.0270 (11) 0.0747 (18) 0.0298 (12) 0.0214 (12) 0.0027 (9) 0.0201 (12)
C18 0.0182 (13) 0.0242 (14) 0.0175 (13) 0.0002 (11) 0.0001 (10) 0.0001 (11)
N19 0.0188 (11) 0.0201 (13) 0.0201 (12) 0.0018 (10) −0.0045 (9) 0.0010 (9)
C20 0.0168 (12) 0.0222 (14) 0.0211 (13) 0.0005 (11) 0.0047 (10) 0.0001 (11)
N21 0.0238 (12) 0.0241 (13) 0.0250 (12) 0.0030 (11) 0.0016 (10) 0.0035 (10)
C22 0.0270 (15) 0.0233 (16) 0.0313 (16) 0.0024 (13) 0.0043 (13) 0.0059 (12)
N23 0.0283 (13) 0.0207 (13) 0.0342 (14) −0.0003 (11) 0.0067 (11) 0.0022 (10)
C24 0.0189 (13) 0.0249 (14) 0.0217 (14) −0.0024 (12) 0.0063 (11) −0.0023 (12)
N25 0.0234 (12) 0.0220 (12) 0.0269 (13) −0.0043 (11) 0.0048 (10) −0.0050 (10)
C26 0.0212 (14) 0.0269 (16) 0.0250 (15) −0.0026 (12) 0.0001 (11) −0.0005 (12)
N27 0.0195 (11) 0.0233 (12) 0.0242 (12) −0.0005 (10) 0.0024 (9) 0.0010 (9)
C28 0.0163 (12) 0.0218 (15) 0.0207 (13) −0.0009 (11) 0.0056 (10) 0.0020 (11)
F29 0.0225 (9) 0.0661 (14) 0.0441 (11) 0.0116 (9) 0.0020 (8) 0.0223 (10)
C30 0.0204 (13) 0.0233 (14) 0.0233 (14) 0.0023 (12) −0.0014 (11) −0.0037 (12)
C31 0.0369 (17) 0.039 (2) 0.0394 (19) 0.0112 (15) 0.0117 (14) −0.0049 (15)
C32 0.0291 (16) 0.0276 (17) 0.0388 (17) 0.0007 (13) −0.0054 (13) 0.0049 (13)
C33 0.057 (3) 0.035 (2) 0.104 (4) −0.009 (2) −0.026 (3) 0.004 (2)
C34 0.050 (2) 0.071 (3) 0.051 (2) 0.003 (2) 0.0133 (18) 0.008 (2)
C35 0.0412 (19) 0.056 (2) 0.0387 (19) −0.0058 (18) 0.0037 (15) 0.0013 (17)
O36 0.0383 (13) 0.0236 (13) 0.0525 (15) −0.0013 (10) −0.0151 (11) 0.0061 (11)
O37 0.0517 (15) 0.0267 (12) 0.0284 (12) −0.0038 (11) −0.0106 (11) 0.0012 (10)
O38 0.0453 (14) 0.0233 (12) 0.0370 (13) 0.0031 (11) 0.0032 (11) 0.0010 (10)

Geometric parameters (Å, º)

N1—C6 1.382 (3) N21—C22 1.333 (4)
N1—C2 1.413 (3) C22—N23 1.334 (4)
N1—C11 1.443 (4) C22—H22 0.9500
C2—O17 1.207 (3) N23—C24 1.348 (4)
C2—C3 1.459 (4) C24—N25 1.362 (4)
C3—C7 1.393 (4) C24—C28 1.378 (4)
C3—C4 1.401 (4) N25—C26 1.360 (4)
C4—C10 1.392 (4) N25—H25 0.87 (2)
C4—N5 1.392 (4) C26—N27 1.316 (4)
N5—C6 1.288 (4) C26—H26 0.9500
C6—C18 1.518 (4) N27—C28 1.382 (4)
C7—F29 1.351 (3) C30—C31 1.520 (4)
C7—C8 1.358 (4) C30—H30A 0.9900
C8—C9 1.388 (5) C30—H30B 0.9900
C8—H8 0.9500 C31—H31A 0.9800
C9—C10 1.371 (4) C31—H31B 0.9800
C9—H9 0.9500 C31—H31C 0.9800
C10—H10 0.9500 C32—O36 1.445 (4)
C11—C16 1.381 (5) C32—C33 1.498 (5)
C11—C12 1.388 (5) C32—C35 1.504 (5)
C12—C13 1.392 (5) C32—C34 1.516 (5)
C12—H12 0.9500 C33—H33A 0.9800
C13—C14 1.378 (7) C33—H33B 0.9800
C13—H13 0.9500 C33—H33C 0.9800
C14—C15 1.374 (7) C34—H34A 0.9800
C14—H14 0.9500 C34—H34B 0.9800
C15—C16 1.389 (5) C34—H34C 0.9800
C15—H15 0.9500 C35—H35A 0.9800
C16—H16 0.9500 C35—H35B 0.9800
C18—N19 1.454 (3) C35—H35C 0.9800
C18—C30 1.534 (4) O36—H36 0.82 (3)
C18—H18 1.0000 O37—H37A 0.86 (2)
N19—C20 1.346 (4) O37—H37B 0.90 (2)
N19—H19 0.88 (2) O38—H38A 0.87 (2)
C20—N21 1.351 (4) O38—H38B 0.88 (2)
C20—C28 1.409 (4)
C6—N1—C2 122.6 (2) C22—N21—C20 118.0 (2)
C6—N1—C11 120.8 (2) N21—C22—N23 129.6 (3)
C2—N1—C11 116.5 (2) N21—C22—H22 115.2
O17—C2—N1 119.6 (3) N23—C22—H22 115.2
O17—C2—C3 126.8 (3) C22—N23—C24 110.8 (2)
N1—C2—C3 113.6 (2) N23—C24—N25 127.6 (3)
C7—C3—C4 117.3 (3) N23—C24—C28 126.5 (3)
C7—C3—C2 123.1 (3) N25—C24—C28 105.9 (2)
C4—C3—C2 119.6 (2) C26—N25—C24 106.0 (2)
C10—C4—N5 118.1 (2) C26—N25—H25 129 (2)
C10—C4—C3 120.0 (3) C24—N25—H25 125 (2)
N5—C4—C3 121.9 (2) N27—C26—N25 113.9 (3)
C6—N5—C4 118.5 (2) N27—C26—H26 123.0
N5—C6—N1 123.6 (2) N25—C26—H26 123.0
N5—C6—C18 118.9 (2) C26—N27—C28 103.2 (2)
N1—C6—C18 117.2 (2) C24—C28—N27 110.9 (2)
F29—C7—C8 117.8 (3) C24—C28—C20 116.8 (2)
F29—C7—C3 119.1 (3) N27—C28—C20 132.3 (3)
C8—C7—C3 123.1 (3) C31—C30—C18 112.0 (3)
C7—C8—C9 118.7 (3) C31—C30—H30A 109.2
C7—C8—H8 120.7 C18—C30—H30A 109.2
C9—C8—H8 120.7 C31—C30—H30B 109.2
C10—C9—C8 120.5 (3) C18—C30—H30B 109.2
C10—C9—H9 119.8 H30A—C30—H30B 107.9
C8—C9—H9 119.8 C30—C31—H31A 109.5
C9—C10—C4 120.4 (3) C30—C31—H31B 109.5
C9—C10—H10 119.8 H31A—C31—H31B 109.5
C4—C10—H10 119.8 C30—C31—H31C 109.5
C16—C11—C12 121.5 (3) H31A—C31—H31C 109.5
C16—C11—N1 119.4 (3) H31B—C31—H31C 109.5
C12—C11—N1 119.1 (3) O36—C32—C33 105.3 (3)
C11—C12—C13 118.6 (4) O36—C32—C35 109.4 (3)
C11—C12—H12 120.7 C33—C32—C35 112.6 (4)
C13—C12—H12 120.7 O36—C32—C34 108.3 (3)
C14—C13—C12 120.2 (4) C33—C32—C34 110.8 (4)
C14—C13—H13 119.9 C35—C32—C34 110.3 (3)
C12—C13—H13 119.9 C32—C33—H33A 109.5
C15—C14—C13 120.5 (4) C32—C33—H33B 109.5
C15—C14—H14 119.7 H33A—C33—H33B 109.5
C13—C14—H14 119.7 C32—C33—H33C 109.5
C14—C15—C16 120.4 (4) H33A—C33—H33C 109.5
C14—C15—H15 119.8 H33B—C33—H33C 109.5
C16—C15—H15 119.8 C32—C34—H34A 109.5
C11—C16—C15 118.8 (4) C32—C34—H34B 109.5
C11—C16—H16 120.6 H34A—C34—H34B 109.5
C15—C16—H16 120.6 C32—C34—H34C 109.5
N19—C18—C6 112.2 (2) H34A—C34—H34C 109.5
N19—C18—C30 109.7 (2) H34B—C34—H34C 109.5
C6—C18—C30 108.4 (2) C32—C35—H35A 109.5
N19—C18—H18 108.8 C32—C35—H35B 109.5
C6—C18—H18 108.8 H35A—C35—H35B 109.5
C30—C18—H18 108.8 C32—C35—H35C 109.5
C20—N19—C18 120.7 (2) H35A—C35—H35C 109.5
C20—N19—H19 119 (2) H35B—C35—H35C 109.5
C18—N19—H19 120 (2) C32—O36—H36 107 (3)
N19—C20—N21 118.2 (2) H37A—O37—H37B 105 (3)
N19—C20—C28 123.5 (2) H38A—O38—H38B 107 (3)
N21—C20—C28 118.3 (2)
C6—N1—C2—O17 177.1 (3) C11—C12—C13—C14 −0.4 (5)
C11—N1—C2—O17 0.0 (4) C12—C13—C14—C15 −0.5 (6)
C6—N1—C2—C3 −1.2 (4) C13—C14—C15—C16 0.8 (6)
C11—N1—C2—C3 −178.3 (3) C12—C11—C16—C15 −1.0 (5)
O17—C2—C3—C7 3.7 (5) N1—C11—C16—C15 176.7 (3)
N1—C2—C3—C7 −178.2 (3) C14—C15—C16—C11 0.0 (5)
O17—C2—C3—C4 −175.0 (3) N5—C6—C18—N19 −41.0 (3)
N1—C2—C3—C4 3.1 (4) N1—C6—C18—N19 144.2 (2)
C7—C3—C4—C10 −1.9 (4) N5—C6—C18—C30 80.3 (3)
C2—C3—C4—C10 176.8 (3) N1—C6—C18—C30 −94.4 (3)
C7—C3—C4—N5 178.2 (3) C6—C18—N19—C20 −69.6 (3)
C2—C3—C4—N5 −3.0 (4) C30—C18—N19—C20 169.8 (2)
C10—C4—N5—C6 −179.3 (3) C18—N19—C20—N21 9.1 (4)
C3—C4—N5—C6 0.5 (4) C18—N19—C20—C28 −171.0 (2)
C4—N5—C6—N1 1.6 (4) N19—C20—N21—C22 −179.2 (3)
C4—N5—C6—C18 −172.7 (2) C28—C20—N21—C22 0.8 (4)
C2—N1—C6—N5 −1.3 (4) C20—N21—C22—N23 −0.3 (5)
C11—N1—C6—N5 175.7 (3) N21—C22—N23—C24 −0.5 (4)
C2—N1—C6—C18 173.2 (2) C22—N23—C24—N25 −179.3 (3)
C11—N1—C6—C18 −9.8 (4) C22—N23—C24—C28 0.8 (4)
C4—C3—C7—F29 −177.8 (3) N23—C24—N25—C26 −179.6 (3)
C2—C3—C7—F29 3.4 (5) C28—C24—N25—C26 0.3 (3)
C4—C3—C7—C8 1.5 (5) C24—N25—C26—N27 −0.1 (3)
C2—C3—C7—C8 −177.2 (3) N25—C26—N27—C28 −0.2 (3)
F29—C7—C8—C9 179.8 (3) N23—C24—C28—N27 179.5 (3)
C3—C7—C8—C9 0.5 (5) N25—C24—C28—N27 −0.5 (3)
C7—C8—C9—C10 −2.0 (5) N23—C24—C28—C20 −0.3 (4)
C8—C9—C10—C4 1.5 (5) N25—C24—C28—C20 179.7 (2)
N5—C4—C10—C9 −179.7 (3) C26—N27—C28—C24 0.4 (3)
C3—C4—C10—C9 0.5 (4) C26—N27—C28—C20 −179.9 (3)
C6—N1—C11—C16 −90.8 (3) N19—C20—C28—C24 179.5 (3)
C2—N1—C11—C16 86.4 (3) N21—C20—C28—C24 −0.5 (4)
C6—N1—C11—C12 87.0 (3) N19—C20—C28—N27 −0.2 (5)
C2—N1—C11—C12 −95.9 (3) N21—C20—C28—N27 179.7 (3)
C16—C11—C12—C13 1.2 (4) N19—C18—C30—C31 −71.6 (3)
N1—C11—C12—C13 −176.5 (3) C6—C18—C30—C31 165.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N19—H19···O38 0.88 (2) 2.09 (2) 2.963 (3) 170 (3)
N25—H25···O36i 0.87 (2) 1.88 (2) 2.750 (3) 173 (4)
O36—H36···O37 0.82 (3) 1.92 (3) 2.741 (3) 174 (5)
O37—H37A···N5 0.86 (2) 2.09 (2) 2.939 (3) 172 (3)
O37—H37B···N27ii 0.90 (2) 2.06 (3) 2.888 (3) 153 (4)
O38—H38A···N23iii 0.87 (2) 2.04 (2) 2.905 (3) 172 (3)
O38—H38B···O37 0.88 (2) 2.09 (3) 2.921 (4) 158 (4)

Symmetry codes: (i) −x+1, y+1, −z+2; (ii) −x+1, y, −z+2; (iii) x, y−1, z.

References

  1. Baburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791–802. [DOI] [PubMed]
  2. Blatov, V. A. (2006). IUCr Compcomm Newsl. 7, 4–38.
  3. Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Carra, E., Gerber, M., Shi, B., Sujino, K., Tran, D. & Wang, F. (2013). Gilead Calistoga LLC, USA. Patent WO2013134288A1.
  6. Framski, G., Gdaniec, Z., Gdaniec, M. & Boryski, J. (2006). Tetrahedron, 62, 10123–10129.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Kesicki, E. A. & Zhichkin, P. (2005). Gilead Calistoga LLC, USA. Patent WO2005113554A1.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Nosova, E. V., Stupina, T. V., Lipunova, G. N., Valova, M. S., Slepukhin, P. A. & Charushin, V. N. (2012). Int. J. Org. Chem. 2, 56–63.
  11. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  12. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Xie, C. & Li, H.-X. (2006). Acta Cryst. E62, o5632–o5633.
  17. Yu, W., Zhang, X., Qin, B., Wang, Q., Ren, X. & He, X. (2018). Green Chem. 20, 2449–2454.
  18. Zhou, J., Fu, L., Lv, M., Liu, J., Pei, D. & Ding, K. (2008). Synthesis, pp. 3974–3980.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019002743/wm5487sup1.cif

e-75-00414-sup1.cif (340.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002743/wm5487Isup2.hkl

e-75-00414-Isup2.hkl (406.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019002743/wm5487Isup3.cml

CCDC reference: 1898812

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES