Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 22;75(Pt 3):378–382. doi: 10.1107/S2056989019002378

Synthesis and crystal structure of a new coordination polymer based on lanthanum and 1,4-phenyl­enedi­acetate ligands

Magatte Camara a,*, Insa Badiane a, Mamoudou Diallo a, Carole Daiguebonne b, Olivier Guillou b
PMCID: PMC6399701  PMID: 30867953

The crystalline structure of a new three-dimensional coordination polymer based on LaIII and 1,4-phenyl­enedi­acetate ligands is described.

Keywords: lanthanum ion, coordination polymer, crystal structure

Abstract

Reaction in gel between the sodium salt of 1,4-phenyl­enedi­acetic acid (Na2C10O4H8–Na2 p-pda) and lanthanum chloride yields single crystals of the three-dimensional coordination polymer poly[[tetra­aqua­tris­(μ-1,4-phenyl­enedi­acetato)­dilanthanum(III)] octa­hydrate], {[La2(C10H8O4)3(H2O)4]·8H2O}. The LaIII coordination polyhedron can be described as a slightly distorted monocapped square anti­prism. One of the two p-pda2− ligands is bound to four LaIII ions and the other to two LaIII ions. Each LaIII atom is coordinated by five ligands, thereby generating a metal–organic framework with potential porosity properties.

Chemical context  

In recent years, one of the most important fields of research in coordination chemistry and crystal engineering has been the design of metal–organic frameworks (MOFs), because of their intriguing network topologies and possible applications in gas storage (Eddaoudi et al., 2002; Reneike et al., 1999; Luo et al., 2011a ,b ; Kustaryono et al., 2010), catalysis (Lee et al., 2009), separation (Hamon et al., 2009), luminescence (Cui et al., 2012; Daiguebonne et al., 2008; Binnemans, 2009;) and mol­ecular magnetism (Calvez et al., 2008; Sessoli et al., 2009). Our group has been involved in this field for more than a decade (Freslon et al., 2014; Fan et al., 2014; Luo et al., 2011a ,b ; Badiane et al., 2017a ,b ). The search for new ligands that can lead to new structural networks and/or new physical properties is a continuous concern (Qiu et al., 2007; Fan et al., 2015).

For the synthesis of MOFs, usually two complementary mol­ecular precursors, a cation with vacant coordination sites and a bridging anion, are used to form the coordination polymer. This procedure offers the prospect of rationally designing extended solids with inter­esting properties. Most of the organic ligands used in MOF chemistry are rigid aromatic carboxyl­ates (Luo et al., 2007; Huang et al., 2009). Compared to the rigid ligands, using flexible ligands such as 1,2- (Xin et al., 2011), 1,3- (Wang et al., 2012) or 1,4-phenyl­enedi­acetate (Fabelo et al., 2009a ,b ) to construct coordination polymers seems to be more difficult, and developing synthetic methodologies is still a challenge. However, flexibility of the ligand can promote structural and functional diversity.

Numerous coordination polymers have been reported so far that involve d-block metal ions such as CuII (Singh & Barua, 2009; Fabelo et al., 2009a ,b ; Chen et al., 2010a ,b ,c ), ZnII (Singh & Barua, 2009), CdII (Chen et al., 2010a ,b ,c ; Singh & Barua, 2009; Li et al., 2009), MnII (Singh & Barua, 2009; Chen et al., 2010a ,b ,c , CoII (Fabelo et al., 2009a ,b ; Chen et al., 2010a ,b ,c ; Uebler & LaDuca, 2012; Li et al., 2009) and NiII (Chen et al., 2010a ,b ,c ; Uebler & LaDuca, 2012; Li et al., 2009). Lanthan­ide(III) ions have higher and variable coordination numbers (generally between 7 and 12) and incorporate in addition, apart from the main ligands, ancillary ligands such as water mol­ecules into the lanthanide coordination sphere. A large number of studies have been reported on lanthanide coordination polymers based on 1,4-phenyl­enedi­acetic acid (Singh & Barua, 2009; Fabelo et al., 2009a ,b ; Chen et al., 2010a ,b ,c ; Uebler & LaDuca, 2012; Li et al., 2009; Rusinek et al., 2013) as well as on other isomers of this acid such as 1,2- (Badiane et al., 2017a ,b ; Xin et al., 2011) and 1,3-phenyl­enedi­acetic acid (Wang et al., 2012), and most of them tend to make porous materials through solvothermal synthesis.

Isomers of phenyl­enedi­acetic acid are flexible ligands and can therefore adopt different conformations in the crystal structure. 1,4-Phenyl­endi­acetic acid is used as a readily available ligand that can coordinate two or more metal ions in bridging-mode, forming extended mol­ecular networks (Pan et al., 2003; Chen et al., 2010a ,b ,c ). The different coordination modes (Chen et al., 2010a ,b ,c ; Rusinek et al., 2013; Ren et al., 2011; Pan et al., 2003; Singha et al., 2014; Singha et al., 2015) of the ligand with lanthanide ions that have been reported to date are shown in Fig. 1.

Figure 1.

Figure 1

Bonding modes in lanthanide-containing coordination polymers with 1,4-phenyl­enedi­acetate ligands (p-pda2−) reported in the literature to date.

In this paper we report the synthesis and the crystal structure of a new coordination polymer with chemical formula [La2(p-pda)3(H2O)4·8H2O].graphic file with name e-75-00378-scheme1.jpg

Structural commentary  

The crystallographically independent La3+ ion is nona-coordinated by seven oxygen atoms (O1, O2, O3, O4, O5, O6, O3) from five p-pda2− ligands and two oxygen atoms (O8 and O7) from the coordinating water mol­ecules (Fig. 2). The coordination polyhedron can be described as a monocapped distorted square anti­prism with atom O3′ capping the polyhedron [symmetry code: (′) 2 − x, 1 − y, 1 − z]. The two square sides of the anti­prism are formed by atoms O7, O6, O2, O5 and O8, O3, O1, O4, respectively. The dihedral angle between the two faces is 5.21 (9)°. There are three independent ligands: L1, L2 and L3 (Fig. 3). The twisted ligand L3 exhibits a coordination mode that has never previously been observed in lanthanide-based coordination polymers involving the p-pda2− ligand.

Figure 2.

Figure 2

Coordination environment of La3+ in [La2(p-pda)3(H2O)4·8H2O]. Symmetry code: (′) 2 − x, 1 − y, 1 − z. Hydrogen atoms of the water mol­ecules have been omitted for clarity.

Figure 3.

Figure 3

Coordination modes of ligand L1 (μ-4 bis-bidentate mode: (η112)-(η112)-μ4), L2 (μ-4 bis-tridentate bridging and chelating mode: (η212)-(η212)-μ4) and L3 (μ-2 bis-bidentate-chelating mode: (η111)-(η111)-μ2)).

The monocapped square anti­prisms are connected to each other by alternating L1 bridging carboxyl­ate oxygen atoms (O5 and O6) and edge-sharing polyhedra through L2 oxygen atoms (O3), forming mol­ecular chains along the a-axis direction (Fig. 4). These chains are connected to each other through ligands L1 and L2, which play the role of spacers, forming mol­ecular layers that extend parallel to the ab plane (Fig. 4). These layers are further connected through the twisted ligand L3, leading to a three-dimensional mol­ecular framework (Fig. 5). Ligand L3 acts as a spacer between the different polymeric layers because of its anti–anti conformation.

Figure 4.

Figure 4

(Top) Projection view of a mol­ecular chain extending parallel to the a axis. (Bottom) Projection view along the c axis of the of the two-dimensional mol­ecular network of [La2(p-pda)3(H2O)4·8H2O]. Hydrogen atoms have been omitted for clarity.

Figure 5.

Figure 5

Perspective view along the a axis of [La2(p-pda)3(H2O)4·8H2O]. Hydrogen atoms have been omitted for clarity.

The framework has channels along the a-axis direction in which the water mol­ecules of crystallization are located. They are bound to the mol­ecular skeleton via a hydrogen-bonded network (Table 1). As can be seen from Fig. 6, the three-dimensional crystal structure could potentially present some porosity properties. Indeed, removal of the water mol­ecules of crystallization could create empty channels, as has been reported previously (Kustaryono et al., 2010; Kerbellec et al., 2008). For the coordination polymer in this study, the potential porosity is calculated to be 750 (20) m2 g−1 for N2 with a kinetic radius of 1.83 Å. The calculation was performed using a method described elsewhere (Kustaryono et al., 2010; Kerbellec et al., 2008).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1A⋯OW1iii 0.87 (9) 2.40 (11) 3.067 (13) 133 (9)
OW1—HW1B⋯OW4iv 0.89 (9) 2.54 (10) 3.298 (11) 145 (7)
OW2—HW2A⋯O4i 0.82 (6) 2.10 (6) 2.895 (5) 164 (6)
OW2—HW2B⋯OW4v 0.82 (6) 2.20 (5) 2.855 (8) 137 (5)
OW3—HW3A⋯O6i 0.82 (8) 2.02 (8) 2.780 (8) 154 (7)
OW3—HW3B⋯OW1iii 0.81 (7) 2.40 (8) 3.162 (11) 156 (8)
OW4—HW4A⋯OW2vi 0.81 (10) 2.49 (9) 2.855 (8) 109 (9)
O7—H7A⋯O2i 0.82 (4) 1.95 (4) 2.741 (5) 161 (5)
O7—H7B⋯OW4 0.81 (5) 2.03 (5) 2.800 (9) 160 (5)
OW4—HW4B⋯OW3vii 0.84 (9) 2.11 (10) 2.824 (11) 143 (8)
O8—H8A⋯OW3i 0.82 (4) 2.38 (4) 3.175 (8) 165 (4)
O8—H8B⋯O1ii 0.83 (4) 1.92 (4) 2.725 (5) 163 (5)
C7—H7D⋯O4i 0.97 2.54 3.442 (6) 154
C12—H12B⋯O6ii 0.97 2.51 3.406 (6) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 6.

Figure 6

Projection view along the a axis of the mol­ecular skeleton of [La2(p-pda)3(H2O)4·8H2O] in space-filling mode. Hydrogen atoms and crystallization water mol­ecules have been omitted.

Other crystal structures of lanthanide coordination polymers with the p-pda2− ligand have been reported previously. This series of compounds, first described by Pan et al. (2003) has been widely studied because of potential applications in various fields such as explosives detection (Singha et al., 2014, 2015), gas sorption (Pan et al., 2003) or catalysis (Ren et al., 2011). These compounds, with general chemical formula [Ln 2(p-pda)3(H2O)·2H2O] with Ln = La–Ho have been obtained by hydro­thermal synthesis and therefore present a lower hydration rate and a higher density than [La2(p-pda)3(H2O)4·8H2O] {D calc = 1871 g cm−3 for [Ln 2(p-pda)3(H2O)·2H2O]}. Their three-dimensional crystal structures can be described on the basis of helicoidal mol­ecular chains linked by p-pda2− ligands.

The luminescent and porosity properties of these compounds are inter­esting, which suggests that the physical properties of compounds isostructural to [La2(p-pda)3(H2O)4·8H2O] and involving other lanthanide ions (lanthanum is a diamagnetic non-luminescent ion) would be worth studying. Unfortunately, despite great synthetic efforts, no such compound has been obtained to date.

The compound reported here was obtained by crystallization in a gel (see next section; Luo et al., 2013), and as such is the first result from our group related to lanthanide-based coordination polymers with 1,4-phenyl­enedi­acetate ligands.

Synthesis and crystallization  

Lanthanum oxide (La2O3) was suspended in a small qu­antity of water. The suspension was then brought to about 323 K and concentrated hydro­chloric acid was added dropwise under magnetic stirring, until a clear solution was obtained. The solution was then evaporated to dryness and the resulting solid was dissolved in absolute ethanol for removal of the residual hydro­chloric acid. Crystallization of the salt was then obtained by adding diethyl ether (Et2O). The obtained microcrystalline solid was filtered and dried in the open air. The product LaCl3·7H2O was obtained in close to 100% yield.

1,4-Phenyl­enedi­acetic acid, H2(p-pda), was purchased from Sigma–Aldrich and used without further purification. Its disodium salt was prepared by addition of two equivalents of sodium hydroxide to a suspension of the acid in de-ionized water. The obtained clear solution was evaporated to dryness and then refluxed in ethanol for one h. Addition of diethyl ether provoked precipitation of Na2(p-pda) in 90% yield. UV–vis absorption spectrum of a 4.3 × 10 −4 mol L−1 aqueous solution of the disodium salt of H2(p-pda) was measured with a Perkin–Elmer Lambda 650 spectrometer equipped with a 60 mm integrating sphere. It showed a maximum absorption at 225 nm. This short absorption wavelength, compared to other ligands in the literature (Badiane et al., 2017a ,b ; Freslon et al., 2016; Fan et al., 2015; Badiane et al., 2018), can be related to the –CH2– groups that cut conjugation.

Single crystals of the coordination polymer were obtained by slow diffusion of dilute aqueous solutions of lanthanum chloride (0.25 mmol in 10 mL) and of the sodium salt of para-phenyl­enedi­acetate (0.25 mmol in 10 mL) through an agar-agar gel in a U-shaped tube. The gel was purchased from Acros Organics and jellified according to established procedures (Henisch, 1988; Daiguebonne et al., 2003). After several weeks, prismatic single crystals were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bound to the organic ligands were placed at idealized positions (C—H = 0.93–0.97 Å) and refined as riding with U iso(H) = 1.2U eq(C). The water hydrogen atoms were localized and constrained. The thermal agitation of the two water mol­ecules of crystallization was constrained. In order to stabilize the refinement several restraints (DANG, DFIX) were used for the hydrogen atoms bound to water oxygens.

Table 2. Experimental details.

Crystal data
Chemical formula [La2(C10H8O4)3(H2O)4]·8H2O
M r 1070.05
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 9.1197 (2), 11.1231 (2), 11.9434 (2)
α, β, γ (°) 107.049 (1), 107.729 (1), 106.622 (1)
V3) 1005.21 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.18
Crystal size (mm) 0.08 × 0.06 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 4588, 4588, 3751
R int 0.045
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.068, 1.03
No. of reflections 4588
No. of parameters 283
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.76, −0.65

Computer programs: COLLECT (Bruker, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2001), WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989019002378/vn2143sup1.cif

e-75-00378-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002378/vn2143Isup2.hkl

e-75-00378-Isup2.hkl (251.6KB, hkl)

Table 2. Valence angles and torsion angles around the ligands. DOI: 10.1107/S2056989019002378/vn2143sup3.pdf

e-75-00378-sup3.pdf (46.6KB, pdf)

CCDC reference: 1875083

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The French Cooperation Agency in Senegal is acknowledged for financial support.

supplementary crystallographic information

Crystal data

[La2(C10H8O4)3(H2O)4]·8H2O Z = 1
Mr = 1070.05 F(000) = 534
Triclinic, P1 Dx = 1.768 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1197 (2) Å Cell parameters from 15558 reflections
b = 11.1231 (2) Å θ = 2.9–27.5°
c = 11.9434 (2) Å µ = 2.18 mm1
α = 107.049 (1)° T = 293 K
β = 107.729 (1)° Prism, colorless
γ = 106.622 (1)° 0.08 × 0.06 × 0.05 mm
V = 1005.21 (3) Å3

Data collection

Nonius KappaCCD diffractometer 3751 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 Rint = 0.045
Horizonally mounted graphite crystal monochromator θmax = 27.5°, θmin = 3.6°
Detector resolution: 9 pixels mm-1 h = −10→11
CCD rotation images, thick slices scans k = −14→14
4588 measured reflections l = −15→15
4588 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: dual
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: mixed
wR(F2) = 0.068 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0308P)2] where P = (Fo2 + 2Fc2)/3
4588 reflections (Δ/σ)max = 0.001
283 parameters Δρmax = 1.76 e Å3
18 restraints Δρmin = −0.65 e Å3
0 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
La1 0.75090 (2) 0.52031 (2) 0.47969 (2) 0.02048 (7)
O5 0.4472 (3) 0.3677 (2) 0.4069 (2) 0.0332 (6)
O3 1.0575 (3) 0.5881 (3) 0.6253 (2) 0.0323 (6)
O1 0.7627 (3) 0.3041 (3) 0.5311 (2) 0.0336 (6)
O6 0.8146 (3) 0.7579 (3) 0.6435 (3) 0.0362 (6)
O2 0.7422 (3) 0.4674 (3) 0.6736 (2) 0.0351 (6)
O4 0.6840 (3) 0.3616 (3) 0.2490 (2) 0.0415 (7)
O7 0.5690 (4) 0.5882 (4) 0.3233 (3) 0.0486 (8)
H7A 0.468 (3) 0.558 (4) 0.307 (5) 0.058*
H7B 0.591 (5) 0.651 (4) 0.302 (5) 0.058*
O8 0.9316 (4) 0.7051 (3) 0.4326 (4) 0.0503 (8)
H8A 0.947 (6) 0.785 (3) 0.470 (4) 0.060*
H8B 1.026 (4) 0.712 (4) 0.435 (5) 0.060*
C6 0.6834 (4) 0.7426 (3) 0.6621 (3) 0.0260 (7)
C11 0.8165 (4) 0.3436 (3) 0.2659 (3) 0.0261 (7)
C1 0.7640 (4) 0.3589 (4) 0.6405 (4) 0.0315 (8)
C13 0.6579 (5) 0.1147 (4) 0.0739 (4) 0.0340 (9)
C12 0.8247 (5) 0.2382 (4) 0.1565 (4) 0.0390 (9)
H12A 0.857342 0.281262 0.102898 0.058*
H12B 0.910563 0.207990 0.192279 0.058*
C14 0.6017 (5) 0.0190 (4) 0.1196 (4) 0.0427 (10)
H14 0.669560 0.030195 0.201149 0.051*
C8 0.8472 (5) 0.9325 (4) 0.8881 (4) 0.0340 (9)
C10 0.9564 (5) 1.0646 (4) 0.9217 (4) 0.0433 (10)
H10 0.928413 1.109955 0.869797 0.052*
C15 0.5547 (5) 0.0946 (4) −0.0469 (4) 0.0412 (10)
H15 0.589046 0.157191 −0.080797 0.049*
C7 0.6832 (5) 0.8578 (4) 0.7675 (4) 0.0445 (11)
H7C 0.660724 0.923722 0.734480 0.067*
H7D 0.592152 0.819798 0.789973 0.067*
C9 0.8927 (6) 0.8687 (4) 0.9685 (4) 0.0461 (11)
H9 0.820475 0.779508 0.948162 0.055*
C3 0.8997 (5) 0.3972 (4) 0.8732 (4) 0.0392 (9)
C4 1.0738 (6) 0.4427 (5) 0.9267 (4) 0.0514 (11)
H4 1.125405 0.405378 0.878263 0.062*
C5 0.8281 (6) 0.4561 (5) 0.9477 (4) 0.0501 (11)
H5 0.711419 0.427472 0.913133 0.060*
C2 0.7931 (6) 0.2928 (4) 0.7347 (4) 0.0460 (10)
H2A 0.684726 0.235879 0.727251 0.069*
H2B 0.848359 0.233001 0.711571 0.069*
OW1 0.6313 (10) 0.0072 (5) 0.4440 (6) 0.1327 (17)
HW1A 0.589 (11) −0.025 (9) 0.491 (8) 0.159*
HW1B 0.639 (13) −0.072 (6) 0.411 (8) 0.159*
OW2 0.5351 (5) 0.6185 (4) 0.9718 (4) 0.0741 (11)
HW2A 0.476 (7) 0.639 (6) 0.920 (5) 0.111*
HW2B 0.622 (6) 0.678 (5) 1.033 (5) 0.111*
OW3 0.0357 (9) 0.0056 (6) 0.3870 (6) 0.1327 (17)
HW3A 0.059 (10) 0.059 (7) 0.354 (7) 0.159*
HW3B 0.122 (7) 0.023 (10) 0.447 (6) 0.159*
OW4 0.7105 (10) 0.7873 (7) 0.2433 (6) 0.154 (3)
HW4A 0.649 (10) 0.805 (11) 0.192 (8) 0.185*
HW4B 0.810 (5) 0.831 (11) 0.255 (10) 0.185*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
La1 0.01729 (10) 0.02001 (10) 0.01850 (10) 0.00633 (7) 0.00482 (7) 0.00498 (7)
O5 0.0242 (13) 0.0258 (13) 0.0312 (13) 0.0032 (10) 0.0034 (11) 0.0040 (11)
O3 0.0227 (13) 0.0340 (14) 0.0229 (12) 0.0074 (11) 0.0027 (10) 0.0011 (11)
O1 0.0352 (14) 0.0353 (14) 0.0339 (14) 0.0161 (12) 0.0168 (12) 0.0155 (12)
O6 0.0247 (13) 0.0283 (13) 0.0415 (15) 0.0089 (10) 0.0129 (12) −0.0005 (11)
O2 0.0403 (15) 0.0427 (15) 0.0332 (14) 0.0254 (13) 0.0173 (12) 0.0200 (12)
O4 0.0267 (14) 0.0515 (17) 0.0253 (13) 0.0175 (12) 0.0040 (11) −0.0052 (12)
O7 0.0425 (17) 0.075 (2) 0.067 (2) 0.0390 (17) 0.0345 (17) 0.0532 (18)
O8 0.0456 (18) 0.0523 (18) 0.088 (2) 0.0315 (16) 0.0434 (18) 0.0469 (19)
C6 0.0228 (17) 0.0219 (17) 0.0260 (17) 0.0100 (14) 0.0051 (14) 0.0052 (14)
C11 0.0187 (16) 0.0250 (17) 0.0236 (16) 0.0060 (13) 0.0062 (14) 0.0018 (14)
C1 0.0184 (17) 0.041 (2) 0.0332 (19) 0.0099 (15) 0.0083 (15) 0.0177 (17)
C13 0.0261 (19) 0.030 (2) 0.0297 (19) 0.0117 (16) 0.0070 (16) −0.0041 (16)
C12 0.0233 (18) 0.040 (2) 0.0318 (19) 0.0098 (16) 0.0074 (16) −0.0057 (17)
C14 0.039 (2) 0.044 (2) 0.028 (2) 0.0198 (19) 0.0002 (18) 0.0047 (18)
C8 0.031 (2) 0.0293 (19) 0.0290 (19) 0.0102 (16) 0.0138 (16) −0.0032 (16)
C10 0.042 (2) 0.033 (2) 0.037 (2) 0.0058 (18) 0.0114 (19) 0.0059 (18)
C15 0.043 (2) 0.037 (2) 0.031 (2) 0.0133 (19) 0.0076 (18) 0.0078 (17)
C7 0.026 (2) 0.040 (2) 0.043 (2) 0.0127 (17) 0.0102 (18) −0.0078 (19)
C9 0.042 (2) 0.0225 (19) 0.048 (2) −0.0033 (17) 0.016 (2) 0.0006 (18)
C3 0.043 (2) 0.044 (2) 0.035 (2) 0.0206 (19) 0.0123 (18) 0.0260 (18)
C4 0.051 (3) 0.073 (3) 0.041 (2) 0.037 (2) 0.022 (2) 0.023 (2)
C5 0.032 (2) 0.077 (3) 0.042 (2) 0.024 (2) 0.0112 (19) 0.027 (2)
C2 0.055 (3) 0.040 (2) 0.039 (2) 0.017 (2) 0.012 (2) 0.0233 (19)
OW1 0.192 (4) 0.069 (2) 0.109 (3) 0.009 (3) 0.079 (3) 0.028 (2)
OW2 0.063 (3) 0.086 (3) 0.074 (3) 0.032 (2) 0.020 (2) 0.043 (2)
OW3 0.192 (4) 0.069 (2) 0.109 (3) 0.009 (3) 0.079 (3) 0.028 (2)
OW4 0.158 (6) 0.115 (4) 0.103 (4) −0.017 (4) −0.019 (4) 0.084 (4)

Geometric parameters (Å, º)

La1—O5 2.507 (2) C12—H12B 0.9700
La1—O5i 2.905 (3) C14—H14 0.9300
La1—O3ii 2.781 (2) C14—C15iii 1.399 (6)
La1—O3 2.545 (2) C8—C10 1.373 (6)
La1—O1 2.673 (2) C8—C7 1.509 (5)
La1—O6 2.559 (2) C8—C9 1.388 (6)
La1—O2 2.569 (2) C10—H10 0.9300
La1—O4 2.566 (2) C10—C9iv 1.382 (6)
La1—O7 2.543 (3) C15—H15 0.9300
La1—O8 2.562 (3) C7—H7C 0.9700
La1—C11 3.066 (3) C7—H7D 0.9700
La1—C1 2.988 (4) C9—H9 0.9300
O5—C6i 1.255 (4) C3—C4 1.385 (6)
O3—C11ii 1.264 (4) C3—C5 1.381 (6)
O1—C1 1.264 (4) C3—C2 1.509 (6)
O6—C6 1.256 (4) C4—H4 0.9300
O2—C1 1.248 (4) C4—C5v 1.391 (6)
O4—C11 1.246 (4) C5—H5 0.9300
O7—H7A 0.824 (19) C2—H2A 0.9700
O7—H7B 0.806 (18) C2—H2B 0.9700
O8—H8A 0.815 (19) OW1—HW1A 0.87 (2)
O8—H8B 0.833 (19) OW1—HW1B 0.88 (2)
C6—C7 1.512 (5) OW2—HW2A 0.821 (19)
C11—C12 1.516 (5) OW2—HW2B 0.81 (2)
C1—C2 1.514 (5) OW3—HW3A 0.82 (2)
C13—C12 1.507 (5) OW3—HW3B 0.81 (2)
C13—C14 1.376 (6) OW4—HW4A 0.81 (2)
C13—C15 1.371 (5) OW4—HW4B 0.84 (2)
C12—H12A 0.9700
O5—La1—O5i 61.48 (9) C11—O4—La1 101.3 (2)
O5—La1—O3 146.45 (9) La1—O7—H7A 116 (3)
O5—La1—O3ii 118.58 (7) La1—O7—H7B 133 (3)
O5—La1—O1 75.87 (8) H7A—O7—H7B 109 (3)
O5—La1—O6 107.86 (8) La1—O8—H8A 118 (3)
O5—La1—O2 75.29 (8) La1—O8—H8B 122 (3)
O5—La1—O4 80.33 (8) H8A—O8—H8B 104 (3)
O5—La1—O7 71.93 (9) O5i—C6—La1 68.28 (18)
O5—La1—O8 140.13 (9) O5i—C6—O6 120.2 (3)
O5i—La1—C11 156.28 (8) O5i—C6—C7 120.1 (3)
O5—La1—C11 98.48 (8) O6—C6—La1 52.33 (16)
O5—La1—C1 75.84 (9) O6—C6—C7 119.7 (3)
O5i—La1—C1 88.69 (9) C7—C6—La1 169.6 (2)
O3—La1—O5i 118.22 (7) O3ii—C11—La1 65.08 (17)
O3ii—La1—O5i 179.00 (7) O3ii—C11—C12 120.3 (3)
O3—La1—O3ii 61.11 (8) O4—C11—La1 55.16 (17)
O3—La1—O1 73.20 (8) O4—C11—O3ii 119.9 (3)
O3—La1—O6 80.93 (8) O4—C11—C12 119.8 (3)
O3—La1—O2 74.87 (8) C12—C11—La1 171.2 (2)
O3—La1—O4 108.82 (8) O1—C1—La1 63.39 (19)
O3—La1—O8 73.39 (9) O1—C1—C2 119.8 (3)
O3ii—La1—C11 24.36 (8) O2—C1—La1 58.58 (18)
O3—La1—C11 85.47 (8) O2—C1—O1 121.5 (3)
O3—La1—C1 70.64 (9) O2—C1—C2 118.7 (3)
O3ii—La1—C1 90.37 (9) C2—C1—La1 172.4 (3)
O1—La1—O5i 109.68 (7) C14—C13—C12 120.5 (4)
O1—La1—O3ii 69.49 (8) C15—C13—C12 122.1 (4)
O1—La1—C11 74.29 (9) C15—C13—C14 117.4 (4)
O1—La1—C1 25.01 (9) C11—C12—H12A 109.2
O6—La1—O5i 46.41 (7) C11—C12—H12B 109.2
O6—La1—O3ii 133.56 (8) C13—C12—C11 112.0 (3)
O6—La1—O1 126.21 (9) C13—C12—H12A 109.2
O6—La1—O2 78.86 (9) C13—C12—H12B 109.2
O6—La1—O4 149.49 (10) H12A—C12—H12B 107.9
O6—La1—O8 71.55 (10) C13—C14—H14 119.1
O6—La1—C11 149.62 (9) C13—C14—C15iii 121.8 (4)
O6—La1—C1 101.90 (10) C15iii—C14—H14 119.1
O2—La1—O5i 66.57 (8) C10—C8—C7 121.6 (4)
O2—La1—O3ii 112.44 (8) C10—C8—C9 117.8 (4)
O2—La1—O1 49.39 (8) C9—C8—C7 120.6 (4)
O2—La1—C11 123.42 (9) C8—C10—H10 119.5
O2—La1—C1 24.50 (9) C8—C10—C9iv 121.1 (4)
O4—La1—O5i 132.95 (7) C9iv—C10—H10 119.5
O4—La1—O3ii 47.75 (7) C13—C15—C14iii 120.7 (4)
O4—La1—O1 84.13 (9) C13—C15—H15 119.6
O4—La1—O2 131.27 (9) C14iii—C15—H15 119.6
O4—La1—C11 23.49 (8) C6—C7—H7C 108.9
O4—La1—C1 108.61 (10) C6—C7—H7D 108.9
O7—La1—O5i 70.81 (9) C8—C7—C6 113.4 (3)
O7—La1—O3 141.53 (10) C8—C7—H7C 108.9
O7—La1—O3ii 110.19 (9) C8—C7—H7D 108.9
O7—La1—O1 142.43 (10) H7C—C7—H7D 107.7
O7—La1—O6 82.59 (10) C8—C9—H9 119.4
O7—La1—O2 134.87 (9) C10iv—C9—C8 121.1 (4)
O7—La1—O4 71.95 (10) C10iv—C9—H9 119.4
O7—La1—O8 68.46 (10) C4—C3—C2 120.7 (4)
O7—La1—C11 91.69 (10) C5—C3—C4 118.0 (4)
O7—La1—C1 147.21 (10) C5—C3—C2 121.2 (4)
O8—La1—O5i 108.04 (8) C3—C4—H4 119.8
O8—La1—O3ii 72.59 (9) C3—C4—C5v 120.4 (4)
O8—La1—O1 138.11 (8) C5v—C4—H4 119.8
O8—La1—O2 139.28 (10) C3—C5—C4v 121.6 (4)
O8—La1—O4 83.41 (11) C3—C5—H5 119.2
O8—La1—C11 78.57 (10) C4v—C5—H5 119.2
O8—La1—C1 144.03 (10) C1—C2—H2A 109.0
C1—La1—C11 98.95 (10) C1—C2—H2B 109.0
La1—O5—La1i 118.52 (9) C3—C2—C1 112.8 (3)
C6i—O5—La1i 88.1 (2) C3—C2—H2A 109.0
C6i—O5—La1 153.4 (2) C3—C2—H2B 109.0
La1—O3—La1ii 118.89 (8) H2A—C2—H2B 107.8
C11ii—O3—La1 150.5 (2) HW1A—OW1—HW1B 88 (7)
C11ii—O3—La1ii 90.56 (19) HW2A—OW2—HW2B 121 (5)
C1—O1—La1 91.6 (2) HW3A—OW3—HW3B 108 (4)
C6—O6—La1 104.8 (2) HW4A—OW4—HW4B 107 (4)
C1—O2—La1 96.9 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y, −z; (iv) −x+2, −y+2, −z+2; (v) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
OW1—HW1A···OW1vi 0.87 (9) 2.40 (11) 3.067 (13) 133 (9)
OW1—HW1B···OW4vii 0.89 (9) 2.54 (10) 3.298 (11) 145 (7)
OW2—HW2A···O4i 0.82 (6) 2.10 (6) 2.895 (5) 164 (6)
OW2—HW2B···OW4viii 0.82 (6) 2.20 (5) 2.855 (8) 137 (5)
OW3—HW3A···O6i 0.82 (8) 2.02 (8) 2.780 (8) 154 (7)
OW3—HW3B···OW1vi 0.81 (7) 2.40 (8) 3.162 (11) 156 (8)
OW4—HW4A···OW2ix 0.81 (10) 2.49 (9) 2.855 (8) 109 (9)
O7—H7A···O2i 0.82 (4) 1.95 (4) 2.741 (5) 161 (5)
O7—H7B···OW4 0.81 (5) 2.03 (5) 2.800 (9) 160 (5)
OW4—HW4B···OW3x 0.84 (9) 2.11 (10) 2.824 (11) 143 (8)
O8—H8A···OW3i 0.82 (4) 2.38 (4) 3.175 (8) 165 (4)
O8—H8B···O1ii 0.83 (4) 1.92 (4) 2.725 (5) 163 (5)
C7—H7D···O4i 0.97 2.54 3.442 (6) 154
C12—H12B···O6ii 0.97 2.51 3.406 (6) 154

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (vi) −x+1, −y, −z+1; (vii) x, y−1, z; (viii) x, y, z+1; (ix) x, y, z−1; (x) x+1, y+1, z.

References

  1. Badiane, A.-M., Freslon, S., Daiguebonne, C., Suffren, Y., Bernot, K., Calvez, G., Costuas, K., Camara, M. & Guillou, O. (2018). Inorg. Chem. 57, 3399–3410. [DOI] [PubMed]
  2. Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017a). Cryst. Growth Des. 17, 1224–1234.
  3. Badiane, I., Freslon, S., Suffren, Y., Daiguebonne, C., Calvez, G., Bernot, K., Camara, M. & Guillou, O. (2017b). Inorg. Chim. Acta, 461, 136–144.
  4. Binnemans, K. (2009). Chem. Rev. 109, 4283–4374. [DOI] [PubMed]
  5. Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Calvez, G., Bernot, K., Guillou, O., Daiguebonne, C., Caneschi, A. & Mahé, N. (2008). Inorg. Chim. Acta, 361, 3997–4003.
  7. Chen, Z., Xiong, W., Zhang, Z. & Liang, F. (2010a). Z. Anorg. Allg. Chem. 636, 1392–1396.
  8. Chen, Z., Xiong, W., Zhang, Z., Liang, F. P. & Luo, B. C. (2010b). Transition Met. Chem. 35, 991–997.
  9. Chen, Z., Zhao, Q., Xiong, W., Zhang, Z. & Liang, F. (2010c). Z. Anorg. Allg. Chem. 636, 2691–2697.
  10. Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162. [DOI] [PubMed]
  11. Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020.
  12. Daiguebonne, C., Kerbellec, N., Guillou, O., Bünzli, J. C., Gumy, F., Catala, L., Mallah, T., Audebrand, N., Gérault, Y., Bernot, K. & Calvez, G. (2008). Inorg. Chem. 47, 3700–3708. [DOI] [PubMed]
  13. Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. [DOI] [PubMed]
  14. Fabelo, O., Cañadillas-Delgado, L., Pasán, J., Delgado, F. S., Lloret, F., Cano, J., Julve, M. & Ruiz-Pérez, C. (2009a). Inorg. Chem. 48, 11342–11351. [DOI] [PubMed]
  15. Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2009b). Inorg. Chem. 48, 6086–6095. [DOI] [PubMed]
  16. Fan, X., Freslon, S., Daiguebonne, C., Calvez, G., Le Pollès, L., Bernot, K. & Guillou, O. (2014). J. Mater. Chem. C. 2, 5510–5525.
  17. Fan, X., Freslon, S., Daiguebonne, C., Pollès, L. L., Calvez, G., Bernot, K., Yi, X., Huang, G. & Guillou, O. (2015). Inorg. Chem. 54, 5534–5546. [DOI] [PubMed]
  18. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  19. Freslon, S., Luo, Y., Calvez, G., Daiguebonne, C., Guillou, O., Bernot, K., Michel, V. & Fan, X. (2014). Inorg. Chem. 53, 1217–1228. [DOI] [PubMed]
  20. Freslon, S., Luo, Y., Daiguebonne, C., Calvez, G., Bernot, K. & Guillou, O. (2016). Inorg. Chem. 55, 794–802. [DOI] [PubMed]
  21. Hamon, L., Llewellyn, P. L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., Pirngruber, G. D., Maurin, G., Serre, C., Driver, G., van Beek, W., Jolimaître, E., Vimont, A., Daturi, M. & Férey, G. (2009). J. Am. Chem. Soc. 131, 17490–17499. [DOI] [PubMed]
  22. Henisch, H. K. (1988). Crystals in Gels and Liesegang Rings; Cambridge University Press: Cambridge. [DOI] [PubMed]
  23. Huang, Y. G., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2009). J. Solid State Chem. 182, 215–222.
  24. Kerbellec, N., Daiguebonne, C., Bernot, K., Guillou, O. & Le Guillou, X. (2008). J. Alloys Compd. 451, 377–383.
  25. Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781.
  26. Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S., inh, T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450–1459. [DOI] [PubMed]
  27. Li, D. S., Zhang, M. L., Zhao, J., Wang, D. J., Zhang, P., Wang, N. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 1027–1030.
  28. Luo, F., Batten, S. R., Che, Y. & Zheng, J. M. (2007). Chem. Eur. J. 13, 4948–4955. [DOI] [PubMed]
  29. Luo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882–1896.
  30. Luo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011a). Eur. J. Inorg. Chem. 3705–3716. [DOI] [PubMed]
  31. Luo, Y., Calvez, G., Freslon, S., Daiguebonne, C., Roisnel, T. & Guillou, O. (2011b). Inorg. Chim. Acta, 368, 170–178.
  32. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
  33. Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, Ch., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062–3067. [DOI] [PubMed]
  34. Qiu, Y., Daiguebonne, C., Liu, J., Zeng, R., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265–3271.
  35. Reineke, T. M., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590–2594. [DOI] [PubMed]
  36. Ren, Y.-W., Liang, J.-X., Lu, J.-X., Cai, B.-W., Shi, D.-B., Qi, C.-R., Jiang, H.-F., Chen, J. & Zheng, D. (2011). Eur. J. Inorg. Chem. pp. 4369–4376.
  37. Rusinek, I., Sienkiewicz-Gromiuk, J., Mazur, L. & Rzączyńska, Z. (2013). J. Inorg. Organomet. Polym. 23, 1068–1077.
  38. Sessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328–2341.
  39. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  40. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  41. Singha, D.-K., Bhattacharya, S., Majee, P., Mondal, S.-K., Kumar, M. & Mahata, P. (2014). J. Mater. Chem. A, 2, 20908–20915.
  42. Singha, D.-K., Majee, P., Mondal, S. K. & Mahata, P. (2015). Eur. J. Inorg. Chem. pp. 1390–1397.
  43. Singh, W. M. & Baruah, J. B. (2009). Inorg. Chim. Acta, 362, 4268–4271.
  44. Uebler, J. W. & LaDuca, R. L. (2012). Inorg. Chem. Commun. 19, 31–35.
  45. Wang, L., Song, T., Li, C., Xia, J., Wang, S., Wang, L. & Xu, J. (2012). J. Solid State Chem. 190, 208–215.
  46. Xin, L. Y., Liu, G. Z. & Wang, L. Y. (2011). J. Solid State Chem. 184, 1387–1392.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989019002378/vn2143sup1.cif

e-75-00378-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019002378/vn2143Isup2.hkl

e-75-00378-Isup2.hkl (251.6KB, hkl)

Table 2. Valence angles and torsion angles around the ligands. DOI: 10.1107/S2056989019002378/vn2143sup3.pdf

e-75-00378-sup3.pdf (46.6KB, pdf)

CCDC reference: 1875083

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES