Skip to main content
. 2019 Jan 28;8(2):95. doi: 10.3390/cells8020095

Table 4.

Performance of five major types of features for the training and independent datasets.

Methods Training Independent
H. sapiens RF SVM RF SVM
pCKSAAP 0.856 0.838 0.695 0.691
CKSAAP 0.816 0.831 0.677 0.663
AAindex 0.739 0.728 0.759 0.755
Binary 0.767 0.754 0.822 0.809
PseAAC 0.819 0.822 0.658 0.649
H. capsulatum pCKSAAP 0.789 0.792 0.638 0.634
CKSAAP 0.788 0.783 0.619 0.607
AAindex 0.712 0.722 0.658 0.666
Binary 0.713 0.698 0.665 0.647
PseAAC 0.759 0.743 0.612 0.614
M. musculus pCKSAAP 0.801 0.788 0.637 0.634
CKSAAP 0.777 0.767 0.646 0.651
AAindex 0.648 0.655 0.679 0.672
Binary 0.639 0.641 0.677 0.659
PseAAC 0.711 0.722 0.609 0.611
E. coli pCKSAAP 0.769 0.761 0.679 0.684
CKSAAP 0.773 0.782 0.646 0.631
AAindex 0.719 0.721 0.633 0.619
Binary 0.689 0.674 0.619 0.607
PseAAC 0.733 0.734 0.608 0.603
M. tuberculosis pCKSAAP 0.708 0.712 0.688 0.679
CKSAAP 0.689 0.675 0.664 0.671
AAindex 0.667 0.658 0.656 0.655
Binary 0.629 0.617 0.639 0.634
PseAAC 0.643 0.634 0.629 0.617
S. cerevisiae pCKSAAP 0.882 0.869 0.776 0.772
CKSAAP 0.879 0.863 0.752 0.744
AAindex 0.742 0.733 0.759 0.749
Binary 0.741 0.745 0.798 0.787
PseAAC 0.790 0.768 0.699 0.675
T. gondii pCKSAAP 0.834 0.836 0.657 0.666
CKSAAP 0.826 0.822 0.655 0.638
AAindex 0.726 718 0.663 0.647
Binary 0.744 0.745 0.679 0.671
PseAAC 0.801 0.788 0.678 0.664
S. lycopersicum pCKSAAP 0.842 0.836 0.649 0.642
CKSAAP 0.833 0.824 0.648 0.637
AAindex 0.753 0.765 0.644 0.629
Binary 0.729 0.722 0.637 0.631
PseAAC 0.801 0.783 0.678 0.658
T. aestivum pCKSAAP 0.822 0.826 0.649 0.654
CKSAAP 0.821 0.811 0.638 0.634
AAindex 0.736 0.734 0.604 0.611
Binary 0.726 0.719 0.612 0.596
PseAAC 0.778 0.769 0.632 0.628

AUC values are used to assess the prediction performance.