Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Feb 5;75(Pt 3):324–327. doi: 10.1107/S2056989019001816

Crystal structure, Hirshfeld surface analysis and frontier mol­ecular orbital analysis of (E)-4-bromo-N′-(2,3-di­chloro­benzyl­idene)benzohydrazide

Palaniyappan Sivajeyanthi a, Muthaiah Jeevaraj a, Bellarmin Edison a, Kasthuri Balasubramani a,*
PMCID: PMC6399702  PMID: 30867941

The title Schiff base compound, has an E configuration with respect to the C=N bond, and the benzene rings are inclined to each other by 15.7 (2)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along [001] which enclose Inline graphic(6) loops.

Keywords: crystal structure, Schiff base, hydrogen bonding, Hirshfeld surface analysis

Abstract

The title Schiff base compound, C14H9BrCl2N2O, displays a trans or E configuration with respect to the C=N bond, with a dihedral angle 15.7 (2)° formed between the benzene rings. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along [001] which enclose R 1 2(6) loops. The inter­molecular inter­actions were investigated by Hirshfeld surfaces analysis and two-dimensional fingerprint plots. The DFT-B3LYP/6–311 G++(d,p) method was used to determine the HOMO–LUMO energy levels.

Chemical context  

Schiff bases are nitro­gen-containing compounds that were first obtained by the condensation reactions of aromatic amines and aldehydes (Schiff, 1864). A wide range of these compounds, with the general formula RHC=NR1 (R and R1 can be alkyl, aryl, cyclo­alkyl or heterocyclic groups) have been synthesized. They are of great importance in the field of coordination chemistry as they are able to form stable complexes with many metal ions (Souza et al., 1985). The chemical and biological significance of Schiff bases can be attributed to the presence of a lone electron pair in the sp 2-hybridized orbital of the nitro­gen atom of the azomethine group (Singh et al., 1975). These compounds are used in the fields of organic synthesis, chemical catalysis, medicine and pharmacy as well as other new technologies (Tanaka et al., 2010). Schiff bases are also used as probes in investigating the structure of DNA (Tiwari et al., 2011) and have gained special attention in pharmacophore research and in the development of several bioactive lead mol­ecules (Muralisankar et al., 2016). They also exhibit photochromic and thermochromic properties and have been used in information storage, electronic display systems, optical switching devices, and ophthalmic glasses (Amimoto & Kawato, 2005). Herein, we report on the crystal structure, the Hirshfeld surface analysis and the mol­ecular orbital analysis of the title compound, (E)-4-bromo-N′-(2,3-di­chloro­benzyl­idene)benzohydrazide.graphic file with name e-75-00324-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The configuration about the C8=N2 bond, which has a bond length of 1.271 (5) Å, is E. The benzene rings (C1–C6 and C9–C14) are inclined to each other by 15.7 (2)°. The bond lengths and angles and the overall conformation of the mol­ecule are close to those reported for a very similar compound, (E)-4-bromo-N′-(2-chloro­benzyl­idene)benzohydrazide (Shu et al., 2009).

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains that propagate along the [001] direction and which enclose Inline graphic(6) ring motifs (Fig. 2 and Table 1). Here the oxygen atom O1 acts as a bifurcated acceptor. There are no other significant inter­molecular inter­actions present (see Table 2 in Hirshfeld surface analysis).

Figure 2.

Figure 2

A partial view along the a axis of the crystal packing of the title compound. Hydrogen bonds (Table 1) are shown as dashed lines, and only the H atoms involved in hydrogen bonding have been included.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.86 2.20 3.003 (4) 155
C8—H8⋯O1i 0.93 2.42 3.234 (5) 146

Symmetry code: (i) Inline graphic.

Table 2. Inter­molecular contacts (Å) for the title compound.

Atom1⋯Atom2 Length Length − vdW radii Symm. op. 2
H1N1⋯H5 2.136 −0.264 x, y, z
O1⋯H1N1 2.200 −0.520 x, Inline graphic − y, z − Inline graphic
H1N1⋯H8 2.242 −0.158 x, y, z
O1⋯H8 2.421 −0.299 x, Inline graphic − y, z − Inline graphic
O1⋯H1 2.520 −0.200 x, y, z
N2⋯H14 2.523 −0.227 x, y, z
H1N1⋯C5 2.608 −0.292 x, y, z
N1⋯H5 2.652 −0.098 x, y, z
Cl1⋯H8 2.733 −0.217 x, y, z
H1⋯Cl1 2.931 −0.019 x, Inline graphic − y, z − Inline graphic
O1⋯N1 3.003 (4) −0.067 x, Inline graphic − y, z − Inline graphic
H12⋯Cl2 3.024 0.074 x, Inline graphic − y, z − Inline graphic
O1⋯C8 3.234 (5) 0.014 x, Inline graphic − y, z − Inline graphic
N2⋯C5 3.262 (5) 0.012 x, Inline graphic − y, z − Inline graphic
C12⋯Cl2 3.440 (5) −0.010 x, Inline graphic − y, z − Inline graphic
C9⋯C4 3.468 (6) 0.068 x, Inline graphic − y, z − Inline graphic
C8⋯C12 3.475 (5) 0.075 x, 1 − y, −z

Hirshfeld surface analysis  

Crystal Explorer (Wolff et al., 2012) was used to generate the Hirshfeld surface and two-dimensional fingerprint plots (Rohl et al., 2008). The three-dimensional d norm surface is a useful tool for analysing and visualizing the inter­molecular inter­actions, which are given in Table 2. The d norm values are negative or positive depending on whether the inter­molecular contact is shorter or longer than the sum of the van der Waals radii (Spackman & Jayatilaka, 2009; McKinnon et al., 2007). The total d norm surface of the title compound is shown in Fig. 3. The red spots correspond to the N—H⋯O and C—H⋯O inter­actions, the most significant inter­actions in the crystal (Tables 1 and 2).

Figure 3.

Figure 3

Hirshfeld surface mapped over d norm for the title compound. [add range of dnorm to legend]

The two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 4. They indicate the percentage contributions of the various inter­molecular contacts to the Hirshfeld surface, the most significant are Cl⋯H/H⋯Cl (22.5%), H⋯H (15.7%), C⋯H/H⋯C (13.2%), Br⋯H/H⋯Br (11.5%), C⋯C (9.8%), O⋯H/H⋯O (9.0%), N⋯H/H⋯N (4.9%), and Br⋯Cl/Cl⋯Br (3.3%), as shown in Fig. 4, cf Table 2.

Figure 4.

Figure 4

Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.

Frontier mol­ecular orbital calculations  

The HOMO (highest occupied mol­ecular orbital) acts as an electron donor and the LUMO (lowest occupied mol­ecular orbital) as an electron acceptor. If the energy gap is small then the mol­ecule is highly polarizable and has high chemical reactivity. The energy levels of the title compound were computed using the DFT-B3LYP/6-311G++(d,p) method (Sivajeyanthi et al., 2017). The energy gap between HOMO–LUMO orbitals, which determines the chemical stability, chemical hardness, chemical potential, electronegativity and the electrophilicity index are shown in Fig. 5 and details are given in Table 3. The frontier mol­ecular orbital LUMO is located over the whole of the mol­ecule. The energy gap of the mol­ecule clearly shows the charge-transfer inter­action involving donor and acceptor groups. The chemical hardness and softness of a mol­ecule is a sign of its chemical stability. From the HOMO–LUMO energy gap, we can see whether or not the mol­ecule is hard or soft. If the energy gap is large, the mol­ecule is hard and if small the mol­ecule is soft. Soft mol­ecules are more polarizable than hard ones because they need less energy for excitation. From the data presented in Table 3, we conclude that the energy gap is large, hence the title mol­ecule is a hard material and will be difficult to polarize.

Figure 5.

Figure 5

Mol­ecular orbital energy levels of the title compound.

Table 3. Calculated frontier mol­ecular orbital analysis of the title compound.

EHOMO −6.7318 eV
ELUMO −2.4441 eV
EHOMO-1 −7.2556 eV
ELUMO+1 −1.6506 eV
EHOMO–ELUMO gap 4.2877 eV
EHOMO−1 ELUMO+1 gap 5.6050 eV
Chemical hardness (η) 2.1438 eV
Chemical potential (μ) 4.5879 eV
Electronegativity (χ) −4.5879 eV
Electrophilicity index (ω) 4.9092 eV

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016) for 4-bromo-(benzyl­idene)benzohydrazides yielded six structures. They include the following analogues: 2,4-di­hydroxy­benzyl­idene [ATOSEJ (Mohanraj et al., 2016) and ATOSEJ01 (Arunagiri et al., 2018)], 2-nitro­benzyl­idene (EGUSEF; Zhang et al., 2009), 2-chloro­benzyl­idene (HOTDAW; Shu et al., 2009), 2-hy­droxy-1-naphthyl­methyl­ene (IFUSEI; Diao et al., 2008), 2-hy­droxy-5-meth­oxy­benzyl­idene (OBUBUL; Wang et al., 2017) and 4-hy­droxy-3-meth­oxy­benzyl­idene (YAWXOL; Horkaew et al., 2012). They all have an E configuration about the C=N bond. The N—N bond lengths vary from 1.366 (4) to 1.396 (5) Å while the C=N bond lengths vary from 1.264 (4) to 1.285 (2) Å. The values observed for the title compound, respectively, 1.391 (4) and 1.271 (5) Å, fall within these limits. The dihedral angle between the two benzene rings varies from as little as 4.12 (17)° in EGUSEF to 49.08 (18)° in ATOSEJ01. In the title compound this dihedral angle is 15.7 (2)°, similar to the values observed for HOTDAW, the 2-chloro­benzyl­idene analogue, and for YAWXOL, the 4-hy­droxy-3-meth­oxy­benzyl­idene analogue, for which the dihedral angles are 11.43 (16) and 13.92 (6)°, respectively.

Synthesis and crystallization  

The title compound was synthesized by the reaction of 1:1 molar ratio mixture of a hot ethano­lic solution (20 ml) of 4-bromo­benzohydrazide (0.213 mg, Aldrich) and 2,3-di­chloro­benzaldehyde (0.175 mg, Aldrich), which was refluxed for 8 h. The solution was then cooled and kept at room temperature. The powder obtained was recrystallized from dimethyl sulfoxide (DMSO). Colourless block-like crystals suitable for the X-ray diffraction analysis were obtained in a few days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å, N—H = 0.86 Å, with U iso(H) = 1.2U eq(N, C).

Table 4. Experimental details.

Crystal data
Chemical formula C14H9BrCl2N2O
M r 372.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.1952 (18), 14.055 (2), 9.3050 (12)
β (°) 96.446 (6)
V3) 1454.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.19
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.448, 0.568
No. of measured, independent and observed [I > 2σ(I)] reflections 11392, 3363, 1724
R int 0.050
(sin θ/λ)max−1) 0.666
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.173, 0.94
No. of reflections 3363
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.63

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2017 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, 1. DOI: 10.1107/S2056989019001816/su5466sup1.cif

e-75-00324-sup1.cif (353KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019001816/su5466Isup2.hkl

e-75-00324-Isup2.hkl (268.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019001816/su5466Isup3.cml

CCDC reference: 1587252

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C14H9BrCl2N2O F(000) = 736
Mr = 372.04 Dx = 1.699 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.1952 (18) Å Cell parameters from 3186 reflections
b = 14.055 (2) Å θ = 4.7–47.5°
c = 9.3050 (12) Å µ = 3.19 mm1
β = 96.446 (6)° T = 296 K
V = 1454.8 (4) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 1724 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.050
ω and φ scan θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −14→14
Tmin = 0.448, Tmax = 0.568 k = −18→18
11392 measured reflections l = −8→12
3363 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
3363 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.45376 (6) −0.17154 (4) 0.33892 (7) 0.0891 (3)
Cl1 0.24263 (13) 0.60728 (9) 0.12531 (12) 0.0749 (4)
Cl2 0.11288 (14) 0.77291 (9) −0.05544 (15) 0.0843 (5)
O1 0.2713 (3) 0.1659 (2) −0.1706 (3) 0.0628 (9)
N1 0.2462 (3) 0.2532 (2) 0.0288 (3) 0.0456 (9)
H1N1 0.253851 0.257938 0.121571 0.055*
N2 0.1988 (3) 0.3275 (2) −0.0585 (4) 0.0478 (9)
C6 0.3268 (4) 0.0931 (3) 0.0576 (4) 0.0439 (10)
C9 0.1358 (4) 0.4878 (3) −0.0799 (4) 0.0470 (10)
C7 0.2801 (4) 0.1731 (3) −0.0370 (4) 0.0452 (10)
C5 0.3717 (4) 0.1033 (3) 0.2017 (4) 0.0473 (10)
H5 0.375456 0.163419 0.243713 0.057*
C10 0.1524 (4) 0.5818 (3) −0.0321 (4) 0.0483 (10)
C3 0.4067 (4) −0.0633 (3) 0.2236 (5) 0.0527 (11)
C4 0.4112 (4) 0.0249 (3) 0.2838 (5) 0.0539 (11)
H4 0.440892 0.032600 0.380460 0.065*
C8 0.1896 (4) 0.4073 (3) 0.0037 (4) 0.0496 (11)
H8 0.216763 0.414398 0.101258 0.060*
C11 0.0950 (5) 0.6564 (3) −0.1127 (5) 0.0569 (12)
C12 0.0226 (5) 0.6387 (4) −0.2402 (5) 0.0663 (14)
H12 −0.015996 0.688339 −0.292702 0.080*
C14 0.0639 (4) 0.4716 (3) −0.2103 (5) 0.0555 (12)
H14 0.053241 0.409731 −0.244882 0.067*
C1 0.3261 (5) 0.0017 (3) −0.0023 (5) 0.0636 (13)
H1 0.299196 −0.006402 −0.099732 0.076*
C13 0.0084 (5) 0.5456 (4) −0.2885 (5) 0.0674 (14)
H13 −0.039161 0.533003 −0.374844 0.081*
C2 0.3643 (5) −0.0761 (3) 0.0792 (6) 0.0716 (15)
H2 0.361649 −0.136545 0.038188 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0922 (5) 0.0604 (4) 0.1158 (6) 0.0313 (3) 0.0164 (4) 0.0248 (3)
Cl1 0.1014 (11) 0.0608 (7) 0.0589 (8) −0.0126 (7) −0.0069 (7) 0.0007 (6)
Cl2 0.1127 (13) 0.0482 (7) 0.0933 (10) 0.0101 (7) 0.0175 (9) 0.0065 (6)
O1 0.094 (3) 0.0564 (19) 0.0371 (17) −0.0015 (16) 0.0027 (16) −0.0063 (13)
N1 0.062 (2) 0.0421 (19) 0.0319 (17) −0.0021 (17) 0.0032 (16) 0.0005 (14)
N2 0.052 (2) 0.047 (2) 0.0430 (19) −0.0024 (17) 0.0010 (17) 0.0065 (16)
C6 0.042 (3) 0.042 (2) 0.048 (2) −0.0064 (19) 0.0082 (19) −0.0053 (18)
C9 0.044 (3) 0.052 (2) 0.047 (2) −0.001 (2) 0.012 (2) 0.0049 (19)
C7 0.049 (3) 0.046 (2) 0.041 (2) −0.0128 (19) 0.004 (2) −0.0007 (19)
C5 0.060 (3) 0.040 (2) 0.041 (2) −0.003 (2) 0.005 (2) −0.0070 (17)
C10 0.050 (3) 0.052 (2) 0.044 (2) −0.003 (2) 0.013 (2) 0.0009 (18)
C3 0.041 (3) 0.052 (2) 0.066 (3) 0.013 (2) 0.013 (2) 0.008 (2)
C4 0.061 (3) 0.050 (2) 0.050 (2) 0.009 (2) 0.004 (2) 0.002 (2)
C8 0.059 (3) 0.047 (2) 0.043 (2) −0.004 (2) 0.007 (2) 0.0023 (19)
C11 0.062 (3) 0.053 (3) 0.060 (3) 0.003 (2) 0.025 (3) 0.010 (2)
C12 0.068 (4) 0.069 (3) 0.062 (3) 0.017 (3) 0.005 (3) 0.019 (3)
C14 0.058 (3) 0.061 (3) 0.047 (3) 0.006 (2) 0.004 (2) −0.002 (2)
C1 0.085 (4) 0.051 (3) 0.051 (3) 0.000 (3) −0.008 (2) −0.018 (2)
C13 0.069 (4) 0.078 (4) 0.053 (3) 0.012 (3) −0.004 (3) 0.002 (3)
C2 0.076 (4) 0.043 (3) 0.093 (4) 0.006 (2) −0.004 (3) −0.017 (3)

Geometric parameters (Å, º)

Br1—C3 1.901 (4) C5—H5 0.9300
Cl1—C10 1.721 (4) C10—C11 1.402 (6)
Cl2—C11 1.727 (5) C3—C4 1.359 (6)
O1—C7 1.240 (5) C3—C2 1.385 (6)
N1—C7 1.356 (5) C4—H4 0.9300
N1—N2 1.391 (4) C8—H8 0.9300
N1—H1N1 0.8600 C11—C12 1.383 (7)
N2—C8 1.271 (5) C12—C13 1.386 (7)
C6—C5 1.385 (5) C12—H12 0.9300
C6—C1 1.400 (5) C14—C13 1.377 (6)
C6—C7 1.486 (6) C14—H14 0.9300
C9—C14 1.398 (6) C1—C2 1.372 (7)
C9—C10 1.400 (6) C1—H1 0.9300
C9—C8 1.464 (6) C13—H13 0.9300
C5—C4 1.385 (6) C2—H2 0.9300
C7—N1—N2 117.8 (3) C3—C4—H4 119.9
C7—N1—H1N1 121.1 C5—C4—H4 119.9
N2—N1—H1N1 121.1 N2—C8—C9 119.3 (4)
C8—N2—N1 116.2 (3) N2—C8—H8 120.3
C5—C6—C1 117.7 (4) C9—C8—H8 120.3
C5—C6—C7 124.1 (4) C12—C11—C10 120.9 (4)
C1—C6—C7 118.2 (4) C12—C11—Cl2 118.2 (4)
C14—C9—C10 118.2 (4) C10—C11—Cl2 121.0 (4)
C14—C9—C8 119.9 (4) C11—C12—C13 118.9 (4)
C10—C9—C8 121.9 (4) C11—C12—H12 120.6
O1—C7—N1 121.7 (4) C13—C12—H12 120.6
O1—C7—C6 121.0 (4) C13—C14—C9 121.2 (4)
N1—C7—C6 117.3 (3) C13—C14—H14 119.4
C4—C5—C6 120.7 (4) C9—C14—H14 119.4
C4—C5—H5 119.7 C2—C1—C6 121.6 (4)
C6—C5—H5 119.7 C2—C1—H1 119.2
C9—C10—C11 120.0 (4) C6—C1—H1 119.2
C9—C10—Cl1 120.7 (3) C14—C13—C12 120.9 (5)
C11—C10—Cl1 119.3 (3) C14—C13—H13 119.6
C4—C3—C2 120.7 (4) C12—C13—H13 119.6
C4—C3—Br1 120.1 (3) C1—C2—C3 118.9 (4)
C2—C3—Br1 119.1 (3) C1—C2—H2 120.5
C3—C4—C5 120.3 (4) C3—C2—H2 120.5
C7—N1—N2—C8 −166.9 (4) C14—C9—C8—N2 19.2 (6)
N2—N1—C7—O1 1.1 (6) C10—C9—C8—N2 −162.0 (4)
N2—N1—C7—C6 −178.0 (4) C9—C10—C11—C12 −0.6 (7)
C5—C6—C7—O1 160.5 (4) Cl1—C10—C11—C12 179.5 (4)
C1—C6—C7—O1 −19.2 (6) C9—C10—C11—Cl2 179.5 (3)
C5—C6—C7—N1 −20.4 (6) Cl1—C10—C11—Cl2 −0.4 (5)
C1—C6—C7—N1 160.0 (4) C10—C11—C12—C13 −0.7 (7)
C1—C6—C5—C4 −1.8 (6) Cl2—C11—C12—C13 179.2 (4)
C7—C6—C5—C4 178.5 (4) C10—C9—C14—C13 −1.4 (7)
C14—C9—C10—C11 1.6 (6) C8—C9—C14—C13 177.5 (4)
C8—C9—C10—C11 −177.3 (4) C5—C6—C1—C2 2.4 (7)
C14—C9—C10—Cl1 −178.5 (3) C7—C6—C1—C2 −177.9 (4)
C8—C9—C10—Cl1 2.6 (6) C9—C14—C13—C12 0.1 (7)
C2—C3—C4—C5 0.9 (7) C11—C12—C13—C14 0.9 (8)
Br1—C3—C4—C5 −177.0 (3) C6—C1—C2—C3 −1.4 (8)
C6—C5—C4—C3 0.3 (7) C4—C3—C2—C1 −0.3 (7)
N1—N2—C8—C9 −177.5 (3) Br1—C3—C2—C1 177.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.86 2.20 3.003 (4) 155
C8—H8···O1i 0.93 2.42 3.234 (5) 146

Symmetry code: (i) x, −y+1/2, z+1/2.

Funding Statement

This work was funded by Department of Science and Technology, Ministry of Science and Technology, Science and Engineering Research Board grant SB/FT/CS-058/2013 to K. Balasubramani and P. Sivajeyanthi.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226.
  3. Arunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018). J. Mol. Struct. 1163, 368–378.
  4. Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Diao, Y.-P., Zhang, Q.-H., Wang, D.-C. & Deng, X.-M. (2008). Acta Cryst. E64, o2070. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070. [DOI] [PMC free article] [PubMed]
  8. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  9. Mohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). Mater. Sci. Eng. C, 69, 1297–1306. [DOI] [PubMed]
  10. Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95.
  11. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
  12. Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118–119.
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Shu, X.-H., Diao, Y.-P., Li, M.-L., Yan, X. & Liu, J. (2009). Acta Cryst. E65, o1034. [DOI] [PMC free article] [PubMed]
  15. Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.
  16. Sivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Collect. 11–12, 220-231.
  17. Souza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410–412.
  18. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Tanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449–452.
  21. Tiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050–1056. [DOI] [PubMed]
  22. Wang, J., Qu, D., Lei, J.-X. & You, Z. (2017). J. Coord. Chem. 70, 544–555.
  23. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia.
  24. Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, 1. DOI: 10.1107/S2056989019001816/su5466sup1.cif

e-75-00324-sup1.cif (353KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019001816/su5466Isup2.hkl

e-75-00324-Isup2.hkl (268.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019001816/su5466Isup3.cml

CCDC reference: 1587252

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES